Ip uoneoljddy sdwis v :saulyoe| 10ensqy deis-6ig pue deis-|lews usamiag aousfeAinb3 ayi uQ UMIIN %® Aaueq 9T-20-Sd SOIYd

BRICS

Basic Research in Computer Science

On the Equivalence between

Small-Step and Big-Step

Abstract Machines:

A Simple Application of Lightweight Fusion

Olivier Danvy

Kevin Millikin
BRICS Report Series RS-07-16
ISSN 0909-0878 November 2007

Copyright (© 2007, Olivier Danvy & Kevin Millikin.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work

is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS

Department of Computer Science
University of Aarhus

IT-parken, Aabogade 34
DK-8200 Aarhus N

Denmark

Telephone: +45 8942 9300
Telefax: +45 8942 5601
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLSs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/07/16/

On the equivalence
between small-step and big-step abstract machines:
a simple application of lightweight fusion

Olivier Danvy and Kevin Millikin
BRICS

Department of Computer Science
University of Aarhus*

November 2007

Abstract

We show how Ohori and Sasano’s recent lightweight fusion by fixed-point promotion provides
a simple way to prove the equivalence of the two standard styles of specification of abstract
machines: (1) in small-step form, as a state-transition function together with a ‘driver loop,’
i.e., a function implementing the iteration of this transition function; and (2) in big-step
form, as a tail-recursive function that directly maps a given configuration to a final state, if
any. The equivalence hinges on our observation that for abstract machines, fusing a small-
step specification yields a big-step specification. We illustrate this observation here with a
recognizer for Dyck words, the CEK machine, and Krivine’s machine with call/cc.

The need for such a simple proof is motivated by our current work on small-step abstract
machines as obtained by refocusing a function implementing a reduction semantics (a syntactic
correspondence), and big-step abstract machines as obtained by CPS-transforming and then
defunctionalizing a function implementing a big-step semantics (a functional correspondence).

To appear in Information Processing Letters (extended version).

*IT-parken, Aabogade 34, DK-8200 Aarhus N, Denmark.
Email: <danvy@brics.dk>, <kmillikin@brics.dk>

Contents
1 Introduction

2 Example #1: a recognizer for Dyck words
2.1 A small-step abstract machine
2.2 A big-step abstract machine Lo
2.3 From small steps to big steps L

3 Example #2: the CEK machine
3.1 A small-step abstract machine oL Lo
3.2 A big-step abstract machineo
3.3 From small steps to bigsteps L L

4 From reduction semantics to abstract machine
5 Example #3: Krivine’s machine with call/cc

6 Conclusion

ii

NN DN =

s s W

1 Introduction
Abstract machines come in two varieties:

A small-step abstract machine is defined as a state-transition function together with a ‘driver
loop,’ i.e., a function implementing the iteration of this transition function towards a final state,
if any.

A big-step abstract machine is defined as a collection of mutually tail-recursive transition func-
tions mapping a given configuration to a final state, if any.

Small-step abstract machines are common in algorithmics (e.g., pushdown automata [17, Chap-
ter 7]) and in semantics (e.g., the CEK machine [10]), and so are big-step abstract machines (e.g.,
finite automata [2, Figure 3.2.2, page 116] and the Krivine machine [13]). Their equivalence,
however, is often given only intuitively.

In this article, we formally show that fusing the state-transition function and the driver loop
of a small-step abstract machine yields the transition function of a big-step abstract machine. To
this end, we use a particularly simple form of fusion: Ohori and Sasano’s lightweight fusion by
fixed-point promotion [18]. Ohori and Sasano presented a derivation method and proved its full
correctness. The equivalence of the two abstract machines therefore follows as a corollary. We
illustrate this equivalence with three examples: a recognizer for Dyck words (Section 2), the CEK
machine (Section 3), and Krivine’s machine with call/cc (Section 5). We use a pure and strict
functional meta-language in the syntax of Standard ML and with no other effect than divergence.
Ohori and Sasano’s work therefore directly applies.

2 Example #1: a recognizer for Dyck words

Dyck words are well-balanced words of left and right parentheses, which we represent in ML as
follows:

datatype parenthesis = L | R
type word = parenthesis list

For example, the list [L, L, R, L, R, R] represents a Dyck word whereas the list [R, L] does not.

