
BRICS
Basic Research in Computer Science

On One-Pass CPS Transformations

Olivier Danvy
Kevin Millikin
Lasse R. Nielsen

BRICS Report Series RS-07-6

ISSN 0909-0878 March 2007

B
R

IC
S

R
S

-07-6
D

anvy
etal.:

O
n

O
ne-P

ass
C

P
S

Transform
ations

Copyright c© 2007, Olivier Danvy & Kevin Millikin & Lasse R.
Nielsen.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
IT-parken, Aabogade 34
DK–8200 Aarhus N
Denmark
Telephone: +45 8942 9300
Telefax: +45 8942 5601
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/07/6/

On One-Pass CPS Transformations∗

Olivier Danvy, Kevin Millikin, and Lasse R. Nielsen
BRICS

Department of Computer Science
University of Aarhus†

March 21, 2007

Abstract

We bridge two distinct approaches to one-pass CPS transformations, i.e., CPS
transformations that reduce administrative redexes at transformation time in-
stead of in a post-processing phase. One approach is compositional and higher-
order, and is independently due to Appel, Danvy and Filinski, and Wand, build-
ing on Plotkin’s seminal work. The other is non-compositional and based on a
reduction semantics for the λ-calculus, and is due to Sabry and Felleisen. To re-
late the two approaches, we use three tools: Reynolds’s defunctionalization and
its left inverse, refunctionalization; a special case of fold-unfold fusion due to
Ohori and Sasano, fixed-point promotion; and an implementation technique for
reduction semantics due to Danvy and Nielsen, refocusing.

This work is directly applicable to transforming programs into monadic normal
form.

∗Revised version of BRICS RS-02-3.
Theoretical Pearl to appear in the Journal of Functional Programming.

†IT-parken, Aabogade 34, DK-8200 Aarhus N, Denmark.
Email: <danvy@brics.dk>, <kmillikin@brics.dk>, <lrn@brics.dk>

i

Contents

1 Introduction 1

2 Standard CPS transformation 2
2.1 From context-based to higher-order . 2
2.2 From higher-order to context-based . 6
2.3 Summary and conclusion . 8

3 Tail-conscious CPS transformation 8
3.1 Making a context-based CPS transformation tail-conscious 8
3.2 Making a higher-order CPS transformation tail-conscious 9

4 Continuations first or continuations last? 9

5 CPS transformation with generalized reduction 10
5.1 Generalized reduction . 10
5.2 Administrative generalized reduction . 10

6 Tail-conscious CPS transformation à la Fischer with administrative η-reductions
and generalized reduction 10

7 Conclusions and issues 11

A Fixed-point promotion 11

B Fusion of refocus and the context-based CPS transformation 13

ii

1 Introduction

Transforming functional programs into continuation-passing style (CPS) is a classical topic,
with a long publication history [3,5,9,11–13,17,18,20,22,24–26,28,29,31,34–36,39–45,47,51,54–
56, 58–62, 64–69, 71, 73],1 including chapters in programming-languages textbooks [2, 32, 53],
and many applications. Yet no standard CPS-transformation algorithm has emerged, and
this missing piece contributes to maintaining continuations, CPS, and CPS transformations
as mystifying artifacts (i.e., man-made constructs) in the land of programming and program-
ming languages.

In this article, we bridge the two methodologically distinct CPS transformations de-
scribed in the textbooks mentioned above. The first one, presented by Appel [2] and by
Queinnec [53], is higher-order, and proceeds by recursive descent over the source program
in a compositional way. The other one, presented by Friedman, Wand, and Haynes [32], is
context-based, and rewrites the source program incrementally in a non-compositional way.
Both transformations yield compact results, i.e., CPS programs without administrative re-
dexes [17, 51, 60, 66]. The transformations reduce administrative redexes at transformation
time and thus operate in one pass.

In the following sections, we inter-derive the higher-order transformation and the context-
based transformation. The higher-order transformation is inspired by denotational seman-
tics. It is compositional and uses a functional accumulator. The context-based transfor-
mation is inspired by reduction semantics, a variant of Plotkin’s structural operational se-
mantics [52] introduced in Felleisen’s PhD thesis [26] and based on the notion of reduction
contexts.

In a reduction semantics with applicative order for the λ-calculus, one defines terms,
values, potential redexes, and contexts as follows:

x, k,w ∈ Variables
t ∈ Terms t ::= v | t t

v ∈ Values v ::= x | λx.t

r ∈ PotRedexes r ::= v v

C ∈ Contexts C ::= [] | C[v []] | C[[] t]

In this semantics, the unique-decomposition property holds, i.e., any non-value term can be
uniquely decomposed into a context and a potential redex (here: the application of a value
to another value). One can therefore define a total functionD that maps a value term to itself
and a non-value term to a decomposition. There are many ways to define the D function,
which is usually not shown in the literature. We use the following one here:

D : Terms → Values + Contexts × PotRedexes
D t = D ′(t, [])

D ′ : Terms× Contexts → Values + Contexts × PotRedexes
D ′(v, C) = D ′

aux(C, v)

D ′(t0 t1, C) = D ′(t0, C[[] t1])

D ′
aux : Contexts ×Values → Values + Contexts × PotRedexes

D ′
aux([], v) = v

D ′
aux(C[[] t1], v0) = D ′(t1, C[v0 []])

D ′
aux(C[v0 []], v1) = (C, v0 v1)

1Among many others.

1

This definition uses two auxiliary functions that are defined over the structure of their first
argument: D ′ accumulates the spine context of an application, and D ′

aux dispatches over the
top constructor of the context. D ′

aux could easily be inlined, giving

D ′(v, []) = v

D ′(v0, C[[] t1]) = D ′(t1, C[v0 []])

D ′(v1, C[v0 []]) = (C, v0 v1)

D ′(t0 t1, C) = D ′(t0, C[[] t1])

but we prefer to keep it since as stated above, this definition is in defunctionalized form [14]:
the contexts form the data type of a defunctionalized function andD ′

aux forms its apply func-
tion [19, 55]. We will exploit this property in Section 2.2.

Conversely, one can also define a total function P that plugs a term into a context (or
again, as occasionally worded in the literature, that fills the hole of a context with a term,
yielding another term). This P function is straighforwardly defined by structural induction
over its first argument:

P : Contexts × Terms → Terms
P([], t) = t

P(C[v0 []], t1) = P(C, v0 t1)

P(C[[] t1], t0) = P(C, t0 t1)

In essence, and as envisioned by Sabry and Felleisen [60], the context-based CPS trans-
formation decomposes a source term into a context and a potential redex, CPS transforms
the potential redex, plugs a fresh variable into the context, and iterates. It forms our starting
point in Section 2.1. We then massage this context-based transformation until we obtain the
usual higher-order one-pass CPS transformation. In Section 2.2, we start from this higher-
order one-pass CPS transformation and we walk back to the context-based CPS transforma-
tion.

