1dnuBIu| YIM Ydg J19A0 a2uafeAinbg aoel] a19|dwo) Joj asey allul4 e JO 99Ud)SIXg 9yl UQ |8 19 0199y  G-/0-SY SDlyg

BRICS

Basic Research in Computer Science

On the Existence of a Finite Base for
Complete Trace Equivalence over
BPA with Interrupt

Luca Aceto
Silvio Capobianco
Anna Ingolfsdottir

BRICS Report Series RS-07-5
ISSN 0909-0878 February 2007




Copyright (© 2007, Luca Aceto & Silvio Capobianco & Anna
Ing Olfsdottir.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work

is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS

Department of Computer Science
University of Aarhus

IT-parken, Aabogade 34
DK-8200 Aarhus N

Denmark

Telephone: +45 8942 9300
Telefax: +45 8942 5601
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLSs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/07/5/



On the Existence of a Finite Base for Complete
Trace Equivalence over BPA with Interrupt

Luca Aceto Silvio Capobianco
Anna Ingdlfsdottir
Department of Computer Science, Reykia\niversity,
Kringlan 1, 1S-103, Reykjak, Iceland
Email:luca@ru.1s | [Silvio@ru.1S ,annai@ru.is|*

Abstract

We study Basic Process Algebra with interrupt modulo complete trace
equivalence. We show that, unlike in the setting of the more demanding
bisimilarity, a ground complete finite axiomatization exists. We explicitly
give such an axiomatization, and extend it to a finite complete one in the
special case when a single action is present.

Introduction

Mode switching is a desirable feature of programming and verification languages
(see [7/9110,1Z,14]). Actually, interrupts in operating systems and exception
handling in virtual machines fall under this category, and similar behaviour is ex-
plicitly required for control programs and embedded systems.

From the theoretical viewpoint of process algebra, representation of mode
switching translates into the isolation of suitable operators on terms. Baeten and
Bergstral[6] (reprising Bergstral[9]) discuss some of these operators for Basic Pro-
cess Algebra (BPA), enriched with tlieadlock constant (a special process, not
doing anything) and théterrupt and disrupt operators. For that language, they
construct a complete axiomatization modulo bisimilarity [13, 17], which is finite if
the set of actions is finite. However, that axiomatization is based on the use of four
more auxiliary operators: hence, it is not immediately clear whether this process
algebra, modulo bisimilarity, is finitely axiomatizabtg itself This fact is not at

*The work of the authors has been partially supported by the project “The Equational Logic of
Parallel Processes” (nr. 060013021) of The Icelandic Research Fund.
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all immediate, given the many examples/[1,2,13,14, 5, 13, 1%, 16, 18] where a finite
complete axiomatization does not exist.

In this paper, we deal with the process algebra BRPAbtained from BPA by
adding the interrupt operator and, as for the relation modeling “indistinguishability
from an external observer”, we choose to work withmplete trace equivalence
(briefly, c.t.e.) instead of the more demanding bisimilarity. Basically, a sequence
of actions is a complete trace for a closed term, if it “leads the term to termination”;
two terms are c.t.e. if they have exactly the same complete traces.

Since equivalence classes of terms modulo complete trace equivalence can be
described in the language odgular expressionst is possible to deal with them
via language-theoretical techniques. This is precisely the way we find the first of
our main results: interrupt is a derived operator for closed terms, modulo c.t.e; that
is, for every closed terrhover BPAy, there is a termx over BPA which is c.t.e. to
t. Suchu can be obtained fromvia application of instances of a finite number of
axioms. Therefore, since BPA has a finite ground complete axiomatization modulo
c.t.e. (as will be shown in the paper), BRAurns out to have one as well. This
theorem is in sharp contrast with the negative result proved]in [5], to the effect
that bisimilarity has no finite axiomatization over closed BPferms even in the
presence of a single action.

The technical analysis of c.t.e. becomes more complex when we consider terms
including variables. In fact, as in the setting of bisimilarity [5], interruphig a
derived BPA operator modulo complete trace equivalence. This rule has precisely
one exception, modulo c.t.exhen the set of actions is a singletdn this special
case, not only we are able to remove every occurrence of the interrupt operator, but
we also can reduce each BRAerm to a BPA term with a very special “shape”; and
in fact, this “shape” is special enough to blearacterizingi.e., two BPA,; terms
are c.t.e. if and only if they can be reduced to the same “specially shaped” term.
Again, this will be achieved syntactically by adding a finite number of axioms to
the ones we had found earlier, which yields a finite complete axiomatization for
BPAir: modulo c.t.e. in the presence of a single action. When the set of actions
is not a singleton, we have isolated a collection of valid equations. However, the
details involved in (dis)proving the completeness of that set of equations have so
far defeated us.

The paper is divided as follows. In Sectioh 1 we sketch the framework we are
working with. In Sectiorf 2 we prove our results for closed terms. In Se€lion 3
we state and prove our result for general terms with a single action. In Séttion 4
we introduce some additional sound equations we have found, and give hints and
suggestions for future research in the field.



1 Preliminaries

We begin by introducing the basic definitions and results on which the technical
developments to follow are based. The interested reader is referied to [6, 10] for
more information.

1.1 The LanguageBPA;,

We assume a honempty alphaBet of atomic actions, with typical elemenisb.

The language for processes we shall consider in this paper, henceforth referred to
as BPAy, is obtained by adding the interrupt operator fram [6] to Bergstra and
Klop’s BPA [10]. This language is given by the following grammar:

teo=zxlalt-t|t+t|t>t,

wherex is a variable drawn from a countably infinite sétr anda is an action.
In the above grammar, we use the symbsl for the interrupt operatorWe shall
use the meta-variablesu, v to range over process terms, and wiifer(¢) for the
collection of variables occurring in the terimThesizeof a term is the number of
operator symbols in it. A process ternci®sedf it does not contain any variables.
As usual, we shall often write: in lieu of ¢ - u, and we assume thabinds stronger
than both+ and > , while > binds stronger than-. In this paper we will also
consider the language BPA, which is constructed as;@m#thout the interrupt
operator.

