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Preface

This BRICS report was originally a master’s thesis documenting work in the
specialisation year at the Department of Computer Science, Aalborg University,
and is based on a project proposal by Hans Hüttel. The thesis strengthens and
goes beyond the work presented in the DAT5 project entitled A Logic of Frames
in the Applied π Calculus.

Familiarity with process calculi (e.g. CCS, the π calculus and associated
modal logics) corresponding to the level given in the DAT4 course Semantics
and Verification and the DAT6 course Semantics and Verification 2 is assumed.
Mathematics skills corresponding to bachelor level computer science, including
an understanding of basic set theory, equivalence relations, definition and proof
by induction, will be of advantage.

Michael David Pedersen,
December 18, 2006.
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Summary

The Applied π calculus by Abadi and Fournet is a uniform and generic extension
of the π calculus for which particular primitives such as tuples and cryptographic
functions can be defined and used on a per-application basis. This is in con-
trast to the basic π calculus in which the only type of messages that can be
communicated are atomic names. The key idea in Applied π is to integrate ar-
bitrary terms into the calculus and its semantics based on a function signature,
and to base equality between terms on an equational theory instead of syntactic
equality on names.

Processes in Applied π also differ from standard π calculus processes by
integrating the notion of active substitutions in the process expression itself.
An active substitution is a binding of a term to a variable which intuitively
represents a message sent by a process. The frame of a process can then be
thought of as the substitution arising by combining all active substitutions em-
bedded in the process expression, and is hence a representation of environment
knowledge. Indistinguishability of two frames can be expressed in terms of a
binary relation, ≈s, called static equivalence. Roughly speaking, two frames are
statically equivalent if an environment cannot distinguish the frames by testing
for equality between any pair of terms constructed from variables in the frames.

Frames and static equivalence play a central role in labelled bisimilarity
(which coincides with observational equivalence) of processes in Applied π: two
processes are bisimilar if they can simulate each others actions and if their
frames are statically equivalent, i.e. if the processes can be distinguished nei-
ther on their dynamic behaviour nor on their static characteristics.

The main objective of this report is a logic for the Applied π calculus which
characterises labelled bisimilarity. The motivation is similar to that of Applied
π itself, namely generality: the logic can be adapted to a particular application
simply by defining a suitable function signature and equational theory. Since
labelled bisimilarity contains a condition on static equivalence on frames, the
first step towards a logic for Applied π is a logic for frames which characterises
static equivalence. A logic for frames in turn relies on a definition of static
equivalence which does not contain a universal quantification over arbitrary
terms.

The first major contribution of this report is an strong version of static
equivalence, ≈ss, in which frames may be distinguished by testing on reduc-
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tion of terms in addition to equality. Strong static equivalence is particularly
useful because a refined definition, ≈′

ss, can be given which does not depend
on universal quantification over arbitrary terms. The refined definition is based
on the notion of ecores – an extension and generalisation of the cores used by
Boreale et al. in the Spi calculus – which intuitively are the minimal terms
deducible from a frame which are relevant for deciding static equivalence. We
then show that ≈ss and ≈′

ss coincide under certain general conditions (namely
in independent convergent subterm theories). The refined definition is used as a
basis for a logic of frames and to show that this logic characterises strong static
equivalence. A further refinement, ≈′′

ss, which is also shown to be equivalent
to ≈ss, is given and used as a basis for characteristic formulae in the logic for
frames. Finally we show that strong static equivalence coincides with the stan-
dard static equivalence (≈s) under certain conditions. These conditions are for
example satisfied by theories of symmetric key encryption and by theories of
public key encryption if public keys are assumed to always be known.

The second major contribution of this report is a first order logic for frames,
LF , which characterises strong static equivalence and which is amenable to
construction of characteristic formulae. LF includes atomic propositions which
facilitate direct reasoning about the terms in a frame. The logic also includes
first order quantification, intuitively over the set of terms which can be deduced
from the frame by an environment, hence facilitating indirect reasoning about
environment knowledge.

The third and final major contribution of this report is a modal logic, LA, for
Applied π which characterises labelled bisimilarity on processes. LA is obtained
by adding suitable Hennessy-Milner style modalities to LF . Consequently the
logic can be used to reason both about the dynamic behaviour and static char-
acteristics of processes. Finally, we demonstrate how LA can be applied to
capture a well known attack on the Needham-Schroeder Public Key Protocol.
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Resumé

Anvendt π-kalkylen af Abadi and Fournet er en ensartet og generel udvidelse
af π-kalkylen, hvor primitiver s̊asom lister og kryptografiske funktioner kan de-
fineres alt efter den ønskede anvendelse af kalkylen. Dette er i modsætning til
π-kalkylen, hvor det kun er muligt at kommunikere atomare navne. Idéen i An-
vendt π er at integrere vilk̊arlige termer i kalkylen og dennes semantik baseret
p̊a en funktionssignatur, og basere lighed mellem termer p̊a en ligningsteori i
stedet for syntaktisk lighed mellem navne.

Processer i Anvendt π afviger ogs̊a fra almindelige π-kalkyleprocesser ved at
integrere begrebet aktive substitutioner i selve syntaksen for processer. En aktiv
substitution er en binding af en term til en variabel, som intuitivt set repræsen-
terer en besked sendt af processen. Rammen af en proces kan da betragtes som
den substitution man opn̊ar ved at samle alle aktive substitutioner fra processen,
og er dermed en repræsentation af omgivelsernes viden. Observerbar lighed p̊a
to rammer kan udtrykkes i en binær relation kaldet statisk ækvivalens. Groft
set er to rammer statisk ækvivalente, hvis de ikke kan skelnes af omgivelserne
ved at teste lighed mellem vilk̊arlige par af termer konstrueret fra variabler i
rammerne.

Rammer og statisk ækvivalens spiller en vigtig rolle i mærket bisimuler-
ing mellem processer i Anvendt π (som ogs̊a sammenfalder med observerbar
lighed mellem processer): To processer er bisimuleringsækvivalente, hvis de kan
simulere hinandens handlinger, og deres rammer er statisk ækvivalente, dvs.
hvis processerne hverken kan skelnes p̊a deres dynamiske adfærd eller statiske
egenskaber.

Det primære mål med denne rapport er en logic for Anvendt π som karak-
teriserer mærket bisimulering. Motivationen er, tilsvarende Anvendt π, gen-
eralitet: Logikken kan tilpasses bestemte anvendelsesomr̊ader ved simpelthen
at definere en passende funktionssignatur og ligningsteori. Eftersom mærket
bisimulering indeholder en betingelse om statisk ækvivalens af rammer, er det
første skridt mod en logik for Anvendt π en logik for rammer, som karakteriserer
statisk ækvivalens. En logic for rammer må endvidere bero p̊a en definition af
statisk ækvivalens som ikke indeholder universel kvantificering over vilk̊arlige
termer.

Det første væsentlige bidrag i denne rapport er en stærk udgave af statisk æk-
vivalens, ≈ss, hvor rammer kan skelnes p̊a test a mulige termreduktioner s̊avel
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som p̊a lighed mellem termer. Stærk statisk ækvivalens er specielt brugbar,
fordi en forfinet definition, ≈′

ss, kan udledes, som ikke beror p̊a universel kvan-
tificering over vilk̊arlige termer. Den forfinede definition er baseret p̊a ecores
– en udvidelse og generalisering af cores som anvendt af Boreale et al. p̊a
Spi-kalkylen – som intuitivt set er de minimale termer, der kan udledes fra en
ramme, og som spiller en rolle i statisk ækvivalens. Vi viser at ≈ss og ≈′

ss

sammenfalder under bestemte generelle antagelser (nemlig i uafhængige kon-
vergerende undertermsteorier). Den forfinede definition bruges som grundlag
for en rammelogik og til at vise, at denne logic karakteriserer stærk statisk æk-
vivalens. En yderligere forfining, ≈′′

ss, som vi ogs̊a viser sammenfalder med ≈ss,
bliver brugt som grundlag for at udlede karakteristiske formler i rammelogikken.
Endelig viser vi at stærk statisk ækvivalens sammenfalder med standardudgaven
(≈s) under bestemte betingelser. Disse betingelser er for eksempel opfyldt af
teorier med symmetrisk kryptering, og af teorier med offentlig-nøglekryptering
hvor offentlige nøgler altid er kendt af alle parter.

Det andet væsentlige bidrag i denne rapport er en førsteordens rammelogic,
LF , som karakteriseser stærk statisk ækvivalens, og som giver anledning til
konstruktion af karakteristiske formler. LF indeholder atomare udsagn, der
muliggør direkte ræsonnementer om termerne i en ramme. Logikken indeholder
ogs̊a førsteordens kvantificering, intuitivt set over mængden af termer, som om-
givelserne kan udlede fra en ramme, hvilket muliggør indirekte ræsonnementer
om omgivelsernes viden.

Det tredje og sidste væsentlige bidrag i denne rapport er en modallogik, LA,
for Anvendt π som karakteriserer mærket bisimulering mellem processer. LA er
en udvidelse af LF med passende Hennessy-Milner-modaliteter. Dermed opn̊as
en logic, som kan ræsonnere om den dynamiske adfærd, s̊avel som de statiske
egenskaber, af processer. Endelig demonstrerer vi, hvordan LA kan anvendes til
at udtrykke et velkendt angreb p̊a Needham-Schroeder Public Key protokollen.

vi



Contents

1 Introduction 1
1.1 Brief History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The Applied π Calculus . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Static Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Process Logics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Objectives and Contributions . . . . . . . . . . . . . . . . . . . . 4
1.6 Outline of the Report . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Preliminaries 7
2.1 Syntax of Applied π . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Semantics of Applied π . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Equivalences in Applied π . . . . . . . . . . . . . . . . . . . . . . 18
2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 A Refined Definition of Strong Static Equivalence 25
3.1 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Initial Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 The Refined Definition . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Results On The Refined Definition 45
4.1 ≈′

ss implies ≈ss . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 ≈ss implies ≈′

ss . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3 Conditions under which ≈s and ≈ss Coincide . . . . . . . . . . . 56
4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5 A Logic for Frames 63
5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2 Syntax and Semantics . . . . . . . . . . . . . . . . . . . . . . . . 67
5.3 Characterisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.4 Characteristic Formulae . . . . . . . . . . . . . . . . . . . . . . . 73
5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

vii



CONTENTS

6 A Logic for Applied π 83
6.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.3 Match and Matching Input Modality . . . . . . . . . . . . . . . . 85
6.4 Characterisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7 An Application to the Needham-Schroeder Public Key Proto-
col 93
7.1 The Needham-Schroeder Public Key Protocol . . . . . . . . . . . 93
7.2 The Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.3 Logical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

8 Conclusion 105
8.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

viii



Chapter 1

Introduction

As computer and software systems play increasingly important roles in soci-
ety, they are also trusted with more and more safety-critical tasks. Classical
examples include monitoring of nuclear reactors and automated metro trains
which operate without drivers. Clearly the correct operation of such software
systems is of utmost importance. Correctness and security is also a concern
in the financial world where transactions are performed online, and in every-
day email-communication where sensitive data may be transmitted over the
Internet. Hence there is an increasing interest in formal methods for modelling
software systems and verifying that they work as intended.

Recent years have seen the advent of ubiquitous computing: the integration
of small and unobtrusive computing devices into our environment and every day
life. For example modern cars have embedded computers which monitor and
report on various functions, wrist clocks may contain computers with calendars
notifying of scheduled events, and tiny computers with environmental sensors
(“motes”) can be deployed to form wireless networks which monitor e.g. seismic
activity. This raises enormous scientific challenges in ensuring that complex
ubiquitous computer networks function correctly and safely. Indeed, “Science for
Global Ubiquitous Computing” is the title of one of the seven Grand Challenges
for Computer Research [16] proposed for the upcoming decades.

1.1 Brief History

Process calculi form the basis of a large range of formal methods, and was
founded by Robin Milner in his 1980 publication on the Calculus of Communi-
cating Systems (CCS) [21]. CCS enables software systems and communication
protocols to be modelled abstractly as processes which can synchronise on chan-
nel names and which can then be reasoned about in the calculus. This later
developed into the π calculus [22] with the novelty of allowing private chan-
nel names (i.e. with restricted scope) and allowing communication of channel
names themselves (based on the notion of scope extension), resulting in a vast
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CHAPTER 1. INTRODUCTION

increase of expressive power. It then became possible to model concepts such
as access control and mobility.

The π calculus has sparked a large body of further research resulting in a
number of extensions to the calculus, e.g. the Polyadic π calculus [25, Section
3.3] which allows communication of tuples of names instead of just singleton
names. Another such extension is Abadi and Gordon’s Spi calculus [5] which
adds cryptographic primitives, thus enabling reasoning about cryptographic pro-
tocols.

1.2 The Applied π Calculus

In a 2001 publication [4], Abadi and Fournet presented the Applied π calculus,
a uniform and generic extension of the π calculus for which particular prim-
itives such as tuples and cryptographic functions can be defined and used on
a per-application basis. This is in contrast to the basic π calculus in which
the only type of messages that can be communicated are atomic names. The
key idea in Applied π is to integrate arbitrary terms into the calculus and its
semantics based on a function signature, and to base equality between terms on
an equational theory.

The function signature specifies the set of function symbols which can be
used to iteratively form terms over names, and the equational theory, =E , is an
equivalence relation which defines when two terms are equal. As an example,
the signature may contain two binary function symbols enc and dec which can
be used for symmetric encryption and decryption, respectively. This signature
gives rise to terms on the form enc(b, k+), which intuitively represents the name
b encrypted with the public key k+. The associated equational theory should
define the relationship between encryption and decryption, in which case the
equality dec(enc(b, k+), k−) =E b would hold (where k− is the corresponding
private key of k+).

Processes in Applied π also differ from standard π calculus processes by
integrating the notion of active substitutions, which intuitively capture the his-
tory of messages sent by a process in the process expression itself. Take as an
example the following Applied π process:

P = (νk)a〈enc(b, k+)〉.a〈k−〉.P ′

Here the name k is fresh, indicating that it is a the seed for a public-private key
pair unknown to the environment. P performs two outputs on channel a: first
the name b encrypted with public key k+, and then the corresponding private
key k−. The semantics of Applied π prescribes that P reduces to the process

(νk)({enc(b,k+)/x1}|{k−/x2}|P ′)

The sub-processes {enc(b,k+)/x1} and {k−/x2} are active substitutions which rep-
resent the messages sent by P , and hence the information made available to the
environment. Informally, the frame ϕ(P ) of the process P can then be thought
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1.3. STATIC EQUIVALENCE

of as the substitution arising by combining all active substitutions embedded in
the process while preserving the restriction on k:

ϕ(P ) = (νk){enc(b,k+)/x1, k−/x2}

In this way ϕ(P ) is a representation of the terms known by the environment
as a result of intercepting P ’s output activities on unsecured communication
channels.

Applied π can be used to model protocols by defining a signature and equa-
tional theory appropriate to a given protocol. An example of existing work to
this end is [1] in which Abadi et al. reason about guessing attacks. Furthermore,
automated analysis of models can be carried using Blanchet’s tool ProVerif [8].
ProVerif has been employed by Kremer and Ryan in [19] to analyse security
protocol models in Applied π for known-pair and chosen-text attacks (relying
on weaknesses in block chaining modes), and in [18] to analyse an electronic
voting protocol.

1.3 Static Equivalence

Indistinguishability of two frames can be expressed in terms of a binary relation
called static equivalence. Intuitively two frames are statically equivalent if an
environment cannot distinguish the frames by testing for equality between any
pair of terms which are based on the frames. Take as an example the following
frames:

ϕ1 = (νk, b){enc(b,k+)/x1, k−/x2, b/x3}
ϕ2 = (νk, b){enc(enc(b,b+),k+)/x1, k−/x2, enc(b,b+)/x3}
ϕ3 = (νk, b){enc(enc(b,k+),k+)/x1, k−/x2, b/x3}

Then ϕ1 and ϕ2 are statically equivalent; the intuition is that the equality
dec(x1, x2) =E x3 holds in both frames – because dec(enc(b, k+), k−) =E b and
dec(enc(enc(b, b+), k+), k−) =E enc(b, b+) – and any other equality over terms
built from variables and non-bound names which holds in one frame also holds in
the other. In particular, the private key b− is now known in ϕ2 and therefore the
environment cannot decrypt x1 twice and use the result to distinguish the two
frames. On the other hand, the frames ϕ1 and ϕ3 are not statically equivalent,
because the equality dec(dec(x1, x2), x2) =E x3 holds in ϕ3 but not in ϕ1 (nor
in ϕ2).

The claim that ϕ1 and ϕ2 are statically equivalent is a bold one, because
we may have overlooked some equality which holds in one frame but not in
the other. In fact one may question whether static equivalence is even decid-
able. The answer is positive for certain equational theories and negative for
others; these issues has been investigated by Abadi and Cortier in [2, 3] and by
Borgström in [10]. The notions of frames and static equivalence also feature in
the work by Boreale et al.[9] in which proof techniques for the Spi calculus are
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CHAPTER 1. INTRODUCTION

developed, although frames are not an explicit part of the process syntax in the
Spi calculus. We shall return to this work in Chapter 3.

Static equivalence is interesting in its own right as a formal definition of
indistinguishability of environment knowledge, but it also a useful notion for
defining bisimilarity. Roughly speaking, two processes are bisimilar if they can
simulate each other’s actions and if their frames are statically equivalent; i.e. if
the processes can be distinguished neither on their dynamic behaviour nor on
their static characteristics.

1.4 Process Logics

Verification of a software system using a process calculus typically involves three
steps. First, an abstract model of the software system is expressed as a model
process Pm which captures the essential behaviour of the system. Second, the
idealised behaviour, which the system designer expects the system to exhibit,
is expressed as the specification process Ps. Third, it is shown that Pm and Ps

are equivalent according to a suitable notion of bisimulation equivalence.
An alternative, or complementary, way of verifying software systems is to

model the system in a process calculi and then express correctness properties
as formulae of a modal logic for the relevant process calculi, e.g. the Hennessy-
Milner Logic (HML) for CCS [15] and for the π calculus [23], or the Spi calculus
logic in [13]. Here the modalities are used to reason about possible or necessary
actions. Another classical example is the BAN logic [11] which has been widely
used for verification of authentication protocols, and here the modality is on be-
lief (although this logic is not based explicitly on a process calculus). Generally,
a process logic has the advantage that correctness properties may be expressed
more directly and clearly as a formula than as a specification process, and a
logical approach provides a different perspective on the verification problem.

A common result for process logics is that they characterise a suitable notion
of bisimulation equivalence between processes, i.e. that that two processes are
equivalent exactly if they satisfy the same set of formulae. Hence if a specifi-
cation process satisfies some correctness property and the model process does
not, then the model and specification are not bisimilar.

1.5 Objectives and Contributions

The main objective of the work documented in this report is a logic for the
Applied π calculus. This logic would have the same appeal as the Applied π
calculus itself has in the first place, namely generality, in that a logic for Applied
π may capture other logics (such as the Spi logics) as a special case. We design
the logic for Applied π in three stages, each of which provide a significant
contribution to the theoretical development of Applied π.

The first contribution of this report is a stronger definition of static equiva-
lence (henceforth referred to as strong static equivalence) in which frames may
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1.5. OBJECTIVES AND CONTRIBUTIONS

be distinguished by testing on reduction of terms in addition to equality. We
argue that strong static equivalence is meaningful in applications; for example,
in contrast to the standard definition, strong static equivalence distinguishes
the following two frames:

ϕ
∆= (νa, c, k){enc(a,k+)/x1, k−/x2}

ϕ′ ∆= (νa, c, k){enc(a,k+)/x1, c−/x2}

Here we have that dec(x1, x2) is reducible in the first frame but not in the
second. There is no distinguishing equality, so the frames are statically equiva-
lent according to the standard definition. However we also show that there are
theories in which strong static equivalence coincides with the standard static
equivalence; these include theories with symmetric key encryption and theories
with public key encryption in which public keys are always known.

