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Abstract

We present a new co-inductive syntactic theory, eager normal form
bisimilarity, for the untyped call-by-value lambda calculus extended with
continuations and mutable references.

We demonstrate that the associated bisimulation proof principle is
easy to use and that it is a powerful tool for proving equivalences between
recursive imperative higher-order programs.

The theory is modular in the sense that eager normal form bisimilar-
ity for each of the calculi extended with continuations and/or mutable
references is a fully abstract extension of eager normal form bisimilar-
ity for its sub-calculi. For each calculus, we prove that eager normal
form bisimilarity is a congruence and is sound with respect to contex-
tual equivalence. Furthermore, for the calculus with both continuations
and mutable references, we show that eager normal form bisimilarity is
complete: it coincides with contextual equivalence.



1 Introduction

Program equivalence is a fundamental concept in programming language se-
mantics, and new and better frameworks and techniques for reasoning about
program equivalence are continually being developed. Nonetheless, there are
still no general and easy to use methods that capture the features and sub-
tleties of actual programs in languages that combine general recursion, higher-
order functions and objects, mutable state, and non-local control flow.

Denotational semantics and domain theory cover many programming lan-
guage features but straightforward models fail to capture certain important
aspects of program equivalence, especially concerning mutable state. The so-
lutions to these “full abstraction” problems, including game semantics, are
complex.

Syntactic reduction calculi and equational theories are easy to use but they
exclude many important program equivalences.

The broadest notion of program equivalence is Morris-style contextual
equivalence which equates two terms if they behave the same in all program
contexts. The quantification over all program contexts makes it impractical
to use the definition directly to prove programs contextually equivalent.

Syntactic methods based on operational semantics—context lemmas, ap-
plicative bisimulation, and operationally-based logical relations—generally in-
cur modest “mathematical overhead” and are easy to use for certain classes
of program equivalences. For instance, applicative bisimulation is very useful
for proving the equivalence of programs that output infinite data structures.
However, all these proof principles are weak for program equivalences involving
general higher-order functions because, somewhat like the definition of contex-
tual equivalence, they involve universal quantifications over all continuations,
stores, and/or function arguments.

For example, fixed-point combinators are higher-order functions that make
essential use of higher-order arguments. What does it take to prove the equiva-
lence of two different fixed-point combinators? A proof obligation that involves
a universal quantification over all possible arguments to the fixed-point com-
binators is about as difficult as proving that the fixed-point combinators are
contextually equivalent from first principles.

This example is easily solved using a different class of syntactic theories
which originate from the theories of Béhm tree equivalence and Lévy—Longo
tree equivalence. They can be presented as bisimulation theories, called nor-
mal form bisimulation (originally introduced by Sangiorgi under the name
“open applicative bisimulation”), without explicit reference to trees. Normal
form bisimulation is based on symbolic evaluation of open terms to normal
forms. It does not involve any universal quantification over function argu-
ments and is therefore, in some respects, a more powerful proof principle



for proving equivalences between recursive higher-order functions than other
operationally-based syntactic methods. However, normal form bisimulation
has only been developed for state-less A-calculi and is, in general, not fully
abstract.

In this article we address these shortcomings by extending eager normal
form bisimulation, a variant of normal form bisimulation for the call-by-value
A-calculus. We present new syntactic bisimulation theories for the untyped
call-by-value A-calculus extended with continuations and mutable references.

1. The theories all extend eager normal form (enf) bisimulation for the pure
call-by-value A-calculus [19].

2. The extension with continuations, namely an untyped call-by-value ver-
sion of Parigot’s Au-calculus [26], is based on the second author’s normal
form bisimulation theory for the untyped Apu-calculus [21].

3. The extension with mutable references, which we call the Ap-calculus
(essentially Felleisen and Hieb’s A-calculus with state [8]; their “p-
application” is a primitive in our calculus hence we name it “\p”), is
based on bisimulations as sets of relations. This idea of “relation-sets
bisimulation” is adapted from bisimulation theories for imperative cal-
culi [13, 16] and existential types [32].

4. Finally, we extend the theories to a combined App-calculus.

The resulting bisimulation proof principle for proving semantical equiva-
lences between terms inherits the best properties of normal form bisimulation
and relation-sets bisimulation, namely

e like other kinds of normal form bisimulation, the enf bisimulation proof
obligations for continuations and mutable references require no universal
quantifications over function arguments or continuations or stores, and

e the relation-set structure represents the “possible worlds” necessary to
capture the behaviour of mutable references.

We demonstrate the power and ease of use of the resulting enf bisimulation
proof principle for continuations and mutable references by proving the cor-
rectness of Friedman and Haynes’s encoding of call/cc in terms of “one-shot”
continuations [9]. Despite the subtlety of their encoding and the mix of higher-
order functions, first-class continuations, and mutable references, the bisimula-
tion proof is remarkably straightforward, as we hope the reader will appreciate.

The enf bisimulation theories for the pure A-calculus and the extensions
with continuations and/or mutable references are modular: enf bisimilarity
for each of the extended calculi is a fully abstract extension of enf bisimilarity



for its sub-calculi. This is similar to the relationship between Felleisen and
Hieb’s syntactic theories for control and state [8] but contrasts the situation
for contextual equivalence because each language extension makes contextual
equivalence more discriminative on terms of the sub-calculi.

One of the main technical contributions of the work behind this article
is a proof that enf bisimilarity for the calculus extended with continuations
and/or mutable references is a congruence. As an immediate consequence
of congruence, enf bisimilarity is included in contextual equivalence for each
calculus. For the pure A-calculus as well as the two extensions with only
continuations and only mutable references, enf bisimilarity is strictly smaller
than contextual equivalence, that is, enf bisimulation is a sound but incomplete
method for proving contextual equivalence. However, for the full calculus with
both continuations and mutable references, we prove that enf bisimilarity is
fully abstract in the sense that it coincides with contextual equivalence.

In summary, we present a complete, co-inductive syntactic theory for a cal-
culus with higher-order functions, continuations, and mutable references, and
we demonstrate the power and ease-of-use of the bisimulation proof method
for proving equivalences between recursive programs.

Our results provide further illustration of the promise of normal form bisim-
ulation as a basis for syntactic theories and proof principles, demonstrated by
earlier results for other pure and extended A-calculi in the literature (San-
giorgi [31] and Lassen [18, 20, 21]). However, we note one caveat: Although
our theory for the combined App-calculus captures key functional and imper-
ative aspects of the programming language Scheme, it lacks constants such
as nil, cons, numerals, and arithmetic operators. These constants need to
be encoded in our calculus, e.g., using standard A-calculus encodings [4], but
such encodings are in general not faithful to the constants’ equational proper-
ties. For instance, addition of values should be commutative, up to contextual
equivalence—that is, the representations of the Scheme terms (lambda (z y)
(+ z y)) and (lambda (z y) (+ y x)) in the App-calculus should be equivalent—
but this fails for encodings of arithmetic in the Aup-calculus, hence the result-
ing proof principles are only sound, not complete. There does not seem to
be a satisfactory direct definition of normal form bisimulation (or Bohm-tree
equivalence) for untyped calculi with constants. In future joint work with
Paul Blain Levy we plan, instead, to address this shortcoming in extensions
of normal form bisimulation to typed calculi with recursive types. This work
is related to recent game models by Levy [22].

1.1 Related work

There exists a large body of work on syntactic theories and semantic models
(domains and games) for A-calculi with continuations and mutable references.



We only survey a few works on syntactic theories most closely related to the
results in this article.

As mentioned in the introduction, our results build directly on recent work
on normal form bisimulation for call-by-value [19] and the Ap-calculus [21] and
on relation-sets bisimulation for existential types [32] and untyped imperative
A-calculus [13, 16].