A substitution is a mapping from process variables to BRarms. A substi-
tution o is closed ifo(z) is a closed term for every variahte For every term and
substitutiono, the term obtained by replacing every occurrence of a variabie
with the termo () will be written o (¢). Note thato (¢) is closed, if so igr. In what
follows, we shall use the notationz — p], whereo is a closed substitution and
p is a closed BPA; term, to stand for the substitution mappindo p, and acting
like o on all of the other variables iar. If a € Act, we indicate by, the closed
substitution that replaces every variable with.e.,

() =a Yx € Var. (1)

In the remainder of this paper, we let denotea, anda™*! denotea(a™).
Moreover, we consider terms modulo associativity and commutativity-.ofin
other words, we do not distinguigh-u andu+t, nor (t+u)+v andt+(u+v). This
is justified because- is associative and commutative with respect to the notion of
equivalence we shall consider over BRA (See axioms Al, A2 in Tablg 2 on
pagd ¥.) In what follows, the symbel will denote equality modulo associativity
and commutativity oft.



We say that a term has+ as head operatdf t = t1 + to for some terms;
andt,. For exampleqa + b has+ as head operator, bit + b)a does not.

Fork > 1, we use asummatior ;. _ ;, ti to denotety +-- - + . Itis easy
to see that every BRA termt has the formy _,_; ¢;, for some finite, nonempty
index setl, and termg; (7 € I) that do not have- as head operator. The terms
(@ € I) will be referred to as thésyntactic) summandsf t. For example, the term
(a + b)a has only itself as (syntactic) summand.

The operational semantics for the language BR# given by the labeled tran-
sition system

<BPAim, {14 ae Act}, {i/ lae Act}) ,

where the transition relation$> and the unary predicate$ v are, respectively,
the least subsets of BRA x BPA,: and BPAy; satisfying the rules in Tablel 1.
Intuitively, a transitiont — « means that the system represented by the tezam
perform the actioru, thereby evolving inta:. The special symbol” stands for
(successful) termination; therefore the interpretation of the statemént is that
the process termcan terminate by performing. Note that, for every closed term
p, there is some actiom for which eitherp % p’ holds for some/’, or p v does.

a —v
t v U v t—t u— u
t+u -5V t+u -5V t+u—t t+u->au
t Ly t ¢
touSu t-u-st-u
t Sy tS U v u =
t>u -5V t>u-St>u Y t>u-Su -t

Table 1: Transition Rules for BRA

The transition relations® naturally compose to determine the possible effects
that performing a sequence of actions may have on gBfAm.

Definition 1.1 For a sequence of actions - - - a5 (k > 0), and BPAy; termst, ¢/,
we writet “"5** ¢/ iff there exists a sequence of transitions

t=tog Bt B ... By =t .
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Similarly, we say that; - - - a3 (kK > 1) is a complete trace of a BRatermt iff
there exists a terntf such that

al - ak

If ¢ " holds for some BP#; termt’, ora; - - - ay is a complete trace df
thena, - - - a;, is atraceof t.

Thedepthof a termt, written depth(t), is the length of alongest trace it affords.
Observe that such a trace is necessarily a complete trace.

Thenormof atermt, denoted bynorm(t), is the length of its shortest complete
trace; this notion stems frornl[8].

The depth and the norm of closed terms can also be characterized inductively thus:

depth(a) = 1
depth(p+q) = max{depth(p), depth(q)}
depth(pq) = depth(p) + depth(q)
depth(p > q) = depth(p) + depth(q)
norm( =1
norm(p +q) = min{norm(p), norm(q)}

norm(p) + norm(q)
= norm(p) .

)
)
norm( q)
)

norm(p > q

Note that the depth and the norm of each closed;RR&m are positive.

Lemma 1.1 [Operational Correspondence] Assume thista BPA, term,o is a
closed substitution andis an action. Then the following statements hold:

1. Ift &v, theno(t) Sv'.
2. It % ¢, theno(t) % o(t).
3. Assume that is a BPA term. Ifo(t) v/, then either

(@) t 5v, or
(b) t = z ando(x) v for some variabler, or
(¢) t =z +wuando(x) %v for some variable and termu.

Proof: StatementE]1 arld 2 are proved by induction on the proof of the relevant
transitions. Statemeht 3 is proved by induction on the structure of thetterm
The details are lengthy, but straightforward, and we therefore omit them.



In this paper, we shall consider the language RPAodulo complete trace equiv-
alence.

Definition 1.2 Two closed BPA4y termsp and g are complete trace equivalent
denoted by ~ ¢, if they have the same complete traces, i.e., if for every nonempty
wordw € Act™, w is a complete trace far iff it is a complete trace fou.

The relation~ will be referred to azomplete trace equivalence

Itis evident that- is an equivalence. There is moreis acongruencavith respect
to all the operators in the signature of BRAthat is, ift ~ ¢’ andu ~ 4/, then
t4+u~t +u, tu~t'y, andt > u ~ t' > u'. This will follow from Lemma2.1,
at the beginning of next section. Observe that complete trace equivalent; BPA
terms have the same norm and depth.

Complete trace equivalence is extended to arbitrary;BR&rms thus:

Definition 1.3 Let ¢,u be BPAy terms. Thert ~ w iff o(t) ~ o(u) for every
closed substitutiowr.

For instance, we have that
x>y~ (x>y) +yx

because, as our readers can easily check, the temng and(p > ¢q) + gp have
the same set of initial “capabilities”, i.e.,

p>qSriff (p>q)+qp > r , for eacha andr, and
p>q-Sviff (p>q)+qp >, foreacha .

It is natural to expect that the interrupt operator cannot be defined in the language
BPA modulo complete trace equivalence. With a single, remarkable exception, this
expectation will be confirmed by Propositibn 3.1.