In addition to being meaningful in applications, strong static equivalence is
useful because a refined definition can be given (inspired by the notion of cores
in [9]) which does not rely on universal quantification over arbitrary terms and
which places explicit conditions on certain syntactic equalities and reductions.

This leads us to the second contribution of this report, namely a first order
logic for frames in Applied π which characterises strong static equivalence. The
logic is designed based on the refined definition of strong static equivalence,
which also gives a direct approach to construction of characteristic formulae
for frames (a characteristic formula for frame ϕ is a finite formula which is
satisfied by exactly those frames that are strong statically equivalent to ϕ).
Characteristic formulae can be useful in theoretical developments but they also
demonstrate that the logic is highly expressive, since a single formulae can
capture all the essential properties (with respect to strong static equivalence) of
a frame. Indeed the strong version of static equivalence is devised exactly with
characteristic formulae in mind.

The logic of frames includes atomic propositions for asserting equality, re-
duction and syntactic equality between terms, and also includes first order quan-
tification, intuitively over the set of terms which can be deduced from the frame
by an environment. Hence a formula may be given to assert that e.g.
there exists a term y (known by the environment) such that x1 can be decrypted
with y to obtain x2

The third and final contribution of this report is a modal logic for Applied
π which characterises a bisimulation equivalence on processes. This logic is
obtained by adding suitable Hennessy-Milner style modalities to the logic of
frames, allowing assertions such as
process P can perform an input of an encrypted term M1 followed by some out-
put, after which the decryption key for the term M1 is known by the environment

5



CHAPTER 1. INTRODUCTION

1.6 Outline of the Report

The report is structured as follows. In Chapter 2 we introduce the Applied
π calculus in greater detail along with other necessary preliminaries, including
a high-level definition of strong static equivalence. Chapter 3 gives a refined
definition of strong static equivalence which is a necessary basis for characteristic
formulae, and Chapter 4 gives a proof that the refined definition coincides with
the standard definition under certain conditions. Chapter 5 presents a first-
oder logic for frames after the discussing underlying considerations, and shows
that the logic characterises static equivalence under certain conditions. The
chapter ends with a construction of characteristic formulae. In Chapter 6 the
logic of frames is extended to a logic for Applied π and it is shown that the
logic characterises bisimilarity. An application of the logic to the analysis of
the Needham-Schroeder Public Key Protocol is then given in Chapter 7. The
report is concluded in Chapter 8 along with pointers to future work.
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Chapter 2

Preliminaries

In this chapter we introduce the Applied π calculus based on [4]. Section 1
presents the syntax with emphasis on how arbitrary terms are represented in the
calculus. Section 2 presents the semantics with emphasis on equality between
terms and the underlying notion of term rewrite systems. Section 3 presents
some important equivalence relations, including two notions of static equivalence
which will feature extensively throughout the report.

2.1 Syntax of Applied π

One of the novelties of Applied π over the Pi calculus is that arbitrary terms
can be passed over channels and tested for equality. We thus start by defining
terms, and then proceed to define the syntax of two kinds of processes which
feature in the calculus.

2.1.1 Terms

We define terms following the treatment in [7, Section 3.1]. Terms are con-
structed by applying function symbols to names, and the available function
symbols may vary on a per application basis. The signature Σ is a set of avail-
able functions symbols where each f ∈ Σ is associated with a natural number
k, which is the arity of f . Functions of arity 0 are called constant symbols. We
denote the set of function symbols in Σ with arity k by Σ(k).

Let N be the set of names, ranged over by a, b, c, . . . , k, let X be the set of
variables, ranged over by x, y, z and let U be the set N ∪ X , ranged over by u.
Then the set of terms in the signature, T (Σ,U), is defined inductively as follows

• U ⊆ T (Σ,U)

• for all k ≥ 0:
f(M1, . . . ,Mk) ∈ T (Σ,U) if f ∈ Σ(k) and M1, . . . ,Mk ∈ T (Σ,U)
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CHAPTER 2. PRELIMINARIES

The set of names, respectively variables, occurring in a term M ∈ T (Σ,U)
will be denoted by n(M), respectively v(M), and we will use the abbreviation
n(M1,M2) to denote n(M1) ∪ n(M2).

Often we will be interested in identifying substrings at certain positions of a
term M ∈ T (Σ,U). The set of positions in M , pos(M), is a set of strings over
the alphabet of positive integers and is defined inductively as

• If M ∈ U , then pos(M) ∆= {ε} where ε denotes the empty string.

• If M = f(M1, . . . ,Mk) for some f ∈ Σ(k) then

pos(M) ∆= {ε} ∪
k⋃

i=1

{iw | w ∈ pos(Mi)}

We say that a position w′ is a prefix of a position w if there exists w′′ such that
w = w′w′′. The subterm of M at position w is denoted by M |w and is defined
inductively on the length of w as follows:

M |ε ∆= M

f(M1, . . . ,Mk)|iw ∆= Mi|w
Finally, we define the set of subterms of M as

st(M) ∆= {M |w | w ∈ pos(M)}

2.1.2 Plain Processes

We now proceed to the syntax of processes in the Applied π calculus. A process
can either be a plain processes or an extended processes. Plain processes are
similar to processes in the Pi calculus except that arbitrary terms may be sent
along channels:

A,B,C ::= 0 | A|B |!A | (νn)A | if M1 = M2 then A else B | u(x).A | u〈M〉.A

The set of plain processes is denoted by A. The informal meaning of each
process construct is explained briefly below.

1. 0 is the null process which cannot do anything.

2. A|B is parallel composition in which A and B execute concurrently.

3. !A is replication, the intuition being that an unlimited number of copies
of A are executed in parallel.

4. (νn)A is name restriction, meaning that the name n is private, or “fresh”,
in A, and thus can only be used in A.
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5. if M1 = M2 then A else B is a process which behaves as A if M1 = M2

and as B otherwise. The equality is more general than syntactic equality,
which will be clear when the semantics is presented in the next section.

6. u(x).A is message input. A term M can be input on the channel u and
bound to the variable x, whereafter the process behaves as A with x
substituted for M .

7. u〈M〉.A is message output. A term M is output on the channel u, where
after the process continues as A.

2.1.3 Extended Processes

Extended processes are plain processes extended with the notion of active sub-
stitutions, which play an essential role in Applied π. In general, a substitution
is a total function σ : X → T (Σ,U) which maps variables to terms [7, Section
3.1]. Following standard conventions, we shall use xσ to denote the substitution
σ applied to x and we let dom(σ) and im(σ) denote the domain and the image
of σ, respectively. We define the extended substitution σ{M/y} as

xσ{M/y} =

{
M if y = x

xσ if y 6= x

The extension σσ2 is obtained by iteratively extending σ with each element of
σ2 in the obvious way.

We write ∅ for the substitution σ with dom(σ) = ∅ and we shall generally use
the notation {M1/x1, . . . , Mk/xk} to define the substitution σ where σ(xi) = Mi

(for 1 ≤ i ≤ k) and σ(y) = y for all y ∈ X − {x1, . . . , xk}. When the number of
variables in the substitution is insignificant we shall use the notation {Mi/xi}i∈I

where I denotes some sequence, and in general we shall use the notation (x)i∈I

to denote the sequence (x1, . . . , xk) for some k. A substitution can be extended
to a mapping σ̂ : T (Σ,U) → T (Σ,U) where σ̂(M) is the term resulting from
replacing all x ∈ v(M) with xσ. A similar extension can be made to processes,
giving a substitution ˆ̂σ : P → P where ˆ̂σ(P ) is the process resulting by replacing
each term M in P for σ̂(M). In the following we shall use substitutions and
their extensions interchangeably. We shall also assume that any substitution σ
is cycle-free in the sense that none of the variables in the domain of σ occur in
terms in the image of σ.

A grammar for extended processes can now be given:

P,Q,R ::= A | P |Q | (νn)P | (νv)P | {M/x}

The set of extended processes is denoted by P ; note that A ⊂ P . Considered
as a process, the active substitution {M/x} may “attack” any other process it
is put in parallel with and apply the substitution to this process. Hence the
parallel composition {M/x}|P is intuitively equivalent to the process P{M/x}.
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Processes can be protected against substitution by using variable restriction, so
e.g. the substitution {M/x} will have no effect on the process (νx)P .

Note that active substitutions in general cannot be under input/output
guards, cannot be part of a conditional, and cannot be replicated. Several active
substitutions can be put in parallel, in which case we write {M1/x1}| . . . |{Mk/xk} =
{M1/x1, . . . , Mk/xk}. When multiple names are under restriction, we shall write
(νn1, . . . , nk)P instead of (νn1), . . . , (νn1)P , and we shall write (νñ)P when the
particular names under restriction are unimportant.

The set of free names, fn(P ), of an extended process is defined as follows:

fn(0) = ∅
fn(P |Q) = fn(P ) ∪ fn(Q)

fn(!P ) = fn(P )
fn((νn)P ) = fn(P )− {n}

fn(if M1 = M2 then P elseQ) = n(M1) ∪ n(M2) ∪ fn(P ) ∪ fn(Q)
fn(a(x).P ) = {a} ∪ fn(P )

fn(a〈M〉.P ) = {a} ∪ n(M) ∪ fn(P )
fn({M/x}) = n(M)

The set of bound names, bn(P ), of an extended process is defined as follows:

bn(0) = ∅
bn(P |Q) = bn(P ) ∪ bn(Q)

bn(!P ) = bn(P )
bn((νn)P ) = bn(P ) ∪ {n}

bn(if M1 = M2 then P elseQ) = bn(P ) ∪ bn(Q)
bn(a(x).P ) = bn(P )

bn(a〈M〉.P ) = bn(P )
bn({M/x}) = ∅

The free variables fv(P ) and the bound variables bv(P ) are defined similarly.
The set of names of an extended process is defined as n(P ) = fn(P ) ∪ bn(P ).

In this report we shall mainly be interested in extended processes, so hence-
forth we refer to these simply as processes.

2.2 Semantics of Applied π

Having defined the syntax in the previous section, we now proceed by giving
meaning to the syntactical constructs in Applied π. We start by considering how
equality between terms can be defined on a per application basis, which relies
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on the notion of an equational theory. We then define structural equivalence,
which is the foundation of the reduction relation and the labelled operational
semantics which are subsequently introduced.

2.2.1 Rewrite Systems and The Equational Theory

Test on equality between terms is a central feature of the conditional process
construct. In order to define the semantics for conditionals, a definition of
equality must therefore be given. This in turn relies on the notion of term
rewrite systems (TRS) to which we now give a brief introduction, following the
treatment in [7].

Term rewrite systems are used to specify how terms can be evaluated step
by step. First, a rewrite rule r is on the form L >r R where L,R ∈ T (Σ,X ) and
v(R) ⊆ v(L). L will be referred to as the left hand side (LHS) or the redex, and
R as the right hand side (RHS) or the reduct. The function symbol occurring as
the outermost function symbol of the redex will be referred to as the destructor
function.

A term rewrite system R is then a set of rewrite rules. We say that a term
M1 is less general than, or an instance of, a term M2 if there exists a unifying
substitution θ such that M1 = M2θ. A term M1 reduces primitively to M2

using some rule L >r R, written M1 >r M2, if M1 = Lθ and M2 = Rθ for
some substitution θ. More generally though, we are interested in the rewrite
relation > induced by the rewrite system. We then define M1 > M2 if and only
if some subterm M1|w is an instance of L with some unifying substitution θ and
M2 = M1{Rθ/M1|w}, and we say that M1 rewrites (or reduces) to M2.

Example 2.2.1. Consider a rewrite system R over the signature Σ consisting
of a binary function symbol for pair construction, [·, ·], and the unary function
symbols fst(·) and snd(·) for projection of first and second coordinates of a
pair, respectively. R can be defined from the following two rewrite rules:

fst([z1, z2]) >r1 z1

snd([z1, z2]) >r2 z2

We then have that e.g. fst([snd([a, b]), c]) >r1 snd([a, b]) as an example of a
primitive rewrite. We also have that fst([snd([a, b]), c]) > fst([b, c]) > b and
fst([snd([a, b]), c]) > snd([a, b]) > b

Here are some important notions concerning rewrite systems:

• We denote by >∗ the reflexive and transitive closure of the relation > and
by <>∗ the symmetric, reflexive and transitive closure of >.

• A term M1 is reducible if there exists a term M2 s.t. M1 > M2. M1 is in
normal form (or irreducible) if it is not reducible.

• A term M2 is a normal form of M1 if M1 >
∗ M2 and M2 is in normal

form. If M1 has a unique normal form, this is denoted by M1 ↓.
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• A TRS is called confluent if whenever M1 >
∗ M2 and M1 >

∗ M3 there
exists an M4 such M2 >

∗ M4 and M3 >
∗ M4.

• A TRS is called terminating if there is no infinite chain M1 > M2 >
M3 . . . .

• A TRS is called normalising if every term has a normal form.

• A TRS is called convergent if it is both confluent and terminating.

Note that terminating implies normalising, although the converse does not nec-
essarity hold.

Having introduced the basics of term rewrite systems we can now give a
definition of equality between terms.

Definition 1 (Equational Theory). An equational theory =E , generated from
a TRS R, is an equivalence relation on T (Σ,U) which satisfies the following
rules:

(Rewrite)

M1 =E M2
if (M1 >r M2) ∈ R

(Reflexivity)

M =E M

(Symmetry)

M2 =E M1

M1 =E M2

(Transitivity)

M1 =E M3 M3 =E M2

M1 =E M2

(Function)

M1 =E M ′
1, . . . ,Mk =E M ′

k

f(M1, . . . ,Mk) =E f(M ′
1, . . . ,M

′
k)

where f ∈ Σ(k)

(Substitution)

M1 =E M2

M1θ =E M2θ
for all substitutions θ

It is shown in [7, Theorem 3.1.12] that the equational theory =E generated
from R coincides with the reflexive, symmetric and transitive closure of the
rewrite relation, i.e. M1 =E M2 ⇔ M1 <>∗ M2. This gives us a degree of
freedom in later proofs, for as we shall discover, the definition in terms of an
equational theory is not always convenient to work with. Another important
result, which we shall use extensively in this report, says that M1 =E M2 ⇔
M1 ↓= M2 ↓ for confluent and normalising rewrite systems [7, Theorem 2.1.9]

Example 2.2.2. As an example of an equational theory, we now define the
theory Esym of symmetric key encryption, pairing, and hash functions. When
doing so, we must define a signature by specifying function symbols and their
associated arities, and we must define the rewrite system used for generating
the equational theory.
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Theory Esym .
Signature: enc(·, ·), dec(·, ·), [·, ·], fst(·), snd(·),f(·).
Rewrite System:

dec(enc(z1, z2), z2) >r1 z1

fst([z1, z2]) >r2 z1

snd([z1, z2]) >r3 z2

The hash property of the function f , i.e. that f is one-way and collision-free,
is reflected by the lack of axioms involving f . Example terms in this theory
are enc(a, k), dec(enc(a, k), k) and enc([f(a), [b, c]], k). Here are some example
equalities in Esym:

dec(enc(a, k), k) =E a
dec(enc([f(a), [b, c]], k), k) =E [f(a), [b, c]]

fst(dec(enc([f(a), [b, c]], k), k)) =E f(a)

Example 2.2.3. In public key encryption schemes a public key k+, typically
known to any participating principal, can be used to encrypt messages, but
only a corresponding private key k−, known only by a single principal, can be
used for decryption. The idea behind public key encryption can be expressed in
the following equational theory, where we again have pairing and hash functions:

Theory Epub .
Signature: enc(·, ·), dec(·, ·), ·+, ·−, [·, ·], fst(·), snd(·),f(·).
Rewrite System:

dec(enc(z1, z2+), z−2 ) >r1 z1

fst([z1, z2]) >r2 z1

snd([z1, z2]) >r3 z2

We have the following equalities:

dec(enc(a, k+), k−) =E a but

dec(enc(a, k+), k+) 6=E a

Example 2.2.4. The theories introduced in the two previous examples are
fairly simple. When demonstrating concepts and results later in the report we
need to take more complex rewrite rules into account. Hence we now define an
extended version of the public-key theory in which two keys are used for both
encryption and decryption.
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Theory Epub2 .
Signature: enc(·, ·), dec(·, ·), ·+, ·−, [·, ·], fst(·), snd(·),f(·).
Rewrite System:

dec(enc(z1, f(z2+, z3
+)), f(z−2 , z

−
3 )) >r1 z1

fst([z1, z2]) >r2 z1

snd([z1, z2]) >r3 z2

In this report we shall restrict our attention to a certain class of equa-
tional theories known as convergent subterm theories (the following definition is
adapted from [2, Definition 1]):

Definition 2 (Convergent Subterm Theories). An equational theory is
a convergent subterm theory if it is generated from a convergent TRS R =⋃n

i=1{Li >ri Ri} where each Ri is a proper subterm of Li.

It follows from the subterm condition (i.e. that Ri is a proper subterm of
Li) that the rewrite system generating convergent subterm rewrite system is
also terminating and hence normalising. Since convergence implies confluence,
the aforementioned result that M1 =E M2 ⇔M1 ↓= M2 ↓ holds for the theories
which we consider in this report.

Recall that a destructor function is a function symbol which occurs as the
outermost function symbol in the redex of some rewrite rule (e.g. dec(·, ·), fst(·),
snd(·) etc.). We shall make one additional assumption about the theories which
we consider, namely that rewrite rules are independent in the sense that they
only contain destructor functions as the outermost function symbol; i.e. we
disregard rewrite rules such as

dec(enc(fst(z1, z2), z3), z3) > z1

which intuitively says that only encrypted first components of pairs can be
decrypted. This assumption is not very strong though, for the vast majority of
theories with rules on the above form are not convergent. Take for example the
following terms in the theory arising from the above rule:

M1 = dec(enc(fst([a, b]), k), k)
M2 = dec(enc(a, k), k)
M3 = a

Then M1 >
∗ M2 and M1 >

∗ M3 but there is no M4 such that M2 >
∗ M4 and

M3 >
∗ M4, i.e. confluence and hence convergence fails. An example of a rewrite

system which is convergent and in which destructor functions occur internally
in a redex is given in [1] (where it is used to model the property that decryption
keys cannot be guessed):

dec(enc(z1, z2), z2) >r1 z1

enc(dec(z1, z2), z2) >r2 z1
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For consider the following term:

M1 = enc(dec(enc(a, k), k), k)

Then M1 can be reduced using both rule r1 and r2, but the resulting reduct
is always the same (namely enc(a, k)), indicating that the rewrite system is
convergent. However, disregarding this type of rules does not result in a great
loss of generality.