The rest of the article builds on Section 2. In Section 3, we refine the CPS transforma-
tion to make it tail-conscious, to avoid spurious administrative η-redexes in the CPS coun-
terpart of source tail calls. Section 4 compares and contrasts the two standard variants of
continuation-passing style, i.e., with continuations first or last. We review the administra-
tive η-reductions enabled by each variant. Section 5 addresses generalized reduction and
how to integrate it in both the context-based and the higher-order one-pass CPS transforma-
tions. Finally, in Section 6, we put everything together and assemble a tail-conscious CPS
transformation with administrative η-reductions and that integrates generalized reduction.
The continuations-first variant of the result is the CPS transformation designed by Sabry and
Felleisen for reasoning about programs in continuation-passing style [60].

Prerequisites: We assume a basic familiarity with the λ-calculus [4], with reduction seman-
tics [21,26,27,72], and with the notion of one-pass CPS transformation [17,60]. We also make
use of Reynolds’s defunctionalization, i.e., the data-structure representation of higher-order
functions [19, 55] and of its left inverse, refunctionalization [15].

2 Standard CPS transformation

2.1 From context-based to higher-order

The following left-to-right, call-by-value CPS transformation repeatedly decomposes a source
term into a context and the application of a pair of values, CPS transforms the application,

2

and plugs a fresh variable into the context. This process continues until the source term is a
value.

Definition 1 (Implicit context-based CPS transformation)

T : Terms × Variables → Terms
T (v, k) = k (V v)

T (C[v0 v1], k) = (V v0) (V v1) (C (C, k))

V : Values → Values
V x = x

V λx.t = λx.λk.T (t, k)

where k is fresh

C : Contexts × Variables → Values
C (C, k) = λw.T (C[w], k)

where w is fresh

The CPS transformation of a program t is λk.T (t, k), where k is fresh. �

Implicit in Definition 1 are the decomposition of a non-value source expression into a con-
text and a potential redex (on the left-hand side of the second clause of the definition of T)
and the plugging of an expression into a context (on the right-hand side of the definition of
C). Here is an explicit version of this definition, using D and P as defined in Section 1:

Definition 2 (Explicit context-based CPS transformation)

T : (Values + Contexts × PotRedexes)×Variables → Terms
T (v, k) = k (V v)

T ((C, v0 v1), k) = (V v0) (V v1) (C (C, k))

V : Values → Values
V x = x

V λx.t = λx.λk.T (D t, k)

where k is fresh

C : Contexts ×Variables → Values
C (C, k) = λw.T (D (P(C, w)), k)

where w is fresh

The CPS transformation of a program t is λk.T (D t, k), where k is fresh. �

If they are implemented literally, decomposition and plugging entail a time factor that
is linear in the size of the source program, in the worst case. Overall, the worst-case time
complexity of the CPS transformation is then quadratic in the size of the source program [21],
which is an overkill since D is always applied to the result of P. (We write ‘always’ since
D t = D (P([], t)).)

Danvy and Nielsen [21, 48] have shown that the composition of plugging and decompo-
sition can be fused into a ‘refocus’ function R that makes the resulting CPS transformation
operate in time linear in the size of the source program—or more precisely, in one pass. The
essence of refocusing for a reduction semantics satisfying the unique decomposition prop-
erty is captured in the following proposition:

3

Proposition 1 (Danvy & Nielsen [14, 21]) For any term t and context C,D (P(C, t)) = D′(t, C).

�

In words: refocusing amounts to continuing the decomposition of the given term in the
given context. Intuitively, R maps a term and a context into the next context and potential
redex, if there is any.

The definition of R is therefore a clone of that ofD ′. In particular, it involves an auxiliary
function R ′ and takes the form of two state-transition functions:

R : Terms× Contexts → Values + Contexts × PotRedexes
R(v, C) = R ′(C, v)

R(t0 t1, C) = R(t0, C[[] t1])

R ′ : Contexts × Values → Values + Contexts × PotRedexes
R ′([], v) = v

R ′(C[[] t1], v0) = R(t1, C[v0 []])

R ′(C[v0 []], v1) = (C, v0 v1)

(Again, R ′ could be inlined.)
We take this one-pass CPS transformation as the starting point of our derivation:

Definition 3 (Context-based CPS transformation, refocused)

T1 : (Values + Contexts × PotRedexes)× Variables → Terms
T1 (v, k) = k (V1 v)

T1 ((C, v0 v1), k) = (V1 v0) (V1 v1) (C1 (C, k))

V1 : Values → Values
V1 x = x

V1 λx.t = λx.λk.T1 (R(t, []), k)

where k is fresh

C1 : Contexts × Variables → Values
C1 (C, k) = λw.T1 (R(w, C), k)

where w is fresh

The CPS transformation of a program t is λk.T1 (R(t, []), k), where k is fresh. �

In Definition 2, D was always applied to the result of P. Similarly, in Definition 3, T1 is
always applied to the result of R. Ohori and Sasano [49] have shown that the composition
of functions such as T1 and R can be fused by ‘fixed-point promotion’ into a function RT2

in
such a way that for any term t, context C, and continuation identifier k,

T1 (R(t, C), k) =RT2
(t, C, k).

We detail this fusion in Appendices A and B. The resulting fused CPS transformation reads
as follows:

4

Definition 4 (Context-based CPS transformation, fused)

RT2
: Terms× Contexts × Variables → Terms

RT2
(v, C, k) = R ′

T2
(C, v, k)

RT2
(t0 t1, C, k) = RT2

(t0, C[[] t1], k)

R ′
T2

: Contexts × Values × Variables → Terms
R ′

T2
([], v, k) = k (V2 v)

R ′
T2

(C[[] t1], v0, k) = RT2
(t1, C[v0 []], k)

R ′
T2

(C[v0 []], v1, k) = (V2 v0) (V2 v1) (C2 (C, k))

V2 : Values → Values
V2 x = x

V2 λx.t = λx.λk.RT2
(t, [], k)

where k is fresh

C2 : Contexts × Variables → Values
C2 (C, k) = λw.RT2

(w, C, k)

where w is fresh

The CPS transformation of a program t is λk.RT2
(t, [], k), where k is fresh. �

Because the contexts are solely consumed by the rules defining R ′
T2

, this CPS transfor-
mation is in the image of Reynolds’s defunctionalization. The contexts are a first-order rep-
resentation of the function type Values × Variables → Terms with R ′

T2
as the apply function.