One particular inspiration for the work presented in this article is the
seminal research by Felleisen et al. on syntactic theories for sequential control
and state [8]. The calculi in op.cit. are enriched with constants and d-reduction
but otherwise the state calculus is essentially what we call the Ap-calculus in
this article. The control calculus differs from the Ap-calculus but they are
comparable. (Their relationship is analyzed by de Groote [12] and by Ariola
and Herbelin [3]. We found that it was easiest to define eager reduction on
open terms, enfs, and enf bisimilarity for the Apu-calculus.) The syntactic
theories of successive A-calculus extensions by Felleisen et al. [8] are modular
(conservative extensions), like our syntactic theories. An important difference
is that the syntactic theories in op.cit. are inductive in the sense that all
equations are derived inductively from equational axioms and inference rules,
whereas our bisimulation theories are co-inductive and therefore equate many
more programs.

Another body of related work is Mason and Talcott’s CIU (“closed instan-
tiations of uses”) characterizations of contextual equivalence for functional
languages with mutable references and continuations [23, 33]. (The context
lemmas for the Au-calculus by Bierman [5] and by David and Py [6] are es-
sentially CIU characterizations.) The CIU equivalences are complete syntactic
theories but the resulting proof methods are in many cases weaker than normal
form bisimulation.

Most co-inductive syntactic programming language theories in the litera-
ture are variants and extensions of Abramsky’s applicative bisimulation [1].
However, there are no fully abstract applicative bisimulation theories for gen-
eral A-calculi with continuations and/or mutable references.

Ritter and Pitts [30] define a form of applicative bisimilarity for a functional
language with mutable references. It is sound but not complete. In fact, it does
not equate many of the well-known, subtle contextual equivalences between
programs with state [25].

Wand and Sullivan [34] define a CPS language with mutable references
and show that applicative bisimilarity is both sound and complete. They use
the CPS language as a semantic meta-language and CPS translate a source
language with state into the CPS language. But they do not give an indepen-
dent characterization of the induced syntactic theory on source terms via the
CPS transform.

Koutavas and Wand’s relation-sets bisimulation theory [13] is complete



for a general “direct-style” imperative calculus. However, it involves a uni-
versal quantification over closed function arguments, unlike our normal form
bisimulation theories.

Merro and Biasi [24] present a complete bisimulation theory for a CPS
calculus. It can be viewed as a kind of applicative bisimulation, presented as
a labelled transition system in the style of Gordon [10], and also leads to a
context lemma.

Pitts and Stark [28, 29] develop syntactic theories based on operationally-
based logical relations that address many of the subtleties of contextual equiv-
alences between programs with mutable references. The relation-sets bisimu-
lation theories for mutable state, in general, are alternative approaches with
a very different meta-theory. For logical relations the key proof obligation
is existence, whereas the key proof obligation for the bisimulation theories is
congruence.

Finally, we note that the modularity of the enf bisimilarity theories for
control and state resembles the modularity of game semantics for control and
state [2, 14].

2 Eager normal form bisimulation

Let us briefly reintroduce the definition of enf bisimulation for the pure call-
by-value A-calculus [19]. Consider a variant of the call-by-value A-calculus in
which computations must be explicitly sequenced by means of a let-construct:
VARIABLES x,¥, 2
VALUES v == z | Az.t
TERMS t == v | letx=t;inty | vyvy
We identify terms up to renaming of bound variables.

Reduction is defined by means of evaluation contexts:
EVALUATION CONTEXTS E == [] | Elletz=[]int]
EAGER NORMAL FORMS (ENFS) e == v | Elzv]

(R1) Efletz=vint] — E[t[V/z]]
(R2) E[(Az.t)v] — E[t[V/]]

The reflexive-transitive closure of the reduction relation — is written —*. For
every term t, there are two possibilities: either ¢ diverges in the sense that
there is an infinite reduction sequence starting from ¢, or else ¢ converges in
the sense that ¢ —* e for some (unique) eager normal form e. The notation
t —* means that ¢t diverges. Eager normal forms are truly normal forms with
respect to reduction: they do not reduce to anything.



For a syntactic phrase ¢, let FV(¢) denote the set of free variables of ¢ (the
formal definitions are omitted).

Definition 1. A binary relation S on terms is an enf bisimulation if S C B(.5),
where

B(S) = {(t,t')|either ¢t —* and t' —%,
or t —* e and t' —* ¢’ where (e,e’) € M(S)}
M(S) ={(v,0) | (v,0) € V(S)}
U{(Elzv],E'[z]) | (E,E') € K(S) &
(v,0') € V(S)}
V(S) ={(z,2)} U{(v,v') | Ty ¢ Fv(v) UFV(V').
(vxy,v' xy) € S}
K(S) ={([,[N} U{(E, E) |3y ¢ rv(E) UFV(E').
(Exy,E' xy) € S}
with x vy = zy, (A\y.t)xx =t[%y], [|*y =y, and Ellety=[] int]xx =
E[t[/]].
The intuition behind enf bisimulation is that two related open terms ei-
ther (1) both diverge, or (2) reduce to matching eager normal forms whose

components are again related. As an example, define the Curry call-by-value
fixed-point combinator Y, :

U[f] = Ag. f (A\x. letz=ggin zx)
Yy =AfU[f]V[f]
and the Turing call-by-value fixed-point combinator ©,:

E=AgAf.f (Ax.letzi=gginletzo=21 f in 23 x)
Oy

These two fixed-point combinators are enf bisimilar, i.e., there exists an enf
bisimulation S such that (Y,,©,) € S [19]. We invite the reader to try to
prove this equivalence by constructing such an S: one starts with the singleton
{(Yy,©y)} and then iteratively adds pairs in order to satisfy the definition of
an enf bisimulation above. (In Section 5, a similar, but more complicated,
equivalence between Y, and a store-based fixed-point combinator is shown.)

I
(1]

—_—
—
—

Remark. The following construction, derived from the Turing call-by-value
fixed-point combinator, is convenient for defining functions by recursion: For
all values v, v1, and vg, define

D[Ul,vz] = let 21=0, in let z9=21 v1 In 29 V9
fix[v] = Az.D[v, z]

Then fix[v] z —* let z=v fix[v] in z x.



Contextual equivalence is defined in the standard way. Informally, two
terms ¢ and ¢’ are contextually equivalent if for every many-holed term context
C1] such that C[t] and C[t'] are closed terms, C[t] converges if and only if C[t']
converges.

Theorem 2 ([19]). If (¢t,t') € S for some enf bisimulation S, then t and ¢
are contextually equivalent.

Remark. The definition of an enf bisimulation is slightly different from the
one in the original presentation [19]. In particular, the variant defined here
is equivalent to what is called an enf bisimulation up to n in the original
presentation.

In the sequel we omit the “enf” qualifier for bisimulations and instead qual-
ify them by calculi. We will refer to the bisimulations for the pure A-calculus
in Definition 1 as “A-bisimulations”.

3 The Au-calculus

We now extend enf bisimulation to the Au-calculus. This extension is new,
but based on head normal form bisimulation for the Ap-calculus [21].

VARIABLES x,¥, 2

NAMES a,b

VALUES v == z | Az.t

NAMED TERMS nt == |a]t

TERMS t == v | leta=tyinty | vive | pa.nt

We identify syntactic phrases up to renaming of bound variables and names.
For a syntactic phrase ¢, let FN(¢) denote the set of free names of ¢.

Names in the Ap-calculus represent continuations. Names are not first-
class, but we will represent a name a as the first-class value a = Ax. ub. [a]z.
The familiar call/cc control operator can be encoded in the Au-calculus as

call/cc = A f. pa. [a] f a.

The operational semantics of the Au-calculus is defined by a reduction
relation on named terms:

NAMED EVAL. CONTEXTS NE := [a][] | NE[letz=[] in t]

NAMED ENFS ne == [aJv | NE[zv]

(Rpl) NE[letz=v in t] — NEJt[V/x]]



(Ru2) NE[(Az.t)v] — NE[t[V/z]]
(Rpu3) NE[ua.nt] — nt[NEa]

Here ¢[VE/a] denotes capture-avoiding substitution of named evaluation con-
texts for names: for example, if b ¢ FN(NE), then (ub. [a]t)[NVE/a] = ub. NE[t].