2.2.2 Structural Equivalence

Semantics for Applied π is based on a structural equivalence relation on pro-
cesses. Here an evaluation context is a process with a hole which is not under
a replication, a conditional, an input, or an output. Structural equivalence ≡
is then defined as the smallest equivalence relation on P which is closed under
α-conversion on names and variables, under application of evaluation context,
and which satisfies the following:

Par-0 P ≡ P |0
Par-A P |(Q|R) ≡ (P |Q)|R
Par-C P |Q ≡ Q|P
Repl !P ≡ P |!P

New-0 (νn)0 ≡ 0

New-C (νu)(νv)P ≡ (νv)(νu)P
New-Par P |(νu)Q ≡ (νu)(P |Q) if u 6∈ fn(P ) ∪ fv (P )

Alias (νx){M/x} ≡ 0
Subst {M/x}|P ≡ {M/x}|P{M/x}

Rewrite {M1/x} ≡ {M2/x} when M1 =E M2

Note that ≡ is not a congruence because of the limitations on the type of
contexts which may be applied (in effect, only closure under parallel composition
and under restriction is required). Note also that the first 7 rules are standard,
as given in e.g. [25, Section 2.2], except that there is no scope extrusion for
conditionals.

The last three rules give meaning to active substitutions. Alias says that an
active substitution with its variable under restriction cannot do anything and,
together with Par-0, how an arbitrary active substitution can be introduced.
Subst formalises the intuition given in the previous subsection that an active
substitution may apply its substitution to any process it runs in parallel with,
and the Rewrite rule relates structural equivalence and equivalence in the
underlying equational theory.
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2.2.3 Internal Reduction

An internal reduction relation →, which explains how processes behave, can
now be defined based on structural equivalence. In the following, C[P ] denotes
the evaluation context C[−] applied to the process P :

Comm a〈x〉.P |a(x).Q → P |Q
Then

M1 =E M2

if M1 = M2 then P else Q→ P

Else

M1 6=E M2

if M1 = M2 then P else Q→ Q

Ctx

P → Q

C[P ] → C[Q]

Struct

P ≡ P ′, P → Q,Q ≡ Q′

P ′ → Q′

Note how equality in the equational theory plays an essential role in the rules
involving conditionals. As usual, →∗ is the transitive closure of →. The Comm

rule appears concerning at a first glance: only variables (and not terms) can be
output, and the output seems to disappear in the reduced process. This simplic-
ity of communication in the reduction semantics relies on active substitutions
and structural equivalence to work as we shall see in the following example.

Example 2.2.5. We assume the theory Esym of symmetric encryption and
pairing introduced in Example 2.2.2. The following reduction then illustrates
the communication mechanism for the case of a pair, as well as the reduction
semantics for conditionals.

a〈[M, s]〉 | a(x).if snd(x) = s then b〈fst(x)〉
≡a〈[M, s]〉 | (νx){ [M,s]/x} | a(x).if snd(x) = s then b〈fst(x)〉
≡(νx)(a〈[M, s]〉 | { [M,s]/x} | a(x).if snd(x) = s then b〈fst(x)〉)
≡(νx)(a〈x〉 | { [M,s]/x} | a(x).if snd(x) = s then b〈fst(x)〉)
→(νx)(if snd(x) = s then b〈fst(x)〉 | { [M,s]/x})
≡(νx)(if snd([M, s]) = s then b〈fst([M, s])〉 | { [M,s]/x})
→(νx)(b〈fst ([M,s])〉 | { [M,s]/x})
≡b〈fst ([M,s])〉
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2.2.4 Labelled Operational Semantics

The labelled operational semantics extends the reduction relation from the pre-
vious subsection by explicitly labelling reductions with actions. This allows
reasoning about processes which interact with their environment, and is also
the basis of a bisimulation relation on processes which we shall introduce later.
The relation which shall be defined is on the form P

α−→ P ′ where the label α
is either an input a(M) or an output a〈u〉. The bound output label (νu)a〈u〉
will be used to reflect that the name or variable u is under restriction. The fol-
lowing rules, together with the reduction rules from the previous section, define
the labelled operational semantics relation P α−→ P ′.

In a(x).A
a(M)−−−→ A{M/x}

Out-Atom a〈u〉.A a〈u〉−−−→ A

Open-Atom

P
a〈u〉−−−→ P ′ u 6= a

(νu)P
(νu)a〈u〉−−−−−→ P ′

Scope

P
α−→ P ′ u does not occur in α

(νu)P α−→ (νu)P ′

Par

P
α−→ P ′ bv(α) ∩ fv(Q) = bn(α) ∩ fn(Q) = ∅

P |Q α−→ P ′|Q

Struct

P ≡ Q Q
α−→ Q′ Q′ ≡ P ′

P
α−→ P ′

Note that this in an early semantics, i.e. input actions take immediate effect.

Example 2.2.6. Here is an example of a process which communicates with the
environment in the labelled semantics, again assuming the theory Esym from
Example 2.2.2:

(νk)a〈enc(M,k)〉.a〈k〉.a(z).if z = M then c〈o〉
≡ (νx)a〈x〉−−−−−→(νk)({enc(M,k)/x}|a〈k〉.a(z)if z = M then c〈o〉)
≡ (νy)a〈y〉−−−−−→(νk)({enc(M,k)/x}|{k/y}|a(z).if z = M then c〈o〉)
a(dec(x,y))−−−−−−−→(νk)({enc(M,k)/x}|{k/y}|if dec(x, y) = M then c〈o〉)

→(νk)({enc(M,k)/x}|{k/y}|if dec(enc(M,k), k) = M then c〈o〉)
→(νk)({enc(M,k)/x}|{k/y}|c〈o〉)

The structural equivalence in the first two steps is used to introduce an active
substitution with a variable under restriction – this restriction then dissappears
in the subsequent bound output.
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2.3 Equivalences in Applied π

In this section four notions of equivalence on processes are introduced, namely
observational equivalence, two kinds of static equivalence, and labelled bisimi-
larity.

2.3.1 Observational Equivalence

The first equivalence we define on extended processes is observational equiva-
lence. For this purpose we say that a process P has a barb on channel a, written
P ⇓ a, if P →∗ C[a〈M〉.P ′] for some evaluation context C[−].

Definition 3 (Observational Equivalence). Observational equivalence, ≈,
is the largest symmetric relation R on closed extended processes with the same
domain such that PRQ implies:

1. if P ⇓ a, then Q ⇓ a.
2. if P →∗ P ′ then Q→∗ Q′ and P ′RQ′ for some Q′.

3. C[P ]RC[Q] for all evaluation contexts C[−].

Observational equivalence corresponds to the open barbed bisimilarity stud-
ied in [26] by Sangiorgi and Walker. They also show that this bisimilarity does
not coincide with the barbed congruence in [25, Section 7.2], where closure under
application of evaluation contexts is separated from the bisimulation conditions.

The definition of observational equivalence suffers from a universal quan-
tification over all contexts. Later we shall give an equivalence based on the
labelled operational semantics which does not have this problem. It depends on
the notion of static equivalence which is the subject of the next subsection.

2.3.2 Static Equivalence

We now arrive at two notions which will receive considerable attention in the
rest of this report, namely that of frames and that of static equivalence. Frames,
ranged over by ϕ, are limited forms of extended processes built only from name
restriction and active substitutions, and are on the form

ϕ = (νñ){M1/x1} | · · · | {Mk/xk}
where for technical convenience we assume that each Mi is irreducible. Note
that this is slightly different from the definition of frames in [4] where restrictions
may occur interleaved with active substitutions, terms need not be irreducible
and variables may be private in addition to names. A frame can be considered
a substitution in which names may be private and can therefore be applied to
variables in the usual way. We shall often use the short hand notation ϕ =
(νñ){Mi/xi}i∈I or ϕ = (νñ)σ (where σ is a substitution) instead of writing out
the sequence of active substitutions, and we shall write (ν∗)σ for the closed
frame where all occurring names are private.
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Any extended process P can be mapped to its associated frame, intuitively
by deleting all plain processes, extending all restrictions to the outer level and
normalising terms in active substitution.

Definition 4. We define the frame of an extended process A inductively as
follows:

ϕ(P ) ∆= (ν∅)∅ if P is a plain process

ϕ({M/x}) ∆= {M↓/x}
ϕ((νn)P ) ∆= (νñn)σ where ϕ(P ) = (νñ)σ

ϕ((νx)P ) ∆= (νñ)σσ where ϕ(P ) = (νñ)σ

ϕ(P1 | P2)
∆= (νñ1ñ2)σ1σ2 where ϕ(P1) = (νñ1)σ1

and ϕ(P2) = (νñ2)σ2

and ñ1 ∩ n(σ2) = ñ2 ∩ n(σ2) = ∅

In the last case α-conversion may be necessary to ensure that ñ1 ∩ n(σ2) =
ñ2 ∩ n(σ2) = ∅. The case for private variables states that active substitutions
containing private variables must be applied to obtain frames which only contain
private names.

As the example reduction in the previous section showed, each output action
performed by a process extends the active substitution. Hence, at any given
time, the frame of an extended process P represents the messages communicated
by P and thereby also the “static” knowledge available to the environment.
This gives rise to an equivalence relation ≈s on frames called static equivalence
where, intuitively, two frames are statically equivalent if the environment cannot
distinguish them, e.g if two frames represent the same knowledge.

The only way the environment can deduce information from a frame is by
testing for equality between terms of the frame. This is captured in the following
definition.

Definition 5 (Equality in frames). Two termsM1 and M2 are equal in frame
ϕ, written (M1 = M2)ϕ if and only if n(M1,M2)∩bn(ϕ) = ∅ and M1ϕ =E M2ϕ.

Note the condition that n(M1,M2)∩bn(ϕ) = ∅, which is necessary for scope
extension to work. To see this, take the frame ϕ = (νa){ [a,b]/x} in the theory
E1. An environment may check that snd(x) = b holds in ϕ as follows:

if snd(x) = b then PY ES else PNO|(νa){ [a,b]/x}
→(νa)(if snd(x) = b then PY ES else PNO|{ [a,b]/x})
→(νa)(if snd([a, b]) = b then PY ES else PNO|{ [a,b]/x})
→(νa)(PY ES |{ [a,b]/x})
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Step 2 in this reduction relies on extending the scope of a, which is only possible
because a is not free in the terms tested in the conditional. Hence the equality
fst(x) = a should not hold in ϕ, since the scope of the name a cannot be
extended to any conditional process in which a is free.

We are now ready to give the all-important definition of static equivalence
between frames.

Definition 6 (Static equivalence). Two frames ϕ and ϕ′ are statically equiv-
alent, written ϕ ≈s ϕ

′, if and only if dom(ϕ) = dom(ϕ′) and

(M1 = M2)ϕ⇔ (M1 = M2)ϕ′ for all terms M1 and M2

Furthermore, we say that two processes P and Q are statically equivalent, written
P ≈s Q, if and only if ϕ(P ) ≈s ϕ(Q).

Example 2.3.1. We revisit the example frames from the introduction:

ϕ1 = (νk, b){enc(b,k+)/x1, k−/x2, b/x3}
ϕ2 = (νk, b){enc(enc(b,b+),k+)/x1, k−/x2, enc(b,b+)/x3}
ϕ3 = (νk, b){enc(enc(b,k+),k+)/x1, k−/x2, b/x3}

Then ϕ1 ≈s ϕ2 while ϕ1 6≈s ϕ3, the relevant equality being dec(x1, x2) =E x3.
This holds in ϕ1 because dec(enc(b, k+), k−) =E b, and it holds in ϕ2 because
dec(enc(enc(b, b+), k+), k−) =E enc(b, b+). However, it does not hold in ϕ3

because dec(enc(enc(b, k+), k+), k−) 6=E b.

One could consider defining static equivalence in a more direct manner as
follows: ϕ ≈s ϕ

′ iff dom(ϕ) = dom(ϕ′) and for every pair of terms M1,M2

with v(M1,M2) ⊆ v(ϕ) and n(M1,M2) ∩ (bn(ϕ) ∪ bn(ϕ′)) = ∅ it holds that
M1ϕ =E M2ϕ ⇔ M1ϕ

′ =E M2ϕ
′. Indeed this is done in e.g. [10], but it is not

equivalent to the definition we have given here. For with our definition it holds
for any two frames ϕ and ϕ′ that bn(ϕ) 6= bn(ϕ′) ⇒ ϕ 6≈s ϕ

′. For suppose that
a ∈ bn(ϕ)− bn(ϕ′) (where − is the set difference operator). Then the equality
a =E a holds in ϕ but not in ϕ′.

The universal quantification over terms in the definition of static equivalence
poses problems for practical application. Abadi and Cortier show in [2] that
static equivalence is not decidable in general, but they also show that it is
decidable for convergent subterm theories as defined in Definition 2. In [3] they
give decidability results for a bigger class of theories.

2.3.3 Labelled Bisimilarity

Labelled bisimilarity avoids the universal quantification over contexts which
haunts observational equivalence and instead relies on static equivalence.

Definition 7 (Labelled bisimilarity). (≈l) is the largest symmetric relation
R such that PRQ implies:
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1. P ≈s P
′;

2. if P →∗ P ′ then Q→∗ Q′ and P ′RQ′ for some Q′;

3. if P α−→ P ′ and fv(α) ⊆ dom(P ) and bn(α) ∩ fn(Q) = ∅ then Q→∗ α−→→∗

Q′ and P ′RQ′ for some Q′.

It is shown in [4, Theorem 1] that observational equivalence and labelled
bisimilarity coincide.

2.3.4 Strong Static Equivalence

A notion of static equivalence has now been defined with the intuition that
statically equivalent frames should be indistinguishable by observer processes
which are able to test for equality between terms in frames. However, one could
question whether equality is the only relevant predicate to test for when deciding
static equivalence. Consider the following example frames for motivation:

ϕ
∆= (νa, c, k){enc(a,k+)/x1, k−/x2}

ϕ′ ∆= (νa, c, k){enc(a,k+)/x1, c−/x2}
The first frame contains an encrypted name and the corresponding private key
which can be used for decryption. The second frame contains the same en-
crypted name but does not contain the corresponding private key for decryp-
tion. Now it turns out that ϕ ≈s ϕ

′. The only relevant attempt at constructing
a distinguishing equality is as follows:

x1 =E enc(dec(x1, x2), k+)

but this equality does not hold in either frame since k ∈ bn(ϕ) and k ∈ bn(ϕ′).
The fact that ϕ ≈s ϕ

′ might be slightly surprising. For we then get that the
following Applied π processes are bisimilar:

P
∆= (νa, c, k)(b〈enc(a, k+)〉.b〈k−〉

P ′ ∆= (νa, c, k)(b〈enc(a, k+)〉.b〈c−〉
Hence a process which sends an encrypted term and subsequently reveals its
private decryption key is bisimilar to a (more sound) process which sends an
encrypted term but does not leak the corresponding private decryption key! Is
this sensible? Well, the intuition that no observer process can distinguish P and
P ′ is intact, since an observer will be able to decrypt the encrypted term from
P but will never be in a position to look at the contents (i.e. test for equality)
since the name a is private. An observer who tests equality on a would hence
not be able to communicate with P since scope extrusion to the observer fails.

Implementations of cryptographic functions (e.g. the OpenSSL library [27])
typically don’t provide means of testing whether decryption with a given de-
cryption key is successful or not. However, in many applications it is assumed
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that such information is available, e.g. by appending a publicly known token to
the clear text before encryption; it can then be checked if the decryption output
also contains this token.

In other applications including e.g. pairing and lists, strongly typed pro-
gramming languages such as Java will throw runtime exceptions if e.g. the fst
projection function is applied to an object M which is not a pair. More specif-
ically, if such object M is received over a network socket, a typecast to the
pair type will fail. Hence a principal will be able to detect whether fst(M) is
reducible or not.

So reductions (which can also be viewed as computation steps) are most
often observable in practical applications: it would be feasible for a process to
be able to test if a decryption succeeds or not, even though it may not be able
to look at the decrypted term. And it would be feasible for a process to test if
application of a projection function to a pair succeeds or not. This motivates
us to extend the Applied π syntax with an additional test on reductions thus:

P,Q,R ::= ... | if M >k then P else Q

Intuitively such test succeeds if M can rewrite in k steps to some M ′. The
definition of internal reduction, →, can then be extended accordingly:

Then-2

∃M ′.M >k M ′

if M >k then P else Q→ P

Else-2

¬∃M ′.M >k M ′

if M >k then P else Q→ Q

Note that a test of the form M1 > M2 is not strong enough for our purpose. For
this test would not be able to distinguish the frames ϕ and ϕ′ with public-key
encrypted terms above. The reason is that M2 cannot be the private name a,
for scope extrusion to an observer making this test would fail.

Before defining a stronger version of static equivalence in which rewrites are
observable, we first define the notion of rewrite in frame along the same lines
as equality in frames.

Definition 8 (Rewrite in frames). Say that a term M can rewrite in k steps
in frame ϕ, written (M >k)ϕ, if and only if n(M) ∩ bn(ϕ) = ∅ and there exists
a term M ′ such that Mϕ >k M ′.

Definition 9 (Strong static equivalence). Two frames ϕ and ϕ′ are strong
statically equivalent, written ϕ ≈ss ϕ

′, if and only if dom(ϕ) = dom(ϕ′) and:

1. (M1 =E M2)ϕ⇔ (M1 =E M2)ϕ′ for all terms M1 and M2.

2. (M >k)ϕ⇔ (M >k)ϕ′ for all terms M .

Furthermore, we say that two extended processes P and Q are strong statically
equivalent, written P ≈ss Q, if and only if ϕ(P ) ≈ss ϕ(Q).
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It is immediate that ≈ss implies ≈s. The example given in the start of this
subsection demonstrated that ≈ss does not generally imply ≈s, so the additional
test on rewrites increases the distinguishing power of processes. However we
shall later pin down a class of equational theories in which also ≈s implies ≈ss,
i.e. in which the two definitions coincide. To give a preliminary example of this
result, take the symmetric-key counterpart of the frames given earlier:

ϕ2
∆= (νa, c, k){enc(a,k)/x1, k/x2}

ϕ′2
∆= (νa, c, k){enc(a,k)/x1, c/x2}

Then ϕ2 6≈s ϕ
′
2 because the following equality distinguishes the two frames:

x1 =E enc(dec(x1, x2), x2)

Clearly also ϕ2 6≈ss ϕ
′
2 because dec(x1, x2) >1 holds in ϕ but not in ϕ′.

2.4 Summary

In this chapter we have introduced syntax and semantics for the Applied π
calculus, a uniform and generic extension of the π calculus for which particular
primitives such as tuples and cryptographic functions can be defined and used
on a per-application basis. The key idea is to integrate arbitrary terms into the
calculus and its semantics based on a function signature, and to base equality
between terms on an equational theory instead of syntactic equality on names.

We have seen how a frame is obtained by extracting all active substitutions
of a process, and we have defined an indistinguishability relation ≈s on frames
called static equivalence. Roughly speaking, two frames are statically equivalent
if an environment cannot distinguish the frames by testing for equality between
any pair of terms constructed from variables in the frames. Furthermore, we
have defined a stronger static equivalence, ≈ss, in which term reductions are
observable in addition to equality between terms.

Frames and static equivalence play a central role in labelled bisimilarity
(which coincides with observational equivalence) of processes in Applied π: two
processes are bisimilar if they can simulate each others actions and if their frames
are statically equivalent, i.e. if the processes can be distinguished neither on
their dynamic behaviour nor on their static characteristics.
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Chapter 3

A Refined Definition of
Strong Static Equivalence

We now set out to find refined definition of strong static equivalence which pro-
vides a suitable basis for a logic for frames and is amenable to construction of
characteristic formulae. First we consider some previous work to this end in
Section 1 and pay particular attention to work by Boreale et al. on characteris-
tic formulae for frames in the Spi calculus. Section 2 continues with a number of
preliminary definitions. These are then used in the refined definition of strong
static equivalence given in Section 3. Section 4 demonstrates the refined def-
inition with a number of examples designed to strengthen our belief that the
standard and refined definitions of strong static equivalence coincide.