Dyck words are classically recognized with an abstract machine implementing a push-down au-
tomaton. This state-transition system operates iteratively over a given list and a counter reflecting
the number of open parentheses seen in the list so far:

datatype nat = ZERO | SUCC of nat

The machine starts with a given word and a zero counter. At each iteration, one of the following
transitions takes place:

e if the list of parentheses is empty and the counter is zero, a final, accepting state is reached;

e if the list of parentheses is empty and the counter is positive, a final, non-accepting state is
reached;

e if the first parenthesis is a left one, the tail of the list is taken and the counter is incremented;

e if the first parenthesis is a right one and if the counter is zero, a final, non-accepting state is
reached;

e if the first parenthesis is a right one and if the counter is positive, the tail of the list is taken
and the counter is decremented.

2.1 A small-step abstract machine

The following pure and total ML program implements the transition system above as a small-step
abstract machine.! The machine has two states, a final one (a halting state) and an intermediate
one (a configuration), and we define them with a data type. We define the state-transition function
as a total function from intermediate states to states, and a driver loop as a function iterating the

transition function until a final state is reached:

datatype
withtype halti
and confi

state = FINAL of halting_state | INTER of configuration

ng_state

bool

guration = word * nat

(* move : configuration -> state *)

fun move (
move (
move (L ::
move (R ::
move (R ::

nil, ZERO) =
nil, SUCC c¢) =
PS, c) =
ps, ZERO) =
ps, SUCC c) =

FINAL true
FINAL false
INTER (ps, SUCC c)
FINAL false
INTER (ps, c)

(* drive : state -> halting state %)

fun drive (FIN

AL a) = a

| drive (INTER g) = drive (move g)

A word is recognized by supplying the driver loop with an initial state:

(* recognize

: word -> halting_state *)
fun recognize ps = drive (INTER (ps, ZERO))

2.2 A big-step abstract machine

The following pure and total ML program implements the transition system above as a big-step
abstract machine.? We define a tail-recursive function mapping a configuration to a halting state:

(x iterate
fun iterate (
iterate (

(* recognize

iterate (L ::
iterate (R ::
iterate (R ::

: word -> bool

: word * nat -> bool *)
nil, ZERO) = true
nil, SUCC c) = false
ps, c) = iterate (ps, SUCC c)
ps, ZERO) = false
ps, SUCC c) = iterate (ps, c)

*)

fun recognize ps = iterate (ps, ZERO)

2.3 From small steps to big steps

Following Ohori and Sasano’s steps, we consider the composition of drive and move:

fn g => drive

(move g)

Step 1: Inline the definition of move in the composition.

fn g => drive

(case g of (
I (

| (L ::
| (R ::
| (R ::

nil, ZERO) => FINAL true
nil, SUCC c) => FINAL false

PS, c) => INTER (ps, SUCC c)
ps, ZERO) => FINAL false
ps, SUCC c) => INTER (ps, c))

1We used to refer to small-step abstract machines as ‘pre-abstract machines’ in our previous work [4,5,8].
2We used to refer to big-step abstract machines as ‘abstract machines’ in our previous work [1,4,5,8].

Step 2: Distribute drive in the conditional branches.

fn g => (case g of (nil, ZERO) => drive (FINAL true)
I (nil, SUCC ¢) => drive (FINAL false)
| (L :: ps, c) => drive (INTER (ps, SUCC c))
| (R :: ps, ZERO) => drive (FINAL false)
| (R :: ps, SUCC c) => drive (INTER (ps, c)))

Step 3: Simplify by inlining applications of drive to known arguments.

fn g => (case g of (nil, ZERO) => true
| (nil, SUCC c) => false

| (L :: ps, c) => drive (move (ps, SUCC c))
| (R :: ps, ZERO) => false
| (R :: ps, SUCC c) => drive (move (ps,)

Step 4: Use the result of Step 3 to define a new recursive function drive move equal to drive o
move.

fun drive_move (nil, ZERO) = true
| drive_move (nil, SUCC c) = false
| drive_move (L :: ps, c) = drive_move (ps, SUCC c)
| drive_move (R :: ps, ZERO) = false
| drive_move (R :: ps, SUCC c¢) = drive_move (ps, c)

fun recognize ps = drive_move (ps, ZERO)

The fused version coincides with the big-step abstract machine.