Definition 3. A binary relation S on named Au-terms is a Ap-bisimulation
if S C B,(S), where

Bu(

.(S) = {(nt,nt") | either nt —* and nt’ —

or nt —* ne and nt’ —* ne’
where (ne,ne’) € M,(S)}
M,.(S) = A{([a]v, [a]v") | (v,0") € Vu(S)}
U{(NE[zv], NE'[zv']) | (NE,NFE') € K,,(S) &
(v,0') € Vu(S)}
Vu(S) = {(z,2)}

U{(v,?") | Iy ¢ rv(v) UFv(v).
(vxy, v *y) € Tu(S)}

U{(NE, NE') | 3y ¢ FV(NE) UFV(NE).
(NExy, NE xy) € T,(5)}

T,(8) = {(t,;¥') | 3a & FN(t) UFN(t).
([alt, [a]t") € S}

with [a][] xy = [aly and NEJ[letx=[] in t] x y = NE[t[Y/z]].

Definition 4. Say that ¢ and t' are Au-bisimilar, written t <, t/, if there
exists a Ap-bisimulation S such that (¢,t") € T,,(S).

We show in Section 10 that Ap-bisimilar terms are contextually equivalent.
Recall that a = Az.ub.[a]z. To illustrate Au-bisimilarity we define the
term ¢ = fix[P], where

P=M\f.Ax.pa.la]lety=xain fy.

The term v takes a function x as argument and applies x to successive argu-
ments
X Cfl dQ e

until x applies one of the @; to an argument v, in which case v is returned as
the result of ¥ z. On the other hand, 1 x diverges if x never applies any of its
arguments, e.g., if = A\y.Q or x = fix[A\f. \y. f].



Remark. A term with the behavior of ¥ cannot be expressed in the pure call-
by-value A-calculus. To see this, consider the two functions

v=MAy. letz=yyinQ and o = \y.Q.

where Q@ = (Ax.xz)(Ar.xz). They are contextually equivalent in the pure
call-by-value A-calculus. (This can be established using the operational ex-
tensionality property of the pure call-by-value A-calculus [7, 27], because the
term let z=vp vy in Q diverges if vy is any closed pure value.) But ¢ can tell
them apart: 1 v converges while v v’ diverges.

A potential optimization of v is the following variant ¢’ which returns
straight to its final “return address” when x applies an argument (rather
than returning from all the recursive invocations of the recursive function):
' = Ax. pa. [a] fix[P'] z, where

P'=\f.\x. lety=xain fy
The optimization is correct up to enf bisimilarity, that is, ¢ ~, ¢, because

S = {(la]y, [al¢’), ([a]D[P, x], [a]ua. [alfix[P"] ),
([b]ub. a]a, pb. [alx), ([alfix[P]y, [alfix[P] y)}

is a Ap-bisimulation.

4 The Ap-calculus

The Ap-calculus is obtained from the pure call-by-value A-calculus by adding
constructs for allocating a number of new reference cells, for storing a value
in a reference cell, and for fetching the value from a reference cell.

VARIABLES x,¥, 2

REFERENCES 1,7

VALUES v == z | Az.t
TERMS t == v | leta=tyinty | vive | ps.t | v=v;t | 1
STORES s = {11:=v1,...,0:=v,} (21,...,2, are distinct)

Stores are identified up to reordering, and therefore a store can be considered
as a finite map from references to values. Terms are identified up to renaming
of bound variables and references: in the term ps.t, the references in the
domain of s are considered bound in the range of s and in ¢. For a syntactic
phrase ¢, let FR(¢) be the set of references occurring free in ¢. A syntactic
phrase is reference-closed if it contains no free references. Write dom(s) for

10



the domain of the store s. If s and s’ have disjoint domains, s-s’ denotes their

disjoint union. If s = {u=v}-¢, let s(2) = v and s[u=v] = {u=0v"}-5.
Reduction is defined on configurations, which are pairs (s,t) of stores and

terms such that Fr(t) C dom(s). (Configurations are not identified up to

renaming of the domains of the stores, hence a configuration (s, t) should not

be thought of as a term ps.t.)

EVALUATION CONTEXTS E := [| | Efletz=[]in ]

EAGER NORMAL FORMS (ENFS) e == v | Elzv]

(Rpl) (s, Elletz=vint]) — (s, E[t[V/x]])
(Rp2) (s, E[(Az.t)v]) — (s, E[t[Yx])
Rp3) (s, E]

(Rp3) (s, Elps’.1]) = (s-s', E[t]),
if (dom(s) UFR(s) UFR(E)) N dom(s') =0

1:=v;t]) — (s[u=v], E[t]) if 1€ dom(s)
i) — (s, E[s(2)]) if « € dom(s)

(Rp4) (s,

E
(Rpd) (s, E|

Eager normal form bisimulation for the Ap-calculus is based on the relation-
sets bisimulation idea [13, 16, 32]. Briefly, instead of defining a bisimulation
as a single binary relation on terms, one defines a bisimulation as a set of
such relations, each associated with a “world”: here, a pair of stores. The
requirement is that if two terms are related in a certain world, then the eager
normal forms (if any) of these two terms are related in a “future world” where
the two stores may have changed. Moreover, everything that was related in
the old world must still be related in the new world.

Now for the formal definitions. Let X, Y, Z range over finite sets of variables
and let J range over finite sets of references. We write XY for the disjoint
union of X and Y. When the meaning is clear from the context, we write a
singleton set {} as just . We use the same notational conventions for finite
sets of references.

Notation X,J F ¢,¢,... means the syntactic phrases ¢,¢’,... have free
variables in X and free references in J. We omit X and/or J on the left of -
if it is empty.

Let R range over sets of triples (X|t,t'), more specifically subsets of
Rel(Y, J,J') for some Y, J and J’, where

Rel(Y,J,J") =
{(X|t, )| XNnY =0 & XY, JHt & XY, J -t}

We identify triples that differ only up to renaming of the variables from the
first component X: in the triple (X]|t,t'), the variables in X are considered

11



bound in ¢ and t’. A triple ((|¢,¢") where the first component is empty is also
written (|¢,t').

A term relation tuple is a quadruple (X|s,s’, R) where X s, and R C
Rel(X, dom(s), dom(s")). We identify term relation tuples that differ only up
to renaming of the variables from the first component X and up to renaming
of references. Let () range over term relation sets, that is, sets of term relation
tuples.

Definition 5. Q is a Ap-bisimulation iff Q C B,(Q), where

By (Q) = {(X]s0, 55, Ro) |
for all (Y|t,t') € Ry, either
(s0,t) =¥ & (sp,t') —¥, or
Js1, 81, e,¢, R1 D Ry, X1 2 X'Y.
(SOvt) = (317 ) & (367t/) =" (8/1,6/) &
(e,€') € Mp(Ry) & (Xils1,57, 1) € Q}
NR) = {0 (Bl e )
( V') €Vp(R) & (B, E') € K,(R)}
V(R) = {(@2)}
U{(v,2") | Iy ¢ Fv(v) UFV(v).
(ylvxy,v' *y) € R}
Ko(R) =A{([].[D}
U{(E,E") | 3y ¢ FV(E) UFV(E').
(y|Exy, E' xy) € R}

Definition 6. Reference-closed Ap-terms t and t' are A\p-bisimilar, written
t ~, t/, iff there exists a Ap-bisimulation @ which contains a quadruple
(XN} {}, R) with (|t,¢) € R.

We show in Section 9 that Ap-bisimilarity is a congruence. Therefore, as
explained in Section 10, Ap-bisimilar terms are contextually equivalent.

5 Example: imperative fixed-point combinator

It is well-known that a store that may contain functional values can be used
to define functions by recursion. Abbreviate

I[f,2] = Az. letz1=lvin let zo=f 21 in 2o x
and consider the term:

YP = )‘f p{’LZ:H[f, Z]} f H[fa Z]'

12



Y, can be used to define functions by recursion in the Ap-calculus. The tech-
nique of defining recursive functions by means of a “circular store” is due to
Landin [15].

We now show that the fixed-point combinator Y, is Ap-bisimilar to the
Curry call-by-value fixed-point combinator Y, (defined in Section 2 above).
This equivalence can be shown directly from the definition of a Ap-bisimulation,
but it is more convenient to apply the following general lemma:

Lemma 7. Define ps.t=ps.t for s # {}, and p{}.t =t. Assume that there
exists a Ap-bisimulation containing a tuple (X|s, s, R) where (|t,t') € R, and
let ¢1,...,2, € X. Then Ax1... \&p. ps.t ~p AT1. .. ATy. ps’ 1.