As the last step of the derivation, let us therefore refunctionalize this CPS transformation.
Under the assumption that C is refunctionalized as Ĉ, and for any t and k, we define

RT3
(Ĉ, t, k) to equal RT2

(C, t, k), and we write V3 and C3 to denote the counterparts of V2

and C2 over refunctionalized contexts. We introduce the infix operator @ for applications,
and we overline λ and @ for the static abstractions and applications introduced by refunc-
tionalization; we also write u for the corresponding static variables. Symmetrically, we un-
derline λ and @ for the dynamic abstractions and applications constructing the residual CPS
program, and we write w for the corresponding dynamic variables.

• [] is refunctionalized as
λu.λk.k @ (V3 u),

corresponding to the first rule of R ′
T2

;

• if C is refunctionalized as Ĉ then C[v0 []] is refunctionalized as

λu1.λk.(V3 v0) @ (V3 u1) @ (C3(Ĉ, k)),

corresponding to the third rule of R ′
T2

; and

• if C is refunctionalized as Ĉ then C[[] t1] is refunctionalized as

λu0.λk.RT3
(t1, λu1.λk.(V3 u0) @ (V3 u1) @ (C3(Ĉ, k)), k),

corresponding to the second rule of R ′
T2

.

5

The interpretation of contexts previously performed by R ′
T2

is now performed by static ap-
plication.

An improvement: instead of RT3
that operates on t, Ĉ, and k, we can instead apply the

refunctionalized context Ĉ to the continuation identifier k as soon as it is available. To this
end, we define a function T3 operating on t and on λu.Ĉ @ u @ k, so that RT3

(t, Ĉ, k) =

T3(t, λu.Ĉ @ u @ k). The result is the following higher-order CPS transformation:

Definition 5 (Context-based CPS transformation, refunctionalized)

T3 : Terms × (Values → Terms) → Terms
T3(v, κ) = κ @ v

T3(t0 t1, κ) = T3(t0, λu0.T3(t1, λu1.(V3 u0) @ (V3 u1) @ (C3 κ)))

V3 : Values → Values
V3 x = x

V3 λx.t = λx.λk.T3(t, λu.k @ (V3 u))

where k is fresh

C3 : (Values → Terms) → Values
C3 κ = λw.κ @ w

where w is fresh

The CPS transformation of a program t is λk.T3(t, λu.k @ (V3 u)), where k is fresh. �

This CPS transformation is very close to the usual higher-order one-pass CPS transforma-
tion. It is manifestly not compositional, witness the applications of V3 to the static variables
u0, u1, and u. This non-compositionality is directly inherited from the initial context-based
CPS transformation, which is also non-compositional.

The non-compositionality can be read off the types if we write DTerms and DValues for
the syntactic domains of source direct-style expressions and values and CTerms and CValues
for the syntactic domains of target CPS expressions and values. The types of T3, V3, and C3

are then as follows:

T3 : DTerms → (DValues → CTerms) → CTerms
V3 : DValues → CValues

C3 : (DValues → CTerms) → CValues

We can easily make this CPS transformation compositional by applying V prior to ap-
plying κ instead of afterwards. The types of the resulting compositional functions T4 and C4

then read as follows:

T4 : DTerms → (CValues → CTerms) → CTerms
C4 : (CValues → CTerms) → CValues

The result is then the usual higher-order one-pass CPS transformation, which is our starting
point in Section 2.2.

2.2 From higher-order to context-based

Appel [2], Danvy and Filinski [16, 17], and Wand [71] each discovered the following higher-
order one-pass CPS transformation:

6

Definition 6 (Higher-order CPS transformation)

T4 : DTerms× (CValues → CTerms) → CTerms
T4(v, κ) = κ @V4 v

T4(t0 t1, κ) = T4(t0, λu0.T4(t1, λu1.u0 @ u1 @ (C4 κ)))

V4 : DValues → CValues
V4 x = x

V4 λx.t = λx.λk.T4(t, λu.k @ u)

where k is fresh

C4 : (CValues → CTerms) → CValues
C4 κ = λw.κ @ w

where w is fresh

The CPS transformation of a program t is λk.T4(t, λu.k @ u), where k is fresh. �

Let us defunctionalize this higher-order transformation. The type CValues → CTerms is
inhabited by instances of three λ-abstractions (the overlined ones in Definition 6). It therefore
gives rise to a data type with three constructors (written below as in ML) and its associated
apply function interpreting these constructors.

The corresponding defunctionalized CPS transformation reads as follows:

Definition 7 (Higher-order CPS transformation, defunctionalized)

datatype Fun = F0 of Variables
| F1 of Fun×DTerms
| F2 of Fun× CValues

apply5 : Fun× CValues → CTerms
apply5(F0 k, u) = k @ u

apply5(F1 (f, t1), u0) = T5(t1, F2 (f, u0))

apply5(F2 (f, u0), u1) = u0 @ u1 @ (C5 f)

T5 : DTerms → Fun → CTerms
T5(v, f) = apply5(f, V5 v)

T5(t0 t1, f) = T5(t0, F1 (f, t1))

V5 : DValues → CValues
V5 x = x

V5 λx.t = λx.λk.T5(t, F0 k)

where k is fresh

C5 : Fun → CValues
C5 f = λw.apply5(f, w)

where w is fresh

The CPS transformation of a program t is λk.T5(t, F0 k), where k is fresh. �

We recognize the result as a refocused context-based CPS transformation where the con-
texts hold elements of CValues instead of elements of DValues. The data type Fun plays the

7

role of the contexts (indexing each empty context with a continuation identifier), apply5 plays
the role of R ′

T2
, and T5 plays the role of RT2

.
Alternatively, we can defunctionalize the CPS transformation of Definition 6 so that the

data type and the type of its apply function read as follows:2

datatype Fun = F0 of Variables
| F1 of Fun×DTerms
| F2 of Fun×DValues

apply : Fun×DValues → CTerms

We then obtain the CPS transformation of Definition 4.

2.3 Summary and conclusion

We have bridged two approaches to one-pass CPS transformations, one that is context-based
and non-compositional, and the other that is higher-order and compositional. This bridge
is significant because even though they share the same goal, the two approaches have been
developed independently and have always been reported separately in the literature.

We have used three tools to bridge the two CPS transformations: refocusing, fixed-point
promotion, and defunctionalization. Refocusing short-cuts plugging and decomposition,
and made it possible for the context-based CPS transformation to operate in one pass. Fixed-
point promotion is a special case of fold/unfold fusion, and made it possible to fuse the
resulting CPS transformation with its refocus function.3 Defunctionalization and its left in-
verse, refunctionalization, are changes of representation between the higher-order world and
the first-order world, and they made it possible to relate higher-order and context-based CPS
transformations.