Ohori and Sasano have proved that this fixed-point promotion is correct if drive is strict, which
it is here. (This kind of condition occurs frequently for fixed points of composite functions [22, Ex-
ercise 10.3, page 165]; see also Launchbury and Sheard’s original work on warm fusion [15].) Their
proof is based on a denotational semantics and shows that the denotation before and after fixed-
point promotion are equal. The small-step abstract machine and the big-step abstract machine
are therefore equivalent.

3 Example #2: the CEK machine

The CEK machine implements a weak-head normalization function for A-terms using a left-to-right
applicative-order reduction strategy [9-11]. Below, we represent A-terms with de Bruijn indices
(i.e., variables are represented with their lexical offset rather than with their names):

datatype term = VAR of int | LAM of term | APP of term * term

Terms are evaluated into a representation of their weak-head normal form, if there is one. The
normal form takes the form of a closure, i.e., a construct pairing a term and an environment [14]:

datatype value = CLO of term * environment
withtype environment = value list

The reduction contexts are the usual ones for left-to-right applicative order:

= RCO
| RC1 of reduction_context * term * environment
| RC2 of value * reduction_context

datatype reduction_context

3.1 A small-step abstract machine

The CEK machine has two parameterized configurations: one with a term, an environment, and
a reduction context where the term is dispatched upon; and one with a reduction context and a
value where the reduction context is dispatched upon:

datatype configuration = EVAL of term * environment * reduction_context
| APPLY of reduction_context * value

The machine has two states: a final one and an intermediate one. A state-transition function
move maps an intermediate state to a state, and as in Section 2.1, a driver loop maps a state to a
halting state:

datatype state = FINAL of halting_state | INTER of configuration
withtype halting_state = value option

(* move : configuration -> state *)

fun move (EVAL (VAR i, e, c)) = if 0 <= i andalso i < (List.length e)
then INTER (APPLY (c, List.nth (e, i)))
else FINAL NONE

| move (EVAL (LAM t, e, c)) = INTER (APPLY (c, CLO (t, e)))

| move (EVAL (APP (tO, t1), e, c)) = INTER (EVAL (t0, e, RC1 (c, t1, e)))
| move (APPLY (RCO, v)) = FINAL (SOME v)

| move (APPLY (RC1 (c, t1, e), v)) = INTER (EVAL (t1, e, RC2 (v, c)))
|

move (APPLY (RC2 (CLO (t, e), c), Vv)) INTER (EVAL (t, v :: e, c))

(* drive : state -> halting_state *)
fun drive (FINAL a) = a
| drive (INTER g) = drive (move g)

A closed term is evaluated by supplying the driver loop with an initial state:
(* evaluate : term -> halting_state *)

fun evaluate t = drive (INTER (EVAL (t, nil, RCO0)))

3.2 A big-step abstract machine

The following ML program implements the usual big-step version of the CEK abstract machine [10],
as obtained by CPS transformation and defunctionalization of a function implementing a big-step
operational semantics [1,11,20]:

(* eval : term * environment * reduction_context -> value option *)

fun eval (VAR i, e, ¢) = if 0 <= i andalso i < (List.length e)
then apply (c, List.nth (e, 1))
else NONE
| eval (LAM t, e, c) = apply (c, CLO (t, e))

| eval (APP (tO, t1), e, c) = eval (0, e, RC1 (c, ti1, e))
(* apply : reduction_context * value -> value option *)
and apply (RCO, v) = SOME v

| apply (RC1 (c, t1, e), V) eval (t1, e, RC2 (v, c))

| apply (RC2 (CLO (t, e), c), v) eval (t , v :: e, C)

(* evaluate : term -> value option *)
fun evaluate t = eval (t, nil, RCO)

3.3 From small steps to big steps

Following Ohori and Sasano’s steps, we consider the composition of drive and move:

fn g => drive (move g)

Step 1: Inline the definition of move in the composition.