The lemma follows from Corollary 36 in Section 9.
Proposition 8. Y, <, Y,.

Proof. By definition, Y, = Af. p{u:=I1[f,2]}. fII[f,2] and Y, = Af. W[f] ¥[f].
The proof therefore consists of constructing a Ap-bisimulation () containing
a tuple ({f}[{z=T1[f,1]}, {}, R) where (|fTI[f,], W[f]¥[f]) € R, and then

using Lemma 7.

Instead of specifying @) right away, we show how one would in practice
construct Q: by starting from the two configurations ({u:=II[f,2]}, f II[f,1])
and ({}, U[f] ¥[f]) and iteratively adding tuples in order to satisfy the condi-
tions in the definition of a Ap-bisimulation. In that way, the main part of the
equivalence proof consists in a number of calculations of reduction sequences.

Abbreviate D[f] = Az. let z=V[f] ¥[f] in zz. Now calculate:

{e:=T0[f, ol }, SIS 0]) =7 ({e=TH[F, ]}, LS 5 2)
({3 Ol = (), £ DI

The two resulting eager normal forms are fII[f,:] and f D[f]. The variables
in function position match (both are f), so consider the arguments, II[f, ] and
DIf]. Since

II[f,2] = Azx. letz1=lvin let zo=f 21 in 2o x

and
D[f] = Az. letz=Y[f] ¥[f] in z z,

the definition of a Ap-bisimulation indicates that one should continue by re-
ducing the bodies of these two A-abstractions:

({e:=I1[f, 2]}, let z1=lv in let zo=f 21 in 29 2)
=" ({e=I1[f, ]}, let zo=f II[f,1] in 2o x)
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and

({}, let z=U[f] ¥[f] in zx) =" ({},let z=f D[f] in z )
= ({},letzo=f D[f] in 2o )

The resulting two eager normal forms are
let zo=fII[f,2] in 2oz and letzo=f D[f] in 29 x.

Again, the variables in function position match (both are f), and the eval-
uation contexts are identical (both are let zo=[] in 2o x). The function argu-
ments, II[f, ] and D[f], are A-abstractions, and therefore one should continue
reducing the bodies of these two A-abstractions. But this is exactly what was
already done in the previous two reduction sequences.

Using the results of these calculations it is possible to construct the re-
quired bisimulation Q). First, define

R={(|f1[f,], C[f1V[f]),
(x|letzy=lvin let zo=f 21 in 22 x,
let z=W[f] ¥[f] in zx)}.

Let x1, o, ... be distinct variables, and define, for every n > 0,
Sp = {(22]z2 2k, 2z2xK) |1 <k <n}.
Finally, define Q) as the set of all tuples

({fvxlv s 7‘%.71}‘{1::1_[[.]67 ’L]}’ {}7R U STL)

where n > 0. Then @ is a Ap-bisimulation, as can be verified using the
calculations above.
Note that @ contains the tuple ({f}/{u=II[f,?]},{}, R) where

(|fTI[f,2], W[f] V[f]) € R.

Therefore, Lemma 7 implies that Y, =<, Y,. U

6 The A\up-calculus

The App-calculus combines the control aspects of the Ap-calculus with the
state aspects of the Ap-calculus. The definition of Aup-bisimilarity is a nat-
ural combination of the definitions of Au-bisimilarity and of Ap-bisimilarity.
However, unlike the cases for the calculi considered previously in the article,
App-bisimilarity is not only contained in contextual equivalence, it coincides
with contextual equivalence, as will be shown in Section 10.
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VARIABLES x,¥, 2
NAMES a,b

REFERENCES 1,

VALUES v == z | Az.t
NAMED TERMS nt == |at
TERMS t == v | letz=t;inty | vive | pa.nt |

ps.t | u=v;t |
STORES s = {11:=01,...,1,: =0y}
Reduction is defined on configurations, which are now pairs (s,nt) of stores
and named terms such that FrR(nt) C dom(s).
NAMED EVAL. CONTEXTS NE := [a][] | NE[letz=[]in t]

NAMED ENFS ne == [aJv | NE[zv]

(Rupl)
(Rpp2)
(Rpp3)
(Rpupd)

(s, NE[letz=v in t]) — (s, NE[t[V/z]])
(s, NE[(Az.t)v]) — (s, NE[t[V/z]])
(s, NE[pa.nt]) — (s,nt[NEa])
(s, NE[ps'.t]) — (s-s', NEJt]),

if (dom(s) UFR(s) UFR(NE)) N dom(s") =10
(Rupb) (s, NE[i:=v;t]) — (s[:=v], NE[t]) if 2 € dom(s)
(Rpp6) (s, NE[l]) — (s, NE[s(z)]) if 2 € dom(s)

Now X,Y, Z range over finite sets of variables and names. Let NR range
over sets of triples (X|nt,nt'), more specifically subsets of NRel(Y,J,J') for
some Y, J and J’, where

NRel(Y, J, J') =
{Xnt,nt") | XNY =0& XY, JFnt & XY, J - nt'}

We identify triples that differ only up to renaming of the variables and names
from the first component X.

A named term relation tuple is a quadruple (X|s, s, NR) where X F s, '
and NR C NRel(X, dom(s), dom(s")). We identify named term relation tuples
that differ only up to renaming of the variables and names from the first
component X and up to renaming of references. A named term relation set is
a set of named term relation tuples. Let N range over named term relations
sets.
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Definition 9. NQ is a Aup-bisimulation iff NQ C B,,,(NQ), where

BMP(NQ) = {(X‘307367NR0) ’
for all (Y|nt,nt") € NRy, either
(s0,nt) =¥ & (s(,nt’) =, or
Js1, s}, ne,ne’, NRy O NRy, X1 2 X'Y.
(so,nt) —* (s1,ne) &
(sg,nt’) —* (s],ne') &
(ne,ne’) € M,,,(NR;) &
(Xl‘Sl,Sl,NRl) S NQ}
M,p(NR) = {([a]v, [a]v"), (NE[x v], NE'[zv']) |
(v,v") € V,,(NR) & (NE,NE') € K,,,(NR)}

Vip(NR) = {(z,2)}
U{(v,v') | Iy ¢ FV(v) U FV( ).
Ja ¢ FN(v) UFN(V').
(a-yllal(v x y), [al (v x y)) € NR}

Kup(NR) = {(la][], [a][])}
U{(NE, NE') | 3y ¢ FV(NE) UFV(NE).
(y|NExy, NE' xy) € NR}

Definition 10. Reference-closed named terms nt and nt’ are Aup-bisimilar,
written nt ~,, nt’, iff there exists a App-bisimulation N@ which contains a
quadruple (X[{}, {} NR) with (|nt,nt’) € NR. Reference-closed terms ¢ and
t' are App-bisimilar, written t ~,, t’, iff there exists a App-bisimulation NQ
which contains a quadruple (X|{},{}, NR) with (¢,¢') € T,,(NR), where

T,,(NR) = {(t,t') | Ja & ¢x(t) UEN(t'). (al[a]t,[a]t)) € NR}.

We show in Section 9 that Aup-bisimilarity is a congruence.

7 Example: one-shot continuations

As an extended example, we show the correctness of Friedman and Haynes’s
encoding of call/cc in terms of “one-shot continuations” [9].

A one-shot continuation is a continuation which may be applied at most
once. Friedman and Haynes showed that, perhaps surprisingly, call/cc can be
encoded in terms of its restricted one-shot variant. They did this by exhibiting
an “extraordinarily difficult program” [9, p.248] together with an informal
equivalence argument. We confirm the correctness of this program by a formal
proof using the enf bisimulation method. The equivalence proof below can be
viewed as a formalization of Friedman and Haynes’s informal argument.
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One cannot directly use the App-calculus to prove correctness of this encod-
ing of call/cc, since the App-calculus does not contain one-shot continuations as
a primitive. Instead, we define one-shot continuations in terms of unrestricted
continuations using another, but simpler, construction due to Friedman and
Haynes. We then show the correctness of the encoding of call/cc by means of
one-shot continuations relative to this encoding of one-shot continuations.