3.1 Previous Work

As mentioned earlier, Abadi and Cortier have shown that static equivalence is
decidable for the class of independent convergent subterm theories which was
introduced in Subsection 2.2.1 [2, 3]. Therefore one would expect that they at
some stage construct a finite set of equalities which is sufficient for deciding
static equivalence. This is indeed the case; to decide static equivalence between
two frames ϕ and ϕ′, they associate a finite set of equalities Eq(ϕ) and Eq(ϕ′)
with each frame such that ϕ ≈s ϕ′ if and only if the two frames satisfy the
equalities from each other’s set. Hence an alternative definition of static equiv-
alence which does not contain an universal quantification over terms can be
made based on this approach. Unfortunately this definition would not serve as
a sufficient basis for characteristic formulae. For a characteristic formula must
be defined based on a single frame, whereas the above approach defines equiva-
lence based on two specific frames.

Since static equivalence is known to be undecidable for certain theories even
when (equational) equality between terms is decidable [2], there are theories in
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which characteristic formulae do not exists or are not computable (assuming
that satisfaction is decidable for the logic in question). For decidability of static
equivalence reduces to computing characteristic formulae and deciding satisfac-
tion: to decide if ϕ ≈s ϕ

′, compute the characteristic formula Cϕ of ϕ and check
if Cϕ � ϕ′. Hence we focus our efforts on independent convergent subterm theo-
ries in which static equivalence is known to be decidable. Although decidability
in itself does not guarantee existence of characteristic formulae, we shall learn
that characteristic formulae with respect to strong static equivalence can indeed
be constructed in convergent subterm theories.

In [9] the problem of finding an alternative, tractable definition of static
equivalence is attacked for the particular case of (a variant of) the Spi calculus
with symmetric key encryption. This definition does yield a construction of
characteristic formulae, the key idea being that of a core. We will give the
intuition of this idea by an example, and in the next section we formalise and
generalise the relevant notions in the hope of getting similar results for a wider
class of equational theories not restricted to symmetric encryption. Consider
the following two frames:

ϕ = (νa, c, k){enc(enc(a,c),k)/x1, k/x2, enc(a,c)/x3}
ϕ′ = (νa, c, k){enc(a,k))/x1, k/x2, a/x3}

Let Mi = xiϕ and M ′
i = xiϕ

′. Then the core core(xi, ϕ) of xi in ϕ is, intu-
itively, the largest subterm of Mi which cannot be further decomposed using the
information available in ϕ. In the above example we can apply the decryption
function to M1 = enc(enc(a, c), k) with the key k available through x2 and get
dec(enc(enc(a, c), k), k) =E enc(a, c). Hence M1 is not a core. But the subterm
N1 = enc(a, c) is a core, because we cannot apply any decryption function to
reveal a since the key c is not available in the frame. The other cores in ϕ and
ϕ′ can be derived similarly and are summarised below, where for brevity we
define define Ni = core(xi, ϕ) and N ′

i = core(xi, ϕ
′):

N1 = enc(a, c) N ′
1 = a

N2 = k N ′
2 = k

N3 = enc(a, c) N ′
3 = a

Observe that ϕ ≈s ϕ
′; two interesting equalities which both frames satisfy are

enc(x3, x2) =E x1 (by reflexivity) and dec(x1, x2) = x3 (by axiom). There are
two key reasons why these equalities hold in both frames:

1. Two cores in ϕ are equal exactly when the corresponding cores in ϕ′ are
equal. Specifically, N1 = N3 and N ′

1 = N ′
3

2. Corresponding terms Mi and M ′
i are equal up to cores, in the sense that

Mi and M ′
i are composed from exactly the same functions applied to their

respective cores. Specifically, M1 = enc(N3, N2) and M ′
1 = enc(N ′

3, N
′
2)
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The alternative, tractable definition of static equivalence given in [9] for frames
in the Spi calculus with symmetric key encryption is essentially based on the
two observations above.

We will use these ideas as a basis for devising a general refined definition of
strong static equivalence which coincides with the standard definition of strong
static equivalence in any independent convergent subterm theory (i.e. not just in
symmetric key encryption theories). A straight forward generalisation presents
a number of challenges though, many of which become apparent simply by
moving from symmetric key encryption to public key encryption with pairs and
hash functions. Take for example the counterparts of the above frames with
public key encryption, pairing and hash functions in the theory Epub:

ϕ2 = (νa, c, k){enc([a,enc(b,c+)],k+)/x1, k−/x2, enc(b,c)/x3}
ϕ′2 = (νa, c, k){enc([a,b],f(k)+)/x1, f(k)−/x2, b/x3}

Now how should one define e.g. core(x1, ϕ2)? The intuition is that the core
is the smallest term that can be revealed from x1, but both a and enc(b, c+)
satisfy this intuition. Hence it would seem that a term can now have several
cores. And what about subterms such as the public key k+ in M1 – should
this be considered a core of x1? Probably not, since it cannot be revealed from
x1. Hence we would intuitively expect to obtain the following cores of the two
frames:

N1 = a N ′
1 = a

N2 = enc(b, c+) N ′
2 = b

N3 = k− N ′
3 = f(k)−

N4 = enc(b, c+) N ′
3 = b

Lets investigate how the idea with equality between cores and equality of terms
up to cores works in our new setting.

1. Equality between cores. The equalities N2 = N4 and N ′
2 = N ′

4 do hold
as expected. However, important information is lost if we only consider
equality between cores. There is for instance no syntactic equality relating
the public and private keys. Hence the fact that snd(dec(x1, x2)) =E x3

does not follow by syntactic equality between keys as it would in the
symmetric key case.

2. Equality up to cores. We would like to express that e.g.
M1 = enc([a, enc(b, c+)], k+) and M ′

1 = enc([a, b], f(k)+) can be written
as the same context over cores. This gives rise to a dilemma about how to
define the notion of a context. Since k+ is not a core, we would have to in-
clude the private name k in the context and write M1 = enc([N1, N2], k+),
i.e. obtaining the context enc([y1, y2], k+). But this context will not
work for M ′

1 because the encryption key in this term is f(k)+: M ′
1 6=
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enc([N ′
1, N

′
2], k

+). So it would not appear that the two terms can be writ-
ten as the same context over cores.

In order to overcome these problems and in order to make our terminol-
ogy precise, a number of preliminary definitions – including that of a context,
revelation from terms and cores – will be given in the next section.

3.2 Initial Definitions

In this section we give some preliminary definitions which are needed in the
refined strong static equivalence. We start by making precise the notion of
contexts. We then define revelation, a binary relation which expresses when a
term can reveal one of its subterms (e.g. by decryption with an appropriate key).
Revelation is a central ingredient in the analysis of a frame, which intuitively
is the set of all terms that can be revealed from the frame. Finally the analysis
leads to a general definition of cores in Applied π.

As we demonstrated in the last section, the standard notion of cores is
insufficient. Therefore we extend our notion of cores to include more terms from
the analysis, and we coin these ecores (for extended cores). We end the section
with a discussion of correlated variables and partitioning contexts, notions which
are required in order to bound the number of contexts considered in the refined
definition of strong static equivalence.

3.2.1 Contexts

We start with a definition of contexts.

Definition 10 (Contexts). A general context CN [x1, . . . , xk] is a term where
N is a set of names, v(CN [x1, . . . , xk]) = {x1, . . . , xk} and n(CN [x1, . . . , xk]) ⊆
N . The instantiation CN [M1, . . . ,Mk] is the term CN [x1, . . . , xk]{M1/x1, . . . , Mk/xk}.
A context which is just a variable or a name is called a trivial context. In this
report we will only consider two special cases, namely contexts C∅[x̃] (i.e. with
no names) and contexts C{⊥}[x̃] which may contain only a distinguished wild
card name ⊥. We shall use the short hand C[x̃] for the former and C⊥[x̃] for
the latter.

We shall take the liberty of writing CN [x̃] instead of CN [x1, . . . , xk] when
the indices on variables are irrelevant or understood. We shall assume that the
sequence ỹ binds to its enclosing context, so if e.g. two contexts C1[ỹ] and C2[ỹ]
are under consideration, it is not necessarily the case that v(C1[ỹ]) = v(C2[ỹ]).

3.2.2 Revelation

We now formalise the general idea that a term can reveal one of its subterms,
e.g. that a pair can reveal its first and second components because it can be
submitted to the first and second projection functions. The first definition
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expresses which superterm a reduct can be said to originate from, and we call
the appropriate superterm the revelator.

Definition 11 (Revelator). Let L >r R be a rewrite rule and let w be the
position of R in L, i.e. L|w = R. Suppose that M1 >r M2, i.e. M1 rewrites
primitively to M2 using rewrite rule r. We then say that M1|w′ is a revelator of
the reduction, and we write M1 >

M1|w′
r M2, if w′ is a prefix of w, i.e. if there

is a position w′′ such that w = w′w′′.

Example 3.2.1. Consider the term M = enc(a, k+) in the public-key theory
Epub. The following reductions then hold:

dec(M,k−) > a

fst([k+,M ]) > k+

Here M is a revelator of the first reduction, and hence a can be revealed from
M by using the appropriate private key. However, M is not a revelator of the
second reduction; this corresponds to the intution that the public key cannot
be extracted from a cipher text.

Definition 12 (Destructor context). Let L[z̃] >r R[z̃] be a rewrite rule and
let D[x, x̃] be a context which is unifiable with L[z̃]. Let w be the position of the
variable x, i.e. D[x, x̃]|w = x. Then D[x, x̃] is a destructor context if L[z̃]|w is
a revelator.

Using the notions of revelator and destructor contexts, the revelation M �S

M ′ can now be defined. Informally, this asserts that M ′ is a reduct of some
term constructed by applying functions to M with arguments from the set S.

Definition 13 (Revelation Relation). Let S be a set of terms. The rev-
elation, �S, is a binary relation over terms where we define M �S M |w if
and only if there is a destructor context D[x, x̃] and terms T̃ ⊆ S such that
D[M, T̃ ] >M

r M |w.

It follows from this definition that revelation is based on the rewrite rules of
a given TRS. Henceforth we shall always assume that any TRS we consider is
equipped with a revelation relation.

Example 3.2.2. Take the set S = {enc([b, enc(c, k2
+)], k1

+), [d, k−1 ]} as an
example (in the theory Epub). Then we have that:

[d, k−1 ] �S d

[d, k−1 ] �S k
−
1

enc([b, enc(c, k2
+)], k1

+) 6�S [b, enc(c, k2
+)]

The last revelation does not hold since k−1 is not directly available in the set S
and hence cannot be used for revelation in single rewrite-step.
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3.2.3 Analysis

Next we define the analysis A(M,S) of a term M with respect to a set of
terms S. A(M,S) is intuitively the set of terms that M can reveal by repeated
revelation from the terms in S. A term may reveal multiple subterms, some
of which may be identical, and it will be important for the later development
that each instance is represented in the analysis. It will also be important that
analysis terms can be ordered by position in their parents, and therefore this
information is recorded in the analysis. More precisely, we then get that the
analysis A(M,S) is a set of pairs (M |w, w) where M |w is a term revealed from
M . Here is the formal definition:

Definition 14 (Term analysis). Let S be a set of terms and let M ∈ S. Then
the analysis of M with respect to S is defined inductively as follows:

A0(M,S) = {(M, ε)}
Ai+1(M,S) = Ai(M,S) ∪ {(M |w, w)|∃N ∈ Ai(M,S) s.t. N �S

T∈S Ai(T,S) M |w}
A(M,S) =

⋃
i∈ω

Ai(S)

We further define A(M,ϕ) ∆= A(M, im(ϕ) ∪ fn(ϕ)) for frames ϕ.

In many situations the positions included in the analysis are irrelevant and
we shall instead consider the term analysis multiset A∗(M,S) defined as

A∗(M,S) = {M |w | (M |w, w) ∈ A(M,S)}

Since our point of view will always be apparent from the context, we shall not
distinguish between A(M,S) and A∗(M,S) in the future.

Example 3.2.3. Let S be the set of terms from the previous example (in the
theory Epub). Then

A([d, k−1 ], S) ={[d, k−1 ], d, k−1 }
A(enc([b, enc(c, k2

+)], k1
+), S) ={enc([b, enc(c, k2

+)], k1
+), [b, enc(c, k2

+)], b,

enc(c, k2
+)}

Note that enc(c, k2
+) is part of the second analysis because the decryption key

k−1 is available in the first analysis. However, c is not in the second analysis
because the key k−2 is unknown.

Sometimes we shall be interested in the combined analysis of an entire set
of terms. This set analysis is defined as follows:

Definition 15 (Set analysis). Let S be a set of terms. Then the analysis of
S is defined as A(S) =

⋃
M∈S A(M,S).
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Example 3.2.4. Continuing the example with the set S from above (in the
theory Epub), we get that

A(S) = {enc([b, enc(c, k2
+)], k1

+), [d, k−1 ], d, k−1 ,

[b, enc(c, k2
+)], b, enc(c, k2

+)]}

There are of course alternative ways of defining analysis. One could be to
give an inductive definition of set analysis and then define term analysis from
this. However the analysis of a term M in ϕ cannot be defined simply as

A(M,S) = {M ′ |M ′ ∈ st(M) ∧M ′ ∈ A(S)}
since there may be a subterm of M which is not accessible by revelation from
M but which can nevertheless be revealed from some other term in S, so a more
involved definition would be necessary. Another alternative would be to define
analysis as the fixed point of a suitable function, but this is largely a matter of
taste.

3.2.4 Cores and Ecores

We are now equipped to give a general definition of cores in the Applied π
calculus. This is a first step towards defining the terms which are essentially
sufficient for deciding strong static equivalence between two frames.

Definition 16 (Core). The cores of term a M with respect to the set S is the
maximum set of terms (M |w, w) from A(M,S) where M |w is �-irreducible:

cores(M,S) = {(M |w, w) | (M |w, w) ∈ A(M,S) ∧M |w 6�A(S)}

If (N,w) ∈ cores(M,S) we call N a core. The cores of a term M in a
frame ϕ is defined as cores(M,ϕ) = cores(M, im(ϕ) ∪ fn(ϕ)). If x ∈ dom(ϕ)
then cores(x, ϕ) = cores(xϕ, ϕ). Finally, we define the cores of a frame ϕ =
(νñ){Mi/xi}i∈I as

cores(ϕ) =
⋃
i∈I

{(Mi|w, w, i) | (Mi|w, w) ∈ cores(Mi, ϕ)} ∪ {(n, , ) | n ∈ fn(ϕ)}

We will mainly be interested in cores of frames which are defined as sets of
triples, again for the purpose of ordering – i.e. we will order cores in a frame
by the index of their parent term and by their position in the parent term. We
have also defined the cores of a frame to include all free names in the frame
(the place holder for index and position simply indicates that these values are
irrelevant for free names). The reason is that free names are important when
deciding static equivalence. Take e.g. the frame ϕ = {f(a)/x1} where a is a free
name; then the environment can test that a = f(a) holds in ϕ, so a should
be considered a core in ϕ. Another motivation for including free names in the
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core set of a frame is that any frame with free names n1, . . . , nk is statically
equivalent to a closed frame (i.e. with no free names) but where each n1, . . . , nk

is published as a term of the frame.
As with the analysis we often take the liberty of ignoring the position infor-

mation and consider cores as multisets of terms instead of pairs or triples. In
these cases it always holds that cores(M,S) is a subset of A(M,S) and that
each M |w ∈ cores(M,S) is a subterm of M (per definition of revelation).

Example 3.2.5. Take the frame ϕ = (νk1, b, c){enc([b,enc(c,k2
+)],k1

+)/x1, [d,k−1 ]/x2}
which is based on the set S from the previous examples (again in the theory
Epub). Then

cores(enc([b, enc(c, k2
+)], k1

+), S) = {b, enc(c, k2
+)}

cores([d, k−1 ], S) = {d, k−1 }
cores(x1, ϕ) = {b, c}
cores(x2, ϕ) = {d, k−1 }

cores(ϕ) = {b, c, d, k−1 , d, k2}
We have that c ∈ cores(x1, ϕ) because the name k2 is free. The key k−2 is
therefore known and can be used in the revelation of c from enc(c, k2). Note
also that d is included twice in the last example. This is because we are working
with multisets: d is both revealed from [d, k−1 ] and is free in ϕ. For the same
reason the free name k2 is also included in the last example.

The motivation for introducing cores is that these are essentially the terms
which matter when deciding static equivalence between two frames ϕ and ϕ′:
two terms Mi ∈ im(ϕ) and M ′

i ∈ im(ϕ′) must be equal up to cores, and when-
ever two cores Ni, Nj in ϕ are related in a certain way (such as by equality or
rewrite relations) then the corresponding cores N ′

i , N
′
j in ϕ′ must also be related

in the same way.
But the basic definition of cores is insufficient for capturing this intuition.

Take for instance the following simple frame:

ϕ
∆= (νk){enc([a,b],k+)/x1, k−/x2}

Then cores(x1, ϕ) = {a, b}, but k+ is not a core. First of all this means that
M = enc(a, k+) cannot be written as a context over cores (since a context
cannot contain the private name k). Second, disregarding k+ altogether results
in a loss of information – the fact that the equality dec(M,k−) =E [a, b] holds
is lost. The term k+ is inaccessible in the sense that it cannot be deduced by
revelation (it is not in the analysis) but still plays an essential role in deciding
static equivalence. Or put differently, if we were to replace k+ with some other
arbitrary term, this would change the analysis of ϕ.Let us make precise the
notion of inaccessible terms.

Definition 17 (Inaccessible Terms). Let ϕ be any frame and let M ∈ im(ϕ).
A sub-term M |w is inaccessible in M if each of the following conditions hold:
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1. M |w 6∈ A(ϕ).

2. for all N ∈ cores(ϕ) and M∗ ∈ st(M |w) it holds that M∗ 6∈ st(N).

We have argued that basic cores as defined above are insufficient in the
presence of inaccessible terms – the inaccessible terms should somehow be taken
into account when deciding static equivalence. Inaccessible terms must still have
a different status than cores though, for they cannot be “dug out” and used in
new settings since they are not part of the analysis; they are stuck in their
parent terms. So in addition to cores, we should also take appropriate analysis
terms, which contain inaccessible terms, into account. This prompts us to define
extended cores thus:

Definition 18 (Extended cores). A term M |w ∈ A(M,S) is a extended core,
or ecore, with respect to the set S if either

1. (M |w, w) ∈ core(M,S).

2. There is no context C[x1, . . . , xk] and no terms M1, . . . ,Mk ∈ A(S) such
that M |w = C[M1, . . . ,Mk].

The set of extended cores of M with respect to S is denoted by ecore(M,S), and
as for cores we define ecores(M,ϕ) = ecores(M, im(ϕ)∪fn(ϕ)) and ecores(x, ϕ) =
ecores(xϕ, ϕ). Finally, we define the ecores of a frame ϕ = (νñ){Mi/xi}i∈I as

ecores(ϕ) =
⋃
i∈I

{(Mi|w, w, i) | (Mi|w, w) ∈ ecores(Mi, ϕ)}∪{(n, , ) | n ∈ fn(ϕ)}

Again we often disregard the position information in ecores. Note that
if a term M does not have any inaccessible subterms then ecores(M,ϕ) =
cores(M,ϕ). Let us consider some examples.

Example 3.2.6. Take the frame ϕ ∆= (ν∗){ [enc(a,k1
+),enc(b,k2

+)]/x1, k−1 /x2} in
the theory Epub. Then

cores(x1, ϕ) = {a, enc(b, k2
+)}

ecores(x1, ϕ) = {enc(a, k1
+), enc(b, k2

+), a}
Note how each term in im(ϕ) can now be written as a context over ecores,
and how the inaccessible terms are included in ecores while still located in their
parent terms. Another way of putting it is that the analysis can be reconstructed
from extended cores by applying appropriate function symbols!