fn g => drive (case g
of (EVAL (VAR i, e, c)) => if 0 <= i andalso i < (List.length e)
then INTER (APPLY (c, List.nth (e, 1i)))
else FINAL NONE

| (EVAL (LAM t, e, c)) => INTER (APPLY (c, CLO (t, e)))

| (EVAL (APP (t0, t1), e, c)) => INTER (EVAL (t0, e, RC1 (c, t1, e)))
| (APPLY (RCO, v)) => FINAL (SOME v)

| (APPLY (RC1 (c, t1, e), v)) => INTER (EVAL (t1, e, RC2 (v, c)))
|

(APPLY (RC2 (CLO (t, e), c), v)) => INTER (EVAL (t, v :: e, ¢)))

Step 2: Distribute drive in the conditional branches.

fn g => case g
of (EVAL (VAR i, e, ¢)) => if 0 <= i andalso i < (List.length e)
then drive (INTER (APPLY (c, List.nth (e, i))))
else drive (FINAL NONE)

| (EVAL (LAM t, e, ¢)) => drive (INTER (APPLY (c, CLO (t, e))))

| (EVAL (APP (t0, t1), e, c)) => drive (INTER (EVAL (t0, e, RC1 (c, t1, e))))
| (APPLY (RCO, v)) => drive (FINAL (SOME v))

| (APPLY (RC1 (c, t1, e), v)) => drive (INTER (EVAL (t1, e, RC2 (v, ¢))))
|

(APPLY (RC2 (CLO (t, e), c), v)) => drive (INTER (EVAL (t, v :: e, ¢))))

Step 3: Simplify by inlining applications of drive to known arguments.

fn g => case g

of (EVAL (VAR i, e, c)) => if 0 <= i andalso i < (List.length e)

then drive (move (APPLY (c, List.nth (e, i))))
else NONE

| (EVAL (LAM t, e, ¢)) => drive (move (APPLY (c, CLO (t, e))))

| (EVAL (APP (t0, t1), e, c)) => drive (move (EVAL (t0, e, RC1 (c, t1, e))))

| (APPLY (RCO, v)) => SOME v

| (APPLY (RC1 (c, ti1, e), v)) => drive (move (EVAL (t1, e, RC2 (v, c))))

|

(APPLY (RC2 (CLO (t, e), c), v)) => drive (move (EVAL (t, v :: e, c))))

Step 4: Use the result of Step 3 to define a new recursive function drive move equal to drive o
move.

fun drive_move (EVAL (VAR i, e, c)) = if 0 <= i andalso i < (List.length e)

then drive_move (APPLY (c, List.nth (e, 1i)))
else NONE

| drive_move (EVAL (LAM t, e, c)) = drive_move (APPLY (c, CLD (%, e)))

| drive_move (EVAL (APP (t0O, t1), e, c)) = drive_move (EVAL (tO, e, RC1 (c, ti1, e)))

| drive_move (APPLY (RCO, v)) = SOME v

| drive_move (APPLY (RC1 (c, t1, e), v)) = drive_move (EVAL (t1, e, RC2 (v, ¢)))

|

drive_move (APPLY (RC2 (CLO (t, e), c), v)) drive_move (EVAL (t, v :: e, c))

fun evaluate t = drive_move (EVAL (t, nil, RCO))

Using the type isomorphism between (A + B) — C and (A — C) x (B — C) and disentangling
drivemove into two mutually recursive functions, which is another case of fusion (a trivial one),
yields the big-step version of the CEK machine displayed in Section 3.2. The small-step abstract
machine and the big-step abstract machine are therefore equivalent.

4 From reduction semantics to abstract machine

The present work is part of our current study of a syntactic correspondence between reduction
semantics [9,10] and abstract machines, using the refocusing technique [8]. The idea is as follows.
In a reduction semantics, a one-step reduction function is defined as the composition of

1. a total ‘decomposition’ function from non-value terms to potential redexes® and reduction con-
texts;

2. a partial ‘contraction’ function* mapping actual redexes and their reduction context to a con-
tractum and a reduction context (possibly a different one, to account for control effects [5,9]);
and

3. a total ‘plug’ function filling the reduction context with the contractum.

o o
Y){mpose y

O —>0O
contract

Graphically:

Evaluation is defined as iterated reduction:

