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Abstract

We show how Ohori and Sasano’s recent lightweight fusion by fixed-point pro-
motion provides a simple way to prove the equivalence of the two standard styles
of specification of abstract machines: (1) as a transition function together with a
‘driver loop’ implementing the iteration of this transition function; and (2) as
a function directly iterating upon a configuration until reaching a final state, if
ever. The equivalence hinges on the fact that the latter style of specification is a
fused version of the former one. The need for such a simple proof is motivated
by our recent work on syntactic correspondences between reduction semantics
and abstract machines, using refocusing.
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1 Introduction

Abstract machines are either

• defined as a transition function together with a ‘driver loop’ implementing the iteration
of this transition function; or

• defined directly as a function iterating upon a configuration until reaching a final state,
if ever.

For example, consider a recognizer for Dyck words. Dyck words are well-balanced strings
of left and right parentheses, which we represent in ML as follows:

datatype parenthesis = L | R

type word = parenthesis list

For example, the list [L, L, R, L, R, R] forms a Dyck word whereas the list [R, L] does
not.

Dyck words are classically recognized with an abstract machine implementing a push-
down automaton. This state-transition system operates iteratively over a given list and a
counter reflecting the number of open parentheses seen in the list so far:

datatype nat = ZERO | SUCC of nat

The machine starts with a given word and a zero counter. At each iteration, one of the
following transitions takes place:

• if the list of parentheses is empty and the counter is zero, a final, accepting state is
reached;

• if the list of parentheses is empty and the counter is positive, a final, non-accepting
state is reached;

• if the first parenthesis is a left one, the tail of the list is taken and the counter is incre-
mented;

• if the first parenthesis is a right one and if the counter is zero, a final, non-accepting
state is reached;

• if the first parenthesis is a right one and if the counter is positive, the tail of the list is
taken and the counter is decremented.

1.1 Implementation #1

The following ML program implements the transition system above. We define states with
a data type, the corresponding transition function as a total function from states to states,
and a driver loop as a function iterating the transition function until a final state is reached,
if ever:

datatype state = FINAL of accepted
| INTERMEDIATE of configuration

withtype accepted = bool
and configuration = word * nat

1



(* move : configuration -> state *)
fun move (nil, ZERO)

= FINAL true
| move (nil, SUCC c)

= FINAL false
| move (L :: ps, c)

= INTERMEDIATE (ps, SUCC c)
| move (R :: ps, ZERO)

= FINAL false
| move (R :: ps, SUCC c)

= INTERMEDIATE (ps, c)

(* drive : state -> accepted *)
fun drive (FINAL a)

= a
| drive (INTERMEDIATE (ps, c))

= drive (move (ps, c))

(* recognize : word -> accepted *)
fun recognize ps

= drive (INTERMEDIATE (ps, ZERO))

This style of specification is standard in algorithmics. For example, pushdown automata are
classically presented in this fashion [9, Chapter 7].

1.2 Implementation #2

The following ML program also implements the transition system above. We directly define
an iterative function over the configurations:

(* iterate : configuration -> accepted *)
fun iterate (nil, ZERO)

= true
| iterate (nil, SUCC c)

= false
| iterate (L :: ps, c)

= iterate (ps, SUCC c)
| iterate (R :: ps, ZERO)

= false
| iterate (R :: ps, SUCC c)

= iterate (ps, c)

(* recognize : word -> accepted *)
fun recognize ps

= iterate (ps, ZERO)

This style of specification is standard in semantics. For example, the CEK machine and the
Krivine machine are classically defined in this fashion [7, 8]. The Dragon book also presents
finite automata in this fashion [1, Figure 3.2.2, page 116].

1.3 Question

How do we know that these two specifications are equivalent?
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1.4 Our answer

These two specifications are equivalent because the latter is a ‘fused’ version of the former,
based on Ohori and Sasano’s recent work on lightweight fusion [10]. Ohori and Sasano
proved the full correctness of the derivation method we apply in the following section.

