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Abstract. We present the first fully dynamic algorithm for comput-
ing the characteristic polynomial of a matrix. In the generic symmetric
case our algorithm supports rank-one updates in O(n2 log n) random-
ized time and queries in constant time, whereas in the general case the
algorithm works in O(n2k log n) randomized time, where k is the num-
ber of invariant factors of the matrix. The algorithm is based on the
first dynamic algorithm for computing normal forms of a matrix such
as the Frobenius normal form or the tridiagonal symmetric form. The
algorithm can be extended to solve the matrix eigenproblem with rela-
tive error 2−b in additional O(n log2 n log b) time. Furthermore, it can be
used to dynamically maintain the singular value decomposition (SVD) of
a generic matrix. Together with the algorithm the hardness of the prob-
lem is studied. For the symmetric case we present an Ω(n2) lower bound
for rank-one updates and an Ω(n) lower bound for element updates.

Introduction. The computation of the characteristic polynomial (CP) of a ma-
trix and the eigenproblem are two important problems in linear algebra and they
find an enormous number of applications in mathematics, physics and computer
science. Till now almost nothing about the dynamic complexity of these problems
has been known. The CP problem is essentially equivalent to the computation
of the Frobenius Normal Form (FNF), known also as rational canonical form.
All of the efficient algorithms for CP are based on the FNF computation [1–4].
The fastest static algorithms for computing CP are either based on fast ma-
trix multiplication and work in Õ(nω) time [4, 1] or they are so called black-box
approaches working in Õ(nm) time [2, 3], where m is the number of nonzero
entries in the matrix. The latter bound holds only in the generic case, whereas
the fastest general algorithm works in O(µnm) [3], where µ is the number of
distinct invariant factors of the matrix. All of these results have been obtained
very recently. In this paper we are trying to understand the dynamic complexity
of these fundamental problems by devising efficient algorithms and by proving
matching lower bounds. Note, that in this paper and in all of the papers cited
above, we study the arithmetic complexity of the problem, i.e., the notion of
time is equivalent to the count of arithmetic operations and discrete control
operations. More strictly speaking we work in the real RAM model, for details
see [5].

In the first part of the paper we consider the problem of computing the normal
form of a real (complex) n× n dynamic matrix A. We assume that the matrix



can be changed with use of rank-one updates, i.e., for two n dimensional vectors
a and b we allow updates of the form A := A + abT . We want to dynamically
compute matrices Q and F such that A = Q−1FQ, where Q is the unitary
similarity transformation and F is the normal form in question. The algorithm
should support queries to F as well as vector queries to Q, i.e., given vector v
it should be able to return Qv or Q−1v. We present the following fully dynamic
randomized algorithms for this problem:

– for generic symmetric matrices — an algorithm for tridiagonal normal form
supporting updates in O(n2 log n) worst-case time,

– for general matrices — an algorithm for Frobenius normal form (for definition
see Section 1.1) supporting updates in O(kn2 log n) worst-case time, where
k is the number of invariant factors of the matrix.

The queries for F are answered in O(1) time and the queries to Q in O(n2 log n)
worst-case time. After each update the algorithms can compute the character-
istic polynomial explicitly and hence support queries for CP in constant time.
These are the first known fully dynamic algorithms for the CP and normal form
problems. Our results are based on a general result which can be applied to any
normal form, under condition of availability of a static algorithm for computing
the normal form of a sparse matrix. For the completeness of the presentation
we have included the full algorithm for generic symmetric matrices, whereas the
included algorithm for Frobenius normal form is the most universal result.

This algorithm can be extended to solve the dynamic eigenproblem, i.e., we
are asked to maintain with relative error 2−b the eigenvalues λ1, . . . , λn and
a matrix Q composed of eigenvectors. In generic case, our algorithm supports
updates in O(n log2 n log b + n2 log n) worst-case time, queries to λi in constant
time and vector queries to Q in O(n2 log n) worst-case time. You should note
that the relative error 2−b is immanent even in the exact arithmetic model, i.e.,
the eigenvalues can only be computed approximately (for more details please
see [6]).

Let A be a real (complex) m×n matrix, m ≥ n. The singular value decompo-
sition (SVD) for A consists in two orthogonal (unitary) matrices U and V and a
diagonal matrix Σ = diag(σ1, . . . , σn) with nonnegative real entries (the singular
values) such that A = UΣV T . Usually the entries of Σ are sorted σ1 ≥ · · · ≥
σn ≥ 0 and in that case Σ is unique. We define Σk to be diag(σ1, . . . , σk, 0, . . . , 0).
The dynamic SVD problem considers maintaining the SVD under rank one up-
dates and 2 query operations, one operation returns elements of Σ, another re-
turns the k-rank approximation to A, i.e., given r and v return UΣrV

T v. Here,
again the results are with a relative error 2−b. Our algorithm for SVD supports
updates in O(n log2 n log b+n2 log n) worst-case time in the generic case, queries
to Σ in constant time and r-rank approximation query in O(n2 log n) worst-case
time.

Accompanying the above upper bounds, we provide some lower bounds for
the problem of computing the characteristic polynomial. The lower bounds are
formulated in the model of history dependent algebraic computation trees [7].
One should note that our algorithms for computing the CP fit into this model. We
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use the technique developed and used by [7] for proving Ω(n) lower bounds for
several dynamic matrix problems. The technique has been used later to prove an
Ω(n) lower bound for the matrix rank problem [8]. Here, we significantly extend
the technique to show an Ω(n2) lower bound for the problem of computing the
characteristic polynomial in the case of column updates. This is the first known
result of this type. A column update can be realized with the use of one rank-one
update. Additionally, we provide Ω(n) lower bounds for the CP problem in the
case of element updates.

The paper is organized as follows. In the next subsection we motivate our
study by reviewing possible applications within the scope of computer science.
Nevertheless, note that the eigenproblem is THE method to study physical sys-
tems and our result could be applied to speed-up the physical computations in
case when system parameters can be changed. In Section 1 we introduce the
algorithms mentioned above. Section 2 includes the description of the obtained
lower bound.