First, we need to encode a conditional operator in the App-calculus. Since
the evaluation order in the Aup-calculus is call-by-value, the encoding is done
using “thunks”:

T=Xz.)\y.zl
F=Xz.\y.yl

if[tl, to, tg] =let z1=t1in
let zo=21 ()\Z tg)in
ZQ()\Z. tg)

where | = Az. z, and where z; and 25 are not free in tq, tg, or t3.
Recall the definition of call/cc:

call/cc = A\f. pa. [a]f a
where @ = Ax. ub. [a]x. Now define the one-shot variant of call/cc:

call/ccl = Af. (call /cc
(Mk. p{u:=T}. f (Az.if[ls, (:=F; k2),)])))

The requirement that every captured continuation k is applied at most once
is enforced by means of the local reference 1.

Now for the encoding of unrestricted continuations by means of one-shot
continuations. For every reference 3, define

¢, = \g. \f.let y=call/ccl
(ANk. (9:=k; f (\z.lety=]y
iny)))
in call/ccl (AK'. g (M\k.K'y)).
Then define
call/ccx = A f. p{y:=I}.fix[®,] f.
(See the original presentation of the encoding [9] for an informal explanation

of how it works.)
The aim of this section is to show that

call/cc =, call/ccx.
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It follows that call/cc and call/ccx are contextually equivalent, and hence that
call /ccx is as an encoding of call/cc by means of one-shot continuations.

As in Section 5, the equivalence could be shown directly from the definition
of a bisimulation, but it is more convenient to use the following generalization
of Lemma 7 to the Aup-calculus:

Lemma 11. Define ps.t=ps.t for s # {}, and p{}.t =t. Assume that there
exists a Aup-bisimulation containing a tuple (X|s, s’, NR) where (|[alt, [a]t') €
NR, and let x1,...,x, € X. If a € X does not occur free in any of s, s, t,
and t', then Ax1... A&p. ps.t =up AT1... ALy ps’. t'.

The lemma follows from Corollary 36 in Section 9.
Proposition 12. call/cc <, call/ccx.
Proof. By definition,

call/cc = A\f. pa. [a]f a
call/ccx = A f. p{y:=I}.fix[®,] f.

We therefore construct a bisimulation containing a tuple

(f-al{}, {5=1}, NR)

where (|[a]pa.[a]f a, [alfix[®,] f) € NR. The conclusion then follows from
Lemma 11.
The main part of the proof consists in a number of calculations of reduc-
tion sequences. One starts from the two configurations ({}, [a]pa. [a]f @) and
({z:=1}, [alfix[®,] f) and iteratively tries to add tuples in order to satisfy the
conditions in the definition of a App-bisimulation.
First, define the named evaluation context

NEy = [a]let z=[] in call/ccl (AK'. fix[®,] (\k.K z))
and for every reference 1, define the term
Cle] = Ax.if[le, (:=F; (Ax. ub. NEy[z]) x), Q]
Now calculate, for any store s and any value v:

(1) (s-{z:=v}, [alfix[®,] £)

r—)

(s{7:=C[e],:=T}, NEy[f (Az. lety=!yin yx)]).
(2) (s{7:=C[e),2:=T}, [b]lety=lyin yx)

l—>*

(s:{7:=C[e], ==F}, [a]call /ccl (K. fix[®,] (\k.E'z))).
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(3) (Sjjzzqz]}, [a]call/ccl (MK fix[®,] (Ak.K'x)))

(s:{3:=C[/],20:=F,?:=T}, [a]z).

These calculations dictate the following construction of a Aup-bisimulation:
let

NRy ={(|la]pa. [a] f a, [alfix[,] f),
(y | [aly, [a]call/ccl (AK fix[®@,] (Ak.k'y))),
(yb | [b]ub.[a]y, [b]letz=!yin zy)}

and let NQ consist of the tuple

(f-al{}, {2:=1}.{([a]pua. [a] f &, [alfix[®,] f)})
together with all named term relation tuples of the form
(X[{},s, NRo)

where {f,a} C X, where s is a store such that 73 € dom(s), and where there
exists an ¢ € dom(s) such that

s(y)) =C[¢] and s(z)=T.

Then NQ@is a App-bisimulation, as can be verified using the calculations (1)-(3)
above. By Lemma 11, call/cc =, call/cc. O

8 Enf bisimulation for terms with free references

So far in this article, eager normal form bisimulation has been used as a proof
principle for proving equivalence of reference-closed terms. In this section it
is shown how to extend eager normal form bisimulation to terms which may
contain free references. Besides allowing one to prove equivalences about terms
with free references, this extension is also used in the congruence proof for enf
bisimilarity in Section 9. As a part of that proof, it must be shown that the
following holds: If t <,, t' and v ~,, v/, then p{u:=v}.t ~,, p{u:=v'}.t' and
1:=v;t ~,, 1:=v";t’. Here the reference ¢ will in general occur free in the terms
t,t', v, and v/, and, of course, in the terms 2:=v;t and :=v";t'.

The modification needed to take free references into account can be ex-
plained as follows. Suppose that the free references of the terms ¢ and ¢’
are contained in J, and that one wants to prove that ¢ and ¢’ are equiva-
lent. According to the previous definition, one requirement is that [a|¢ and
[a]t’ should either both diverge, or reduce to matching named eager normal
forms. But one cannot reduce [a]t and [a|t’ without providing values for the
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references in J, i.e., the references which are free in ¢ and t. The solution is
to initialize the references in J with a number of fresh variables z,7¢/. This
initialization takes care of the “input” aspect of the free references; the “out-
put” aspect is taken care of by an extra requirement: if both ({7 :=2,7<'}, [a]t)
and ({y :=27'}, [a]t') reduce to named eager normal forms, then in the two
resulting stores, the references from J must contain values which are pairwise
related.

Now for the formal definitions. Named term relation sets are generalized
as follows: let

NUj ={(X]s,s', NR) |
X, Jks,8 &
NR C NRel(X, J-dom(s), J-dom(s"))}.

We identify quadruples that differ only up to renaming of the variables and
names from the first component X and up to renaming of references from
dom(s) and dom(s’). Notice that NUy = NU.

Definition 13. NQ C NUj is a J-bisimulation iff NQ C Bj(NQ), where

B;(NQ) =
{(X‘SO, 86, NR()) e NU; ‘
for all distinct variables z,*
and all (Y|nt,nt') € NRy, either
({1:=2,""}-50,nt) =¥ & ({v:=2,'¢"}-sp,nt’) =, or
Ine,ne’, (v, v])€’ 51,81, NR1 D NRy, X1 D XY -2,'</.
({z:=2,"}-s0,nt) —* ({1:=0,"" }-51,n€) &
(=257 }-sl, nt") —=* ({u:=0/"""}-5), ne’) &
(ne,ne’) € M,,(NRy) &
Vi e J. (v,v]) € V,(NRy) &
(Xl‘Sl, 8/1, NRl) S NQ}

eJ

Say that two terms ¢t and t' are J-bisimilar if there exists a .J-bisimulation
containing a tuple (X|{},{}, NR) where (¢,t") € T,,,(NR).

We now generalize the previously given definition of enf bisimilarity for
reference-closed terms:

Definition 14. Let t and t’ be Aup-terms. Say that ¢ and ¢’ are Aup-bisimilar,
written ¢ =, t', if there exists a finite set J of references such that ¢ and #’
are J-bisimilar.

Example 15. It is easy to show that
letz=lyin (=l =2, fz) =y, fx
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while on the other hand

letz=lyin (=l lety=fz in ():=2; y)) Zpup f 2.

The proofs of this equivalence and this non-equivalence illustrate a basic se-
quentiality property of the calculi considered in this article: in order for two
terms to be equivalent, it is enough that the contents of the free references are
equivalent at certain “synchronization points”, but in-between these points
the contents of the free references can be modified arbitrarily.

Proposition 16. Let Jy and J be finite sets of references such that Jy C J.
Any two terms which are Jo-bisimilar are also J-bisimilar.