1.2 Equational Logic

An axiom systems a collection of equations= u over the language BRA. An
equationt =~ u is derivable from an axiom systef), notationE + t ~ u, if it can
be proved from the axioms iff using the rules of equational logic (viz. reflexivity,
symmetry, transitivity, substitution and closure under BPéontexts):

¢t t~u t=cuu=xv ~ U
T oust txwv o(t) =~ o(u)
~u t ~u ~u t ~u ~u t ~u

t+t ~u+d tt ~ uu' t>t ~ub>u



Al T+y ~ y+x
A2 (z+y)+z = z+(y+2)
A3 r+zr = =
A4 (x+y)z =~ (z2)+ (y2)
A4.2 r(y+2) =~ (xy)+ (z2)
A (zy)z ~ x(yz)

Table 2: Some Axioms for BRA

Definition 1.4 An equationt ~ u over the language BRA is soundwith respect
to ~ iff £ ~ u. An axiom system is sound with respect~oiff so is each of its
equations.

An example of a collection of equations over the language;BP#at are sound
with respect to~ is given in TabléR. Those equations stem from [10]. Equations
dealing with the interrupt operator in the setting of bisimulation semantics using
auxiliary operators are offered inl[6].

2 A ground complete finite axiomatization for BPAx

We start by proving that complete trace equivalence is a congruence ovgy.BPA
In fact, we give a complete, structural description of the complete traces qfBPA
terms: congruence of complete trace equivalence will be an easy consequence.

First of all, we observe that, given two closed tertns over BPA,: and a
nonempty wordov overAct, thenw is a complete trace far+ « iff w is a complete
trace for eithert or u, while w is a complete trace fotu iff w = zy for some
words z, y that are complete traces forand u, respectively. In fact, there is a
similar characterization for complete tracestof u, but it’s a bit trickier.

Lemma 2.1 Let ¢ andu be closed terms over BRA Letw be a nonempty word
over the alphabeict. Thenw is a complete trace far> w iff there exist words,
y, z overAct such that

1. w=uayz,
2. z is nonempty,
3. zz is a complete trace far, and

4. y is either empty or a complete trace for
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Proof: Supposé > u — . Then
e eitheru doesnot initiate, so that = v/, or

e u initiates beforet, so thatu % v, thent = v for some nonempty words
y, z such thatw = yz, or

e w initiates whilet is running, so that - ¢’ for some closed term, u % v/,
andt’ = v for some nonempty words, y, z such thatv = zyz.

The reverse implication is trivial. O

Lemmd 2.1 allows one to give a language-theoretic characterization of closed terms
over BPAn: modulo complete trace equivalence. Gall'(¢) the set of complete
traces of closed term then Lemma 2J1 states that the equalities

CT(t+wu) = CTHt)UCT(u), 2

CT(tu) = CT(t)CT(u), and (3)

CT(teu) = CT(HU |J  {r}CT(u){s} (4)
rseCT(t),s#¢e

hold. We recall thaXY = {w : 3z € X,y € Y : w = zy}.

Corollary 2.1 For terms over BP#, complete trace equivalence is a congruence.

Proof: Supposet ~ t' andu ~ u'. Leto be a closed substitution: ther(t)
ando(t') have the same set of complete traces, and similarly foy ando(u').
By @), o(t + u) = o(t) + o(u) has the same complete tracesods + v') =
o(t') + o(u'); similarly for o(tu) ando(t'v') because of[{3), and for(t > )
ando(t' > u') because ofi{4). This is true for every closed substitutiorthus
t+u~t +u tu~td, andt > u~ > O

As a consequence of Lemrhal2.1 and our previous observations, we obtain the
following equivalences.

Lemma 2.2 For every actiorn and closed terms u, v over BPAy:, the following
hold:

l.t+u~u-+t;
2. t+ (u4v) ~ (t+u) +v;

3. t+t~t



. (t+w)v ~ tv + uv;
Ct(u+v) ~tu+ to;
. (tw)v ~ t(uv);

. al>u~a+ua,

at > u ~ a(t > u) + uat;

© o N o o A

(t+u)>v~(t>ov)+ (u>wv);and
10. t > (u+v) ~ (t > u) + (t > v).

Proof: We must show that, for any of the formulas above and for any weord
over Act, w is a complete trace for the left-hand side iff it is for the right-hand
side. Thanks to equatioris| (4)] (3), ah#l (4), this is basically an exercise in sentence
rewriting; only the last four identities require a greater amount of caution.

7. Supposew is a complete trace far > . By Lemma 2.1, this is the same
as saying thatv = zyz so thatz is nonemptye = v and eithery is empty or
u % v. The first part is possible iff: is empty andz = a, thus eitherw = a
orw = ya with uw 2 v; by LemmaZ.1, this is the same as saying thas a
complete trace fot + ua. On the other hand, i + ua X v, then eitherv = a
or w = ya for somey such that, 2 v; in either casew is a complete trace for
a > u as well.

8. Supposew is a complete trace fott > u. We can writew = xyz with

z nonempty,at =5 v, and eithery empty oru - v'. Two cases are possible:

eitherz = ax’, or x is empty andk = az’. In the first case 'z v/, and eitheny
empty oru - v, so thatz'yz is a complete trace far > u, andw = az'yz is a
complete trace fou (¢ > w); in the second case; = yaz’ is a complete trace for
uat. On the other hand, let be a complete trace far(t > u) + uat: then either
a(t > u) > v, so thatw = azyz with ¢ 25 v and eithery empty oru % v; or
w = yaz with u 2 v and¢t 5 v. In either casegt > u > v'.

9. Supposew is a complete trace faft + ) > v. This is the same as saying
thatw = zyz with z nonempty, eithet = v oru % v, and eithery empty or
v % . This means that either> v > v oru > v > V.