Applications and Earlier Work. Our result delivers a general framework
for solving many problems that are based on the computation of matrix normal
forms and on the solution of the matrix eigenproblem. Hence it generalizes a
large number of problem specific solutions and can be directly applied to a
broad spectrum of problems. Until now, it has been known how to dynamically
compute the lowest coefficient of the CP, i.e., the determinant [9] and the rank
of the matrix [8]. Our paper generalizes these two results as the CP can be used
for both computing the determinant and in a rather simple way for computing
the matrix rank [10, 11].

Our algorithms can be used to maintain dynamic information about the spec-
trum of a graph. Spectral graph theory has a large number of applications (see
e.g. [12]) and delivers a way to compute numerous information about the graph.
One of the possible applications is a dynamic testing of graph isomorphism,
where one of the basic tools is a characteristic polynomial of the adjacency or
Laplacian matrix [13].

Our algorithms for computing eigenvalues and eigenvectors can be used for
both dynamically approximating the size of the graph partition and for finding
good candidates for partition, e.g., the second smallest eigenvalue is related
to the minimum partition size [14, 15]. There are several spectral methods for
finding partitions and clusters in the graphs which can be used together with
our algorithm [16, 17]. Clustering methods find application in image recognition
and processing [16], where dynamic algorithms may be useful to process image
changes.

Another direct application of our results is the dynamic maintenance of the
stationary distribution of the finite Markov chain. For this problem slightly faster
algorithms, working in O(n2) time, based on Sherman-Morison formula has been
presented in [18–20]. However, our result is more general and can be used to check
if the stationary distribution is unique or to compute the convergence time to
stationary distribution by finding second largest eigenvalue [21], etc..
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The SVD of a matrix may be directly used for finding the nearest matrix of
a rank at most r by zeroing all singular values except the r largest [22]. For such
a use only the leftmost r columns of U and V need to be known. Our concrete
dynamic algorithm below allows application of the rank r approximation matrix
to a vector in time O(m2 log m) for any r. Indirectly dynamic SVD has many
applications, e.g., for image analysis [23], in databases [24] and for data mining
(recommender systems) [25].

In the case when addition of an entire vector or deletion of the last column
of the matrix is allowed algorithms that take O((m + n)min(m, n)) time per
operation are known [26, 27]. Brand [25] has described an algorithm for rank
one updates of the SVD (similar to our model) that takes time O(mr + r3) for
maintaining a rank r approximation. Hence our solution improves these results
as well.

1 Dynamic Characteristic Polynomial - Upper Bounds

In this section we show the algorithms for dynamically computing the character-
istic polynomial, computing normal form and solving matrix eigenproblem. We
show that the CP problem is strongly related to the static problem of computing
the CP of a sparse or structured matrix. Standard methods for computing CPs
transform the matrix to a normal form from which the characteristic polynomial
can be easily computed. If the normal form has O(n) non-zero entries and its CP
can be computed in O(n2) time, it is called a thin normal form. For example, the
Frobenious or the tridiagonal normal forms are thin. We assume, we are given a
static algorithm that computes a thin normal form, a transition matrix and its
inverse with use of O(n) matrix-vector multiplications and O(f(n)) additional
operations. We show how to convert this algorithm into a dynamic algorithm
for computing a thin normal form supporting updates in O(n2 log n + f(n))
amortized time and queries in constant time. This result automatically implies
a dynamic algorithm for computing the CP. Next we move to the application
of this result and show implementations of this solution in the symmetric and
general case. If the algorithm has some additional properties, we can turn it into
a dynamic worst-case time algorithm. Finally we show how to extend the result
to dynamically solve the matrix eigenproblem and SVD problem.

1.1 Amortized Bound

In the algorithm we keep the n × n matrix A over the field F in the following
lazy form:

A = Q−1
0 Q−1

1 . . . Q−1
k−1Q

−1
k TQkQk−1 . . .Q1Q0, (1)

where k ≤ dlog ne, the matrices Qi, for i = 1, . . . , n, are some similarity transfor-
mations and T is a thin normal form. In each update we recompute the lazy form
of the matrix and afterwards we compute its characteristic polynomial with use
of the matrix T . We initialize the algorithm with the matrix A0 and compute
its normal form A0 = Q−1

0 T0Q0. Moreover, after n updates we reinitialize the
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algorithm. Let us consider the sequence of t rank-one updates given by vectors
ai and bi, for i = 1, . . . , t, and let Ai denote the matrix after the i-th update,
i.e.:

Ai = A0 +
i∑

j=1

ajb
T
j .

Let:
t = 2j1 + 2j2 + . . . + 2jk , (2)

where j1 > j2 > . . . > jk. We require that the lazy form (1) fulfils the following:

A2j1+...+2ji = Q−1
0 Q−1

1 . . . Q−1
i−1Q

−1
i TiQiQi−1 . . .Q1Q0, (3)

for i = 1, . . . , k and for Ti in the thin normal form. Now consider a new update
numbered t + 1. We have t + 1 = 2j1 + 2j2 + . . . + 2jk′ + 2j′ , for some k′ ≤ k and
j′ < jk′ . Thus we have to compute a new lazy form fulfilling:

A + at+1b
T
t+1 = Q−1

0 Q−1
1 . . . Q−1

k′ Q′−1
k′+1TQ′

k′+1Qk′ . . . Q1Q0. (4)

Note that in order to recompute this form we have to discard the matrices
Qk′+1, . . . , Qk and compute a matrix Q′

k′+1. Hence applying (3) we have:

A + at+1b
T
t+1 = A2j1+...+2j

k′ +
2j1+...+2j

k′+2j′∑
j=2j1+...+2j

k′+1

ajb
T
j =

= Q−1
0 Q−1

1 . . .Q−1
k′−1Q

−1
k′ Tk′Qk′Qk′−1 . . .Q1Q0 +

2j1+...+2j
k′+2j′∑

j=2j1+...+2j
k′+1

ajb
T
j =

= Q−1
0 . . . Q−1

k′


Tk′ +

2j1+...+2j
k′+2j′∑

j=2j1+...+2j
k′+1

Qk′ . . .Q0ajb
T
j Q−1

0 . . .Q−1
k′


Qk′ . . . Q0.