3 Tail-conscious CPS transformation

The CPS transformations of Section 2 generate one η-redex for each source tail-call. For
example, they map a term such as λx.f (g x) into the following one:

λk.k (λx.λk.g x (λw.f w (λw ′.k w ′)))

In this CPS term, the continuation of the (tail) call to f is λw ′.k w ′.
In contrast, a tail-conscious CPS transformation would yield the following η-reduced

term:
λk.k (λx.λk.g x (λw.f w k))

Tail-consciousness matters for readability and in CPS-based compilers.

3.1 Making a context-based CPS transformation tail-conscious

The specification of C in Definition 2 can be refined as follows to make it tail-conscious:

C : Contexts × Variables → Values
C ([], k) = k

C (C, k) = λw.T (C[w], k) if C 6= []

where w is fresh
2This choice in defining a data type is similar to the choice between minimally free expressions and maximally

free expressions in super-combinator conversion [50, pages 245–247].
3In another context [7,8,14,21], fixed-point promotion makes it possible to transform a ‘pre-abstract machine’

into a ‘staged abstract machine’.

8

One can then take the same steps as in Section 2.1 to obtain a tail-conscious higher-order CPS
transformation similar to Danvy and Filinski’s [17].

3.2 Making a higher-order CPS transformation tail-conscious

The specification in Definition 6 can be refined to make it tail-conscious. The idea is to make
the second parameter of T4 a sum, i.e., either the continuation identifier (in case of source tail
call), or a function.

T4 : DTerms × (Variables + CValues → CTerms) → CTerms
C4 : Variables + CValues → CTerms → CValues

(Alternatively, the definition of T4 can be split into two, one for each summand.) One can
then take the same steps as in Section 2.2 to obtain a tail-conscious context-based CPS trans-
formation similar to the one of Section 3.1.

4 Continuations first or continuations last?

When writing a continuation-passing λ-abstraction, should one write λx.λk.t or λk.λx.t?
Since Plotkin [51] and Steele [66], tradition has it to do the former, but the latter makes
curried continuation-passing functions continuation transformers [1, 33]. Because this order
was first promoted in Fischer’s work [29],4 putting continuations first is said to be “à la
Fischer” and is used, e.g., by Fradet and Le Métayer [31], by Sabry and Felleisen [60], and
by Reppy [54]. Conversely, putting continuations last is said to be “à la Plotkin” and is used
more frequently.

Sections 2 and 3 are concerned with CPS à la Plotkin, but their content can be adapted
mutatis mutandis to CPS à la Fischer. On the other hand, each flavor of CPS enables new and
distinct opportunities for administrative η-reductions, which are a source of compactness in
CPS programs.

Tail-conscious CPS à la Plotkin: In a λ-abstraction, a tail call where sub-terms are values
such as in λy.f x is transformed into λk.k (λy.λk.f x k), where the inner continuation can be
η-reduced.

Tail-conscious CPS à la Fischer: A term containing nested applications such as λx.f (g (h x))

is transformed into λk.k (λk.λx.h (λw1.g (λw2.f k w2) w1) x). In this CPS term, the param-
eter of each continuation can be administratively η-reduced, producing the following term,
where indeed even x can be η-reduced:

λk.k (λk.λx.h (g (f k)) x)

As the two examples illustrate, a curried CPS à la Plotkin makes it possible to η-reduce
continuation identifiers for some source λ-abstractions, whereas a curried CPS à la Fischer
makes it possible to η-reduce parameters of continuations for some source applications.
Since, on the average, there are many more applications than abstractions in a λ-term, by
construction, the Fischer curried flavor offers more opportunities than the Plotkin curried
flavor for obtaining compact CPS programs through administrative η-reductions.

Furthermore, it is possible to perform administrative η-reductions at transformation time,
i.e., in one pass. One is, however, left with the task of proving that administrative η-reductions

4On pragmatic grounds—using cons rather than append over lists of parameters in uncurried CPS.

9

are value η-reductions, i.e., that they do not alter the properties of CPS-transformed pro-
grams, namely simulation, indifference, and translation [38, 51] as well as termination.

At any rate, the current agreement in the continuation community is that administrative
η-reductions bring more trouble than benefits. In fact, for uncurried CPS, neither flavor
provides any extra opportunity for administrative η-reduction beyond tail consciousness. In
short, only tail-consciousness matters, and it works both for Plotkin and Fischer, uniformly.

5 CPS transformation with generalized reduction

5.1 Generalized reduction

In his PhD thesis [58, 60], Sabry considered βlift, a generalized reduction that is most easily
described using reduction contexts [10]:

C[(λx.t0) t1] −→βlift (λx.C[t0]) t1

A βlift-reduction in the direct-style world corresponds to an administrative (i.e., over-
lined) β-reduction in the corresponding CPS program à la Fischer:

((λk.λx.t ′
0) @ c) @ v ′

1 −→adm (λx.t ′
0[c/k]) @ v ′

1

(t ′
0 is the CPS counterpart of t0, v ′

1 is the CPS counterpart of t1, and c represents C.)
Similarly, a βlift-reduction in the direct-style world corresponds to an administrative gen-

eralized β-reduction in the corresponding CPS program à la Plotkin:

((λx.λk.t ′
0) @ v ′

1) @ c −→adm (λx.t ′
0[c/k]) @ v ′

1

5.2 Administrative generalized reduction

Integrating βlift into the CPS transformation is achieved by refining the following rule in
Definition 2:

T (C[v0 v1], k) = (V v0) (V v1) (C (C, k))

The idea is to enumerate the possible instances of v0, i.e., whether it denotes a variable or a
λ-abstraction:

T (C[x v1], k) = x (V v1) (C (C, k))

T (C[(λx.t0) v1], k) = (λx.T (C[t0], k)) (V v1)

renaming x if it occurs free in C

As in Section 2, the refined context-based CPS transformation can be refocused to oper-
ate in one-pass and refunctionalized to be higher-order. Making it compositional, however,
makes the CPS transformation dependently typed [22]. The steps are reversible, turning a
one-pass higher-order CPS transformation with generalized reduction into a one-pass refo-
cused context-based CPS transformation.

6 Tail-conscious CPS transformation à la Fischer with administra-
tive η-reductions and generalized reduction

Putting everything together, Definition 2 can be made tail-conscious and extended with ad-
ministrative η-reductions and generalized reduction. The result, if it is à la Fischer, coincides
with Sabry and Felleisen’s compacting CPS transformation (Sabry & Felleisen, 1993, Defini-
tion 5). It can be refocused to operate in one-pass and refunctionalized to be higher-order.
But as in Section 5, making it compositional makes the CPS transformation dependently
typed [22]. The derivation steps are reversible.