10. Supposew is a complete trace far> (u + v). This is the same as saying
thatw = xyz with z nonempty; 23 v/, and eithery is empty oru % v orv % v'.
This means that eithér> u — v ort > v — v'. O

We can then state



Theorem 2.1 Let a be an action and let, y, z be variables. The following equa-
tions are sound for BRA modulo complete trace equivalence:

31 (z+4y) >z
32 zp> (y+2)

(x> 2)+ (y>2)
(z>y)+ (x> 2)

Al r4+y ~ y+u

A2 z+(y+2) = (z+y)+z2
A3 rT+r R T

A41 (x4+y)z ~ zz+yz

A4.2 x(y+2) = zy+uaz

Ab (zy)z ~ z(yz)

Il.a al>y =~ a-+ya

12.a ax >y =~ a(zr>y)+yax

Proof. Leto be aclosed substitution. Appdyto both sides of any of the equations
above: then left-hand and right-hand members are complete trace equivalent by
Lemmad2.R. This is true for all closed substitutions, which proves the theorem.

Observe that, for every action there is one equation of the forfit.a and one
equation of the formi2.a, so that those equations are infinitely manyAit is
infinite.

We now argue that the interrupt operator can be eliminated from closed terms.
To be able to support our thesis, we do a little digression, and try to find the “sim-
plest possible form” a BPA term can have, modulo complete trace equivalence.

Definition 2.1 A term ¢ over BPA is inprenex normal fornif there exists a finite
nonempty setV C (ActU Var)*t such that

t=> w, (5)

weW
where the wordy; . .. «, is identified with the ternayy - ... - a,.

In other words, a term is in prenex normal form if the nondeterministic choice
operator only appears at the topmost level.

Lemma 2.3 Let ¢t be a term over BPA. There exists a tetnover BPA in prenex
normal form such that ~ u. Moreover, ift is closed, then: is closed as well.

Proof: By structural induction on. The thesis is trivially true if eithet = « for
somea € Act, ort = x for somex € Var.
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If t = t1 + ty for some termg, to, consideruy, us in prenex normal form
such that; ~ u; andte ~ wuy. Put

uzgw,

weWw

whereV is the set of all wordsv that appear as summands in eithgror us.
Observe that, can be constructed fromy, + uo by repeatedly applying the idem-
potence rule3. It is immediate to check thatis in prenex normal form, and that
t ~ u; moreover, ift is closed, thert; andt, are closed, so that; andus, and
consequently:, are closed by inductive hypothesis.

If t = t1t, for some terms, to, consideruy, us in prenex normal form such
thatt1 ~ Ul andtg ~ ug. Put

uzgw,

weW

whereW is the set of all wordsv such thatw = wyws for two nonempty words
w1, wo such thatw; is a summand of; andw, is a summand ofi,. Observe that
u can be constructed fromy uy by repeatedly applying the associativity lawg.1
andA4.2, and the idempotence rule3. It is straightforward to check thatis in
prenex normal form, and that~ u; moreover, ift is closed, thert; andt, are
closed, so that; andusy, and consequently, are closed by inductive hypothesis.
O

LemmdZ.B states that, for every closed téraver BPA, there exists a closed term
v(t) over BPA in prenex normal form, such thiat- v(t). We callv(t) the prenex
normal formof the termt. Observe that(t) is defined up to the order of its sum-
mands. Observe also that, to construfitom ¢ in the proof of Lemma& 213, we have
only applied associativity of operators, commutativity and idempotence of nonde-
terministic choice, and distributivity of nondeterministic choice w.r.t. composition:
that is,v(t) can be constructeslyntacticallyfrom ¢ by means of axioms in Table 2.
Introduction of prenex normal forms allows us to prove

Lemma 2.4 Let ¢t andu be closed terms over BPA. There exists a closed term
over BPA such that > « ~ v.

Proof: By induction on the size of. Because of Lemnia32.3, it is not restrictive to
suppose thatis in prenex normal form.
If ¢ has size 1, theti= « for some actiorw. Thent > v = a > u ~ a + ua.
Suppose now that the thesis is proved every timetthas at most size. Let
t have sizen + 1. If t = t; + to, thent > u ~ t; > u + to > w, with ¢; and

11



to having size at most: by inductive hypothesis;; > u ~ v; andty > u ~ vy
for suitable closed terms;, vo over BPA, so that > u ~ v; + v9 = v with v
closed term over BPA. Otherwigédhas only one summand, so, since it is in prenex
normal form, it must have the form= at’ for some actioru and closed terny
having sizen: by inductive hypothesis; > u ~ v’ for some closed term’ over
BPA, so that > u = at’ > u ~ a(t’ > u) + uat’ ~ v, with v = av’ + uat’ being
a closed term over BPA. O

In turn, Lemmad 2.4 paves the way to

Theorem 2.2 Lett be a closed term over BRA Thent ~ « for some closed term
u over BPA.

In other words: for closed terms over BPA modulo complete trace equivalence,
interrupt is a derived operator.

Proof: By induction on the structure of

Case 1:t = a. This poses no problem: simply put= a.

Case 2:t = t; + to. By inductive hypothesis, there exist closed tenmsus
over BPA such that; ~ u; andty ~ uy. Thenu = u; 4 us is a closed term over
BPA such that ~ w.

Case 3:t = t1t5. By inductive hypothesis, there exist closed tetmsu, over
BPA such that; ~ u; andty ~ us. Thenu = ujusy is a closed term over BPA
such that ~ wu.

Case 4:t = t; > to. By inductive hypothesis, there exist closed temmsus
over BPA such that; ~ u; andt, ~ uge. By LemmdZ.#, there exists a closed term
u over BPA such thatiy > uy ~ u. Thent =t > t9 ~ uy > ug ~ u. O

Observe that, to prove LemmiaR.4 (and thus Thedrem 2.2 as well), we use
only leftwise distributivity. This is interesting, because the interrupt operatwtis
associative modulo complete trace equivalence, so that we cannot regroup all of its
instances on a single side. As a counterexampley k& an action: thea? is a
complete trace fofa® > a?) > a, but not fora® > (a® > a).

Since every closed term over BRAis c.t.e. to a closed term over BPA in light
of Theoren] 2.2, we can think of reducing the problem of finding a ground com-
plete axiomatization for BP4&, modulo c.t.e., to that of finding a ground complete
axiomatization for BPA, modulo c.t.e. This would be allowed by prenex normal
form, if they werecharacterizingor closed terms over BPA modulo complete trace
equivalence, that is, if it were true that two closed terms over BPA having the same
complete traces, also have the same prenex normal form.