Example 3.2.7. Take the frame ϕ ∆= (ν∗){enc(enc(a,k+),k+)/x1, k−/x2} in the
theory Epub. Then

cores(x1, ϕ) = {a}
ecores(x1, ϕ) = {enc(enc(a, k+), k+), enc(a, k+), a}

Note that, in this particular example, ecores(x1, ϕ) = A(x1, ϕ). Also note that
ecores may have other ecores as subterms, which is not the case for standard
cores.
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In contrast to cores as defined in the Spi calculus, ecores(x, ϕ) in our new
definition is a set, which is natural when considering theories with e.g. pairing.
But in the following development it will be necessary to impose a linear ordering
on ecores for the purpose of comparing cores with the same index in different
frames, which is exactly why we have gone through the trouble of including
position information in the definition of ecores.

To define a linear ordering on ecores, first let < be the standard less-than
ordering on integers and let ≪ be the standard lexiographic ordering relation
on positions (i.e. w1 ≪ w2 iff w1 is lexiographically less than w2). Assume also
an arbitrary but fixed ordering �� on names. An ordering on ecores can then
be defined as follows.

Definition 19 (Ordering of ecores). Let ϕ = (νñ){Mi/xi}i∈I be any frame
and let (N1, w1, i1), (N2, w2, i2) ∈ ecores(ϕ). Define N1 � N2 iff either of the
following hold:

1. i1 < i2.

2. i1 = i2 and w1 ≪ w2

3. w2 = i2 = and w1 6= and i1 6=
4. w1 = i1 = w2 = i2 = and N1 �� N2

Informally, order between parent terms has highest priority, position within
identical terms has second priority, and ordering on (free) names has third
priority.

From now on we will consider ecores as sequences (ordered by �) expressed
using the notation ecores(ϕ) = N1, . . . , Nk, or ecores(ϕ) = (N)i∈J , but will
still take the liberty of using set-theoretic notions such as membership. The
specifics in the definition of � will play no further role; it has been given above
in order to demonstrate that an ordering is indeed possible and well-defined.

3.2.5 Correlated Variables

In the refined definition of strong static equivalence to be given in the next
section, we shall consider not only appropriate relationships (such as equality
and rewrites) between cores, but also relationships between contexts over cores.
In order to limit the complexity of this refined definition and subsequently give
a construction of finite characteristic formula, it is crucial that we only consider
a restricted class of contexts. To that end we start by defining the notion of
correlation between positions and variables in a context.

Definition 20 (Correlated positions and variables). Let L[z̃] > R[z̃] be
a rewrite rule and let C[ỹ] be a context which is unifiable with L[z̃]. Let wi

and wj be two positions in C[ỹ] and let w′i and w′j be the longest prefixes of wi,
respectively wj, such that the position w′i, respectively w′j , exists in L[z̃]. We
then say that wi and wj are strongly correlated, written wi � wj , if v(C[z̃]|w′i)∩

34



3.2. INITIAL DEFINITIONS

v(C[z̃]|w′j ) 6= ∅. If z ∈ v(C[z̃]|w′i)∩ v(C[z̃]|w′j ) we further say that wi and wj are
correlated through z and write wi �z wj .

Strong correlation is a reflexive and symmetric binary relation. Define weak
correlation, 
, to be the transitive closure of strong correlation and say that
wi, wj are weakly correlated if wi 
 wj .

For each pair of variables yi, yj ∈ v(C[ỹ]) let w̃i and w̃j be the positions
of yi and yj in C[ỹ], respectively (there will be multiple positions if a variable
has multiple occurrences). We then say that yi and yj are strongly (respectively
weakly) correlated if every wi ∈ w̃i is strongly (respectively weakly) correlated to
every wj ∈ w̃j.

Correlation is always relative to both a context and a rewrite rule. The
definition may seem a little technical at first, but it really just pins down the
natural idea that correlated variables are the ones which depend on each other
in rewrites. Let us consider an example.

Example 3.2.8. Consider the following extended public key rewrite rule from
the theory Epub2 (introduced first in Example 2.2.4):

dec(enc(z1, f(z2+, z3
+)), f(z−2 , z

−
3 )) > z1

and the context
dec(enc(y1, y2), f(y3, y−4 ))

Then y1 is neither strongly nor weakly correlated to any other variables. y3 and
y4 are strongly correlated to y2 but not to each other. They are however weakly
correlated to each other.
Suppose now that the instance dec(enc(N1, N2), f(N3, N

−
4 )), where N1, . . . , N4

are some cores, is an instance of the LHS of the above rewrite rule and hence is
reducible. The fact that y1 is not correlated to any other variables means that
we can substitute N1 for any other term N ′

1 and the the rewrite will still be
possible. If instead we substitute N2 for some N ′

2 the rewrite may no longer be
possible, since correlation between y2 and the other variables dictates a syntactic
constraints on N2 in relation to the other cores (for instance N2 must contain
N3 and N4 as subterms).

The last example demonstrated how rewrites intuitively depend only on the
instantiation of correlated variables. The notion of correlation can therefore be
used to define the type of contexts which are relevant for the upcoming refined
definition of static equivalence. The contexts which we are interested in for
this purpose are the simplest contexts (in a certain precise sense) in which all
variable positions are correlated; this intuition is formalised in the following
definition of partitioning contexts.

Definition 21 (Partitioning Contexts). A context C⊥[ỹ] is a partitioning
context if it is unifiable with the LHS of some rewrite rule L[z̃] > R[z̃] and all
of the following hold:

1. yi 
 yj for all yi, yj ∈ v(C⊥[ỹ]).
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2. C⊥[ỹ]|w = ⊥ implies L[z̃]|w = z for all w and some z ∈ v(L[z̃]).

3. w 6
 wi for all positions w and wi where C⊥[ỹ]|w = ⊥ and C⊥[ỹ]|wi = yi

for some yi ∈ v(C⊥[ỹ]).

The first condition says that all variables in the context must be weakly
correlated. The second condition says that all occurrences of ⊥ must unify
trivially with a variable in the rewrite rule. And the third condition says that
no variables are correlated to any occurrence of ⊥; this is a way of expressing
that the context is maximal in the sense that it cannot be extended with further
variables.

Example 3.2.9. Consider again the extended public key rewrite rule from
Epub2:

dec(enc(z1, f(z2+, z3
+)), f(z−2 , z

−
3 )) > z1

Then the following are examples of contexts which can easily verified to be
partitioning:

• dec(enc(y1,⊥+,⊥+)), f(⊥−,⊥−)).

• dec(enc(⊥, y1), f(y2, y−3 )).

• dec(enc(⊥, f(⊥+, y1
+)), f(⊥−, f(y2)−)).

The following are examples of contexts which are not partitioning:

• dec(enc(y1, y2), f(y3, y−4 )) is not partitioning because y1 is not strongly
correlated to any of the other variables (so condition 1 fails).

• dec(enc(f(⊥), f(y1+,⊥+)), f(y2,⊥−)) is not partitioning because the first
position of ⊥ does not match the position of z1 (so condition 2 fails).

• dec(enc(⊥, f(⊥+,⊥+)), f(y2,⊥−)) is not partitioning because there is a
related context with more correlated variables which is partitioning, e.g.
dec(enc(⊥, f(y1,⊥+)), f(y−2 ,⊥−)) (so condition 3 fails).

The term partitioning context is chosen because correlation is an equivalence
relation and hence partitions variables into equivalence classes; all variables in
a partitioning context are then in the same equivalence class. Moreover, each
equivalence class gives rise to a generated partitioning context, as defined next.

Definition 22 (Generated Partitioning Contexts). Let C[ỹ] be some con-
text which unifies with the LHS of some rewrite rule L[z̃] >r R[z̃] and let
ỹ1, . . . , ỹk be the partition of ỹ under 
.

Then each equivalence class ỹi generates a (unique) partitioning context
C⊥

i [ỹi] defined as follows:

1. C⊥
i [ỹi] is a partitioning context with respect to the rewrite rule r.

36



3.3. THE REFINED DEFINITION

2. If C⊥[ỹ]|w = y then C⊥
i [ỹi]|w = y for all y ∈ ỹi and for all positions w.

Example 3.2.10. Take again the rewrite rule extended public key rewrite rule
from Epub2

dec(enc(z1, f(z2+, z3
+)), f(z−2 , z

−
3 )) >r z1

and consider the following context which unifies with the LHS of this rule:

dec(enc(y1, y2), f(y3, y−4 ))

As we saw in an earlier example there are two variable equivalence classes,
ỹ1 = {y1} and ỹ2 = {y2, y3, y4}. They generate the following two partitioning
contexts:

C⊥
1 [ỹ1] = dec(enc(y1, f(⊥+,⊥+)), f(⊥−,⊥−))

C⊥
2 [ỹ2] = dec(enc(⊥, y2), f(y3, y−4 ))

In words, if L[z̃] >r R[z̃] is a rewrite rule and the context C[ỹ] unifies with
L[z̃], then the partitioning context generated from the equivalence class ỹi is
obtained by preserving the part of C[ỹ] which contains ỹi and simplifying the
rest with ⊥ to match L[z̃]. So intuitively, any generated partitioning context will
also unify with L[z̃]. Furthermore, if C[Ñ ] (i.e. the context instantiated with
cores) unifies with L[z̃], then so will the instance Ci[Ñ ] of every genererating
partitioning context. This observation will play a key role in the proofs to be
given later in the report.

3.3 The Refined Definition

In this section a refined definition of strong static equivalence which is amenable
to the construction of characteristic formulae will be given based on the notions
introduced in the last section.

First recall from Subsection 2.2.1 that a term M1 is less general than a
term M2 if there is some substitution θ such that M1 = M2θ; if this is the
case, we write M1 @ M2 in the following. Similarly, we say that M1 is more
general than M2, written M1 A M2, if there exists some substitution θ such
that M2 = M1θ. Finally, we shall write M1�M2 to mean that M1 and M2 are
unifiable but neither is more or less general than the other, i.e. there exists a
unifying substitution θ such that M1θ = M2θ, M1 6A M2 and M1 6@ M2.

We shall mainly be interested in asserting generality on contexts in relation
to the LHS of some rewrite rule. For this purpose we also define @, A and �
as unary relation symbols, and write e.g. C[ỹ]� if there exists a rewrite rule
L[z̃] >r R[z̃] in the relevant TRS such that C[ỹ]�L[z̃] (and similarly for @ and
A). With these notions we are now ready to state the refined definition of strong
static equivalence.
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Definition 23 (Refined Strong Static Equivalence). Let ϕ ≡ (νñ){Mi/xi}i∈I

and ϕ′ ≡ (νñ){M ′
i/xi}i∈I be two frames with ecores(ϕ) = (N)j∈J , ecores(ϕ′) =

(N ′)j∈J . Then ϕ and ϕ′ are strong statically equivalent, written ϕ ≈′
ss ϕ

′, if
dom(ϕ) = dom(ϕ′) and each of the following conditions hold:

1. For each i ∈ I there is some context C[ỹ] such that

• Mi = C[Ñ ]

• M ′
i = C[Ñ ′]

2. For any context C[ỹ] and for all j ∈ J it holds that

C[Ñ ] = Nj ⇔ C[Ñ ′] = N ′
j

3. For any partitioning context C⊥
1 [ỹ] where C⊥

1 [ỹ] A or C⊥[ỹ]� it holds for
all C⊥

2 [ỹ] that

C⊥
1 [Ñ ] >r C

⊥
2 [Ñ ] ⇔ C⊥

1 [Ñ ′] >r C
⊥
2 [Ñ ′]

Condition 1 requires that each Mi ∈ im(ϕ) and M ′
i ∈ im(ϕ′) are equal up

to ecores. For this to be well defined, there must be at least one context C[ỹ]
such that Mi = C[Ñ ], i.e. all terms in a frame can be written as a context over
ecores. This fact is established in the following easy lemma; indeed a slightly
stronger result is proven, namely that any analysis term can be written as a
context over ecores.

Lemma 1. Let ϕ be any frame with ecores(ϕ) = (N)j∈J . Then for any M ∈
A(ϕ) there exists a context C[ỹ] such that M = C[Ñ ].

Proof. By induction in the height of the parse tree of M .
Basis. Then M = a for some name a. If a ∈ bn(ϕ) then a = Nj for

some ecore Nj since a can only be included in the analysis by revelation and a
cannot be further reduced by revelation. Hence the context is the trivial context
Ci[ỹ] = yj . If a ∈ fn(ϕ) then a is per definition an ecore, so again the context
is the trivial context.

Step. If M is an ecore, i.e. M = Nj for some j ∈ J , then the context is
the trivial context Ci[ỹ] = yj . Otherwise it follows from the definition of ecores
that there must be some context C[x1, . . . , xk] and terms M1, . . . ,Mk ∈ A(ϕ)
such that M = C[M1, . . . ,Mk]. Applying the induction hypothesis to each Mi

we get that Mi = Ci[Ñ ] for some context Ci[ỹ] and Ñ ⊆ ecores(ϕ). Hence
M = C[C1[Ñ ], . . . , C2[Ñ ]] which concludes the proof.

This lemma, together with condition 2, gives that condition 1 in fact holds
for all contexts.

One may fear that this refined definition ≈′
ss is no better than ≈ss, since

conditions 2 and 3 contain universal quantifications over contexts. When con-
structing characteristic formulae for a frame ϕ it is necessary to express both
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which equalities from condition 2 on the form C[Ñ ] = Nj do hold, but also
which do not hold. The key point here is that there are only finitely many
equalities on the form C[Ñ ] = Nj which do hold since there are only a finite
number of cores each of finite size. We will see in the next chapter how an
appropriate semantics for quantifiers in our first-order logic of frames will allow
us to give a finite formulae expressing all the negative equalities.

A similar concern arises in condition 3. There are only finitely many par-
titioning contexts which are more general than the LHS of some rewrite rule,
but there are infinitely many contexts which are unifiable with, but neither
less general than nor more general than, the LHS of some rewrite rule. Take
for example the public key rewrite rule; then the following infinite sequence of
partitioning contexts satisfy this:

dec(enc(⊥, y1), y2),
dec(enc(⊥, y1+), y2),

dec(enc(⊥, f(y1)
+), y2),

dec(enc(⊥, f(f(y1))
+), y2),

. . .

The key point is that because the contexts are partitioning contexts and because
there are only finitely many many cores, there are a finite number of instantia-
tions which are reducible. Quantification in the logic will then allow us to give
finite formulae expressing all the instantiations which are not reducible.

If we had also included in condition 3 contexts which are less general than the
LHS of some rewrite rule, then the situation would be different. For there would
be infinitely many instantiations of this kind of context which are reducible as
well as infinitely many instantiations which are not reducible. Luckily these
contexts need not be taken into account explicitly in the definition, for as we
shall see later a rewrite condition for this kind of context follows from condition
2.

3.4 Examples

The conditions in ≈′
ss have been carefully devised with the aim that ≈′

ss and ≈ss

should coincide. That this is indeed the case is not trivially obvious. The next
section develops a proof of coincidence between the two definitions, but first we
proceed in this section with some motivating examples which shed some light
onto the workings of the refined definition and gives us confidence in its sanity.
The examples will be based on the theories of symmetric key encryption Esym,
public key encryption Epub and extended public key encryption Epub2 which were
introduced in Chapter 2. Whenever we consider two frames ϕ and ϕ′ we will
let Ni range over ecores(ϕ) and N ′

i range over ecores(ϕ′).
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Example 3.4.1. Consider the following frames in the theory Esym:

ϕ = (νa, k, c){enc(enc(a,k),c)/x1, c/x2}
ϕ′ = (νa, k, c){enc(enc(enc(a,k),k),c)/x1, c/x2}

These are clearly strong statically equivalent, and indeed all the conditions of
≈′

ss are satisfied. The ecores are as follows:

N1 = enc(a, k) N ′
1 = enc(enc(a, k), k)

N2 = c N ′
2 = c

This illustrates the intuition that the two frames are equal up to ecores (i.e.
condition 1 holds) and that ecores cannot be distinguished by testing syntactic
equality or by testing reductions.

Example 3.4.2. Consider the following frames, again in the theory Esym, which
are identical to the frames from the last example except an unknown key k in
ϕ′ has been replaced by a known key c:

ϕ = (νa, c, k){enc(enc(a,k),c)/x1, c/x2}
ϕ′ = (νa, c, k){enc(enc(enc(a,k),c),c)/x1, c/x2}

This change results in the two frames not being strong statically equivalent
because the equality

x1 =E enc(dec(dec(x1, x2), x2), x2)

holds in ϕ′ but not in ϕ. The ecores of the two frames are

N1 = enc(a, k) N ′
1 = enc(a, k)

N2 = c N ′
2 = c

Condition 1 of ≈′
ss then captures the difference between the two frames because

the first term from ϕ can only be written as enc(N1, N2) while the first term
from ϕ′ can only be written as enc(enc(N1, N2), N2), and the relevant contexts
are thus not the same. Note however that the cores in the two frames are exactly
the same (namely a and c), so ϕ and ϕ′ could not have been distinguished using
only condition 2 and 3 in ≈′

ss. Hence condition 1 is strictly necessary.

Example 3.4.3. Consider the following frames in the theory Epub, which are
similar to the frames from the previous example except that they use public key
encryption instead of symmetric key encryption:

ϕ = (νa, c, k){enc(enc(a,k+),c+)/x1, c−/x2}
ϕ′ = (νa, c, k){enc(enc(enc(a,k+),c+),c+)/x1, c−/x2}

This time the two frames should not be strong statically equivalent because the
term

dec(dec(x1, x2), x2)
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can reduce in two steps in ϕ′ but only in one step in ϕ. The public key k+ is
not in the analysis of the above frames, so the ecores are given as follows:

N1 = enc(enc(a, k+), c+) N ′
1 = enc(enc(enc(a, k+), c+), c+)

N2 = enc(a, k+) N ′
2 = enc(enc(a, k+), c+)

N ′
3 = enc(a, k+)

N4 = c− N ′
4 = c−

(note that N3 does not exist in ϕ). The two frames are then distinguished
by condition 3 which fails because dec(N ′

2, N
′
4) > N ′

3, while this does not hold
for the corresponding cores from ϕ. Note that the context employed in this
reduction is valid for use in condition 3 of ≈′

ss (it is partitioning and less general
than the LHS of the decryption rule).

Note also that condition 1 in ≈′
ss cannot be used to distinguish the two

frames as it could in the previous example. For the empty trivial context C[ỹ] =
y1 satisfies condition 1: M1 = N1 and M ′

1 = N ′
1.

This example thus illustrates the crucial role of extended cores and their
contained inaccessible terms: if k+ were not retained in an ecore then no rewrite
could distinguish ϕ and ϕ′.

Example 3.4.4. Consider the following very simple frames (in any theory with
hash functions f(·) and g(·)) where the name a is free:

ϕ = {f(a)/x}
ϕ′ = {g(a)/x}

These frames are not strong statically equivalent because the equality f(a) = x
holds in ϕ but not in ϕ′. An environment can test this equality because the
name a is free.