Thus we have to compute the normal form of the matrix Dt+1:

Dt+1 := Tk′ +
2j1+...+2j

k′+2j′∑
j=2j1+...+2j

k′+1

Qk′ . . .Q0ajb
T
j Q−1

0 . . .Q−1
k′ . (5)

Note that the vectors aj,k′ = Qk′ . . .Q0aj and bT
j,k′ = bT

j Q−1
0 . . .Q−1

k′ , for j ≤ t,
are computed at the time when the algorithm was recomputing the lazy form
after the j-th update. At the time of the j-th update k was greater than k′ and
so the matrices Q0, . . . , Qk′ have not changed since then. Thus we only need
to compute the vectors at+1,k′ and bt+1,k′ when we are performing the t + 1-
th update — this takes O(n2 log n) time. The multiplication of a vector by the
matrix Dt+1 takes O(n2j′ ) time. Hence for the computation of the normal form
of Dt+1 we need O(n22j′ + f(n)) time.

Let us now compute the total cost of performing n updates:
– for the initialization of the lazy form we need O(n3 + f(n)) time,
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– for the computation of vectors aj,i and bj,i for i = 1, . . . , k we require O(n ·
n2 log n) = O(n3 log n) time,

– for the normal forms of Di we need O(nf(n) +
∑dlog ne

j=1 2dlog ne−jn22j) =
O(n3 log n+nf(n)) time, because we spend O(n22j) time for computing the
normal form n

2j times, namely every 2j-th update.

Thus finally we get.

Theorem 1. If there exists an algorithm for computing a given thin normal
form, transition matrix and its inverse by performing O(n) matrix-vector prod-
ucts and O(f(n)) additional operations then there exists a dynamic algorithm
that maintains the characteristic polynomial and the thin normal form support-
ing rank one updates in O(n2 log n+f(n)) amortized time, queries to the normal
form in constant time and vector queries to the transition matrix in O(n2 log n)
time.

Generic Symmetric Case. Let us move to the implementations of Theorem 1
and let us for the moment assume that the n× n matrix A remains symmetric
during the updates, i.e., we consider only updates of the form A := A + aaT ,
where a is an arbitrary n dimensional vector. We want to compute a unitary
matrix Q and a symmetric tridiagonal matrix T such that A = QTQT . The
following is the result which can be obtained with the use of standard Lanczos
method. For the completeness of the presentation the details of the proofs of the
following theorems are included in Appendix A.

Theorem 2. There exists an algorithm for computing a tridiagonal form of a
symmetric generic matrix (when the characteristic polynomial equals the mini-
mal polynomial) with use of n matrix-vector products and O(n2) additional op-
erations. The algorithm is randomized and succeeds with high probability.

Lemma 1. The symmetric tridiagonal form is thin.

Combining Theorem 1, Lemma 1 and Theorem 2 we get the O(n2 log n) amor-
tized updated time dynamic algorithm for computing the CP and the tridiagonal
form of the generic symmetric matrix.

General Case. In the general case we use the following results due to Eberly [2],
who showed how the Frobenius normal form of a sparse matrix can be computed.
Frobenius normal form FA of a matrix A is a block diagonal matrix with com-
panion matrices of monic polynomials f1, . . . , fk on the diagonal, where fi is
divisible by fi+1, for 1 ≤ i ≤ k − 1 and V AV −1 = FA. The companion matrix
of a monic polynomial xd + gd−1x

d−1 + . . . + g1x + g0 ∈ F [x] is a d× d matrix
defined as:

Cg =

2
6666664

0 . . . 0 −g0

1 . . . 0 −g1

. . .
...

...

0 . . . 1 −gd−1

3
7777775

.
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The polynomials f1, . . . , fk are the invariant factors of A and k is the number
of invariant factors. We have χA(λ) =

∏k
i=1 fk(λ) and so FA is thin as it can be

used to compute the CP in O(n2) time.
Theorem 3 (Eberly ’00). There exists an algorithm for computing Frobenius
normal form F of the matrix A together with the transition matrix V and its
inverse with use of O(n) matrix-vector products and O(kn2+n2 log2 n) additional
operations, where k is the number of invariant factors of A. The algorithm is
randomized and may fail with arbitrarily small probability.

Using the above theorem together with Theorem 1 we obtain the O(kn2 log2 n)
amortized updated time dynamic algorithm for computing the CP and the Frobe-
nius form of the matrix.
Remark 1. The time bound in the above theorem can be reduced to O(kn2 +
n2 log n) by keeping the inverse of the transition matrix in the lazy form as
given in Section 4.4 of [2]. Then the matrix-vector multiplication by the inverse
can be carried out in O(n2) time. We skip the details due to page limitation of
this extended abstract. The same holds for all the following results, i.e., with
little effort one can always obtain an O(kn2 log n) time algorithm instead of the
O(kn2 log2 n) time algorithm. In the next theorems we use the O(kn2 +n2 log n)
time bound, but postpone the details to the full version of this paper.