10

7 Conclusions and issues

We have connected two distinct approaches to a one-pass CPS transformation that have been
reported separately in the literature. One is higher-order and compositional, stems from
denotational semantics, and can be expressed directly as a functional program. The other
is rewriting-based and non-compositional, stems from reduction semantics, and requires
an adaptation such as refocusing to operate in one pass. The connection between the two
approaches reduces their choice to a matter of convenience.

While all textbook descriptions of the one-pass CPS transformation [2, 32, 53] account
for tail-consciousness, none pays a particular attention to administrative η-reductions and
to generalized reduction. For example, the context-based CPS transformation of the second
edition of Essentials of Programming Languages [32] produces uncurried CPS programs à la
Plotkin and corresponds to the content of Section 3.

The derivation steps presented in the present article can be used for richer languages, i.e.,
languages with literals, primitive operations, conditional expressions, block structure, and
computational effects (state, control, etc.). They also directly apply to transforming programs
into monadic normal form [6, 30, 37, 46].

Acknowledgments: Thanks are due to Julia L. Lawall for comments and to an anonymous
reviewer for pressing us to spell out how T1 andR are fused; Ohori and Sasano’s fixed-point
promotion provides a particularly concise explanation for this fusion.

This work is partly supported by the Danish Natural Science Research Council, Grant
no. 21-03-0545.

A Fixed-point promotion

We outline Ohori and Sasano’s fixed-point promotion algorithm [49] and illustrate it with a
simple example.

Fixed-point promotion fuses the composition f ◦ g of a strict function f and a recursive
function g. As a simple example, consider a function computing the run-length encoding of a
list. Given a list of elements, this function segments it into a list of pairs of elements and non-
negative integers, replacing each longest sequence s of consecutive identical elements x in
the given list with a pair (x, n) where n is the length of s. For example, it maps [W,W,B,B, B]

into [(W,2), (B, 3)].
We make use of an auxiliary tail-recursive function next that traverses a segment and

computes its length. Additionally, if the rest of the list is nonempty, it also returns its head
and tail:

next : α× List(α)×Nat → α×Nat× (Unit + α× List(α))

next (x, nil, n) = (x, n, ())

next (x, x ′ :: xs, n) = if x = x ′ then next (x, xs, n + 1) else (x, n, (x′, xs))

A second auxiliary function continue dispatches on the return value of next and continues
encoding the tail of the list if necessary:

continue : α×Nat × (Unit + α× List(α) → List(α×Nat)
continue (x, n, ()) = (x, n) :: nil

continue (x, n, (x ′, xs)) = (x, n) :: continue (next (x ′, xs, 1))

11

The run-length encoding of a list is then the composition of continue and next:

encode : List(α) → List(α×Nat)
encode nil = nil

encode (x :: xs) = continue (next (x, xs, 1))

To fuse this composition, we will use fixed-point promotion and proceed accordingly in four
steps.

The first step is to inline the application of next in the composition to expose its body to
continue:

λ(x, xs, n).continue (next (x, xs, n))

= {inline next}
λ(x, xs, n).continue (case (x, xs, n)

of (x, nil, n) ⇒ (x, n, ())

| (x, x ′ :: xs, n) ⇒ if x = x ′

then next (x, xs, n + 1)

else (x, n, (x ′, xs)))

The second step is to distribute the application of continue to the inner tail positions in
the body of next. There are three such inner expressions in tail position—the first arm of the
case expression and both arms of the if expression:

= {distribute continue to inner tail positions}
λ(x, xs, n).case (x, xs, n)

of (x, nil, n) ⇒ continue (x, n, ())

| (x, x ′ :: xs, n) ⇒ if x = x ′

then continue (next (x, xs, n + 1))

else continue (x, n, (x ′, xs))

The third step is to simplify by, e.g., inlining applications of continue to known argu-
ments:

= {inline applications of continue}
λ(x, xs, n).case (x, xs, n)

of (x, nil, n) ⇒ (x, n) :: nil
| (x, x ′ :: xs, n) ⇒ if x = x ′

then continue (next (x, xs, n + 1))

else (x, n) :: continue (next (x′, xs, 1))

The fourth and final step is to use this abstraction to define a new recursive function
nextc equal to continue◦next, and to use it to replace remaining occurrences of continue◦next.
The auxiliary functions next and continue are no longer needed, and the fused run-length
encoding function reads as follows:

nextc : α× List(α)×Nat → List(α×Nat)
nextc (x, nil, n) = (x, n) :: nil

nextc (x, x ′ :: xs, n) = if x = x ′

then nextc (x, xs, n + 1)

else (x, n) :: nextc (x ′, xs, 1)

encode : List(α) → List(α×Nat)
encode nil = nil

encode (x :: xs) = nextc (x, xs, 1)

12

In an actual implementation, the first parameter of next and of nextc would be lambda-
dropped [23].

B Fusion of refocus and the context-based CPS transformation

We now calculate the definition of RT2
, which is the fusion of the refocus function R and the

context-based CPS transformation T1 from Section 2.1. We work with a version of R where
the auxiliary function R ′ is inlined:

R : Terms × Contexts → Values + Contexts × PotRedexes
R(v, []) = v

R(v0, C[[] t1]) = R(t1, C[v0 []])

R(v1, C[v0 []]) = (C, v0 v1)

R(t0 t1, C) = R(t0, C[[] t1])

We follow the same steps as in Appendix A (as specified for multiargument uncurried func-
tions [49]), starting with the composition of T1 and R:

λ(t, C, k).T1 (R(t, C), k)

= {inline R}
λ(t, C, k).T1(case (t, C)

of (v, []) ⇒ v

| (v0, C[[] t1]) ⇒ R(t1, C[v0 []])

| (v1, C[v0 []]) ⇒ (C, v0 v1)

| (t0 t1, C) ⇒ R(t0, C[[] t1]), k)

= {distribute T1 (−, k) to inner tail positions}
λ(t, C, k).case (t, C)

of (v, []) ⇒ T1 (v, k)

| (v0, C[[] t1]) ⇒ T1 (R(t1, C[v0 []]), k)

| (v1, C[v0 []]) ⇒ T1 ((C, v0 v1), k)

| (t0 t1, C) ⇒ T1 (R(t0, C[[] t1]), k)

= {inline two applications of T1}
λ(t, C, k).case (t, C)

of (v, []) ⇒ k (V1 v)

| (v0, C[[] t1]) ⇒ T1 (R(t1, C[v0 []]), k)

| (v1, C[v0 []]) ⇒ (V1 v0) (V1 v1) (C1 (C, k))

| (t0 t1, C) ⇒ T1 (R(t0, C[[] t1]), k)

We then create a new recursive function RT2
to use in place of the composition of T1 and R

(we rename V1 to V2 and C1 to C2, just as in Section 2.1):

RT2
: Terms × Contexts × Variables → Terms

RT2
(v, [], k) = k (V2 v)

RT2
(v0, C[[] t1], k) = RT2

(t1, C[v0 []], k)

RT2
(v1, C[v0 []], k) = (V2 v0) (V2 v1) (C2 (C, k))

RT2
(t0 t1, C, k) = RT2

(t0, C[[] t1], k)

Inlining the auxiliary function R ′
T2

in the definition of RT2
from Section 2.1 yields this defi-

nition.