2 From Implementation #1 to Implementation #2

We consider the following composition:

val c0 = fn (ps, c) => drive (move (ps, c))

Step 1: Inline the definition of move in the composition.

val c1 = fn (ps, c) => drive (case (ps, c)
of (nil, ZERO)

=> FINAL true
| (nil, SUCC c)
=> FINAL false

| (L :: ps, c)
=> INTERMEDIATE (ps, SUCC c)

| (R :: ps, ZERO)
=> FINAL false

| (R :: ps, SUCC c)
=> INTERMEDIATE (ps, c))

Step 2: Distribute drive to the conditional branches.

val c2 = fn (ps, c) => (case (ps, c)
of (nil, ZERO)

=> drive (FINAL true)
| (nil, SUCC c)
=> drive (FINAL false)

| (L :: ps, c)
=> drive (INTERMEDIATE (ps, SUCC c))

| (R :: ps, ZERO)
=> drive (FINAL false)

| (R :: ps, SUCC c)
=> drive (INTERMEDIATE (ps, c)))

Step 3: Simplify by inlining applications of drive to known arguments.

val c3 = fn (ps, c) => (case s
of (nil, ZERO)

=> true
| (nil, SUCC c)
=> false

| (L :: ps, c)
=> drive (move (ps, SUCC c))

| (R :: ps, ZERO)
=> false

| (R :: ps, SUCC c)
=> drive (move (ps, c)))
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Step 4: Use c3 to define a new (recursive, or more precisely, tail-recursive, i.e., iterative)
function drive move equal to drive o move.

fun drive_move (nil, ZERO)
= true

| drive_move (nil, SUCC c)
= false

| drive_move (L :: ps, c)
= drive_move (ps, SUCC c)

| drive_move (R :: ps, ZERO)
= false

| drive_move (R :: ps, SUCC c)
= drive_move (ps, c)

fun recognize ps
= drive_move (ps, ZERO)

The fused version coincides with the second implementation.
Ohori and Sasano have proved that this fixed-point promotion is correct if drive is strict,

which it is here. (This kind of condition occurs frequently for fixed points of composite
functions [11, Exercise 10.3, page 165].) Their proof is based on a denotational semantics and
shows that the denotation before and after fixed-point promotion are equal. Implementation
#1 and Implementation #2 are therefore equivalent.

3 From Reduction Semantics to Abstract Machine

The simple proof presented here is directly applicable in our current work on syntactic cor-
respondences between reduction semantics and abstract machines, using refocusing. The
idea is as follows.

In a reduction semantics, a one-step reduction function is defined as the composition of

1. a total ‘decomposition’ function from non-value terms to potential redexes and reduc-
tion contexts;

2. a partial ‘contraction’ function1 mapping actual redexes and their reduction context
to a contractum and a reduction context (possibly another one, to account for control
effects [6]); and

3. a total ‘plug’ function filling the reduction context with the contractum.

Graphically:
◦

decompose

��<
<<

<<
<<

<<
<<

< ◦

◦
contract

// ◦

plug

AA������������

1The contraction function is partial because stuck redexes are not contracted.
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Evaluation is defined as iterated reduction:
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decompose
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Danvy and Nielsen [5] pointed out that the composition of the two total functions decom-
pose and plug could be fused into a ‘refocus’ function that continues the decomposition from
the current reduction context to the next one, if there is one:

◦
decompose
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< ◦
decompose
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< ◦
decompose
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◦
contract

// ◦
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refocus
//_________ ◦

contract
// ◦

plug

AA������������

refocus
//_________ ◦

contract
// ◦

plug

AA������������
____

The resulting refocused evaluation function takes the form of Implementation #1:

datatype term = ...
datatype context = EMPTY_CONTEXT | ...
datatype value = ...
datatype potential_redex = ...
datatype value_or_decomposition = VAL of value

| DEC of potential_redex * context

(* contract : potential_redex * context -> (term * context) option *)
(* refocus : term * context -> value_or_decomposition *)

(* iterate : value_or_decomposition -> value option *)
fun iterate (VAL v)

= SOME v
| iterate (DEC (pr, c))

= (case contract (pr, c)
of NONE

=> NONE
| (SOME (t, c’))
=> iterate (refocus (t, c’)))

(* evaluate : term -> value option *)
fun evaluate t

= iterate (refocus (t, EMPTY_CONTEXT))

The transition function is refocus and the driver loop is iterate.
Lightweight fusion of iterate o refocus yields a tail-recursive evaluation function in the

form of Implementation #2, i.e., an abstract machine such as the CEK machine or the Krivine
machine [2–4].

Acknowledgments: Thanks are due to Małgorzata Biernacka and Kristian Støvring for
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