1.2 Worst-Case Bound

The algorithm presented in the previous section works in amortized time bound.
Here we show how to modify it to work in worst-case time using rebuilding
technique. However, as we keep a set of log n matrices we have to be very careful
devising the rebuilding in order to guarantee the same worst-case time. Notice,
that the standard technique, so called global rebuilding, in which we use two
copies of the structure used alternately for answering queries, does not work
here due to the multilevel recomputations. Here, we can only rebuild small parts
of the structure, so one may call the used technique local rebuilding. Moreover
due to non-uniqueness of the standard forms we also have to guarantee that the
small recomputed parts remain consistent during the execution of the algorithm.
In order to guarantee that the normal forms remain consistent we cannot discard
transition matrices, but we have to multiply them. We cannot use standard or
even fast matrix multiplication because it is too slow for our purposes. However,
we can show that transition matrices can be multiplied faster without using
classical matrix multiplication. All the details of the techniques used to prove
the following theorem are included in Appendix B.
Theorem 4. There exists an algorithm that:
– for the generic matrices maintains tridiagonal normal form and supports

updates in O(n2 log n) worst-case time,
– for the general matrices with k invariant factors maintains Frobenius normal

form and supports updates in O(kn2 log n) worst-case,
the queries to CP and the normal form are supported in constant time, whereas
vector queries to transition matrix are supported in O(n2 log n) time.
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1.3 Dynamic Matrix Eigenproblem

Theorem 4 presented in the previous section can be extended to solve the matrix
eigenproblem.
Theorem 5. There exists a dynamic algorithm for the matrix eigenproblem sup-
porting rank one updates:
– in O(n2 log n + n log2 n log b) worst-case time for symmetric matrices,
– in O(kn2 log n + n log2 n log b) worst-case time for general matrices with k

invariant factors.
The computations are carried out with relative error 2−b, the queries to the eigen-
values are answered in constant time and vector queries to eigenvector matrix in
O(n2 log n) worst-case time.
Proof. Note that the eigenvalues and eigenvectors of the maintained tridiagonal
or Frobenius normal form F can be computed in O(n2 log n+n log2 n log b) time
with use of the algorithm given by Pan and Chen [6]. The eigenvalues of F are
of course the same as the eigenvalues of the maintained matrix. However, the
eigenvectors have to be multiplied by Q−1

0 Q−1
1 . . . Q−1

k Q0 what takes O(n2 log n)
time for each eigenvector. ut

1.4 Dynamic Singular Value Decomposition

Our algorithm for dynamic SVD is an application of the earlier results for dy-
namic eigenvalues and eigenvectors of symmetric matrices. The details and the
proof of the following theorem are in Appendix C.
Theorem 6. There exists a dynamic algorithm for SVD of a generic matrix
supporting rank one updates in O(n2 log n + n log2 n log b) worst-case time. The
computations are carried out with relative error 2−b and the queries to the sin-
gular values are answered in constant time, whereas queries for r-rank approxi-
mation are answered in O(n2 log n + nm) worst-case time.

2 Dynamic Characteristic Polynomial - Lower Bounds

Problems considered. Let si(A) or simply si denote the ith coefficient of
the characteristic polynomial of the n × n matrix A over the field F , i.e.,
χA(λ) = det(λI −A) = λn +

∑n
i=1(−1)isiλ

n−i. We let our basic dynamic alge-
braic problem D associated with the characteristic polynomial consist in finding
an efficient algorithm that after an initial preprocessing of A = {aij} can handle
operations changeij(v) that alters aij to v and operations queryi that returns
the current value of si(A). To get stronger lower bounds, we also consider the
problem Di where we restrict ourselves to a single queryi that may be auto-
matically appended to all change operations that are thus required to maintain
si(A). We also consider the very restricted simple problem, D′

i, where we are
only required to maintain information about whether si(A) is zero or nonzero.
All the above problems have variants that consider vector updates, i.e., changing
an entire row and/or column of the matrix A instead of changing single entries
of A. Similarly, all problems may be restricted to symmetric matrices, so change
operations are paired symmetrically.
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Model of computation. Our basic model of computation is the history de-
pendent algebraic computation trees from [7]. A standard algebraic computation
tree has computation nodes +, ·,−, / and branching nodes (zero tests) [28]. For
the field of real numbers, all continuous operations including square root used
in the Lanczos algorithm, can be supported [5], and we also allow branching
based on inequality tests. Each operation is assigned not one tree but many
trees, namely one for each history where history means all discrete information
obtained so far such as the sequence of operations applied earlier and the re-
sults of branching tests in earlier operations. The memory consists of variables
holding field values that are preserved between operations. The variables may
be written and read by the computation trees. The complexity of a solution is
the maximal height of any tree in it. All our algorithms are within this basic
model. We state explicitly, when our lower bounds are valid in a weaker model
only (such as straightline programs).

Results. The following theorem is immediate from the lower bound for dynamic
computation of the determinant [7].

Theorem 7. Let the field F be infinite. The problem D has complexity Ω(n).

If we allow the more general column updates, then the lower bound can be
improved to Ω(n2). Actually, this is a corollary to a stronger result we prove,
namely a lower bound for maintaining whether a single coefficient is zero.

Theorem 8. Let the field F contain the real numbers. Let 1 ≤ l ≤ n.
The problem D′

l has complexity Ω(min(l, n− l)) for symmetric matrices.
The problem D′

l has complexity Ω(min(l, n−l)2) for symmetric matrices when
using vector updates.

The proof of this result is based on a strengthening of the lower bound for matrix
rank from [8].

Theorem 9. Let F be an algebraically closed field or the real numbers. Consider
dynamic computation of rank(M) where M ∈ F (3n+1)2 , M is symmetric (vector
updates must be paired into symmetric row-column updates) and rank(M) must
remain one of 2n and 2n + 2. This problem has complexity at least n2/4.

Proof (of Theorem 9). The proof uses a reduction from matrix vector multipli-
cation verification (MVMV), where the MVMV problem consists in verifying
that Mx = y for square matrix M and column vectors x and y. The MVMV
problem was introduced in [8], where a lower bound was shown for algebraically
closed fields and element updates. Our main contribution is to extend the lower
bound for MVMV to be valid for real numbers and vector updates, combined
with an observation that the reduction from MVMV need only use the rank of
symmetric matrices. For details see Appendix D.
Proof (of Theorem 8). It is known that the rank of a symmetric real matrix is
precisely the number of nonzero roots of its characteristic polynomial [10]. Hence,
for a matrix M as given in the statement of Theorem 9, we may distinguish
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between the two possible ranks simply by checking whether s2n+2 is zero. By
embedding M in a larger matrix M1 that has zeros elsewhere:

M1 =

[
M 0

0 0

]
,

we have the lower bound Ω(l2) on deciding whether sl is zero for n× n matrix
when l ≤ 2

3n. Similarly, by embedding M in the upper left corner of a larger
matrix M2 that has an identity matrix in the lower right corner:

M2 =

[
M 0

0 I

]
,

we have the lower bound Ω((n − l)2) on deciding whether sl is zero for n × n
matrix when l > 2

3n. Combining the two bounds, we get Ω(min(l, n − l)2) for
all l. When adjusting the arguments towards single element updates rather than
vector updates, one may similarly prove the lower bound Ω(min(l, n− l)) for all
l. ut

For the problem of maintaining the value of a coefficient rather than simply
maintaining whether the coefficient is zero, we can prove slightly stronger lower
bounds for element updates than those of Theorem 8 but partly in a more
restrictive model (proof in Appendix E).