9 Congruence

This section contains an outline of the proof that App-bisimilarity is a congru-
ence: it is an equivalence relation which is furthermore compatible. A binary
relation S on terms and named terms of the App-calculus is compatible if it
is closed under the term formation rules of the Aup-calculus. For example, if
t1 St} and ty S t, then also (letz=ty in tg) S (letz=t] in t5), and if nt S nt’,
then pa.nt S pa.nt’. The straightforward formal definition is omitted.

Proposition 17. For every finite set J of references, there exists a greatest
J-bisimulation Bj.

Proof. The definition of By immediately implies that the union of an arbitrary
family of J-bisimulations is also a J-bisimulation. In particular, the union of
all J-bisimulations is the greatest J-bisimulation. O

At this point it is useful to change the definitions of a App-bisimulation
and of a J-bisimulation slightly: in those definitions, replace the operators V,,,
and K, with V|, and K], :

V/:p(NR) = {(v,v") | 3y & FV(v) UFV(').
Ja ¢ FN(v) UFN(V).
(a-y|la]vy, [alv"y) € NR}.
K/’LP(NR) = {(NE,NE) | 3y ¢ ¥V(NE) UFV(NE).
(y|NEly], NE'ly]) € NR}.

These modifications do not change the relation of Aup-bisimilarity; in fact,
the greatest J-bisimulation is unchanged. The two operators V;, and K], , are
more convenient in the congruence proof below, while the other two operators
are more convenient when using App-bisimulation as a proof principle.

We first show that Aup-bisimilarity is an equivalence relation.
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Definition 18. Let NQ C NU,.

1. NQis closed under weakening if whenever (Xy|s, s’, NR) € NQ and X, C
X for some finite set X of names and variables, also (X|s, s’, NR) € NQ.

2. NQ is closed under context extrusion if (X|s,s’, NR) € N@ and
(Z1-Zy|nt,nt’) € NR imply that there exists NR' O NRU {(Zy|nt,nt’)}
such that (X-Z|s,s’, NR') € NQ.

Lemma 19. The greatest J-bisimulation is closed under weakening and con-
text extrusion.

Lemma 20. A\up-bisimilarity is an equivalence relation.

Proof sketch. Reflexivity and symmetry follow easily from the definition of
Bj. As for transitivity, assume that ¢ ~,, ¢’ and that ¢’ ~,, t”; we must
show that t =~,, t” (and similarly for named terms). Proposition 16 implies
that there exists some .J such that ¢t and ¢’ are J-bisimilar and ¢’ and t” are
J-bisimilar. Now consider a general composition construction on named term
relation sets. Given NRy C NRel(Y,J,J;) and NRy C NRel(Y, J, J2), define
their composition as

NRi; NRy = {(X|nt1,nt2) | EInt.(X|nt1,nt) € NR; &
(X]nt, ntg) S NRQ},

and given N@Q;, NQ, C NUjy, define

NQy; NQy = {(X|s1, s2, NR1; NRy) |
38.(X‘81,S,NR1) S NQl &
(X|s,s2, NRo) € NQ,}.

Then the following property holds: if N@Q); and N@, are J-bisimulations closed
under weakening, then so is NQ;; NQs. O

It remains to show that App-bisimilarity is compatible. The proof of this
fact is structured as follows:

e First, we show that a restricted variant of Aup-bisimilarity is substitutive
in a sense defined below. (The restricted variant does not validate certain
common extensionality rules for call-by-value calculi.)

e Second, we use a syntactic translation to show that full Aup-bisimilarity
is substitutive. It follows that App-bisimilarity is compatible.
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9.1 Substitutions

A substitution is a finite map o with a domain consisting of variables and
names, and such that ¢ maps each variable in its domain to a Aup-calculus
value, and each name in its domain to a Aup-calculus named evaluation con-
text. Let o range over substitutions. When ¢ is a syntactic phrase (store,
value, term, or named term), ¢o denotes the result of “carrying out the sub-
stitution” ¢ on ¢ (we omit the formal definitions). Also, define

NR(o,0') = {(Z|nto,nt'd’) | (Z|nt,nt') € NR}

(where the variables and names occurring free in the ranges of o and o’ are
not in 7).
Let dom(o) denote the domain of o. Say that

XFoX(NR) o' Y
when dom(c) = dom(c’) =Y, and:
1. For every variable z € Y, (o(z),0'(x)) € V,,(NR).
2. For every name a € Y, (o(a),0'(a)) € K, ,(NR).

3. The free variables and names in the ranges of o and ¢’ are contained in
X.

Say that two substitutions o and o’ are App-bisimilar (notation: o ~,,, o’)
if there exists a J-bisimulation containing a tuple (X - Y'|{},{}, NR) such that
X bk o X(NR) ¢/ : Y. In the next sections we show that App-bisimilarity is
substitutive in the following sense:

1. If t =y, t' and o ~y, o, then to <, t'c’.

2. If nt =y, nt’ and o =, o/, then nto ~,, nt'c’.

9.2 Non-7n bisimulation

In order to show that App-bisimilarity is substitutive, we first show the anal-
ogous result for a certain restricted variant of Aup-bisimilarity. The variation
consists in a change in the definition of the operators V' and K (which are used
to define relations on values and named evaluation contexts, respectively).
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Definition 21. Let NR be a named term relation.
MY (NR) = {([a]v, [a]v"), (NE[z v], NE'[z']) |
(v,v') € VI(NR) & (NE, NE') € KT(NR)}
VI(NR) = {(x,z) |  is a variable}
U{(Az.t,A\z.t') | Ja ¢ FN(t) UFN(t).
(2-al[a]t, [a]t’) € NR}
K'(NR) = {([a][],[a][]) | a is a name}
U{(NE[letz=[] in t], NE[letz=[] in t]) |
x ¢ FV(NE) UFV(NE) &
(x| NE[t], NE'[t']) € NR}
Definition 22.

1. For every named term relation set NQ) C NUj, the named term relation
set B}(N Q) is defined in the same way as Bj(NQ), except that M and
V1T are used instead of M up and V.

2. NQ is a non-n J-bisimulation if NQ C BT](NQ)

3. Two reference-closed A\up-terms ¢ and ¢’ are non-n bisimilar (notation:
t = ¢') if there exist a finite set of references J and a non-7 Jbisimulation
containing a tuple (X|{},{}, NR) such that (¢,¢') € T,,(NR). Non-n
bisimilarity of named terms is defined similarly.

Remark. The reason for the name “non-n” is that non-n bisimilarity does not
satisfy two common extensionality rules for call-by-value calculi, namely the
ny-rule and the let,-rule: A\z.yx #'y and (letz=yzinz) #' y2.

Let BE be the greatest non-n J-bisimulation. The key to showing that non-

1 bisimilarity is substitutive is to show that BT, is closed under substitutions
in the sense defined next.

Definition 23.
1. For every NQ C NUy, let

FI(NQ) = {(X|s0,s'0’, NR(0,0")) |
JY. (X-Y]s,s', NR) € NQ &
XFoXI(NR) o' : Y}

where ©T(NR) is defined in the same way as ¥ (NR), except that VT and
K1 are used in place of Vljp and K //w in the definition.

2. A named term relation set NQ C NUj is closed under substitutions if
FI(NQ) C NQ.
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We now proceed to show that for every J, the greatest non-n J-bisimulation
is closed under substitutions. Define the substitutive closure of NQ as

St(vQ) = | (FH™(NQ).

n<w

It is the least fixed point of F! containing NQ.

Main Lemma. Let NQ C NUj be a non-n J-bisimulation which is closed
under context extrusion. Let (X|s,s', NR) € (FY)"(NQ) and (Z|nt,nt') € NR
and (v,,v)) € VI(NR) for all y € J.

1. Assume that ({3:=v,7}-s,nt) —* ({g:=w,;"}-s1,ne1) in m or fewer
steps. Then there exist X1 2 X-Z, s}, ne}, wéje‘], and NRy O NR such
that

(=0 }-s nt') =% ({g=w)<} s ned),

(X1|s1,8), NRy) € ST(NQ), (nei,ne}) € MT(NR,), and (w,, w)) €
VY(NRy) for all g€ J.