And this is precisely the content of

12



Lemma 2.5 Let t andu be closed terms over BPA in prenex normal form. Then
t ~ v iff £ andu have the same summands.

Proof: Supposée ~ u. Letw be a summand of. thent = v andu = v as
well. Thus one of the summands of u satisfiesw’ = v: butw’ is a closed
term without summands, so the only possibilityiiS= w. This proves that every
summand of appears in:: by swapping the roles gfandu we find that they have
the same summands.

The reverse implication is trivial. O

Theorem 2.3 The axioms in Tablg]2 form a ground complete axiomatization for
BPA.

Proof: Lett andu be two closed terms over BPA such that «, and letv(¢) and

v(u) be their prenex normal forms. By using the axioms in Table 2 we can prove
~ v(t) andu ~ v(u). But two terms in prenex normal form that are complete

trace equivalent, are also equal up to the order of their summands: thus, by using

the axioms in Tabl€]2 we can also prav&) ~ v(u). This, in turn, allows us to

provet ~ u. O

As a consequence of this fact, we obtain the main result of this section.

Theorem 2.4 If |Act| < oo, then BPAy: has a finite ground complete axiomatiza-
tion modulo complete trace equivalence.

Proof: Consider the familyZ of equations from Theorem 2.1: |iAct| = n, then
|E| = 2n + 8. Lett andu be closed terms over BRAsuch that ~ «: we must
show thatF' - t ~ w.
As seen in Theorem 2.2, the equationgimllow us to reduce any closed term
over BPA; to a closed term over BPA: in particular, there exist closed tefms
over BPA such thatl - ¢t ~ t' andE + u =~ u/. By the soundness df, t' ~ u':
since the equations in Tallé 2 also appear in Thebrein 2.1, from Théorem 2.3 we
deduceF + t' ~ u'. ThusFE It ~ u as well. O

3 The case of general terms

Having proved finite complete axiomatizability for c.t.e. over closed terms in the
language BPA:, we want to obtain a similar result for general terms. However,
the technique we used to prove Theorfenm 2.4 does not work in the broader case,
because, as we announced in Subseétioh 1.1, interrupt is not a derived operator,
except for a very special case.
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Proposition 3.1 Let z andy be variables. Then there exists a tetraver BPA
such that ~ z > y if and only if |Act| = 1.

Proof: If Act = {a}, then by Lemma@a2]3 and Theoréml2.2 the only closed substi-
tutions areup to complete trace equivalent¢bose of the form

=Y d", (6)
keK

whereK is a nonempty finite set of positive integers. ThereforéAdt| = 1, then
x>y~ x4+ yz. Infact, let

Za and o(y Za];

i€l jeJ
then
RS EDIED DD SN SR D
el jedJ i€l el el,jed
and

oo > y) = (Za>> Sa |~ Y de

il jed i€l jeg

both have as complete traces precisely the words of thedbfor i € I, and those
of the forma?*# for j € J andi € I.

If Act = {a,b,...}, then we prove that no BPA term is c.t.e.ata> y; closed
substitutions of the forni {1) will play a key role. Assume, towards a contradiction,
thatz > y ~ t for some ternt over BPA. By complete trace equivaleneg(t) =
v, which, by Lemmad 1]1, is possible if and only if either v, or there exists
a variablez such thatz is a summand of ando,(z) % v. But the latter is
the only possibility, because #f-% v/, theno,[z — a?](t) = v as well, while
ol — a®)(z > y) = a® > a has norm 2, contradicting our assumption thst
c.t.e. tox > y; moreover, it cannot be just= z, or o,y — b](z) would haveba
as a complete trace, which is impossible.tSe z + u for some termu over BPA,;
if it were z # x, we would gewr, [z +— a?](t) = a + o,]x — a?](u) % v/, which
we know to be a contradiction. Thus¢tifv x > y, then necessarily ~ x + u for
some termu over BPA,; it is not restrictive to suppose thais in prenex normal
form, and that the summangddoes not occur in.

We observe that. cannot contain actions. In fact, shoulccontain action,
letb € Act\ {a}: thenoy(z + u) has a complete trace containin@ndo,(x > )
does not, contradicting our assumption thistc.t.e. tox > y. Moreover,u, cannot
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contain variables other thanandy: otherwise, ifo = o,[x — b,y — b, then
o(x +u) ando(z > y) would yield a similar contradiction.

If x = y, then all the summands af have the forme™ for somen > 1. Let
theno(x) = ab; it follows thata?b? = a(ab)b is a complete trace far(z > x) =
ab > ab, but not foro(x + ). This is a contradiction.

If x # y, thenu must contain bothr andy. In fact, consider the closed
substitutiono v i given by

onk(z) = aN s onk(y) = bK s o(z)=aVz & {x,y}.

Sincez +u ~ z > y, b a® is a complete trace fory i (x + u) for all N and
K, which is impossible if eithex: or y does not occur in.. Thuswu is actually a
sum of nonempty words over the alphaljet y}; since the only complete traces
of o4y — b](x + u) must bea andba, none of these words can contaim, zy,

or yy as a subword, plug cannot be a summand af Then the only possibility is
u = yx: however,aba is a complete trace far,[z — a?](z > y) = a® > b, but
not for o[z — a?](z + yx) = a® + ba®. This is a contradiction as well. O

Propositior 3.11 puts an end to our hopes of finding an easy solution to the finite
axiomatization problem for general terms over BAat the same time, however,
it opens the way to such a solution in a special case. To better understand the pos-
sibilities left, and possibly use an approach based on normal forms for the special
case, we need a deeper insight on the properties of prenex normal forms.

We start by observing that, ifis a term over BPA and is a closed substitution,
then the prenex normal form of(t), say)_ ., ; ;. is a sum of objects that can be
seen both as closed terms over BPA and as words over actions, such that the word
is the only complete trace for the term. It follows thatf &nd« are terms over
BPA such that ~ u, then the “shape” af(o(t)) andv(o(u)) must be the same for
every closed substitution. The most natural thing to do is to ask oneself whether
this “equality of shape” must be true for the terms themselves.