) o
wmpose W{ wmpose W{ %\mpose IV

—F> 0 O ——>
contract contract contract

Danvy and Nielsen [8] pointed out that the composition of the two total functions decompose and
plug could be fused into a ‘refocus’ function that continues the decomposition from the current
reduction context to the next one, if there is one, and they presented an algorithm to construct
an optimal such refocus function:

%mpose W{ kco{mpose W{ meose IV

contract refocus contract refocus contract

A refocused evaluation function takes the form of a small-step abstract machine: refocus is a
(total) state-transition function that is iterated by a (strict) function implementing a driver loop.
Lightweight fusion yields the corresponding big-step abstract machine, and in our experience, com-
pressing corridor transitions in this big-step abstract machine often leads to an abstract machine
that was independently known [4,5, 8], as illustrated next.

5 Example #3: Krivine’s machine with call/cc

Let us specify the ApK-calculus, i.e., Curien’s original calculus of closures [4, 7] with generalized
B-reduction and call/cc, as recently defined by Biernacka and Danvy [5, Section 4].
We start from the usual A-terms with de Bruijn indices and the control operator call/cc [6]:

datatype term = VAR of int | LAM of term | APP of term * term | CCC of term

3Potential redexes are partitioned into actual redexes, which can be contracted, and stuck redexes, which cannot.
4The contraction function is partial because stuck redexes are not contracted.

A calculus of closures embodies Landin’s original idea [14] that the substitution generally associ-
ated with f-reduction should be delayed, and that instead, each term should be associated with
an environment reflecting what should have been substituted in this term. As specified in the ML
data type below, a closure can be ground, i.e., it can simply pair a term and an environment; it
can be the application of one closure to another; it can be the application of call/cc to a closure;
or it can be a captured context as provided by call/cc. As for the reduction contexts, they are
inductively defined as usual for normal order: RCO corresponds the empty context, RC1 to the
context of an application, and RC2 to the context of call/cc.

datatype closure = CLO_GND of term * environment

| CLO_APP of closure * closure

| CLO_CCC of closure

| CLO_CTX of reduction_context

= RCO

| RC1 of reduction_context * closure
| RC2 of reduction_context

withtype environment = closure list

and reduction_context

We define potential redexes and the corresponding contraction function in the separate structure
below. There are five potential redexes:

e The ACCESS redex concerns a de Bruijn index and an environment. It is stuck if the index is out
of the domain of the environment. Otherwise, this actual redex is contracted in a given context
by fetching the closure held in the given environment at the given index.

e The BETA redex concerns a closure applied in context. It is contracted in a non-empty context
that corresponds to an application (and its contaction is therefore context-sensitive). If the
closure corresponds to a curried A-abstraction, the matching number of actual parameters is
popped from the context (which implements the so-called ‘generalized’ B-reduction). If the
closure is a captured context, this context replaces the current one.

e The PROP_APP and PROP_CCC redexes propagate the current environment downwards in the abstract
syntax tree.

e The cwcC redex corresponds to applying call/cc to a closure. It is contracted by capturing the
current context and applying this closure to it.

structure Redexes
= struct
datatype potential_redex = ACCESS of int * environment
| BETA of closure
| PROP_APP of term * term * environment
| PROP_CCC of term * environment
|

CWCC of closure

(* contract : potential_redex * reduction_context
-> (closure * reduction_context) option *)
fun contract (ACCESS (i, e), rc)
= if 0 <= i andalso i < (List.length e)
then SOME (List.nth (e, i), rc)
else NONE
| contract (BETA (CLO_GND (LAM t, e)), RC1 (xrc, c))
= let fun traverse (LAM t, e, RC1 (rc, c))
= traverse (t, ¢ :: e, rc)
| traverse (t, e, rc)
= SOME (CLO_GND (t, e), rc)
in traverse (t, ¢ :: e, rc)
end

| contract (BETA (CLO_CTX rc’), RC1 (rc, c))
= SOME (c, rc’)
| contract (PROP_APP (t0, t1, e), rc)
= SOME (CLO_APP (CLO_GND (tO, e), CLO_GND (t1, e)), rc)
| contract (PROP_CCC (t, e), rc)
= SOME (CLO_CCC (CLO_GND (t, e)), rc)
| contract (CWCC c, rc)
= SOME (CLO_APP (c, CLO_CTX rc), rc)
| contract _
= NONE
end