13

References

[1] Lloyd Allison. A Practical Introduction to Denotational Semantics. Cambridge University
Press, 1986.

[2] Andrew W. Appel. Compiling with Continuations. Cambridge University Press, New
York, 1992.

[3] Andrew W. Appel and Trevor Jim. Continuation-passing, closure-passing style. In
Michael J. O’Donnell and Stuart Feldman, editors, Proceedings of the Sixteenth Annual
ACM Symposium on Principles of Programming Languages, pages 293–302, Austin, Texas,
January 1989. ACM Press.

[4] Henk Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume 103 of Studies
in Logic and the Foundation of Mathematics. North-Holland, revised edition, 1984.

[5] Gilles Barthe, John Hatcliff, and Morten Heine Sørensen. CPS translations and appli-
cations: the cube and beyond. Higher-Order and Symbolic Computation, 12(2):125–170,
1999.

[6] Nick Benton and Andrew Kennedy. Monads, effects, and transformations. In Third
International Workshop on Higher-Order Operational Techniques in Semantics, volume 26 of
Electronic Notes in Theoretical Computer Science, pages 19–31, Paris, France, September
1999.

[7] Małgorzata Biernacka and Olivier Danvy. A concrete framework for environment ma-
chines. ACM Transactions on Computational Logic, 2006. To appear. Available as the
technical report BRICS RS-06-3.

[8] Małgorzata Biernacka and Olivier Danvy. A syntactic correspondence between context-
sensitive calculi and abstract machines. Technical Report BRICS RS-06-18, DAIMI, De-
partment of Computer Science, University of Aarhus, Aarhus, Denmark, December
2006. To appear in Theoretical Computer Science (extended version).

[9] Dariusz Biernacki, Olivier Danvy, and Kevin Millikin. A dynamic continuation-passing
style for dynamic delimited continuations. Technical Report BRICS RS-06-15, DAIMI,
Department of Computer Science, University of Aarhus, Aarhus, Denmark, October
2006. Accepted for publication at TOPLAS.

[10] Roel Bloo, Fairouz Kamareddine, and Rob Nederpelt. The Barendregt cube with defi-
nitions and generalised reduction. Information and Computation, 126(2):123–143, 1996.

[11] Daniel Damian and Olivier Danvy. Syntactic accidents in program analysis: On the
impact of the CPS transformation. Journal of Functional Programming, 13(5):867–904,
2003. A preliminary version was presented at the 2000 ACM SIGPLAN International
Conference on Functional Programming (ICFP 2000).

[12] Olivier Danvy. Back to direct style. Science of Computer Programming, 22(3):183–195,
1994. A preliminary version was presented at the Fourth European Symposium on
Programming (ESOP 1992).

[13] Olivier Danvy, editor. Proceedings of the Second ACM SIGPLAN Workshop on Continu-
ations (CW’97), Technical report BRICS NS-96-13, University of Aarhus, Paris, France,
January 1997.

14

[14] Olivier Danvy. From reduction-based to reduction-free normalization. In Sergio Antoy
and Yoshihito Toyama, editors, Proceedings of the Fourth International Workshop on Reduc-
tion Strategies in Rewriting and Programming (WRS’04), volume 124(2) of Electronic Notes
in Theoretical Computer Science, pages 79–100, Aachen, Germany, May 2004. Elsevier Sci-
ence. Invited talk.

[15] Olivier Danvy. Refunctionalization at work. In Preliminary proceedings of the 8th Interna-
tional Conference on Mathematics of Program Construction (MPC ’06), Kuressaare, Estonia,
July 2006. Invited talk.

[16] Olivier Danvy and Andrzej Filinski. Abstracting control. In Mitchell Wand, editor,
Proceedings of the 1990 ACM Conference on Lisp and Functional Programming, pages 151–
160, Nice, France, June 1990. ACM Press.

[17] Olivier Danvy and Andrzej Filinski. Representing control, a study of the CPS transfor-
mation. Mathematical Structures in Computer Science, 2(4):361–391, 1992.

[18] Olivier Danvy and Julia L. Lawall. Back to direct style II: First-class continuations. In
William Clinger, editor, Proceedings of the 1992 ACM Conference on Lisp and Functional
Programming, LISP Pointers, Vol. V, No. 1, pages 299–310, San Francisco, California,
June 1992. ACM Press.

[19] Olivier Danvy and Lasse R. Nielsen. Defunctionalization at work. In Harald
Søndergaard, editor, Proceedings of the Third International ACM SIGPLAN Conference on
Principles and Practice of Declarative Programming (PPDP’01), pages 162–174, Firenze,
Italy, September 2001. ACM Press. Extended version available as the technical report
BRICS RS-01-23.

[20] Olivier Danvy and Lasse R. Nielsen. A first-order one-pass CPS transformation. Theo-
retical Computer Science, 308(1-3):239–257, 2003. A preliminary version was presented at
the Fifth International Conference on Foundations of Software Science and Computa-
tion Structures (FOSSACS 2002).

[21] Olivier Danvy and Lasse R. Nielsen. Refocusing in reduction semantics. Research Re-
port BRICS RS-04-26, DAIMI, Department of Computer Science, University of Aarhus,
Aarhus, Denmark, November 2004. A preliminary version appears in the informal pro-
ceedings of the Second International Workshop on Rule-Based Programming (RULE
2001), Electronic Notes in Theoretical Computer Science, Vol. 59.4.

[22] Olivier Danvy and Lasse R. Nielsen. CPS transformation of beta-redexes. Information
Processing Letters, 94(5):217–224, 2005. Extended version available as the research report
BRICS RS-04-39.

[23] Olivier Danvy and Ulrik P. Schultz. Lambda-dropping: Transforming recursive equa-
tions into programs with block structure. Theoretical Computer Science, 248(1-2):243–287,
2000.

[24] Olivier Danvy and Carolyn L. Talcott, editors. Proceedings of the First ACM SIGPLAN
Workshop on Continuations (CW’92), Technical report STAN-CS-92-1426, Stanford Uni-
versity, San Francisco, California, June 1992.