2. Conversely, assume that

(=<5 ) =% (= )57, me)

in m or fewer steps. Then there exist X1 O X-Z, s1, ney, w]JGJ, and
NRy O NR such that

({r=v""}-s.0t) =" ({3=w"}-51,ne1)
etc.
Proof sketch. By induction on the pairs (m,n), ordered lexicographically. [

Corollary 24. The greatest non-n J-bisimulation BE 1s closed under substi-
tutions.

Proof sketch. The Main Lemma implies that
()" (BY) € By(s'(B)))

for all n > 0. By definition of ST and the fact that non-n bisimulations are
closed under unions, ST(BT]) C B}(ST(BE)). This means that ST(BT]) is a non-
n J-bisimulation, and therefore F'f (BT]) cs T(BT,) C BT], since BT, is the largest
non-n J-bisimulation. O
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9.3 Non-n bisimilarity is substitutive

In order to show that non-n bisimilarity is substitutive, one needs the following
construction for combining named term relation sets:

Definition 25. Given NQ;, NQy C NUj, define

NQ@Q, + NQy = {(X‘Sl'SQ,Sll'SIQ, NR; U NRQ) ’
(X|s1,81, NRy) € N@;, &
(X‘SQ,SIQ,NRQ) S NQ2 &
dom(s1) N dom(sa) =
dom(s}) N dom(sh) = 0}.

Lemma 26. If NQ, and NG@Qy are non-n J-bisimulations closed under weak-
ening, then so is NQ; + NQ,.

Corollary 27. The greatest non-n J-bisimulation Bjr] satisfies that
BY =B+ BT,
Finally, non-n bisimilarity is substitutive:
Theorem 28.
1. If t =t ¢ and o = &', then to =T t'o’.
2. If nt ="' nt' and o =" o', then nto =t nt'c’.

Proof sketch. We show the second implication—the first is completely similar.
Assume that nt ~' nt’ and o =<' ¢/, and let J be the set of free references in
nt, nt’, o, and ¢’. Then the greatest non-n .J-bisimulation BE contains a tuple
(X1{}, {}, NRy) such that (|nt,nt’) € NRy and a tuple (Xo - Y|{},{}, NR2)
such that Xo - o0 XT(NRy) ¢’ : Y. Then by Corollary 27, BT] also contains
the tuple (X; U Xo UY[{},{}, NR1 U NR3). Finally, since Bjr] is closed under
substitutions, it also contains the tuple (X7 \ Y) U X2|{},{}, NRi(o,0") U
NRy(0,0")) where (|nto,nto’) € NRy(o,0"). Hence nto = nt'o’. O

9.4 \up-bisimilarity is substitutive

The fact that Aup-bisimilarity is substitutive can be derived from the analo-
gous result for non-n bisimilarity, Theorem 28, by means of a syntactic trans-
lation involving an “infinite n-expansion” combinator H.

Fix a finite set of references J = {j1,...,}. For every value v and every
term t, define the term

app(v,t] = letzi=ly1 in ...letz,=!y, in
lety1=vxyin ...lety,=vx, in
(1:=Y1; - Ini=Yn; t)
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(where x1, ...Zpn, Y1, ..., yn are not free in v or ¢t). The operational behavior
of app|v, t] is to “apply v to every reference in J” and then continue according
to t. Now define
Ho = Az Af \z.lety;=zx in
app|z, letys=fy1 in app[z, 2 yo]]

H = fix[Ho].
The combinator H originates from a generalization of a “syntactic minimal
invariance” equation [17, 29].

Also, for every value v and every named evaluation context NFE, define
Glv] = Az.lety;=Hz in
app[H, let ya=v y1 in app[H, H y2]]

G[NE| = NE[let x=[] in app[H, H z]].

Definition 29.

1. For every term t, let t¥ be the result of substituting G[z] for every free
variable x in ¢, and substituting Gl[a][]] for every free name a in ¢. For
every named term nt, define ntt similarly.

2. For every term t, define

t" = app[H, let z=t* in app[H, Hz]|.

3. For every named term nt = [a]t, define nt’ = [a]t!.

Using the above syntactic constructs, Aup-bisimilarity can be characterized
in terms of non-7 bisimilarity:

Proposition 30. Let the free references of t, t', v, and v' be contained in J.
1. t =y, tiff t1 =TT,
2. v = v iff Gt = G[o'H].
3. nt =, nt' iff ntt =T nt'f.

If v is a value such that the free references of v are contained in J, then
v =, G[v] (but in general v Z' G[v]). As will be shown next, a more general
version of that property holds.

Definition 31. The binary relation R on terms, named evaluation contexts,
and named terms is defined inductively by means of the inference rules in
Figure 1.

Two stores s and s’ are related by R if they have the same domain Jy and
if s(y) R s'(y) for all y € Jp.
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v RV t Rt
tRt v R G[V/] Ax.t R \x.t/
v Rv) vy R vRv  tRY
vy vy RV (:=v;t) R (z:=0';t")
tRt V)€ JO-S(]) R 3/(]) dom(s) = dom(s") = Jo,
ps.t R ps'.t/ JonJ =0
nt R nt' NE R NE
pa.nt R pa.nt' NE R NE NE R G[NE]
tRt NE R NF
NE[letz=[] in t] R NE'[letz=[] in t]
NERNE tRY
NE[t] R NE[t']

Figure 1: The relation R.

Proposition 32. Let J' C J. The named term relation set

{(X|s,s', NR) € NUy |
s Rs" & NR C {(Z|nt,nt') | nt R nt'}}

is a J'-bisimulation.
In particular, taking J' = J:
Corollary 33. Let the free references of t, t', nt, and nt’ be contained in J.
1. t Rt implies t =, t'.
2. nt Rnt' implies nt =, nt’.
It follows that App-bisimilarity is substitutive:
Theorem 34.
1. If t=u,t and o =y, o', then to =, t'o’.
2. If nt =, nt' and o =, o', then nto ~,, nt'c’.

Proof sketch. As a simple example, assume that ¢ ~,, ¢’ and v =, v/; it must
be shown that t[V/z] =, t'[V'/z]. By Corollary 33, t[t/z] =, t[ClGlv]/z]. Hence
by Proposition 30 and the fact that non-n bisimilarity is substitutive:
(t[ofa))t =T ([CICLl/a])T = #F[Glv' ]
=t TGV )]
~t (¢ [V

By Proposition 30 again, t[V/z] =, t'[V/x]. O
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9.5 A\up-bisimilarity is a congruence

Now it is shown that Aup-bisimilarity is compatible, using the fact that it is
substitutive.

Proposition 35. By = B; + Bj.

Corollary 36. Let FrR(nt) UFR(nt') C J, and let y,/<7 be distinct variables
not free in nt or nt’. Suppose that

({Jizyyjej}ant) =" ({JZZUJJEJ}'Sl,Ml%
J
{=y 7"} nt') =" ({g=0/"""}-s}, ne)),

and (X1]s1, 81, NRy) € By with (nei,ney) € M,,(NRy) and (v),v)) €V,,,(NRy)
for all g€ J. Then nt =<,, nt'.

Theorem 37. A\up-bisimilarity is compatible.

Proof sketch. The most complicated case to show is that App-bisimilarity is
closed under p-abstraction: if ¢ <, ¢’ and also v, =, v} for all j € Jo, then

cJ
p{y=v/"} . t =, p{g:=v)="

Here one proceeds in three steps:
1. If 2 ¢ FV(t), then ps.t =, letz=ps. A\z.tin z|.

2. If v =y, v and v, =, v§ for all y € Jp, and if the free references of all
these values are contained in J D Jy, then

y e
=Gl "}. 6] =y p{r=Gl}T

.G

3. If the free references of v and UJJEJO are contained in J D .Jy, then
7€Jo
p{7=v,57Y . v =, p{3:=G[v}]"}. G[vl].

The third part follows from Proposition 32 and Corollary 36. The proof of
the second part uses Corollary 36 and the following construction: for every
NQ C NUj with Jo C J, let NQ\Jp be the subset of NUj\ 5, defined by

NQ\Jo = {(X1[{y :=wN}-s, {5 :==w? " }-s', NR) |
(X|s, s, NR) € NQ &
XCXi &
Vy € Jo. (wy,w)) € VI(NR)}.