The function refocus is given a closure and a reduction context and navigates through the shortest
path towards the next potential redex and its reduction context, if there is one [8]:

datatype val_or_dec = VAL of closure
| DEC of Redexes.potential _redex * reduction_context

(* refocus : configuration -> val_or_dec *)

fun refocus (CLO_GND (VAR i, e), rc) = DEC (Redexes.ACCESS (i, e), rc)
| refocus (c as CLO_GND (LAM t, e), RCO) = VAL ¢
| refocus (c as CLO_GND (LAM t, e), rc as RC1 _) = DEC (Redexes.BETA c, rc)
| refocus (c as CLO_GND (LAM t, e), RC2 rc) = DEC (Redexes.CWCC c, rc)
| refocus (CLO_GND (APP (0, t1), e), rc) = DEC (Redexes.PROP_APP (tO, t1, e), rc)
| refocus (CLO_GND (CCC t, e), rc) = DEC (Redexes.PROP_CCC (t, e), rc)
| refocus (CLO_APP (cO, c1), rc) = refocus (cO, RC1 (rc, cl1))
| refocus (CLO_CCC c, rc) = refocus (c , RC2 rc)
| refocus (c as CLO_CTX rc’, RCO) = VAL ¢
| refocus (c as CLO_CTX rc’, rc as RC1 _) = DEC (Redexes.BETA c, rc)
| refocus (c as CLO_CTX rc’, RC2 rc) = DEC (Redexes.CWCC c, rc)

As usual, the iterate function acts as a trampoline [12] and repeatedly calls refocus until a final
state is reached, if any:

(* iterate : val_or_dec -> closure option *)
fun iterate (VAL c)
= SOME c
| iterate (DEC (pr, rc))
= (case Redexes.contract (pr, rc)
of NONE
=> NONE
| SOME (c, rc)
=> iterate (refocus (c, rc)))

The evaluation of a given closed term is initiated by manufacturing an initial state (the corre-
sponding ground closure with an empty environment and the empty context) and launching the
iteration:

(* evaluate : term -> closure option *)
fun evaluate t = iterate (refocus (CLO_GND (t, nil), RCO))

In this small-step abstract machine, the state is val_or_dec, the transition function is refocus and
the driver loop is iterate.

As in Sections 2.3 and 3.3, lightweight fusion of iterate o refocus yields a function imple-
menting a big-step abstract machine. Compressing corridor transitions in this abstract machine,
disentangling it into two mutually recursive transition functions, and unfolding the data type of
closures mechanically yields the latest version of Krivine’s machine with call/cc [5, Section 4]—a
machine that was conceived independently of any calculus [13, Section 3].

6 Conclusion

We have reported the simple observation that applying Ohori and Sasano’s lightweight fusion to
a small-step abstract machine yields a big-step abstract machine. We have illustrated it through
three examples: a recognizer for Dyck words, the CEK machine, and Krivine’s machine with
call/cc. The usefulness of this observation stems from it being systematic and from lightweight
fusion being correct: there is thus no need anymore to prove the equivalence of small-step and
big-step abstract machines on a case-by-case basis.

The present work is part of an investigation of a syntactic correspondence between a reduction
semantics (i.e., a calculus together with a reduction strategy) specifying a one-step reduction
function and an abstract machine implementing an evaluation function [3-5,8]. The relation
between reduction strategies (for calculi) and evaluation orders (for abstract machines) was made
by Plotkin in his seminal article “Call-by-name, Call-by-value and the A-calculus” [19]: normal
order corresponds to call by name, and applicative order to call by value. Today this relation is
taken for granted: for example, Krivine spontaneously characterized his machine as a “call-by-
name” one [13]. Our syntactic correspondence between reduction semantics and abstract machines
not only mechanizes Plotkin’s relation between reduction strategies and evaluation orders; it also
connects architectural designs in an abstract machine with properties of the corresponding calculus.
For example, Krivine’s machine, with or without call/cc, is written in the so-called ‘push/enter’
style [16],> due to the fact that when a (curried) A-abstraction is applied, its arguments are
available on the control stack, i.e., in the context. As shown by the syntactic correspondence,
this implementation design is foreshadowed by the generalized [3-reduction in the corresponding
calculus. The same goes for right-to-left call by value [4, Section 5.2], as in the ZINC abstract
machine for Caml, and for call by need, as in the Three-Instruction Machine.