15

[25] Philippe de Groote. A CPS-translation of the λµ-calculus. In Sophie Tison, editor, 19th
Colloquium on Trees in Algebra and Programming (CAAP’94), number 787 in Lecture Notes
in Computer Science, pages 47–58, Edinburgh, Scotland, April 1994. Springer-Verlag.

[26] Matthias Felleisen. The Calculi of λ-v-CS Conversion: A Syntactic Theory of Control and
State in Imperative Higher-Order Programming Languages. PhD thesis, Computer Science
Department, Indiana University, Bloomington, Indiana, August 1987.

[27] Matthias Felleisen and Matthew Flatt. Programming languages and lambda calculi.
Unpublished lecture notes. <http://www.ccs.neu.edu/home/matthias/3810-w02/
readings.html>, 1989-2003.

[28] Andrzej Filinski. An extensional CPS transform (preliminary report). In Sabry [59],
pages 41–46.

[29] Michael J. Fischer. Lambda-calculus schemata. LISP and Symbolic Computation,
6(3/4):259–288, 1993. Available at <http://www.brics.dk/~hosc/vol06/03-fischer.
html>. A preliminary version was presented at the ACM Conference on Proving Asser-
tions about Programs, SIGPLAN Notices, Vol. 7, No. 1, January 1972.

[30] Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. The essence of
compiling with continuations. In David W. Wall, editor, Proceedings of the ACM SIG-
PLAN’93 Conference on Programming Languages Design and Implementation, SIGPLAN
Notices, Vol. 28, No 6, pages 237–247, Albuquerque, New Mexico, June 1993. ACM
Press.

[31] Pascal Fradet and Daniel Le Métayer. Compilation of functional languages by pro-
gram transformation. ACM Transactions on Programming Languages and Systems, 13:21–
51, 1991.

[32] Daniel P. Friedman, Mitchell Wand, and Christopher T. Haynes. Essentials of Program-
ming Languages, second edition. The MIT Press, 2001.

[33] Michael J. C. Gordon. The Denotational Description of Programming Languages. Springer-
Verlag, 1979.

[34] Timothy G. Griffin. A formulae-as-types notion of control. In Paul Hudak, editor,
Proceedings of the Seventeenth Annual ACM Symposium on Principles of Programming Lan-
guages, pages 47–58, San Francisco, California, January 1990. ACM Press.

[35] Bob Harper and Mark Lillibridge. Polymorphic type assignment and CPS conversion.
LISP and Symbolic Computation, 6(3/4):361–380, 1993.

[36] John Hatcliff. The Structure of Continuation-Passing Styles. PhD thesis, Department
of Computing and Information Sciences, Kansas State University, Manhattan, Kansas,
June 1994.

[37] John Hatcliff and Olivier Danvy. A generic account of continuation-passing styles. In
Hans-J. Boehm, editor, Proceedings of the Twenty-First Annual ACM Symposium on Prin-
ciples of Programming Languages, pages 458–471, Portland, Oregon, January 1994. ACM
Press.

[38] John Hatcliff and Olivier Danvy. Thunks and the λ-calculus. Journal of Functional Pro-
gramming, 7(3):303–319, 1997.

16

[39] Richard A. Kelsey. Compilation by Program Transformation. PhD thesis, Computer Science
Department, Yale University, New Haven, Connecticut, May 1989. Research Report 702.

[40] David A. Kranz. ORBIT: An Optimizing Compiler for Scheme. PhD thesis, Computer Sci-
ence Department, Yale University, New Haven, Connecticut, February 1988. Research
Report 632.

[41] Jakov Kučan. Retraction approach to CPS transform. Higher-Order and Symbolic Compu-
tation, 11(2):145–175, 1998.

[42] Julia L. Lawall. Continuation Introduction and Elimination in Higher-Order Programming
Languages. PhD thesis, Computer Science Department, Indiana University, Blooming-
ton, Indiana, July 1994.

[43] Julia L. Lawall and Olivier Danvy. Separating stages in the continuation-passing style
transformation. In Susan L. Graham, editor, Proceedings of the Twentieth Annual ACM
Symposium on Principles of Programming Languages, pages 124–136, Charleston, South
Carolina, January 1993. ACM Press.

[44] Albert R. Meyer and Mitchell Wand. Continuation semantics in typed lambda-calculi
(summary). In Rohit Parikh, editor, Logics of Programs – Proceedings, number 193 in
Lecture Notes in Computer Science, pages 219–224, Brooklyn, New York, June 1985.
Springer-Verlag.

[45] Kevin Millikin. A new approach to one-pass transformations. In Marko van Eekelen,
editor, Proceedings of the Sixth Symposium on Trends in Functional Programming (TFP 2005),
pages 252–264, Tallinn, Estonia, September 2005. Institute of Cybernetics at Tallinn
Technical University. Granted the best student-paper award of TFP 2005.

[46] Eugenio Moggi. Notions of computation and monads. Information and Computation,
93:55–92, 1991.

[47] Lasse R. Nielsen. A selective CPS transformation. In Stephen Brookes and Michael
Mislove, editors, Proceedings of the 17th Annual Conference on Mathematical Foundations
of Programming Semantics, volume 45 of Electronic Notes in Theoretical Computer Science,
pages 201–222, Aarhus, Denmark, May 2001. Elsevier Science Publishers.

[48] Lasse R. Nielsen. A study of defunctionalization and continuation-passing style. PhD thesis,
BRICS PhD School, University of Aarhus, Aarhus, Denmark, July 2001. BRICS DS-01-7.

[49] Atsushi Ohori and Isao Sasano. Lightweight fusion by fixed point promotion. In
Matthias Felleisen, editor, Proceedings of the Thirty-Fourth Annual ACM Symposium on
Principles of Programming Languages, pages 143–154, New York, NY, USA, January 2007.
ACM Press.

[50] Simon L. Peyton Jones. The Implementation of Functional Programming Languages. Prentice
Hall International Series in Computer Science. Prentice-Hall International, 1987.

[51] Gordon D. Plotkin. Call-by-name, call-by-value and the λ-calculus. Theoretical Computer
Science, 1:125–159, 1975.

[52] Gordon D. Plotkin. A structural approach to operational semantics. Technical Report
FN-19, DAIMI, Department of Computer Science, University of Aarhus, Aarhus, Den-
mark, September 1981.

17

[53] Christian Queinnec. Lisp in Small Pieces. Cambridge University Press, Cambridge, Eng-
land, 1996.

[54] John Reppy. Optimizing nested loops using local CPS conversion. Higher-Order and
Symbolic Computation, 15(2/3):161–180, 2002.

[55] John C. Reynolds. Definitional interpreters for higher-order programming languages.
In Proceedings of 25th ACM National Conference, pages 717–740, Boston, Massachusetts,
1972. Reprinted in Higher-Order and Symbolic Computation 11(4):363–397, 1998, with
a foreword [57].