We recall that théength of a wordw over an alphabed is the numbetw| of
characters (i.e., elements 4j occurring inw, while thenumber of occurrencesf
charactew in word w is the numbefw|, of characters inv equal toa. Of course,
|w| =" e a [wla, and ifw; = wo, then|w: |, = |wz|, for everya € A.

Proposition 3.2 Lett andu be honempty words ovect U Var.
1. If |Act| > 1 thent ~ u iff ¢ = w.

2. If Act = {a} thent ~ « iff ¢ is a permutation of..

15



Proof. First of all, we recall that both points are true fdosedterms. This fact
will be used later on in the proof. Also, substitutions of the folin (1) will play a
key role.

We now prove point 1 for general terms. Of course, only the “only if” part
needs to be proved. Supposes u: then eithert| # |ul, ort = Madg, u =
A18As3, With A1, Ao, A3 € (ActU Var)*, a, 8 € ActU Var, a # (3. In the former
case,o,(t) ando,(u) are closed words of different length. In the latter, if one
betweena andf is actiona, andb € Act \ {a}, thenoy(t) # op(u); otherwise,

« and g are distinct variables, thus,[3 — b](t) # 043 — b](u). Therefore,
if ¢ # u, then there exists a closed substitutiorsuch thato (t) % o(u), so that
t 4 u.

We are now left with the proof of point 2 for general terms. kdte a closed
substitution; let a term with a single summand, letbe a closed substitution, and
let wy, wo, ..., w, € ActU Var such that

t=wiwy...wy, .

By Theoreni 2.2 and Lemnia 2.3, for dlle {1,2,...,n} there exists a finite set
I; of integers such that
o(wj) ~ Z a'

i, €15
Then, since complete trace equivalence is a congruence and distributivity laws ap-
ply modulo complete trace equivalence,

o(w) ~ o(wy)o(wy)...o(wy,)

~ E a't E a’? < E aln>
1€l ig€12 in€ln
~ E aa...a"
i1€11,i2€1a,..., in€ln

— E ai1+i2+...+in

i1€11,i2€12,...,in€Iln

which depends on the nature of thg’s, but not on their order. Thus, ifis
a permutation ofu, theno(t) ~ o(u) whatever the closed substitutian i.e.,
t ~ u. On the other hand, if is not a permutation ofi, then either|t| # |u]
or there is a variable: such that|t|, # |u|,, SO that eithew,(t) # o,(u) or
oalx — a?|(t) # ouz — a®](u); and againt £ u. O

Propositior 3.2 suggests a strategy for finding an axiomatization for the terms
over BPAy whenAct = {a}.

16



Consider an orderingct U Var = {a,z1,22,...,2y,...}. Letw be a word
overAct U Var and letn be the maximum index of a variable occurringun We
define thenormal formof w as

v(w) = a'w‘“x‘lwlmxgwm .. JT';;U‘I" . @)

By Propositiod 3.Pw ~ v(w).

Let nowt be a term over BP#y: by Propositiori 311¢ is complete trace equiv-
alent to a termt’ over BPA, which, in turn, has a prenex normal fo@wew w.
We can therefore say that tim@rmal formof the termt is

v(t)= > v(w), 8

weW

where each summand in normal form is taken once per occurrence. For instance,
the normal form of = ya + zaz +a > xisv(t) = a + ax + ax? + ay, while that

of zy + yx is zy. We observe that(¢) is unique, up to the order of summands,
and thatt ~ v(t).

Theorem 3.1 Supposeéict = {a}. Then two terms., v over BPA,; are complete
trace equivalent if and only if(¢) = v(u) up to the order of summands.

Proof: Lett¢ andu be two terms over BPA such that ~ «, and let

T S
v(t)=> piandv(u) =Y g
i=1 j=1
be their normal forms. LelV be the maximum index of a variable in either fhés
or theg;'s; then for each andj we can write

€0,i €1, EN,i

pi=a ]ty andqj:afo’jxfl’j I

Ty

Let b be a positive integer greater than all of thg’s and thef;, ;'s; consider the
substitutiono defined by

o(zp) = a” VkeN. 9)

Then, for alli andj, o(p;) = a® ando(q;) = a’, where

N N
k k
a; =Y ep b and B =" fi;b*,
k=0 k=0

17



10.1 z>y ~ rz>y+zx

10.2 x>y = rD>y+yx

12 zy>z &~ z(y>z)+ (> 2)y

I4 (x>y>z =~ (z>y)>zt+ad>(y>2)

I (zpy)>zta>(z>y) (x>2z)>y+a>(y>2)

Table 3: A list of valid equations for BRA.

and since is larger than all of the,, ;'s and thef;, ;'s, thea;’s are pairwise distinct,
and so are thg;’s.

Sincet ~ u, we havev(t) ~ v(u) as well, sar (v (t)) ~ o(v(u)). But a word
w = a® is a complete trace far(v(t)) iff K = «; for somei, and similarly,w is
a complete trace far(v(u)) iff K = (; for somey: thus, for everyi there must
exist aj such thato; = 3;, and vice versa. This, in turn, is only possible if for
everyi there existg such thap; = ¢;, and vice versa; since thg's are summands
in a normal form, and so are thg’s, we conclude that = s and thep;’s are a
permutation of they;’s, that is,v(t) = v(u) up to the order of summands.

The reverse implication is trivial. O

Theorem 3.2 If |Act| = 1 then BPAy; is finitely axiomatizable.