Finally, the present work suggests a useful extension to Ohori and Sasano’s lightweight fusion
by fixed-point promotion: to work for mutually recursive functions instead of only for single
recursive functions. Indeed big-step abstract machines are often defined with transition functions
that are mutually recursive.

Acknowledgments: Thanks are due to Malgorzata Biernacka, Kristian Stgvring, and the anony-
mous reviewers of IPL for comments. This work is partly supported by the Danish Natural Science
Research Council, Grant no. 21-03-0545.

References

[1] Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan Midtgaard. A functional corre-
spondence between evaluators and abstract machines. In Dale Miller, editor, Proceedings of
the Fifth ACM-SIGPLAN International Conference on Principles and Practice of Declarative
Programming (PPDP’03), pages 8-19, Uppsala, Sweden, August 2003. ACM Press.

[2] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques and
Tools. World Student Series. Addison-Wesley, Reading, Massachusetts, 1986.

[3] Malgorzata Biernacka and Dariusz Biernacki. Formalizing constructions of abstract ma-
chines for functional languages in Coq. In Jirgen Giesl, editor, Preliminary proceedings of
the Seventh International Workshop on Reduction Strategies in Rewriting and Programming
(WRS’07), Paris, France, June 2007.

[4] Malgorzata Biernacka and Olivier Danvy. A concrete framework for environment machines.
ACM Transactions on Computational Logic, 2006. To appear. Available as the research report
BRICS RS-06-3.

[6] Malgorzata Biernacka and Olivier Danvy. A syntactic correspondence between context-
sensitive calculi and abstract machines. Theoretical Computer Science, 375(1-3):76-108, 2007.
Extended version available as the research report BRICS RS-06-18.

5Tn contrast, the CEK machine is written in the so-called ‘eval/apply’ style (see Section 3.1).

[6]

[11]

[12]

[16]

[19]

William Clinger, Daniel P. Friedman, and Mitchell Wand. A scheme for a higher-level semantic
algebra. In John Reynolds and Maurice Nivat, editors, Algebraic Methods in Semantics, pages
237-250. Cambridge University Press, 1985.

Pierre-Louis Curien. An abstract framework for environment machines. Theoretical Computer
Science, 82:389-402, 1991.

Olivier Danvy and Lasse R. Nielsen. Refocusing in reduction semantics. Research Report
BRICS RS-04-26, DAIMI, Department of Computer Science, University of Aarhus, Aarhus,
Denmark, November 2004. A preliminary version appeared in the informal proceedings of the
Second International Workshop on Rule-Based Programming (RULE 2001), Electronic Notes
in Theoretical Computer Science, Vol. 59.4.

Matthias Felleisen. The Calculi of A-v-CS Conversion: A Syntactic Theory of Control and
State in Imperative Higher-Order Programming Languages. PhD thesis;, Computer Science
Department, Indiana University, Bloomington, Indiana, August 1987.

Matthias Felleisen and Matthew Flatt. Programming languages and lambda calculi. Un-
published lecture notes. <http://www.ccs.neu.edu/home/matthias/3810-w02/readings.
html>, 1989-2003.

Matthias Felleisen and Daniel P. Friedman. Control operators, the SECD machine, and the A-
calculus. In Martin Wirsing, editor, Formal Description of Programming Concepts III, pages
193-217. Elsevier Science Publishers B.V. (North-Holland), Amsterdam, 1986.

Steven E. Ganz, Daniel P. Friedman, and Mitchell Wand. Trampolined style. In Peter
Lee, editor, Proceedings of the 1999 ACM SIGPLAN International Conference on Functional
Programming, SIGPLAN Notices, Vol. 34, No. 9, pages 18-27, Paris, France, September 1999.
ACM Press.

Jean-Louis Krivine. A call-by-name lambda-calculus machine. Higher-Order and Symbolic
Computation, 20(3):199-207, 2007.

Peter J. Landin. The mechanical evaluation of expressions. The Computer Journal, 6(4):308—
320, 1964.