[56] John C. Reynolds. The discoveries of continuations. Lisp and Symbolic Computation,
6(3/4):233–247, 1993.

[57] John C. Reynolds. Definitional interpreters revisited. Higher-Order and Symbolic Compu-
tation, 11(4):355–361, 1998.

[58] Amr Sabry. The Formal Relationship between Direct and Continuation-Passing Style Optimiz-
ing Compilers: A Synthesis of Two Paradigms. PhD thesis, Computer Science Department,
Rice University, Houston, Texas, August 1994. Technical report 94-242.

[59] Amr Sabry, editor. Proceedings of the Third ACM SIGPLAN Workshop on Continuations
(CW’01), Technical report 545, Computer Science Department, Indiana University, Lon-
don, England, January 2001.

[60] Amr Sabry and Matthias Felleisen. Reasoning about programs in continuation-passing
style. Lisp and Symbolic Computation, 6(3/4):289–360, 1993.

[61] Amr Sabry and Matthias Felleisen. Is continuation-passing useful for data flow analy-
sis? In Vivek Sarkar, editor, Proceedings of the ACM SIGPLAN’94 Conference on Program-
ming Languages Design and Implementation, SIGPLAN Notices, Vol. 29, No 6, pages 1–12,
Orlando, Florida, June 1994. ACM Press.

[62] Amr Sabry and Philip Wadler. A reflection on call-by-value. ACM Transactions on Pro-
gramming Languages and Systems, 19(6):916–941, 1997. A preliminary version was pre-
sented at the 1996 ACM SIGPLAN International Conference on Functional Program-
ming (ICFP 1996).

[63] Chung-chieh Shan. Shift to control. In Olin Shivers and Oscar Waddell, editors, Proceed-
ings of the 2004 ACM SIGPLAN Workshop on Scheme and Functional Programming, Techni-
cal report TR600, Computer Science Department, Indiana University, Snowbird, Utah,
September 2004.

[64] Chung-chieh Shan. A static simulation of dynamic delimited control. Higher-Order and
Symbolic Computation, 2007. Journal version of [63]. To appear.

[65] Olin Shivers. Control-Flow Analysis of Higher-Order Languages or Taming Lambda. PhD
thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsyl-
vania, May 1991. Technical Report CMU-CS-91-145.

[66] Guy L. Steele. Rabbit: A compiler for Scheme. M. Sc. thesis, Artificial Intelligence Lab-
oratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, May 1978.
Technical report AI-TR-474.

18

[67] Christopher Strachey and Christopher P. Wadsworth. Continuations: A mathemat-
ical semantics for handling full jumps. Technical Monograph PRG-11, Oxford Uni-
versity Computing Laboratory, Programming Research Group, Oxford, England, 1974.
Reprinted in Higher-Order and Symbolic Computation 13(1/2):135–152, 2000, with a
foreword [70].

[68] Hayo Thielecke. Categorical Structure of Continuation Passing Style. PhD thesis, Univer-
sity of Edinburgh, Edinburgh, Scotland, 1997. ECS-LFCS-97-376.

[69] Hayo Thielecke, editor. Proceedings of the Fourth ACM SIGPLAN Workshop on Contin-
uations (CW’04), Technical report CSR-04-1, Department of Computer Science, Queen
Mary’s College, Venice, Italy, January 2004.

[70] Christopher P. Wadsworth. Continuations revisited. Higher-Order and Symbolic Compu-
tation, 13(1/2):131–133, 2000.

[71] Mitchell Wand. Correctness of procedure representations in higher-order assembly lan-
guage. In Stephen Brookes, Michael Main, Austin Melton, Michael Mislove, and David
Schmidt, editors, Proceedings of the 7th International Conference on Mathematical Foun-
dations of Programming Semantics, number 598 in Lecture Notes in Computer Science,
pages 294–311, Pittsburgh, Pennsylvania, March 1991. Springer-Verlag.

[72] Yong Xiao, Amr Sabry, and Zena M. Ariola. From syntactic theories to interpreters:
Automating proofs of unique decomposition. Higher-Order and Symbolic Computation,
14(4):387–409, 2001.

[73] Steve Zdancewic and Andrew Myers. Secure information flow via linear continuations.
Higher-Order and Symbolic Computation, 15(2/3):209–234, 2002.

19

Recent BRICS Report Series Publications

RS-07-6 Olivier Danvy, Kevin Millikin, and Lasse R. Nielsen.On One-
Pass CPS Transformations. March 2007. ii+19 pp. Theoretical
Pearl to appear in theJournal of Functional Programming. Re-
vised version of BRICS RS-02-3.

RS-07-5 Luca Aceto, Silvio Capobianco, and Anna Inǵolfsdóttir. On the
Existence of a Finite Base for Complete Trace Equivalence over
BPA with Interrupt. February 2007. 26 pp.

RS-07-4 Kristian Støvring and Søren B. Lassen. A Complete, Co-
Inductive Syntactic Theory of Sequential Control and State.
February 2007. 36 pp. Appears in the proceedings of POPL
2007, p. 161–172.

RS-07-3 Luca Aceto, Willem Jan Fokkink, and Anna Inǵolfsdóttir.
Ready To Preorder: Get Your BCCSP Axiomatization for Free!
February 2007. 37 pp.

RS-07-2 Luca Aceto and Anna Inǵolfsdóttir. Characteristic Formulae:
From Automata to Logic. January 2007. 18 pp.

RS-07-1 Daniel Andersson. HIROIMONO is NP-complete. January
2007. 8 pp.

RS-06-19 Michael David Pedersen.Logics for The Appliedπ Calculus.
December 2006. viii+111 pp.

RS-06-18 Małgorzata Biernacka and Olivier Danvy. A Syntactic Corre-
spondence between Context-Sensitive Calculi and Abstract Ma-
chines. dec 2006. iii+39 pp. Extended version of an article to
appear in TCS. Revised version of BRICS RS-05-22.

RS-06-17 Olivier Danvy and Kevin Millikin. A Rational Deconstruction
of Landin’s J Operator. December 2006. ii+37 pp. Revised ver-
sion of BRICS RS-06-4. A preliminary version appears in the
proceedings of IFL 2005, LNCS 4015:55–73.

RS-06-16 Anders Møller. Static Analysis for Event-Based XML Process-
ing. October 2006. 16 pp.

RS-06-15 Dariusz Biernacki, Olivier Danvy, and Kevin Millikin. A Dy-
namic Continuation-Passing Style for Dynamic Delimited Con-
tinuations. October 2006. ii+28 pp. Revised version of BRICS
RS-05-16.