Recall now that we have defined free names to be ecores and hence we have
that

N1 = f(a) N ′
1 = g(a)

N2 = a N ′
2 = a

and condition 2 can now be used to distinguish the two frames since f(N2) = N1

holds but f(N ′
2) = N ′

1 does not.
This example hence illustrates the necessity of condition 2 and that taking

contexts into account is indeed necessary. If condition 2 were weakened to
require only that two cores Ni and Nj are equal if and only if N ′

i and N ′
j are

equal (as in [9]), frames involving hash functions akin to ϕ and ϕ′ would not be
distinguished. This would have wide implications for any theories which may
exhibit hash-like behaviour, such as public key encryption would do in cases
where a public key is known but the corresponding private key is not.
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Example 3.4.5. Consider the following frames (in a theory with pairing, e.g.
Esym):

ϕ = (νa, b){ [a,b]/x1, [a,b]/x2}
ϕ′ = (νa, b){ [a,b]/x1, [b,a]/x2}

These are not strong statically equivalent because fst(x1) =E fst(x2) holds in
ϕ but not in ϕ′. Again this is captured by the the second condition of ≈′

ss; we
have that

N1 = a N ′
1 = a

N2 = b N ′
2 = b

N3 = a N ′
3 = b

N4 = b N ′
4 = a

so N1 = N3 but N ′
1 6= N ′

3. Hence, here the relevant context is just the trivial
context y1 instantiated to the core N1. It follows that condition 2 also requires,
as a special case, that whenever two cores in ϕ are equal, the corresponding
cores in ϕ′ must also be equal. This example also serves to illustrate than an
ordering on cores is indeed necessary.

Example 3.4.6. Consider the following frames in a theory with hash functions
f(·) and g(·):

ϕ = (νa, b){f(a)/x1, g(b)/x2}
ϕ′ = (νa, b){a/x1, b/x2}

These are clearly strong statically equivalent, and it is easy to see that all
conditions of ≈′

ss hold. Suppose however that we are working in a theory with
the rewrite rule

f(z1) + g(z2) >r f(z1)

In that case ϕ 6≈s ϕ
′ since the equality x1 + x2 =E x1 holds in ϕ but not in ϕ′.

This example serves to illustrate the need for condition 3 which captures this
equality, and without which the two frames would be strong statically equivalent
according to the new definition.

3.5 Summary

We have given a refined version of strong static equivalence which goes some of
the way towards a construction of characteristic formulae, although the refined
definition still relies on quantification over a certain type of contexts (namely
partitioning contexts).
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In support of the refined definition, we have introduced a number of concepts:
revelation is a binary relation which expresses when a term can reveal one of its
subterms (e.g. by decryption with an appropriate key); the analysis of a frame
is is the set of terms obtained by repeated revelation from the frame; cores are
the terms from the analysis which are minimal under revelation; ecores are an
extension of cores with additional information indispensable for deciding strong
static equivalence; correlated variables and partitioning contexts are required
to bound the number of contexts considered in the refined definition of strong
static equivalence.

Finally, a number of examples have been given which have strengthened our
belief in the refined definition of strong static equivalence.
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Chapter 4

Results On The Refined
Definition

The refined definition of strong static equivalence, ≈′
ss, presented in the previous

chapter has been devised with the intention that it should coincide with ≈ss. In
this chapter we prove that this indeed is the case. Section 1 shows one direction,
namely that ≈′

ss implies ≈ss (or more precisely that ≈′
ss⊆≈ss), while Section 2

shows the other direction that ≈ss implies ≈′
ss (≈ss⊆≈′

ss).
We have already seen that ≈ss and ≈s do not coincide in general. But

in theories in which inaccessible terms do not exist, including symmetric key
theories and public key theories where public keys are always known, they do
coincide. We show this result in Section 3.

4.1 ≈′
ss implies ≈ss

The main theorem of this section states that ≈′
ss implies ≈ss. In order to prove

this result a number of preliminary lemmas are required. One of the key lemmas
states that if ϕ ≈′

ss ϕ then it holds for any contexts C1[ỹ] and C2[ỹ] that

C1[Ñ ] =E C2[Ñ ] ⇔ C1[Ñ ′] =E C2[Ñ ′]

The proof of this in turn relies on a lemma stating that rewrites are preserved
by substitution of cores:

C1[Ñ ] > C2[Ñ ] ⇔ C1[Ñ ′] > C2[Ñ ′]

and a lemma stating that syntactic equality is preserved by substitution of cores:

C1[Ñ ] = C2[Ñ ] ⇔ C1[Ñ ′] = C2[Ñ ′]

We start by attacking the latter result, which is expressed formally in the fol-
lowing lemma.
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Figure 4.1: Illustration of the two cases and the terms involved.
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(a) The first case.
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−− ∗ ∗ ∗ ∗ ∗︸ ︷︷ ︸−−

discrepancy at w

−−]

(b) The second case.

Lemma 2. Let ϕ and ϕ′ be two frames with ϕ ≈′
ss ϕ

′, ecores(ϕ) = (N)j∈J and
ecores(ϕ′) = (N ′)j∈J . It then holds for any contexts C1[ỹ] and C2[ỹ] that

C1[Ñ ] = C2[Ñ ] ⇔ C1[Ñ ′] = C2[Ñ ′]

Proof. We show the direction from left to right; the converse is symmetric.
Suppose that C1[Ñ ] = C2[Ñ ] and suppose for a contradiction that C1[Ñ ′] 6=
C2[Ñ ′]. Then the two contexts must differ at some position, so let w be a
position of greatest length such that C1[Ñ ′]|w 6= C2[Ñ ′]|w. Now there must be
a prefix w′ of w and an ecore N ′

j such that either C1[Ñ ′]|w′ = N ′
j or C2[Ñ ′]|w′ =

N ′
j ; for otherwise C1[Ñ ] 6= C2[Ñ ], contrary to assumption. Suppose the former

without loss of generality, i.e. N ′
j is an ecore in the first context which captures

the discrepancy between the LHS and the RHS. There are now two cases to
consider – each is illustrated in Figure 4.1 and covered below.

1. There is some context C[ỹ] such that C2[ỹ]|w′ = C[ỹ]. Since C1[Ñ ′]|w′ 6=
C2[Ñ ′]|w′ per choice of w′ we then have that N ′

j 6= C[Ñ ′]. Condition 2 in
the definition of ≈′

ss gives that also Nj 6= C[Ñ ], i.e. C1[Ñ ]|w′ 6= C2[Ñ ]|w′ .
Hence C1[Ñ ] 6= C2[Ñ ], giving the desired contradiction.

2. The position w′ does not exist in C2[ỹ], i.e. C2[Ñ ′]|w′ is a subterm of some
core N ′

i in C2[Ñ ′]. Then there is some prefix w′′ of w and context C[ỹ]
such that N ′

i = C2[Ñ ′]|w′′ . Also, there is some context C∗
1 [ỹ] such that

C1[Ñ ′]|w′′ = C∗
1 [Ñ ′]. We have that C1[Ñ ′]|w′′ 6= C2[Ñ ′]|w′′ and hence that

C∗
1 [Ñ ′] 6= N ′

i . The contradiction is then obtained in the same manner as
for case 1.

Next we turn our attention to showing that arbitrary rewrites are preserved
by substitution of ecores. This is accomplished in three steps:

1. Show that primitive rewrites on any partitioning context is preserved by
substitution of ecores. Condition 3 in ≈′

ss gives that this result holds for
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any partitioning contexts which are not more specific than the LHS of
some rewrite rule. We rely on condition 2 to show that substitution of
ecores also works for partitioning contexts which are more specific than
the LHS of some rewrite rule.

2. Show that primitive rewrites on any context (i.e. not necessarily parti-
tioning) are preserved by substitution of ecores. For this we rely on the
notion of generated partitioning contexts.

3. Show that any rewrites (i.e. not necessarily primitive) on any context are
preserved by substitution of ecores.

Each of the three steps is covered by a separate lemma.

Lemma 3. Let ϕ and ϕ′ be two frames with ϕ ≈′
ss ϕ

′, ecores(ϕ) = (N)j∈J and
ecores(ϕ′) = (N ′)j∈J . It then holds for any partitioning context C⊥

1 [ỹ] and any
context C⊥

2 [ỹ] that:

C⊥
1 [Ñ ] >r C

⊥
2 [Ñ ] ⇔ C⊥

1 [Ñ ′] >r C
⊥
2 [Ñ ′]

Proof. We show the direction from left to right; the converse is symmetric.
Suppose that C⊥

1 [Ñ ] >r C
⊥
2 [Ñ ] by virtue of rule r : L[z̃] >r R[z̃]. If C⊥

1 [Ñ ] A
L[z̃] or C⊥

1 [Ñ ]�L[z̃] the result follows immediately from condition 3 in ≈′
ss, so

suppose that C⊥
1 [Ñ ] @ L[z̃]

Per definition of primitive rewrites and the assumption that C⊥
1 [ỹ] is less

general than L[z̃], there exists a substitution θ = {Ti/zi}i∈I such that C⊥
1 [Ñ ] =

L[z̃]θ and C⊥
2 [Ñ ] = R[z̃]θ. It must be shown that there is some substitution

θ′ such that C⊥
1 [Ñ ′] = L[z̃]θ′ and C⊥

2 [Ñ ′] = R[z̃]θ′. Say that there are k
occurrences of zi in L[z̃]. Then since each position wj of an occurrence of zi

(i.e. with L[z̃]|wj = zi) also exists in C⊥
1 [ỹ], the subterm C⊥

1 [Ñ ]|wj is in fact a
context over ecores. Hence we have that

Ti = C⊥
1 [Ñ ]|w1 =, . . . ,= C⊥

1 [Ñ ]|wk

and it follows by Lemma 2 that also

T ′i = C⊥
1 [Ñ ′]|w1 =, . . . ,= C⊥

1 [Ñ ′]|wk

Hence C⊥
1 [Ñ ′] and C⊥

2 [Ñ ′] are instances of L[z̃] and R[z̃] respectively, with
unifying substitution θ′ = {T ′i/zi}i∈I .

Lemma 4. Let ϕ and ϕ′ be two frames with ϕ ≈′
ss ϕ

′, ecores(ϕ) = (N)j∈J and
ecores(ϕ′) = (N ′)j∈J . It then holds for any contexts C1[ỹ] and C2[ỹ] that

C1[Ñ ] >r C2[Ñ ] ⇔ C1[Ñ ′] >r C2[Ñ ′]

Proof. We show the direction from left to right; the converse is symmetric.
Suppose that C1[Ñ ] >r C2[Ñ ] by virtue of some rewrite rule L[z̃] >r R[z̃], i.e.
C1[Ñ ] is an instance of L[z̃]. This also means that C1[ỹ] and L[z̃] are unifiable
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with some unifying substitution θ = {Ta/za}a∈A{Sb/yb}b∈B. C1[Ñ ] satisfies the
constraints in θ in the sense that if e.g. θ = {f(y1)/y2} then it must hold that
N2 = f(N1). In general, the substitution θ can be viewed as a set of constraints
which must be satisfied in order for any instance of C1[ỹ] to be reducible.

Let ỹ1, . . . , ỹk be the partition into equivalence classes of ỹ with respect to

. The key observation is that whenever C1[Ñ ] is an instance of L[z̃] it also
holds for every generated partitioning context C⊥

i [ỹi] that C⊥
i [Ñi] is an instance

of L[z̃]. To see this, let θi be the unifying substitution for C⊥
i [ỹ] and L[ỹ] (a

such exists per definition of partitioning contexts). Suppose for a contradiction
that C⊥

i [Ñ ] does not satisfy the constraints in θi. Any variable z ∈ z̃ which
does not join correlated variables unifies trivially with some ⊥ per construction
of partitioning contexts. So the only constraint which can fail is a constraint
on some of the ecores in C⊥

i [Ñ ]. But these constraints are inherited from θ
and hence also fail for C1[Ñ ]. This contradicts the assumption that C1[Ñ ] is an
instance of L[̃].

Now suppose for a contradiction that that C1[Ñ ′] 6>r C2[Ñ ′], i.e. some
constraints in θ fail for this instantiation. Then there must be a generated
partitioning context C⊥

i [ỹ] such that C⊥
i [Ñ ′] fails some of the same constraints

in θ, i.e. C⊥
i [Ñ ′] 6>r. By Lemma 3 it also holds that C⊥

i [Ñ ] 6>r, contrary to the
observation above.

We conclude that also C1[Ñ ′] >r C2[Ñ ′] as desired.

Lemma 5. Let ϕ and ϕ′ be two frames with ϕ ≈′
ss ϕ

′, ecores(ϕ) = (N)j∈J and
ecores(ϕ′) = (N ′)j∈J . It then holds for any contexts C1[ỹ] and C2[ỹ] that

C1[Ñ ] > C2[Ñ ] ⇔ C1[Ñ ′] > C2[Ñ ′]

Proof. We show the direction from the left to right; the converse follows by
symmetry. So suppose that C1[Ñ ] > C2[Ñ ]. Per definition of the rewrite rela-
tion, there is some subterm C1[Ñ ]|w which matches the redex of a rewrite rule
r and therefore rewrites primitively: C1[Ñ ]|w >r C1[Ñ ]|w2 (note that the redex
must also be a context over ecores since we are working in subterm theories).
Then C2[Ñ ] = C1[Ñ ]{C1[Ñ ]|w2/C1[Ñ]|w}. By Lemma 4 C1[Ñ ′]|w >r C1[Ñ ′]|w2

and by Lemma 2 also C2[Ñ ′] = C1[Ñ ′]{C1[Ñ ′]|w2/C1[Ñ ′]|w}. We then conclude,
per definition of the reduction relation, that C1[Ñ ′] > C2[Ñ ′].

We are now ready to state the main lemma of this section, namely that
equality is preserved by substitution of ecores from statically equivalent frames.

Lemma 6. Let ϕ and ϕ′ be two frames with ϕ ≈′
ss ϕ

′, ecores(ϕ) = (N)j∈J and
ecores(ϕ′) = (N ′)j∈J . It then holds for any contexts C1[ỹ] and C2[ỹ] that

C1[Ñ ] =E C2[Ñ ] ⇔ C1[Ñ ′] =E C2[Ñ ′]

Proof. We show the implication from left to right (the converse then follows
by symmetry), so suppose that C1[Ñ ] =E C2[Ñ ]. Since the relation =E coin-
cides with <>∗ (the reflexive, symmetric and transitive closure of the rewrite
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relation), we also have that C1[Ñ ] <>∗ C2[Ñ ]. Since we are working with con-
vergent theories there is a C3[Ñ ] = C1[Ñ ] ↓= C2[Ñ ] ↓. Hence it holds that
C1[Ñ ] >k1 C3[Ñ ] and C2[Ñ ] >k2 C3[Ñ ] for some k1, k2 ∈ N. We will show that
these reduction sequences are preserved by substitution of ecores from ϕ′, i.e.
that also C1[Ñ ′] >k1 C3[Ñ ′] and C2[Ñ ′] >k2 C3[Ñ ′].

We give a proof of the first case by induction in k1. Basis (k1 = 0). Then
we have that C1[Ñ ] = C3[Ñ ], and it follows by Lemma 2 that also C1[Ñ ′] =
C3[Ñ ′]. Step (assume for k1, prove for k1 + 1). In this case we have
that C1[Ñ ] > M >k1 C3[Ñ ] for some M . The crucial point is that M can be
written as a context over ecores since it is a subterm of a context over ecores,
i.e. M = C4[Ñ ] for some C4[ỹ]. So we have that C1[Ñ ] > C4[Ñ ] >k1 C3[Ñ ]. By
Lemma 5 it also holds that C1[Ñ ′] > C4[Ñ ′]. The induction hypothesis gives
that C4[Ñ ′] >k1 C3[Ñ ′]. Hence C1[Ñ ′] >k1+1 C3[Ñ ′] as desired.

The proof that C2[Ñ ′] >k2 C3[Ñ ′] is identical. It follows immediately that
C1[Ñ ′] ↓= C2[Ñ ′] ↓ and by assumption of convergent subterm theories that
C1[Ñ ′] <>∗ C2[Ñ ′]. Hence also C1[Ñ ′] =E C2[Ñ ′], which concludes the proof.

The above proof relies crucially on confluence for working on>∗ instead of on
<>∗. It would be impossible to carry out the induction on reduction sequences
on the form C1[Ñ ] <>∗ C2[Ñ ]. For suppose the first step in this sequence is
C1[Ñ ] < M <>∗ C2[Ñ ]. Then it would not necessarily be possible to write
M as a context over ecores; for example we might have that a < fst [a, b] <>∗

snd [b, a] where b is private in ϕ and where fst[a, b] therefore cannot be written
as any context over ecores. Consequently neither Lemma 2 nor the induction
hypothesis can be applied.

One might also attempt to give an alternative proof directly from the def-
inition of =E ; this would go by induction in the height of the proof tree of
the equality C1[Ñ ] =E C2[Ñ ]. However this approach presents some difficul-
ties. First of all, there is a universal quantification over substitutions in the
Substitution rule. This can be overcome by replacing the Substitution and
the Rewrite rule with the following new rule:

(Primitive Rewrite)

M1 =E M2
if M1 >r M2

It is easy to prove that the equational theory induced based on this new rule is
the same as the theory induced by the standard definition. Intuitively, instead
of instantiating variables at arbitrary positions in the proof of an equality, the
variable could just as well have been instantiated at time of introduction.

However one problem with an induction in the height of the proof tree of
C1[Ñ ] =E C2[Ñ ] remains, namely the transitivity case. The premises would
give that C1[Ñ ] =E M and M =E C2[Ñ ], but it is not necessarily possible to
write M as a context over ecores and thus the induction hypothesis does not
apply. There does not seem to be any easy solution to this problem, so a direct
proof on =E fails for this lemma.

We now arrive at the main result of this section:
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Theorem 1. ≈′
ss implies ≈ss.

Proof. Let ϕ ≡ (νñ){Mi/xi}i∈I and ϕ′ ≡ (νñ){M ′
i/xi}i∈I be two frames with

ϕ ≈′
ss ϕ

′ and let ecores(ϕ) = (N)j∈J and ecores(ϕ′) = (N ′)j∈J . We must show
that the two conditions in ≈ss both hold.

Condition 1 Let M1 and M2 be any two terms. We must show that (M1 =E
M2)ϕ ⇔ (M1 =E M2)ϕ′; we show the implication from left to right, as the
converse is symmetric. So suppose that (M1 =E M2)ϕ, i.e. n(M1,M2)∩bn(ϕ) =
∅ and M1ϕ =E M2ϕ. This means that M1 and M2 are in fact context over
variables from ϕ and some free names ñ, so we reason as follows:

M1ϕ =E M2ϕ

CM1 [xa1 , . . . , xas , ñ]ϕ =E CM2 [xb1 , · · · , xbt , ñ]ϕ m
CM1 [xa1ϕ, . . . , xasϕ, ñ] =E CM2 [xb1ϕ, · · · , xbtϕ, ñ] m
CM1 [Ma1 , . . . ,Mas , ñ] =E CM2 [Mb1 , . . . ,Mbt , ñ]

Condition 1 in the definition of ≈′
ss says that each M ∈ im(ϕ) can be written

as a context over ecores, and since each free name in ϕ is also an ecore we have
that ñ = Ñ and hence:

CM1 [Ca1 [Ñ ], . . . , Cas [Ñ ], Ñ ] =E CM2 [Cb1 [Ñ ], · · · , Cbt [Ñ ], Ñ ]

Next apply Lemma 6:

CM1 [Ca1 [Ñ ′], . . . , Cas [Ñ ′], Ñ ′] =E CM2 [Cb1 [Ñ ′], · · · , Cbt [Ñ ′], Ñ ′]

By condition 1 of ≈′
ss again, each context Cai [Ñ ′] is syntactically equal to the

corresponding term M ′
ai
∈ im(ϕ′). We also have that ecores which represent

free names are identical in the two frames. Hence:

CM1 [M
′
a1
, . . . ,M ′

as
, ñ] =E CM2 [M

′
b1 , . . . ,M

′
bt
, ñ]

CM1 [xa1ϕ
′, . . . , xasϕ

′, ñ] =E CM2 [xb1ϕ
′, · · · , xbtϕ

′, ñ] m
M1ϕ

′ =E M2ϕ
′

Finally, since bn(ϕ) = bn(ϕ′) we get that (M1 =E M2)ϕ′ as desired, concluding
the proof of condition 1 in ≈ss.