John Launchbury and Tim Sheard. Warm fusion: Deriving build-cata’s from recursive def-
initions. In Simon Peyton Jones, editor, Proceedings of the Seventh ACM Conference on
Functional Programming and Computer Architecture, pages 314-323, La Jolla, California,
June 1995. ACM Press.

Simon Marlow and Simon L. Peyton Jones. Making a fast curry: push/enter vs. eval/apply for
higher-order languages. In Kathleen Fisher, editor, Proceedings of the 2004 ACM SIGPLAN
International Conference on Functional Programming (ICFP’04), SIGPLAN Notices, Vol. 39,
No. 9, pages 4-15, Snowbird, Utah, September 2004. ACM Press.

John C. Martin. Introduction to Languages and the Theory of Computation. Programming
Language Series. McGraw-Hill International Editions, second edition, 1997.

Atsushi Ohori and Isao Sasano. Lightweight fusion by fixed point promotion. In Matthias
Felleisen, editor, Proceedings of the Thirty-Fourth Annual ACM Symposium on Principles of
Programming Languages, SIGPLAN Notices, Vol. 42, No. 1, pages 143-154, New York, NY,
USA, January 2007. ACM Press.

Gordon D. Plotkin. Call-by-name, call-by-value and the A-calculus. Theoretical Computer
Science, 1:125-159, 1975.

10

[20] John C. Reynolds. Definitional interpreters for higher-order programming languages. In
Proceedings of 25th ACM National Conference, pages 717-740, Boston, Massachusetts, 1972.
Reprinted in Higher-Order and Symbolic Computation 11(4):363-397, 1998, with a fore-
word [21].

[21] John C. Reynolds. Definitional interpreters revisited. Higher-Order and Symbolic Computa-
tion, 11(4):355-361, 1998.

[22] Glynn Winskel. The Formal Semantics of Programming Languages. Foundation of Computing
Series. The MIT Press, 1993.

11

Recent BRICS Report Series Publications

RS-07-16 Olivier Danvy and Kevin Millikin. On the Equivalence between
Small-Step and Big-Step Abstract Machines: A Simple Appli-
cation of Lightweight Fusion November 2007. ii+11 pp. To
appear in Information Processing Lettergextended version).
Supersedes BRICS RS-07-8.

RS-07-15 Jooyong Lee. A Case for Dynamic Reverse-code Generation
August 2007. ii+10 pp.

RS-07-14 Olivier Danvy and Michael Spivey.On Barron and Strachey’s
Cartesian Product Function July 2007. ii+14 pp.

RS-07-13 Martin Lange. Temporal Logics Beyond RegularityJuly 2007.
82 pp.
RS-07-12 Gerth Stglting Brodal, Rolf Fagerberg, Allan Grgnlund

Jargensen, Gabriel Moruz, and Thomas MglhaveOptimal Re-
silient Dynamic Dictionaries July 2007.

RS-07-11 Luca Aceto and Anna In@lfsdottir. The Saga of the Axiom-
atization of Parallel Composition June 2007. 15 pp. To ap-
pear in the Proceedings of CONCUR 2007, the 18th Interna-
tional Conference on Concurrency Theory (Lisbon, Portugal,
September 4-7, 2007), Lecture Notes in Computer Science,
Springer-Verlag, 2007.

RS-07-10 Claus Brabrand, Robert Giegerich, and Anders Mgller.Ana-
lyzing Ambiguity of Context-Free GrammardMay 2007. 17 pp.
Full version of paper presented at CIAA '07.

RS-07-9 Janus Dam Nielsen and Michael I. SchwartzbachThe SMCL
Language SpecificationMarch 2007.

RS-07-8 Olivier Danvy and Kevin Millikin. A Simple Application of
Lightweight Fusion to Proving the Equivalence of Abstract Ma-
chines March 2007. ii+6 pp.

RS-07-7 Olivier Danvy and Kevin Millikin. Refunctionalization at Work
March 2007. ii+16 pp. Invited talk at the 8th International
Conference on Mathematics of Program Construction, MPC
'06.

RS-07-6 Olivier Danvy, Kevin Millikin, and Lasse R. Nielsen.On One-
Pass CPS TransformationsMarch 2007. ii+19 pp. Theoretical
Pearl to appear in theJournal of Functional Programming Re-
vised version of BRICS RS-02-3.