Theorem 10. Let the field F be infinite.
The problem Dl has a straightline solution of complexity O(1) for l = 1, 2.
The problem Dl has complexity Ω(max(l, n/l)) for l ≥ 3.
The problem Dl has complexity Ω(n) for l ≥ 3, when the model of compu-

tation is restricted to history dependent straightline programs without division,
i.e. using operations +,−, · only.

3 Conclusion and Open Problems

In this paper we have proven that several fundamental problems in linear alge-
bra allow to construct fully dynamic algorithms. We were able to show almost
square worst-case time randomized dynamic algorithms in the generic case for
the problems of computing: characteristic polynomial, tridiagonal symmetric
form, Frobenius normal form, eigenvalues, eigenvectors, singular value decom-
position and polynomial evaluated at the matrix. What is more important, the
algorithms are practically applicable, i.e., work in worst-case time and the con-
stant hidden in big-O is rather small. Moreover, we have been able to prove
strong lower bounds for the problems. Hence, we have presented an extensive
study of the arithmetic complexity of the problem. Nevertheless, our results rise
a question whether similar but numerically correct algorithms can be obtained.
We have decided to keep this issue out of the scope of the paper due to its size
limitations. The following question are left open as well.
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– The computation of the determinant can be carried out in subquadratic time
in the case of element updates [9]. Is it possible to get similar algorithms in
the case of CP?

– Can the query complexity for the eigenvectors in the above algorithm be
reduced from O(n2 log n) time to Õ(n) time? This is possible when we are
willing to spend O(n2.5) time on updates — details will be included in the
full version of the paper.

– It would be consistent with Theorem 10 if s√n could be maintained by
computation trees of complexity

√
n, so an open problem is to extend the

Ω(n) lower bound for Dl (l ≥ 3) to be valid for algebraic computation trees
with division.

– It would be consistent with the above results if one could maintain singularity
of a matrix with a dynamic algorithm of complexity O(1). In particular
Theorem 8 gives Ω(n) bounds on the complexity of D′

l only for the middle
range of l values. This leads to the open problem of proving an Ω(n) bound
for D′

l for general l.
– It is the first time an Ω(n2) lower bound for a dynamic matrix problem has

been obtained. Can it extended to work for dynamic transitive closure?
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A Proof of Theorem 2 and Lemma 1

Given a symmetric matrix A we want to compute an unitary matrix Q and a
symmetric tridiagonal matrix:

T =

2
6666664

α0 β0 0

β0 α1

. . .

. . .
. . . βn−2

0 βn−2 αn−1

3
7777775

,

such that A = QTQT . This equation is equivalent to AQ = QT . Now if we
denote by qi the i-th column of Q, we can write:

Aqj = βj−1qj−1 + αjqj + βjqj+1, for j = 0, . . . , n− 1, (6)

where we assume that β−1 = βn−1 = 0. Having the vector q0 we can compute
the entries αi, βi and the vectors qi by means of the Lanczos algorithm [29] as
given by Algorithm 1.

Algorithm 1 The Standard Lanczos Method
1. let q0 be a random n dimensional vector over F ,
2. set β−1 = 0, j = 0,
3. compute αj = qT

j Aqj , rj = (A− αjI)qj − βj−1qj−1,
4. if rj 6= 0,

– then, set βj = ‖rj‖2 and qj+1 =
rj

βj
,

– else, stop and output FAILED,
5. set j = j + 1,
6. if j ≤ n− 1 go to Stage 2, else stop and output the entries of T and Q.

Note that in the Lanczos algorithm we perform n matrix-vector products and
O(n2) additional operations.
Theorem 11 (Theorem 2). Algorithm 1 computes a tridiagonal form of a
symmetric matrix with use of n matrix-vector products and O(n2) additional
operations. The algorithm is randomized and succeeds with probability at least
1− n(n+1)

|F| .

The proof of the lemma is rather standard and it can be carried out in the
same way as the proof of Theorem 4.2 from [30]. Now we only need to show the
following.

Lemma 2 (Lemma 1). The symmetric tridiagonal form is thin.

Proof. The tridiagonal form has only 3n − 2 non-zero entries. We just need
to show how to compute its characteristic polynomial. Let Ti denote the i × i
leading principal submatrix of T . We can express its characteristic polynomial
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χTi(λ) = det(λI−Ti), for i = 1, . . . , n, by the following recurrence relations with
use of the Laplace rule:

χT0(λ) = 1,

χT1(λ) = λ− α0,

χTi+1(λ) = (λ− αi)χTi(λ) − β2
i−1χTi−1(λ), for i = 1, 2, . . . , n− 1.

This recurrence can be easily solved in O(n2) time. ut

B Proof of Theorem 4

In order to guarantee that the normal forms remain consistent we cannot discard
transition matrices, but we have to multiply them. However, we cannot use
standard matrix multiplication because it is too slow for our purposes. We need
the following results.
Lemma 3. Let A = Q0TAQT

0 , and B = Q0Q1TBQT
1 QT

0 , where TA and TB are
tridiagonal matrices. Then the matrix Q such that Q = Q0Q1 can be computed
with use of n matrix-vector products and O(n2) additional operations.
Proof. Note, that BQ = QTB and so as a consequence Q is uniquely defined by
TB and q0 by the following recurrence relation qj+1 = 1

βj
(Bqj − αjqj − βj−1qj−1).