Condition 2. Let M be any term. We must show that (M >k
ϕ) ⇔ (M >k

ϕ′);
we do the implication from left to right as the converse follows by symmetry.
So suppose that (M >k

ϕ), i.e. n(M) ∩ bn(ϕ) = ∅ and there is some Mk such
that Mϕ >k Mk. In other words, there is a sequence of rewrites Mϕ > M1 >
· · · > Mk. As in the proof of condition 1 it follows by the condition on names
that M is in fact a context over terms from ϕ and free names, and we reason as
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follows:

Mϕ = CM [xa1 , · · · , xas , ñ]ϕ
= CM [xa1ϕ, · · · , xasϕ, ñ]
= CM [Ma1 , · · · ,Mas , ñ]

= CM [Ca1 [Ñ ], · · · , Cas [Ñ ], Ñ ]

Again the last step follows from condition 1 in the definition of ≈′
ss, which says

that each M ∈ im(ϕ) can be written as a context over ecores.
Since we are working in subterm theories, each of the reducts M i are sub-

terms of Mϕ and hence can also be written as a context over ecores and free
names. We then have the following sequence of rewrites:

CM [Ca1 [Ñ ], · · · , Cas [Ñ ], Ñ ] > C1[Ñ ] > · · · > Ck[Ñ ]

and by Lemma 5 the corresponding rewrites on ecores in ϕ′ also hold:

CM [Ca1 [Ñ ′], · · · , Cas [Ñ ′], Ñ ′] > C1[Ñ ′] > · · · > Ck[Ñ ′]

By condition 1 of ≈′
ss again, each context Cai [Ñ ′] is syntactically equal to the

corresponding term M ′
ai
∈ im(ϕ′), and the free names are the same in the two

frames:

CM [M ′
a1
, · · · ,M ′

as
, ñ] > C1[Ñ ′] > · · · > Ck[Ñ ′]

CM [xa1 , · · · , xas , ñ]ϕ′ > C1[Ñ ′] > · · · > Ck[Ñ ′] m
Mϕ′ > C1[Ñ ′] > · · · > Ck[Ñ ′]

Hence (M >k
ϕ′) as desired.

4.2 ≈ss implies ≈′
ss

The main theorem of this section states that ≈ss implies ≈′
ss. In order to prove

this result a number of preliminary lemmas are again required. One of the key
lemmas states that if ϕ ≈ss ϕ

′ then for each Nj ∈ ecores(ϕ) there is a context
R[x̃] over terms from im(ϕ) such that R[M̃ ] >k Nj and R[M̃ ′] >k N ′

j . The
context R[M̃ ] is coined the recipe of Nj since in records the details of how the
ecore Nj is revealed from terms in ϕ.

To make these ideas precise we start by giving a definition of recipes.

Definition 24 (Analysis recipe). Let ϕ be any frame and let M |w ∈ A(M,ϕ)
for some M ∈ im(ϕ). The analysis recipe R[x̃] for M |w is a context which is
defined inductively on the analysis level i as follows:

• M |w ∈ A0(Mi, ϕ). Then M |w = M and we define R[x̃] to be the trivial
context x where M = xϕ.
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• M |w ∈ Ai+1(Mi, ϕ). If also M |w ∈ Ai(Mi, ϕ) then the analysis recipe is
identical to the analysis recipe from level i. Otherwise, per definition of
analysis, there is some M |w2 ∈ Ai(M,ϕ) such that M |w2 �S

M∈S Ai(M,S)>

M |w (where S = im(ϕ)∪ fn(ϕ)), which per definition of revelation means
that there are L1, . . . , Lk each in Ai(M,ϕ) for some M ∈ im(ϕ), and a
destructor context D[x, x1, . . . , xk], such that D[M |w2 , L1, . . . , Lk] > M |w.
Choose D∗[x, x1, . . . , xk] to be any such context for which all subterms are
irreducible, i.e. only a primitive reduction is possible (such context will
always exist!). Let R[x̃] be the analysis recipe for M |w2 and let Rj [x̃] be
the analysis recipe for each Lj (these recipes are well-defined because M |w2

and the Ljs are in Ai(Mi, ϕ)). Then D∗[R[x̃],R1[x̃], . . . ,Rk[x̃]] is defined
to be the analysis recipe for M |w.

Analysis recipes are not necessarily unique since there may be two analysis
terms which are syntactically equal and hence both can be used for revelation in
the analysis. But this will not be important for our purpose. The next lemma
states that corresponding analysis terms from statically equivalent frames have
the same analysis recipes.

Lemma 7. Let ϕ ≡ (νñ){Mi/xi}i∈I, ϕ′ ≡ (νñ′){M ′
i/xi}i∈I with ϕ ≈ss ϕ

′. If
R[x̃] is an analysis recipe for Mi|w ∈ A(Mi, ϕ) then it is also an analysis recipe
for M ′

i |w ∈ A(M ′
i , ϕ

′) and there is a k ∈ N such that

R[M̃ ] >k Mi|w 6>
R[M̃ ′] >k M ′

i |w 6>

Proof. By induction in the definition of analysis recipes.
Basis (Mi|w ∈ A0(Mi, ϕ)). Trivial.
Step (Mi|w ∈ Ai+1(Mi, ϕ)). Per definition of analysis there is someMi|w2 ∈

Ai(Mi, ϕ) such that Mi|w2 �S
T∈S Ai(T,S)> Mi|w (where S = im(ϕ) ∪ fn(ϕ)),

which per definition of revelation means that there are L1, . . . , Ls each inAi(M,ϕ)
for some M ∈ im(ϕ), and a destructor context D[x, x1, . . . , xs], such that
D[Mi|w2 , L1, . . . , Ls] >Mi|w2 Mi|w.

Let R[x̃] be the analysis recipe for Mi|w2 and let Rj [x̃] be the analysis recipe
for each Lj. Then D[R[x̃],R1[x̃], . . . ,Rs[x̃]] is per definition an analysis recipe
for Mi|w.

Per induction hypothesis there is a k ∈ N such that R[M̃ ] >k Mi|w2 and
R[M̃ ′] >k M ′|w2 . Similarly there is a kj ∈ N such that Rj [M̃ ] >kj Lj and
Rj [M̃ ′] >kj L′j for each j. Hence we get that

D[R[M̃ ],R1[M̃ ], . . . ,Rs[M̃ ]] >l D[Mi|w2 , L1, . . . , Ls]

D[R[M̃ ′],R1[M̃ ′], . . . ,Rs[M̃ ′]] >l D[M ′
i |w2 , L

′
1, . . . , L

′
s]
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where l = k+k1 + · · ·+ks. Per definition of analysis recipes, exactly one further
rewrite is possible for the former contextD[Mi|w2 , L1, . . . , Ls], namely the prim-
itive rewrite. By condition 2 in ≈ss, exactly one rewrite is also possible for the
latter context D[M ′

i |w2 , L
′
1, . . . , L

′
s], and per definition of analysis recipes this

must be also be a primitive rewrite. Since Mi|w2 and M ′
i |w2 are the revelators

for the respective reductions and the reduct in the first case is Mi|w, the reduct
for the second case must correspondingly be Mi|w.

Finally, the induction hypothesis gives that R[x̃′] is also the analysis recipe
for M ′|w2 andRj [M̃ ′] is the analysis recipe for M ′

j for each j. Hence the context

D[R[x̃],R1[x̃], . . . ,Rs[x̃]]

is per definition also the analysis recipe for M ′
i |w. This concludes the proof.

The above result could be re-phrased in terms of “revelation bisimulation”;
informally, any two corresponding analysis terms from statically equivalent
frames can exhibit the same revelations and the revealed terms are bisimilar
(i.e. corresponding revelated terms can exhibit the same further revelations).
We will not pursue this direction further since it is not necessary for our pur-
poses, but the idea of revelation bisimulation does yield some insight into the
nature of static equivalence.

The next lemma is an immediate corollary of Lemma 7:

Lemma 8. Let ϕ and ϕ′ be two frames with ϕ ≈ss ϕ
′, ecores(ϕ) = (N)j∈J and

ecores(ϕ) = (N ′)j∈J . Then for any contexts C1[ỹ] and C2[ỹ] it holds that

C1[Ñ ] =E C2[Ñ ] ⇔ C1[Ñ ′] =E C2[Ñ ′]

Next we give two important results on the kind of contexts C⊥[ỹ] considered
in condition 3 of ≈′

ss. Informally, the first lemma says that every variable in
C⊥[ỹ] is strongly correlated to at least one variable at a position which exists in
the relevant rewrite rule. This is used in the proof of the second lemma, which
says that only primitive rewrites on C⊥[Ñ ] are possible.

Lemma 9. Let ϕ and ϕ′ be two frames with ϕ ≈ss ϕ
′, ecores(ϕ) = (N)j∈J and

ecores(ϕ) = (N ′)j∈J . Let C1[ỹ] be any partitioning context with C1[ỹ] A L[z̃]
or C1[ỹ]�L[z̃] for some rewrite rule L[z̃] >r R[z̃]. Then any variable position
w in C[ỹ] (i.e. a position such that C[ỹ]|w is a variable) is strongly correlated
to some variable position w′ which exists in L[z̃].

Proof. Let w be any position in C[ỹ]. There are two cases to consider.

1. w is weakly correlated to all other positions w′ in C[ỹ] only through a
single variable z in v(L[z̃]), i.e. w �k

z w′ for some natural number k.
Hence also w � w′, i.e. w and w′ are also strongly correlated. By the
assumption that C1[ỹ] A L[z̃] or C1[ỹ]�L[z̃], at least one of the positions
w′ exist in L[z̃], which concludes the first case.
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2. w is weakly correlated to some w′ through at least two variables z1 and
z2 in v(L[z̃]). In this case we have for some w′′ that w �k

z1
w′′ �z2 w

′.
Again this implies that w � w′. Since w′′ correlates through both z1 and
z2 this position must exist in L[z̃], which concludes the second case.

Lemma 10. Let ϕ be any frame with ecores(ϕ) = (N)j∈J . It then holds for
any partitioning context C⊥

1 [ỹ] with C⊥
1 [ỹ] A or C⊥

1 [ỹ]� and any context C⊥
2 [ỹ]

that
C⊥

1 [Ñ ] > C⊥
2 [Ñ ] ⇔ C⊥

1 [Ñ ] >r C
⊥
2 [Ñ ]

Proof. Let L[z̃] >r R[z̃] be the rewrite rule such that C1[ỹ] A L[z̃] or C1[ỹ]�L[z̃].
The direction from right to left is immediate from the definition of the rewrite
relation. For the converse first observe that any subterm C1[Ñ ]|w at a position
w which exists in L[z̃] is irreducible by the assumption of independent rewrite
systems (i.e. no destructor functions occur internally in rewrite rules). Con-
sequently any possible internal reduction must be at position w which exist in
C1[ỹ] but not in L[z̃]. But by Lemma 9 the position w is strongly correlated
to a position w′ which exists in L[z̃]. Therefore C1[Ñ ]|w must be a subterm of
some ecore and is hence irreducible.

We are now ready to show that ≈ss implies condition 3 in ≈′
ss.

Lemma 11. Let ϕ ≡ (νñ){Mi/xi}i∈I , ϕ′ ≡ (νñ′){M ′
i/xi}i∈I, ecores(ϕ) =

(N)j∈J , ecores(ϕ) = (N ′)j∈J and ϕ ≈ss ϕ
′. Let C⊥

1 [ỹ] be a partitioning context
with C⊥

1 [ỹ] A or C1[ỹ]�. It then holds for any context C⊥
2 [ỹ] that

C⊥
1 [Ñ ] >r C

⊥
2 [Ñ ] ⇔ C⊥

1 [Ñ ′] >r C
⊥
2 [Ñ ′]

Proof. We show the direction from left to right; the converse is symmetric.
Suppose that the rewrite C⊥

1 [Ñ ] >r C
⊥
2 [Ñ ] is possible by virtue of some rule

L[z̃] >r R[z̃]. We then have that C⊥
1 [Ñ ] =E C⊥

2 [Ñ ] and by Lemma 8 also
C⊥

1 [Ñ ′] =E C⊥
2 [Ñ ′]. The challenge is to show that the equality is in fact a

primitive rewrite, which is not immediately apparent. For it may be that the
equality is concluded by transitivity, i.e. multiple reduction steps are necessary.
Such multiple rewrites may also be possible in C1[Ñ ] even though they are not
necessary for establishing the equality, so we cannot use this to give a proof by
contradiction. We must take another approach.

Each ecore Nj and N ′
j is an analysis term so by Lemma 7 there is an analysis

recipe Rj [x̃] such that Rj [M̃ ] >kj Nj and Rj [M̃ ′] >kj N ′
j . As in the proof of

Lemma 7 we get that there is a context C⊥[x̃] such that C⊥[M̃ ] >l C⊥
1 [Ñ ] and

C⊥[M̃ ′] >l C⊥
1 [Ñ ′]. C⊥

2 [Ñ ] is irreducible by Lemma 10, so C⊥[M̃ ] normalises
in l + 1 reduction steps. By condition 2 in ≈ss exactly one further rewrite is
possible for C⊥[Ñ ′], for otherwise C⊥[M̃ ′] would have a different number of
reductions than C⊥[M̃ ]. Finally we have by Lemma 10 that this must be a
primitive rewrite.
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Technically one must require in the above argument that the reduction
C⊥[M̃ ] >l C⊥

1 [Ñ ] in l steps is maximal, i.e. that there is no longer reduction
sequence yielding the same reduct. Any maximal reduction must be a bottom-up
reduction in the sense that subterms are always reduced first. It follows that any
maximal reduction of C⊥[M̃ ] must be through C⊥

1 [Ñ ] and correspondingly that
any maximal reduction of C⊥[M̃ ′] must be through C⊥

1 [Ñ ′], which is necessary
for the soundness of the proof.

The next lemma states that ≈ss implies condition 2 in ≈′
ss.

Lemma 12. Let ϕ ≡ (νñ){Mi/xi}i∈I, ϕ′ ≡ (νñ′){M ′
i/xi}i∈I , ecores(ϕ) =

(N)j∈J , ecores(ϕ) = (N ′)j∈J and ϕ ≈ss ϕ′. It then holds for any context
C[ỹ] and any j ∈ J that

C[Ñ ] = Nj ⇔ C[Ñ ′] = N ′
j

Proof. Suppose that C[N1, . . . , Ns] = Nj. Each Ni has a recipe Ri[x̃], i.e.
Ri[M̃ ] >ki Ni where ki maximal. Hence

C[R1[M̃ ], . . . ,Rs[M̃ ]] =E Rj [M̃ ]

and by condition 1 in ≈ss also

C[R1[M̃ ′], . . . ,Rs[M̃ ′]] =E Rj [M̃ ′]

By Lemma 7 the recipe for each N ′
i is Ri[x̃], soRi[M̃ ′] >ki Ni where ki maximal

and we have that
C[N ′

1, . . . , N
′
k] =E N ′

j

The right hand side, N ′
j , is irreducible since it is an ecore. We then propose a

Claim: The left hand side is also irreducible. Given this claim, the equality is
syntactic by confluence, which concludes the proof.

Proof of claim. Suppose for a contradiction that the left hand side,
C[N ′

1, . . . , N
′
s], is not irreducible, i.e. we have for some M ′ that:

C[R1[M̃ ′], . . . ,Rs[M̃ ′]] >l C[N ′
1, . . . , N

′
k] > M ′

where l = k1 + . . . ks is maximal. Condition 2 in ≈ss then gives that also

C[R1[M̃ ], . . . ,Rs[M̃ ]] >l C[N1, . . . , Nk] > M

for some M , contradicting that C[N1, . . . , Nk] is syntactically equal to an ecore
(and hence irreducible).

Finally we arrive at the main result of this section.

Theorem 2. ≈ss implies ≈′
ss
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Proof. Let ϕ ≡ (νñ){Mi/xi}i∈I , ϕ′ ≡ (νñ′){M ′
i/xi}i∈I , ecores(ϕ) = (N)j∈J ,

ecores(ϕ) = (N ′)j∈J and ϕ ≈ss ϕ
′. We must show that conditions 1, 2 and 3

in ≈′
ss hold.

Condition 1. By Lemma 1 any Mi ∈ im(ϕ) can be written as a context
over ecores, i.e. at least one context Ci[ỹ] exists such that Mi = Ci[Ñ ]. Then
it must also hold that M ′

i = Ci[Ñ ′]; for otherwise there would be ecores Nj

and N ′
j in Mi and M ′

i respectively such that Nj and N ′
j do not have the same

analysis recipes, contradicting Lemma 7.
Condition 2. This is Lemma 12.
Condition 3. This is Lemma 11.

4.3 Conditions under which ≈s and ≈ss Coincide

In Chapter 2 we demonstrated that ≈s and ≈ss do not generally coincide and
gave the following counter-example in the theory of public key encryption:

ϕ
∆= (νa, c, k){enc(a,k+)/x1, k−/x2}

ϕ′ ∆= (νa, c, k){enc(a,k+)/x1, c−/x2}

It is easy to verify that ϕ ≈s ϕ′ while ϕ 6≈ss ϕ′. Hence allowing tests on
reductions as well as tests on equality increases the distinguishing power of
an observer process. However, there are theories where tests on reductions do
not yield increased distinguishing power. Take for example the symmetric-key
counterpart of the above frames:

ϕ2
∆= (νa, c, k){enc(a,k)/x1, k/x2}

ϕ′2
∆= (νa, c, k){enc(a,k)/x1, c/x2}

We still have that ϕ2 6≈ss ϕ
′
2 because dec(M1,M2) > while dec(M ′

1,M
′
2) 6>, so

condition 2 in ≈ss fails. But suddenly we also have that ϕ2 6≈s ϕ
′
2 because the

following equality holds in ϕ2 but not in ϕ′2:

x1 =E enc(dec(x1, x2), x2)

Hence in this case the standard static equivalence agrees with the strong version.
The reason for this is intuitively that, for the above equality to hold in ϕ2, a
reduction on dec(M1,M2) is forced. For if no reduction is possible, and since
M1 is irreducible, we would have by confluence that

M1 = enc(dec(M1,M2),M2)

This syntactic equality is impossible since M1 cannot be a proper subterm of
itself.

The question now is in which situations a reduction can be forced by an
appropriate equality as in the example above – and thus where condition 2
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in ≈ss is superfluous. The equality in the above example can be constructed
because the term enc(a, k) in ϕ2 can be written as a non-trivial context over
other analysis terms. In contrast it was not possible to write enc(a, k+) in ϕ as
a nontrivial context over analysis terms since k+ is not in the analysis (we have
that enc(a, k+) is an ecore but not a core).

More generally, any analysis term L which is not an ecore can be written
as a non-trivial context over other analysis terms exactly when cores(ϕ) =
ecores(ϕ). For otherwise L would per definition be an ecore, which is impossible
since ecores are per assumption cores (and L was assumed not to be a core).