Proof: Consider the seF consisting of the axioms of Theorém .1 together with

CC Ty
DI x>y

yx
r +yx

~
~
~
~

(Observe tha€C andDI are sound modulo complete trace equivalencgiét| =

1.) Lett andu be terms over BPg# such that ~ «: we must prove thakl - ¢ ~ u.
Consider the normal forms(¢) andv(u). Using equation€C andD], it is

not hard to prove that - ¢t ~ v(t) andE - u ~ v(u). But the normal forms

of two terms over BPA that are equivalent modulo complete trace equivalence are

equal by Theorem3.1; thu# + v(¢) ~ v(u). This allows us to conclude that

FFt=u. O

4 Other valid equations

In this section, we will list some equations over BRAand prove that they are all
valid; plus, we will suggest a kind of “normal forms” for BRAterms. We use
double quotes, because these, as we shall see, are not characterizing.
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A list of valid equations for BP4y is given in Tablé B. We immediately observe
that10.1 andI0.2 are valid indeed, because, whatevemd« are, any complete
trace fort or ut is also a complete trace for> «

Proposition 4.1 EquationI2 in Table[3 is sound modulo complete trace equiva-
lence.

Proof: We must show that, for every word over the alphabe#ct and every
closed termg, u, v over BPAy, tu > v — v if and only ift(u > v) + (¢t >
v)u S V.

Supposetu, > v — v this is the same as saying that = zyz with z
nonemptytu 5 v, and eithery is empty orv % v'. If t = v andu = v/, then
t(u > v) 5 v; otherwise, either: = 2/p with t 5 v/, or z = ¢/ witht =% v,
wherep andq are suitable nonempty words. In the former case; v 25 v, so
thatt(u > v) “2° v anda/pyz = w; in the latter casey, A vandts o™y,

so that(t > v)u e, andzyqz’ = w.
On the other hand, supposg: > v) + (t > v)u = v then eithert(u >
v) 5 v oor(t>v)u = v. Inthe first casew = rxyz With z nonemptyt — v/,
u % v, and eithery is empty orv % v'. Thentu "5 v/ andtu > v "5/ but
reyz = w. Inthe second case; = xyzs with z nonemptyt = v, v = v, and

Tzs

eithery is empty orv % v'. Thentu % v andtu > v “5° v butzyzs = w. O

Observe how equatiol? generalized2.q to the case of a general concatenation of
terms. In fact,

at > u a(t > u)+ (a>wu)t fromI2,
a(t > u) + (a +ua)t fromIl.a,
a(t > u) + at +uat  from A4.1,

a(t > u) + uat from 10.1 and A4.2.

Qa e

Proposition 4.2 EquationI4 in Table[3 is sound modulo complete trace equiva-
lence.

Proof: We must show that, for every word over the alphabefct and every
closed termsg, u, v over BPAy, if t > (u > v) = v, then(t > u) > v = V.

Lett > (u>v) = v: thenw = zyz with z nonempty,t %5 v, and either
y is empty oru > v 2 . If y is empty, thenw = zz is a complete trace for
(t > u) > v; otherwisey = pqr with v 2> v and eithex; is empty or % . Let
thenz’ = xp,y = q, 2 = rz: thent > u “% / and either’ is empty orv % v/,
thus(t > u) > v "L V. Butay'z' = xpqrz = zyz = w. O
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EquationI4 says thatt > (u > v) is somewhat “less capable”, in terms of
“possible terminating executions”, thdh> «) > v, something we had already
seen after Theorefm 2.2. The question arises naturAlyw muchis this “less”?
Equationl5 provides a possible answer to this question.

Theorem 4.1 EquationI5 in Table[3 is sound modulo complete trace equivalence.

Proof: Supposegt > u) > v — v'. We know from Lemma& 21 that = 2yz
with ¢ > v 23 v and eithery is empty orv % . From the same lemma we get
zz = pgr with t 25 v and eitherg is empty oru % v'. Thus four cases must be
studied.

Case 1:y and ¢ are both empty. In this case, the transition is entirely due to
t, thust > (u > v) = V.

Case 2:y is empty and ¢ is not. In this case, there is a transitian>> ¢,
followed by % v/, then byt = v; plus,w = zz = pqr. This can be mimicked
byt > (u > v) as follows:

t> (u>v) Bt > (usv) St 5y,

because if: > v thenu > v > v as well.
Case 3.y is nonempty andq is empty. In this case, the transition is of the
kind
toupvotouvdt>udy,

This cannot in general be mimicked by- (u > v), because
te> (u>v) St > (u>v) S ut,
andut might not have: as a complete trace. However, it can be mimicked by
tcvStpovdd Sy,

which is tolerable, becausetift> v = v/, then(t > u) > v = v as well.

Case 4.y and ¢ are both nonempty. This is the most complicated case, so
we split it into subcases.

Subcase 4ar = pq’, z = ¢"r. This means that the executionta$ interrupted
by that ofu, which is in turn interrupted by that ef, that is, for some’, v/,

/ 11
touw>vStFoursdtcoddt LY Sy

This can be mimicked by

!

t> (o) Lt we o) S W sot Ldt Lt D
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Subcase 4bx = pqr’, = = r”. This means that the execution ofs first
interrupted by that ofi, then resumed, then suspended by that ¢iat is,

nr’

touw>vtFoubvstvest >obe’ D
This cannot in general be mimicked by> (u > v), because
t> (usv) Bt > (s o) St

andt’ might not have”’yr” as a complete trace.
Subcase 4cx = p/, z = p”qr. This means that the execution bfs first
interrupted by that of, then resumed, then suspended by that;dhat is,

touwy>vSbtousvdtsubt’sudt’ Sy,
This cannot in general be mimicked by> (u > v), because
te (u o) St > (usv) St

andut’ might not havey”qr as a complete trace.

The problems come from subcases 4b and 4c. In factt inu) > v, the
execution oft can either be first suspended bythen resumed, then suspended
by v; or be first suspended by, then resumed, then suspendedwy On the
contrary, int > (u > v), if w interruptst, thenv can only interrupt:, and during
this process, the execution btannot be resumed; while if interruptst, thent
cannot be resumed until firgt thenw are finished.