We can compute q0 from Q0 and Q1 in O(n2) time and then solve this recurrence
with use of n matrix-vector multiplications and O(n2) additional operations. ut

We also need similar result for the general case.
Lemma 4. Let A = V −1

0 TAV0, and B = V −1
0 V −1

1 TBV1V0 , where FA and FB

are Frobenious matrices. Then the matrix V such that V = V1V0 can be computed
with use of n matrix-vector products and O(kn2) additional operations, where k
is the number of invariant factors of B.
Proof. Let f1, . . . , fk be the nontrivial invariant factors of B and let di = deg(fi).
Then the transition matrix V can be written as

V = [v1, Bv1, . . . , B
d1−1v1, . . . , vk, Bvk, . . . , Bdk−1vk],

for some vectors v1, . . . , vk (see eg. [2]). We can compute all vi, for 1 ≤ i ≤ k
from the product V1V0 in O(kn2) time. Next the matrix V can be reconstructed
with use of additional n matrix-vector products. ut

When the algorithm for computing the normal form and the transition matrix
can be used to multiply the transition matrices in the above way we say that
the algorithm allows for fast transition matrix multiplication.

In the algorithm from Section 1.1 we have to discard the matrices Qk′+1, . . . , Qk

and compute a matrix Q′
k′+1 (see (1) and (4)). Now, instead of discarding the

matrices Qk′+1, . . . , Qk we use them in order to compute the matrix Q′
k′+1. We

start by computing the matrix Q′
k such that:

A + at+1b
T
t+1 = Q−1

0 Q−1
1 . . .Q−1

k−1Q
−1
k Q′−1

k TQ′
kQkQk−1 . . . Q1Q0,
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for some normal form T . This requires O(n2 log n+f(n)) time (see (5)). We now
have to compute a matrix Q′

k′+1 such that:

A + at+1b
T
t+1 = Q−1

0 Q−1
1 . . . Q−1

k−1Q
−1
k′ Q′−1

k′+1TQ′
k′+1Qk′Qk−1 . . . Q1Q0,

in other words the matrix Q′
k′+1 satisfies:

Q′
k′+1 = Q′

kQk · . . . ·Qk′+1. (7)

We will not compute Q′
k′+1 immediately, but instead we keep it in a lazy form

and recompute it part by part. First of all note that the matrix Q′
k′+1 represents

2j′ updates and it will not be needed to compute another matrix with (7) during
the next 2j′ updates (see (2) and following equation for t + 1). At that time it
should be explicitly computed. However, till this time we keep it in the following
lazy form:

Q′
k′+1 = Q′

lQl · . . . ·Qk′+1.

for k ≥ l ≥ k′. The matrices Q′
l and Ql represent 2 · 2jl = 2 · 2k−l updates.

Using Lemma 3 or Lemma 4 we can compute their product in O(2k−ln2) time.
We run this computation in the background during the next 2k−l updates. In
such way we need only O(n2) additional time during each update to maintain
the lazy form of Q′

k′+1. Moreover after the next 2j′ updates the matrix Q′
k′+1

will be computed explicitly.
Keeping the matrices Qk in the lazy forms may increase by a factor of log n

the time needed to compute the vectors aj,k′ and bj,k′ . Nevertheless, this is not
the case as the following lemma shows.
Lemma 5. The total number of transition matrices kept in all lazy forms of Qk

is at most dlog ne.
Proof. Consider the lazy form A = Q−1

0 Q−1
1 . . .Q−1

k−1Q
−1
k TQkQk−1 . . . Q1Q0,

where the matrix Qi represents 2ji updates and we have t = 2j0 + . . . + 2jk and
j0 > j1 > . . . > jk. The lazy form of a matrix Qi contains at the moment of
initialization ji matrices. However, from that time we have served 2ji+1 + . . . +
2jk ≥ 2ji+1 updates. Note that at this point the first ji+1 matrices in the lazy
form of Qi have been recomputed and are now represented by a single matrix.
Hence after t updates the lazy form of Qi contains at most ji−ji+1 matrices. The
total number of matrices is now smaller than jk +

∑k−1
i=0 ji− ji+1 = j0 ≤ dlog ne.

ut
As a consequence we get the following theorem.

Theorem 12. If there exists an algorithm for computing a given thin normal
form, transition matrix and its inverse by performing O(n) matrix-vector prod-
ucts and O(f(n)) additional operations that allows for fast transition matrix
multiplication then there exists a dynamic algorithm that maintains the charac-
teristic polynomial and this thin normal form of the matrix supporting rank one
updates in O(n2 log n + f(n)) worst-case time, queries to the normal form in
constant time and vector queries to transition matrix in O(n2 log n) worst-case
time.
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The above theorem can be used to obtain the main results of the paper.

Theorem 13 (Theorem 4). There exists an algorithm that:
– for the symmetric matrices maintains tridiagonal normal form and supports

updates in O(n2 log n) worst-case time using,
– for the general matrices with k invariant factors maintains Frobenius normal

form and supports updates in O(kn2 log n) worst-case,
the queries to CP and the normal form are supported in constant time, whereas
vector queries to transition matrix are supported in O(n2 log n) time.

Proof. For symmetric case the result is obtained from the previous theorem by
combining it with Theorem 2, Lemma 1 and Lemma 3, whereas for the general
case we need to use Theorem 3 and Lemma 4. ut

C Proof of Theorem 6

Our algorithm for dynamic SVD is an application of the earlier results for dy-
namic eigenvalues and eigenvectors of symmetric matrices. Recall that we want
to compute a diagonal matrix Σ and two unitary matrices U and V such that
A = UΣV T . Note that the symmetric matrix AT A satisfies V T AT AV = Σ2,
which implies that the singular values of A are the square roots of the eigenvalues
of AT A, and V consists of eigenvectors of AT A.