The Main Lemma implies that B}\Jg - BT,\ Ty

The other cases of the proof are simpler and use Theorem 34 and Corol-
lary 36. O

29



In summary, the main result of this section:

Theorem 38. \up-bisimilarity is a congruence: an equivalence relation which
s furthermore compatible.

Corollary 39. Each of A-bisimilarity, A\u-bisimilarity, and \p-bisimilarity is
a congruence.

Proof. 1t is easy to see that two Au-terms are Ap-bisimilar if and only if they
are A\up-bisimilar, and similarly for the other inclusions between the four cal-
culi considered in this article. (Each extension is “fully abstract”). The state-
ment of the corollary immediately follows. Suppose for example that vy ~,, v}
and vy ~,, vy. Then vy <, v} and vy ~,, vh. Therefore, since Aup-bisimilarity
is a congruence, v v2 ~,, V] vy. Finally, since v; v and v} vy are Au-terms,
— !
V1 Vg~ V] Vg O

Remark. Non-n bisimilarity is also a congruence. The relation between non-n
bisimilarity and Aup-bisimilarity is analogous to the relation between Bohm
tree equivalence and Bohm tree equivalence up to 7 for the pure A-calculus.

10 Full abstraction

In this section we show that Aup-bisimilarity coincides with contextual equiv-
alence for the App-calculus.

First, let us say that a variable-closed and reference-closed named term
nt terminates, written ntl, iff 3Is,ne. ({},nt) —* (s,ne). Then we define
that terms ¢ and t' are contextually equivalent, written t =, t', iff for all
names a and term contexts C' such that C[t] and CIt]| are variable-closed
and reference-closed, [a|C[t]} < [a]C[t']}. It is easy to see that =, is a
congruence and, moreover, it is the largest congruence relation which satisfies
that ¢t =,, ¢ implies [a]t]} < [a]t'|} for all names a and variable-closed and
reference-closed terms ¢ and ¢. Since App-bisimilarity is a congruence, it is
immediate from its definition that it is included in contextual equivalence, viz.
that App-bisimilarity is sound with respect to contextual equivalence.

Theorem 40 (Soundness). ~,, C =,,.

Similarly, A-bisimilarity, Ap-bisimilarity, and Ap-bisimilarity are included
in contextual equivalence for their respective calculi.

To prove the converse of Theorem 40, we will form a bisimulation which
relates all contextually equivalent terms. The task is similar to the Bohm-
out proof of the separability theorem in the call-by-name A-calculus. For
readers familiar with the Bohm-out proof, we briefly compare our approach:
The Bohm-out proof substitutes, for each free variable, a function that takes
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many arguments. This makes it possible to control the function’s behaviour
separately each time it is called. We need the same level of control over the
behaviour of the functions and continuations that are substituted for the free
variables and names in the contextually equivalent terms we want to prove
bisimilar. However, instead of using functions that take many arguments,
we use stateful functions and continuations. They use mutable references to
execute pre-programmed strategies that specify how they will behave each
time they are invoked. Moreover, we use the expressive power of the Au-
calculus to capture not only the argument when a function substituted for a
free variable is invoked but also the continuation. The presence of mutable
references introduces one complication, namely it requires us to store every
argument and continuation we see so that we can invoke them multiple times
to expose stateful behaviour.

We will need to accumulate values in lists and random access list entries.
We encode the empty list as the identity function | and we encode the list v
with elements v1,...,v, appended as:

(v, ..., 0n) =
Az. letxg=vzinletx1=zgvi in...in xp_1v,
where z,zq,...,T,_1 are not free in v,v1,...,v,. When v = |, we write just
(v1,...,v,). We access the ¢’th element in the list v with

VH#q = pa. [a)v Az .. Axzg_1.Q

where a is not free in v.

We use a designated reference jg to store a list with all the arguments v
and continuations NE we see along the way (each NE is stored as the value
Az. pa. NE[z] with z,a not free in NE). We let w range over both pairs of
values and pairs of named evaluation contexts. Given such a pair, let wV be
the pair of values and let wNR be the singleton named term relation defined
as:

(Az. pa. NE[z], \x. pa. NEs[x]) if w = (NEy, NE3)

WNR { (a-z|[a](vy * ), [a](va x z)) if w= (v1,v2)
((L“NEl*(L‘,NEQ*.%') if w= (NEl,NEQ)

wY = { (v1,v2) if w= (v1,v9)

where z and a are not free in vy, vy, NE|, NE>.

For each free variable z; and name a;, we associate a reference ¢; and j;,
respectively. Each reference stores a strategy p which is a sequence of moves
m, one for each successive invocation of the variable z; or name a;, ending in
“success” T or “failure” L:
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STRATEGIES p == T | L | m;p
MOVES m ::= move(q, p1,p2) (g>1)

A move move(q,p1,p2) “plays” the ¢’th value or continuation from the list
stored in j9 and associates the strategy p; with a variable, which is used as
argument, and po with a name, which is used as continuation. These ideas
are expressed in the following encodings. Given a reference ¢ and a strategy
p, we define the function [p](z), which takes a function argument z and a
continuation y as arguments, and for every move m, we define the term [m],
as follows.

[T](2) = Az. Ay. |
[L](2) = Az. Ay. Q2
[m; pl(2) = Az Ay. let 2=ly0 in go:=(z|z, y); ==[p[ (2); [m]
[move(q, p1,p2)] =
let z=!y0 in let x=z#q in p{v:=[p1](2), :=[p2] (1)} j [x ]

where 7 and j denote the value and the evaluation context

i = A\x.pa.[ag]lety=linletz=yz in za
j=letz=[]inlety=!yinletz=yz in z ay
and where ag is a designated “top-level” name.

These are the building blocks we use to “separate” terms. As in [21], our
separation proof is co-inductive. We define:

_ NR NR
W={(z1,...,Tm,a1,...,an|s1, 52, {wi" ", ..., wg" " })
: / /
| V strategies pi,...,Dm, D), -, Dh-
V distinct references 21,...,%m,J1,- -« Jn

¢ dom(s1) U dom(s2).
vV moves m.
[ag]ps-sio. [m] < [ao)ps-sho. [m]d
where s = {11:=[p1](11), - - - y tm:=[Pm] (),
g=104000)s - an =Rl ()},

o = [’Zl/xl’ . 7'zm/$m, [ao]jl/al’ e [ao]jn/an]’
S’Ii = Si.{jo::<v’i17 s 7’U’iq>}7
(v11,v91) = w1V, ..., (Vig, V2q) = wy¥}

Lemma 41. W is a Aup-bisimulation.

Proof. By detailed analysis of the possible operational behaviours of the
named terms in each w;NR triple. ]

Lemma 42. t; gup to implies tq ~up 2 if FR(tl) U FR(tg) = 0.
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Proof. Suppose t1 and t; are reference-closed terms, t1 =, t2, and X  tq,1s.
Then, by the definition of ¥V and contextual equivalence, t; =, t2 implies

(X|{}, {}, {w"R}) € W where w = (Az.t1, \z.t3) and ¢ X. Observe that
wNR = (a-z|[alt1, [a]t2). We conclude t; ~,,, to by Lemmas 41 and 19. O

To extend this result to general terms, we define a term context L; that
“translates” any term ¢ with Fv(t) C J = {u1,...2,} to the reference-closed
closed term

Ljlt] = Ax. p{ag:=l, ... 1=}
(Ax.t,get(s1),set(e1),...,get(w,),set(e,))
where x ¢ FV(t), get(y;) = Azx. li;, and set(y;) = Az. (1:=x;1).
Lemma 43. t; =, t2 iff Lj[t1] =~u, Ljta).
Theorem 44 (Completeness). ~,, D =,,.

Proof. Suppose J = FR(t1) UFR(t2). Then

t1 = ta = Lylth] =, Lylta] =, is a congruence
= LJ[tl] ~up LJ[tQ] Lemma 42
=11 ~pp t2 Lemma 43. O
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