However, this behaviour can be mimicked by

(t>v)>u
by means of
(tDv)Dug(tlbv)Duit’pvit”pvﬂ)t”ﬂ\/

for case 4b, and

r

P’ / Yoy P’ n q. ,n
tov)pu={tpv)pu=stbu—st du—-t -V
for case 4c; plus, it also works in case 3. This means that we can write down

touvg(t>v)>ut+t> (u>wo)
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whereA < B is a shortcut folCT(A) C CT(B). Moreover, by applyind4 to
t > (v > wu)and(t > v) > u, we can refine this inequality into

touyov+t> (vou)x(t>v)>u+t> (u>v)

But the roles ofu anv are symmetrical on either side, thus we can swap these two
terms and get the reverse inequality. a

Since, in generalit > u) > v andt > (u > v) are not c.t.e., they should both
be considered when looking for normal forms. For a térgontaining a single
summand, let us introduce a notionleftmost term

1. if the interrupt operator does not occurtirthent is its own leftmost term;
2. if t = u > v, then the leftmost term dfis that ofu.

For instance, the leftmost term of>> y, z > (y > z), and(x > y) > z, is always
x, while the leftmost term oty > z is xy.

Lemma 4.1 Every BPA termt¢ can be written, modulo complete trace equiva-
lence, as a sum of concatenations of singletons and sequences of interrupts where,
in every subsequence, the leftmost term is a variable.

Proof. By induction on the structure @&f The case$ = a,t = x, andt = u + v
with the thesis holding for both andv obviously pose no problem.
Suppose = uw with the thesis holding for andv. Then

u~ E H Uj, 5

i€[l..n] j€[1...n]

~2 1w

re[l..m] s€[l..my]

and

with eachu; ; andv, s being either a singleton, or a sequence of interrupts where,
in each subsequence, the leftmost term is a variable. Since concatenation is both
left- and right-distributive modulo c.t.e. w.r.t. nondeterministic choice,

wr X (I ) (T e

i€[1...n] JE[1...n4] s€E[L...5r]
re[l...m]

with each factor in each summand being either a singleton, or a sequence of inter-
rupts where, in each subsequence, the leftmost term is a variable.
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Suppose finally = u > v with the thesis holding for, andv. Write v andv
as in previous case, and put

Uy = | | Ups -

s€[l..my]

Since interrupt is both left- and right-distributive modulo c.t.e. w.r.t. nondetermin-
istic choice,

u>v= Z H Ui | D Uy

ic[1... jell..n;
JEfnh N \gEllnd

But by repeatedly applyinf2 we find

H U | D Up= E Ui 1 - Ujj—1 (ui,j > U,«) WU j+1 - - Wi,
JE[L..n4) JEL..m4]

where each factor in any of the right hand summands is either a singleton or a
sequence of interrupts where, in each subsequence, the leftmost term is surely a
singleton, but possibly not a variable. However:

e if u; ; is a variable, then the thesis is still satisfied,

o if u; ; is a sequence of interrupts, then again the thesis is satisfied by induc-
tive hypothesis;

o finally, if u;; is a constant, then; ; > v, = u;; + v,u; j, and the thesis
keeps on being satisfied, again by inductive hypothesis.

From this the thesis follows. O

The terms in the thesis of Lemrha 4.1 are tentative candidates as normal forms for
BPA;,; terms. However, from that point of view, > y andx > y + yx + x are
different forms; but from what we have seen until now it is obvious that they are
complete trace equivalent, so that these forms are unfortunately not characterizing.
To solve these problem, a theory of “reduction” of terms should most probably be
developed. At the time of the writing, we do not know whether the collection of
equations in Theorenis 2.1 alnd 3 is complete for complete trace equivalence over
BPAint.

A thing to do is probably to study the terms of the fosm> ¢, which, because
of Lemmd 4.1, seem to be good candidates for basic constituents of normal forms.
The idea should be that, if > ¢ ~ y > u, thenz = y andt ~ u.
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Let t andu be terms over BP#x, not necessarily closed; letandy be vari-
ables. Suppose > t ~ y > u: thenz = y, otherwise, ifo(z) = a ando(y) = b,
theno(z > t) % v ando(y > u) £ . Moreover, the maximum length of
a complete trace fos(t) ando(u) must be the same: otherwise, by joining two
complete traces of maximum length for eithet) or o(u) ando(x), we would
get a complete trace for eithez > t) or o(x > w), but not both. Lastly; and
u contain the same variables: otherwise)ifis larger than the length of any sum-
mand int andu, then by substituting with” a single variable that does not appear
in botht andwu, and witha all other variables, we get two non-c.t.e. closed terms.

We are now left with the task of checking whetlier «. This is notimmediate,
because, in general,>> u ~ ¢t > v does not implyu ~ v: as a counterexample,
putt = u = a + a® andv = a?.

Supposer does not occur it (andu). Suppose there exists a closed substi-
tution o such thato(¢) ando(u) are not complete trace equivalent. Thelp —
al(z > t) = a+ o(t)a andofz — a](x > u) =~ a + o(u)a are not complete
trace equivalent, because if (for exampilejs a complete trace for(¢) and not
for o(u), thenwa is a complete trace far + o (t)a and not fora + o (u)a.

Suppose nowt does occur irt (andu). Again, suppose there exists a closed
substitutiono such thato(¢) ando(u) are not complete trace equivalent; in par-
ticular, letw € Act™ be a complete trace fer(t) and not foro (). How can we
prove that there exists a closed substituidrsuch tha’ (z > ¢) ando’(z > u)
are not complete trace equivalent?

We can reformulate our problem in terms of language theory. Xdlie lan-
guage of complete traces ofz), Y that ofo(t), andZ that of o (u): thenX, Y,
andZ are finite languages. Saying thatr > t) ~ o(x > u), is then equivalent
to saying that

XU U rYs=XU U rZs (20)
rseX,s#e rseX,s#e

for all X. We can then state

Conjecture 1 Suppose that, for every finite languade equation[(1D) has a so-
lution (Y, Z) with Y and Z finite. Then, for every finite language, there is only
one such solution.

If Conjecturell is true, thea(z > t) ~ o(x > u) for all o implieso(t) = o(u)
for all .
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