Assume that we use our dynamic algorithm for maintaining a tridiagonal-
ization T of the symmetric AT A matrix. Also maintain the eigenvalues Λ =
diag(λ1, . . . , λn) (where λ1 ≥ · · · ≥ λn) and a corresponding orthonormal ma-
trix E of eigenvectors for T according to Theorem 12 and Theorem 5, i.e.
T = EΛET . For each change in the symmetric generic matrix this can be done
in O(n2 log n + n log2 n log b) time with relative error 2−b. The algorithm works
only in the generic case, because if the minimal polynomial of the matrix is not
equal to the characteristic polynomial then the eigenvectors returned by Theo-
rem 5 may not be orthogonal. Now consider a change A := A + abT , that gives
raise to O(1) symmetric changes to AT A, namely AT A := AT A+ (b + ATa)(b +
AT a)T +(

√
aT ab)(

√
aT ab)T − (AT a)(AT a)T − bbT . Consider a query for Σ. Sim-

ply compute and return diag(
√

λ1, . . . ,
√

λn), which can be done well within the
time bound O(n2 log n).

Consider the rank approximation query, i.e., given a vector v and r, we have
to return UΣrV

T v. Assume the current lazy representation is

AT A = Q−1
0 · · ·Q−1

k TQk · · ·Q0,

where k ≤ log n. Note that V T = ET Qk · · ·Q0, whereas

U = AV Σ−1 = AQ−1
0 · · ·Q−1

k EΣ−1.

Hence, we get:

UΣrV
T v = AQ−1

0 · · ·Q−1
k EIrE

T Qk · · ·Q0v,

what can be computed in O(n2 log n + nm) worst-case time.
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Theorem 14 (Theorem 6). There exists an dynamic algorithm for SVD of a
generic matrix supporting rank one updates in O(n2 log n + n log2 n log b) worst-
case time. The computations are carried out with relative error 2−b and the
queries to the singular values are answered in constant time, whereas queries for
r-rank approximation are answered in O(n2 log n + nm) worst-case time.

D Proof of Theorem 9

First, observe that the proof of the lower bound for matrix vector multiplication
verification (MVMV) in [8] that is shown for algebraically closed fields can also
be made to work for the reals, when replacing the algebraic incompressibility
argument with an argument from topology:
Theorem 15. Any history dependent computation tree solution for dynamic
evaluation of MV MV (M, x, y) where (M, x, y) ∈ Rn2×Rn×Rn has complexity
at least n/4.
Proof. Let a family of computation trees solving dynamic evaluation of MV MV
be given, and let the max depth of any computation tree representing a change
be d. Recall that branching may be based on inequality tests (and not just zero
tests), and we allow arbitrary binary continuous operations R2 7→ R in addition
to arithmetic operations +, ·,−, /.

If we concatenate several change operations into a composite change, we may
compose the associated computation trees into a larger tree by letting the root
of a tree replace a leaf in a previous tree. Let in this way P = P1; P2; P3 denote
the computation tree for off-line MV MV (M, x, y) that arises by concatenating
changes in the following order (with no prior history, all inputs are initially zero)
assuming input variables M = {mij}, x = {xi}, and y = {yj}.

P1 : change1(m11); · · · ; changen2(mnn);
P2 : changen2+1(x1); · · · ; changen2+n(xn);
P3 : changen2+n+1(y1); · · · ; changen2+2n(yn);

Define a modified tree P ′ = P1; P2; P ′
3 where

P ′
3 : changen2+n+1((Mx)1); · · · ; changen2+2n((Mx)n);

Note that P ′ is essentially P pruned to contain only leaves labelled true.
Given specific values for M, x the computation will follow a specific path through
P ′. Note that among possible computation paths, there will be at least one main
path π = π1; π2; π3 satisfying that there is a nonempty open subset S ∈ Rn2+n

such that all M, x ∈ S will follow the path π. Here π1 denotes the portion of the
path running through P1 etc. The path π can also be found in the tree P , since
P ′ is essentially a pruning of P , though π will not be a main path in P .

We may find nonempty open subsets S1 ∈ Rn2
and S2 ∈ Rn such that

S1 × S2 ⊆ S. Let V be the set of the variables that are written by computation
nodes on π1 and read by computation and branching nodes on π2; π3. Let v ∈
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R|V | denote the contents of V after the execution of π1 but before the execution
of π2; π3. Clearly, v is a continuous function of M . Let g : S1 7→ R|V | denote
that continuous function.

We will now argue that g is injective. Assume to the contrary that we can
find specific matrices M1, M2 ∈ S1 with M1 6= M2 and g(M1) = g(M2). Let
W2 = {x | M1x = M2x}, which is a subset of Rn. Since S2 is open (and
nonempty), S2 \W2 must be nonempty, and we may choose some x1 ∈ S2 \W2.
When the computation tree P is applied to the input (M1, x1, M1x1) it will
follow path π and compute true as it should. However, when P is applied to input
(M2, x1, M1x1) it will also follow path π, since g(M1) = g(M2), and therefore
also answer true, which is incorrect. By contradiction, we have shown that g is
injective.

Since S1 is a nonempty open subset of Rn2
, we may find an injective con-

tinuous function g′ : Rn2 7→ S1, but then g ◦ g′ : Rn2 7→ R|V | is an injective
continuous function, which by [5, theorem 10] implies that |V | ≥ n2. However,
since the path π2; π3 contains at most 2dn computation and branching nodes
each of which can read at most 2 variables, it follows that 4dn ≥ |V |, implying
that d ≥ n/4. ut

Note also that in the above argument changes only play a role when con-
catenated corresponding to an entire column, i.e., a column update. The same
is true for [8, theorem 3], therefore we have.
Theorem 16. Let F be an algebraically closed field or the real numbers. Then
any solution allowing column updates for dynamic evaluation of MV MV (M, x, y)
where (M, x, y) ∈ Fn2 ×Fn ×Fn has complexity at least n2/4.

Finally, we adjust the reduction of the MVMV problem to matrix rank [8]
to work in our case.
Theorem 17 (Theorem 9). Let F be an algebraically closed field or the real
numbers. Consider dynamic computation of rank(M) where M ∈ F (3n+1)2 , M
is symmetric (vector updates must be paired into symmetric row-column updates)
and rank(M) must remain one of 2n and 2n + 2. This problem has complexity
at least n2/4.

Proof. Given an instance (M, x, y) ∈ Fn2+n+n of MVMV, create a (2n)×(n+1)
matrix

N =

[
I x

M y

]
.

Clearly, rank(N) ∈ {n, n + 1} and rank(N) = n if and only if Mx = y.
From N create an instance M ′ ∈ F (3n+1)2 of matrix rank, where:

M ′ =

[
0 NT

N 0

]
.

Clearly, M ′ is symmetric, rank(M ′) ∈ {2n, 2n + 2} and rank(M ′) = 2n if and
only if Mx = y. Since the change of a column vector in the input (M, x, y)
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corresponds to a paired row and column change of M ′, we have reduced dynamic
MVMV to the restricted version of dynamic matrix rank, and the wanted result
is implied by Theorem 16. ut

E Proof of Theorem 10

The lower bound for determinant implies a lower bound of Ω(l) for maintaining
the l-th coefficient. This follows from the following reduction. If B is the n× n
block matrix:

B =

(
A 0

0 0

)
,

containing the l × l matrix A in the upper left corner and zeros elsewhere then
detA is the l-th coefficient of the characteristic polynomial of B.

It is possible to prove a linear lower bound for s3 using a reduction from
known lower bounds. But before giving this reduction, let us argue the upper
bounds for s1, s2. Using s1 =

∑n
i=1 aii, it is straightforward to maintain s1 in

time O(1). Using that:

∂s2

∂aij
=

{
−aji for i 6= j,

s1 − aii for i = j,

one similarly obtains that s2 can be maintained in time O(1) per change of an
entry in A.

Finally, let us prove the lower bound for s3. By [7] there is a an Ω(n) lower
bound for dynamic matrix multiplication. The following equality implies a sim-
ilar lower bound on dynamic matrix squaring:




I M 0

0 I N

0 0 I




2

=




I 2M MN

0 I 2N

0 0 I


 .

We can construct a solution for dynamic matrix squaring from a solution
for maintaining s3 under changes of the matrix. Let B = {bij} where B = A2.
Assume we have a data structure for maintaining s3 under changes of A. We
want to be able to answer queries to bij for i 6= j as well (queries to bii are not
needed in order to make the above reduction work). For i 6= j we have:

∂s3

∂aij
= bji − ajis1.

Let Dk be a data structure for maintaining sk, then we may answer a query
for bji (i 6= j) as follows using operations on D3 and D1:
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old := D3-query;
D3-changeij(aij + 1);
new := D3-query;
D3-changeij(aij − 1);
return new− old + ajiD1-query

Since operations on D1 can be done in time O(1) some operation of D3 must
have complexity Ω(n).

To prove the bound Ω(n/l) for Dl, we are going to make a reduction showing
that we can build a dynamic algorithm for s3 from l− 2 instances of a dynamic
algorithm for sl (for increasingly larger matrices). Given n × n matrix A and
some m, let B(m) be the (n + m)× (n + m) matrix that has A in the upper left
corner, an m×m identity matrix in the lower left corner and otherwise zeros:

B(m) =

[
A 0

0 I

]
.

Define s
(m)
i to be the coefficients of χB(m) , i.e.,

χB(m)(λ) = λn+m +
n+m∑
i=1

(−1)is
(m)
i λn+m−i.

Note that χB(m)(λ) = (λ−1)mχA(λ). Elementary use of binomial expansion will
verify that:




s
(l−3)
l

s
(l−4)
l

...

s1
l

s0
l




=




(
l−3
l−3

) (
l−3
l−4

) · · · (
l−3
1

) (
l−3
0

)
0

(
l−4
l−4

) · · · (
l−4
1

) (
l−4
0

)
...

...
. . .

...
...

0 0 · · · (
1
1

) (
1
0

)
0 0 · · · 0

(
0
0

)







s3

s4

...

sl−1

sl




.

Observe that the above matrix is upper triangular with all ones in the diagonal.
Hence it is invertible over any field. Let (d3, . . . , dl) denote the first row in the
inverse matrix. It follows that s3 =

∑l
i=3 dis

(l−i)
l . The lower bound for D3

implies a lower bound of Ω(n/l) for Dl.
We can make a more economic reduction of s3 to sl, viz. we can build a

dynamic algorithm for s3 that only uses one instance of a dynamic algorithm for
sl (for a larger matrix), though there is a snag. The reduction works only if we
stick to a model of computation that excludes division and branching tests, i.e.,
change operations are implemented by straight line programs using operations
+, ·,− only.

For an indeterminate x and n×n matrix A, let C(x) be the (n+ l−3)× (n+
l − 3) matrix that has Ax in the upper left corner, an (l − 3)× (l − 3) identity
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matrix in the lower left corner and otherwise zeros:

C(x) =

[
Ax 0

0 I

]
.

Define sij to be the coefficients of χC(x), i.e.,

χC(x)(λ) =
n+l−3∑

i=0

(−1)i (
i∑

j=0

sijx
j) λn+l−3−i.

An elementary computation may verify that sl3 = s3.
Given a dynamic program for sl, we may run that program on C(x). Memory

variables now contain coefficient vectors for polynomials in k[x], field arithmetic
is replaced by arithmetic in k[x] and one maintains the polynomial

∑l
j=0 sljx

j .
If no division or branching tests are used then one may maintain the truncated
polynomial

∑3
j=0 sljx

j correctly even when restricting all intermediate compu-
tations to arithmetic in k[x] modulo x4. Each modular polynomial arithmetic
operation requires only O(1) operations in the field, and we can still read off
s3 = sl3.

Summing up, when disallowing division and branching, the lower bound for
D3 implies a lower bound of Ω(n− l) for Dl. Combining with the lower bound
Ω(l) proved earlier, we get the lower bound Ω(n) for Dl when l ≥ 3 in the
restricted model without division and branching.
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