We now have the intuition to give a formal proof of the main result in this
section, namely that ≈ss implies ≈′

ss whenever cores(ϕ) = ecores(ϕ). We start
with a preliminary lemma, namely the counterpart of Lemma 7 which says that
corresponding terms from statically equivalent frames have the same analysis
recipes. We cannot rely on the original proof of this lemma since it assumed
≈ss and relied on condition 2. Hence we employ the idea set forth in the above
example that equalities can force rewrites.

Lemma 13 (cf. Lemma 7). Let ϕ ≡ (νñ){Mi/xi}i∈I , ϕ′ ≡ (νñ′){M ′
i/xi}i∈I

with ϕ ≈s ϕ′ and suppose that cores(ϕ) = ecores(ϕ). If R[x̃] is an analy-
sis recipe for Mi|w ∈ A(Mi, ϕ) then it is also an analysis recipe for M ′

i |w ∈
A(M ′

i , ϕ
′) and there is a k ∈ N such that

R[M̃ ] >k Mi|w 6>
R[M̃ ′] >k M ′

i |w 6>
Proof. By induction in the definition of analysis recipes.

Basis (Mi|w ∈ A0(Mi, ϕ)). Trivial.
Step (Mi|w ∈ Ai+1(Mi, ϕ)). We shall benefit from some notational short

hands: for any tuple L̃ ⊆ A(ϕ) where L̃ = L1, . . . , Ls and R1[x̃], . . . ,Rs[x̃] are
the respective analysis recipes, we let R̃L[x̃] ∆= R1[x̃], . . . ,Rs[x̃].

Now per definition of analysis there is some Mi|w2 ∈ Ai(Mi, ϕ) such that
Mi|w2 �S

M∈S Ai(M,S) Mi|w (where S = im(ϕ) ∪ fn(ϕ)), which per definition
of revelation means that there are terms L1, . . . , Ls ⊆

⋃
M∈S Ai(M,S) and a

destructor context D[x, x1, . . . , ] such that D[Mi|w2 , L̃] >Mi|w2 Mi|w. Let R[x̃]
be the analysis recipe for Mi|w2 and let R̃L[x̃] be the tuple of analysis recipes
for L̃ as defined above. Then D[R[x̃], R̃L[x̃]] is per definition an analysis recipe
for Mi|w.

Per induction hypothesis there is a k such thatR[M̃ ] >k Mi|w2 andR[M̃ ′] >k

M ′|w2 . Similarly there is a kj such that Rj [M̃ ] >kj Lj and Rj [M̃ ′] >kj L′j for
each Rj [x̃] in R̃L[x̃]. Hence we get that

D[R[M̃ ], R̃L[M̃ ] >l D[Mi|w2 , L̃]

D[R[M̃ ′], R̃L[M̃ ′]] >l D[M ′
i |w2 , L̃

′]
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where l = k+k1 + · · ·+ks. Per definition of analysis recipes, exactly one further
rewrite is possible for the former context D[Mi|w2 , L̃], namely the primitive
rewrite:

D[Mi|w2 , L̃] >r Mi|w
The challenge is now to show that a reduction is possible on the latter

context, D[M ′
i |w2 , L̃

′]. In the proof of Lemma 7 we simply relied on condition
2 in ≈ss, but now this condition is not available because we are assuming the
weaker static equivalence, ≈s. So a more cunning approach is called for.

The assumption that cores(ϕ) = ecores(ϕ) is the key here. We then get that
any analysis term L which is not a core is syntactically equal to a non-trivial
context over other analysis terms. For otherwise L would per definition be an
ecore which is impossible since ecores are now cores (and L was assumed not to
be a core). Hence for some terms T̃ ⊆ A(ϕ) we can write

Mi|w2 = C[Mi|w, T̃ ]

Each Tj ∈ T̃ has some analysis recipe Rj [x̃], i.e. Rj [M̃ ] > Tj; strictly speak-
ing this should be shown in a separate induction, since the induction hypothesis
does not necessarily apply to Tj , but the result should come as no surprise.
Noting that

D[Mi|w2 , L̃] =E Mi|w
and using that any analysis term is equal to the instantiation of its analysis
recipe, we reason as follows:

Mi|w2 = C[Mi|w, T̃ ]

Mi|w2 =E C[D[Mi|w2 , L̃], T̃ ] m
R[M̃ ] =E C[D[R[M̃ ], R̃L[M̃ ]], R̃T [M̃ ]] m
(R[x̃] =E C[D[R[x̃], R̃L[x̃]], R̃T [x̃]])ϕ

Per definition of ≈s we may continue thus:

(R[x̃] =E C[D[R[x̃], R̃L[x̃]], R̃T [x̃]])ϕ′

R[M̃ ′] =E C[D[R[M̃ ′], R̃L[M̃ ′]], R̃T [M̃ ′]] m
M ′

i |w2 =E C[D[M ′
i |w2 , L̃

′], T̃ ′]

The last step follows from the induction hypothesis: since R[x̃] is the analysis
recipe for Mi|w2 ∈ Ai(Mi, ϕ) we have that R[M̃ ] >k Mi|w2 and R[M̃ ′] >k

M ′
i |w2 . The tuples L̃′ and T̃ ′ simply contain the normalised recipes from R̃L[M̃ ′]

and R̃T [M̃ ′], respectively. Since these recipes are not for analysis terms in level
i, the induction hypothesis does not apply to these. Hence we do not know that
each L′j ∈ L̃′ corresponds to the analysis term Lj ∈ L̃, and indeed we do not
even know that L′j is an analysis term. However this is unimportant – all that
matters for our purpose is that each L′j is irreducible.
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From the last equality we deduce that D[M ′
i |w2 , L̃

′] must be reducible. For
suppose not towards a contradiction. The LHS of the last equality is irreducible
because it is a subterm of Mi and we assume each Mi ∈ im(ϕ) to be irreducible.
Therefore, by confluence the normal form of the RHS is syntactically equal to
Mi|w2 . But this is impossible since the normal form of the RHS then contains
Mi|w2 as a proper subterm.

Per definition of analysis recipes, only one reduction is possible onD[Mi|w2 , L̃
′],

and since Mi|w2 is the revelator it must hold that

D[Mi|w2 , L̃
′] >r Mi|w

and we conclude as desired that

D[R[M̃ ], R̃L[M̃ ] >l D[Mi|w2 , L̃] > Mi|w
D[R[M̃ ′], R̃L[M̃ ′]] >l D[M ′

i |w2 , L̃
′] > M ′

i |w

Finally, the induction hypothesis gives that R[x̃] is also the analysis recipe
for M |w2 and Rj [x̃] is the analysis recipe for Lj for each Lj ∈ L̃. Hence the
context

D[R[x̃], R̃L[x̃]]

is per definition also the analysis recipe for M ′
i |w. This concludes the proof.

Lemma 14 (cf. Lemma 8). Let ϕ and ϕ′ be two frames with ϕ ≈s ϕ
′ and

suppose that cores(ϕ) = ecores(ϕ). Then it holds for any contexts C1[ỹ] and
C2[ỹ] that

C1[Ñ ] =E C2[Ñ ] ⇔ C1[Ñ ′] =E C2[Ñ ′]

Proof. This is a corollary of Lemma 13.

Lemma 15. Let ϕ and ϕ′ be two frames with ϕ ≈s ϕ′ and suppose that
cores(ϕ) = ecores(ϕ). Then it holds for any contexts C1[ỹ] and C2[ỹ] where
C1[ỹ] A or C1[ỹ]� that

C1[Ñ ] >r C2[Ñ ] ⇔ C1[Ñ ′] >r C2[Ñ ′]

Proof. We show the direction from left to right; the converse is symmetric. So
suppose that

C1[Ñ ] >r C2[Ñ ]

We must show that this rewrite is preserved when substituting cores from ϕ′.
Since the rewrite is primitive C1[ỹ] unifies with the LHS of some rewrite rule,
i.e. there is a destructor context D[x, x̃] and some other context C[ỹ] such that

C1[Ñ ] = D[C[Ñ ], Ñ ] > C2[Ñ ]

where C[Ñ ] is the revelator. Since we are working with subterm theories, C2[Ñ ]
is a subterm of C[Ñ ]. We now employ the same trick as in the proof Lemma
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13: the assumption that cores(ϕ) = ecores(ϕ) gives us that any analysis term
which is not itself a core can be written as a non-trivial context over cores.
Therefore there is some context C3[x, x̃] such that

C[Ñ ] = C3[C2[Ñ ], Ñ ]

C[Ñ ] =E C3[D[C[Ñ ], Ñ ], Ñ ] m
C[Ñ ′] =E C3[D[C[Ñ ′], Ñ ′], Ñ ′]

The last step followed by Lemma 14. As before we conclude that D[C[Ñ ′], Ñ ′]
must be primitively reducible, although this time we call upon Lemma 10 to get
that the LHS C[Ñ ′] is irreducible (this lemma applies because we have assumed
that C1[ỹ] A or C1[ỹ]�). Since C[Ñ ′] is the revelator we then conclude as
desired that

C1[Ñ ′] = D[C[Ñ ′], Ñ ′] >r C2[Ñ ′]

Theorem 3. If ecores(ϕ) = cores(ϕ) then ϕ ≈ss ϕ
′ ⇔ ϕ ≈s ϕ

′.

Proof. The direction from left to right is immediate from the definitions of ≈ss

and ≈s.
For the other direction it must be shown that, under the given assumptions,

condition 2 in ≈ss is a consequence of condition 1 – i.e. we must show that

(M >k)ϕ⇔ (M >k)ϕ′

for all terms M and all k ∈ N.
First observe that any two corresponding terms Mi ∈ im(ϕ) and M ′

i ∈
im(ϕ′) can be written as the same context over cores. For otherwise there
would be cores Nj ∈ ecores(Mi, ϕ) and N ′

j ∈ ecores(M ′
i , ϕ

′) which do not have
the same analysis recipe, contradicting Lemma 13.

So suppose that (M >k)ϕ and let ecores(ϕ) = (N)j∈J and ecores(ϕ′) =
(N ′)j∈J . Then n(M) ∩ bn(ϕ) = ∅ and Mϕ >k. Since every free name in ϕ is
an ecore, we have for some context C1[ỹ] that

Mϕ = C1[Ñ ]

Mϕ′ = C1[Ñ ′]

The proof now proceeds by induction in k in order to show that C1[Ñ ] >k⇒
C1[Ñ ′] >k.

Basis (k = 0). This is trivial (use reflexivity).
Step (assume for k, prove for k + 1). We then have that

C1[Ñ ] > C2[Ñ ] >k
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for some C2[ỹ]. Per definition of the rewrite relation there is some subterm
C1[Ñ ]|w1 of C1[Ñ ] which rewrites primitively, i.e.

C1[Ñ ]|w >r C
∗
2 [Ñ ]|w2

Apply Lemma 15 to get that also

C1[Ñ ′]|w1 >r C2[Ñ ′]|w2

As in the proof of Lemma 5 we then get that

C1[Ñ ′] > C2[Ñ ′]

Since C2[Ñ ] >k it follows by the induction hypothesis that also C2[Ñ ′] >k.
Hence we have that

Mϕ′ = C1[Ñ ′] >k+1

which per definition means that (M >k)ϕ′.

Theorem 3 above can be rephrased to state that ≈ss and ≈s coincide in any
theory where inaccessible terms are impossible. For if there are no inaccessible
terms then any analysis term which is not an ecore can be written as contexts
over other analysis terms, so it follows per definition of ecores that ecores(ϕ) =
cores(ϕ).

The condition that no inaccessible terms are possible is easy to check from
the definition of a given equational theory. Take for example any analysis term
term enc(M1,M2) in the theory of symmetric key encryption. If enc(M1,M2)
is not an ecore then neither M1 nor M2 can be inaccessible. For M1 is revealed
from enc(M1,M2) and hence is in the analysis. And in order for this to be
possible, the symmetric key M2 must also be in the analysis. Hence any frame
ϕ in a symmetric key theory satisfies that ecores(ϕ) = cores(ϕ) and so by
Theorem 3 ≈ss and ≈s coincide.

In contrast, a term enc(M1,M2) in a public key theory might have the public
key M2 inaccessible. For it may be that enc(M1,M2) can be decrypted even
though M2 is not in the analysis; all that is required is for the corresponding
private key to be in the analysis.

However, we can make the assumption that any public key is always known
by the environment, i.e. any public key will always be in the analysis of a
frame. Indeed, this is one of the main attractions of public-key cryptography:
a principal may publish its public key for use by any interested parties. Under
this assumption we do have that no inaccessible terms are possible, and hence
that ≈ss and ≈s coincide. On the other hand, this assumption is not valid for
public-key signatures where we would have the following rewrite rule – the only
difference from the public-key decryption rule is that the order of public and
private keys has been swapped:

dec(enc(z1, z−2 ), z2+) >r z1

For here we would have to assume that the private key is always known to an
environment, which obviously is not sound.
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4.4 Summary

In this chapter we have shown two important results, namely that ≈ss and ≈′
ss

coincide and that ≈s and ≈ss coincide for frames where cores(ϕ) = ecores(ϕ) –
or, more generally, in theories with no inaccessible terms. These include theories
with symmetric key encryption and theories with public key encryption, under
the assumption that public keys are always known to the environment.
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Chapter 5

A Logic for Frames

This chapter sets out to design a logic for frames which characterises strong
static equivalence and which is amenable to construction of characteristic for-
mulae. The refined definition of strong static equivalence, ≈′

ss, presented in
Chapter 3 was derived exactly with this purpose in mind, so we will base our
developments on ≈′

ss instead of ≈ss whenever convenient. We established in
Chapter 4 that the two definitions of strong static equivalence coincide, so the
results in this section apply to both ≈′

ss and ≈ss.
The resulting first order logic for frames can be used to reason directly

about the terms in the frames using propositions for equality, syntactic equality
and reductions. Quantification ranges over the synthesis of the frame, which
intuitively is the set of terms that an environment can deduce by constructing
new terms from the ecores of the frame. Quantification thus allows indirect
reasoning about the knowledge of an environment, and assertions such as there
exists a term y (known by the environment) such that x1 can be decrypted with
y to obtain x2 can be made.

Section 1 gives an informal discussion of possible constructs for inclusion
in the logic and Section 2 formalises the resulting syntax and semantics. In
Section 3 it is shown that the logic characterises strong static equivalence; the
proof of this result relies on lemmas from Chapter 4. Finally section 4 shows
how characteristic formulae can be constructed. The construction is based on
a further refinement of strong static equivalence which does not exhibit the
problems of universal quantification over contexts which were still present in
≈′

ss.

5.1 Motivation

This section presents some examples and informal ideas on which the syntax
and semantics for the logic for frames are based. The objective is to answer
the question of which kind of assertions one would like to express about frames.
We base our discussion on applications in cryptographic protocols but will still
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maintain a certain level of generality. Simplicity of the logic will have high
priority for the sake of subsequent theoretical developments.

A key objective is to develop a logic which characterises strong static equiv-
alence, i.e. whenever two frames are statically equivalent they should satisfy the
same set of formulae. Another aim is to make characteristic formulae possible,
i.e. for every frame ϕ there should exist a formula Cϕ s.t. ϕ ≈′

ss ϕ
′ if and only

if ϕ′ � Cϕ for all frames ϕ′. A starting point for achieving this is to include the
operators featuring in the definition of ≈′

ss in the logic.
We start by considering ideas for the basic propositional equational logic in

the first subsection and then continue with a discussion of a first order logic (i.e.
a logic with quantification over terms) in the second subsection.

5.1.1 Propositional Equational Logic

A formula in propositional logic is generally built from atomic propositions
pi, logical connectives (such as ∨, ¬, ∧, → and ↔), together with suitable
bracketing; an example formula could thus be (p1 ∨ p2) ∧ ¬p3. In ordinary
propositional logic, the atomic propositions are boolean variables whose truth
values must be assigned by a valuation function in order to decide the truth
of any given formula. So an atomic proposition (and hence a formula) is true
with respect to some valuation. In the case of a logic for frames, the truth of an
atomic proposition (and hence of a formula) should be relative to a frame, and
(some of) the atomic propositions will be equalities, giving rise to an equational
logic. In the following we will loosely write ϕ � A when the formula A is true
in the frame ϕ; the precise definition of this satisfaction relation will be given
in the next section.

First we must decide what kind of atomic propositions are meaningful and
useful for reasoning about frames. We base our discussion on two statically
equivalent frames in the public key theory Epub:

ϕ = (νa, b, c){enc(c−,k+)/x1, enc(b,c+)/x2, b/x3}
ϕ′ = (νa, b, c){enc(f(c)−,k+)/x1, enc(f(b),f(c)+)/x2, f(b)/x3}

Equality of Terms in Frames

Equality between terms in frames immediately comes to mind as a possible
atomic proposition. For example one would expect that the equality proposition
dec(x2, dec(x1, k

−)) =E x3 holds in the frame ϕ, written ϕ � dec(x2, dec(x1, k
−)) =E

x3. On the other hand, the proposition dec(x1, k
−) =E c− should not be true

in ϕ since c is private. If it were true the logic would not characterise static
equivalence since the proposition is certainly not true in ϕ′. Hence a meaningful
semantics for the equality proposition is captured precisely in the definition of
equality of terms in frames (Definition 5), i.e. ϕ � M1 =E M2 if and only if
(M1 =E M2)ϕ.

As a bonus feature, the formula a =E a can be used to check that the name
a is free in a frame, since the only reason why this formula may not hold in a
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frame ϕ is that a ∈ bn(ϕ).
The equality proposition together with negation would be sufficient to char-

acterise the weak version of static equivalence. However it does not yield much
insight into the nature of a frame and is therefore uninteresting in itself. Fur-
thermore, it would not suffice for constructing characteristic formulae, so we
shall need to consider additional atomic propositions.

Reduction

Reduction propositions on the form dec(x2, dec(x1, k
−)) > x3 will be required in

characteristic formulae in order to express condition 3 in the definition of ≈′
ss.

Intuitively this proposition would be true in ϕ and ϕ′ (although technically the
reduction requires two steps). The intended meaning is that ϕ � M1 > M2 if
and only if M1ϕ > M2ϕ. For the same reason as with equality, we must require
that n(M1,M2) ∩ bn(ϕ) = ∅.

Reduction propositions may not appear useful at a first glance because of
our inability to express that e.g. dec(x1, k

+) > c− (where c is private). But
in combination with existential quantification (to be considered in the next
subsection), the reduction proposition will give rise to significant expressive
power.

Syntactic equality

Propositions with syntactic equality between terms on the form M1 = M2 is
necessary to express condition 1 and 2 in the definition of ≈′

ss in a characteristic
formulae. The intended meaning of such propositions is, not surprisingly, that
ϕ � M1 = M2 if and only if M1ϕ = M2ϕ, and again we must require that
n(M1,M2) ∩ bn(ϕ) = ∅.

Other candidates

Ecores form another essential ingredient in the definition of ≈′
ss, and hence one

might considering including in the logic a proposition core(x,M) stating that
the term M is an ecore in x. With a naive interpretation of the core proposition,
we would have that for example core(x3, b) is true in the frame ϕ. However it
would not be true in ϕ′ (where the ecore of x3 is f(b)) so the resulting logic would
fail to characterise static equivalence. It turns out that an appropriate ecore
proposition can be expressed using existential quantification and the reduction
proposition, so we do not need to explicitly include it in our logic.

As another idea for atomic propositions, recall that a frame represents mes-
sages sent by some process on a public channel, and hence represents the knowl-
edge of an environment. It would therefore be nice to directly assert that the
environment can deduce a given term, i.e. that the term c− can be deduced
from ϕ (namely by decrypting x1 with k− since k is a free name). But c− cannot
be deduced from ϕ′ – f(c−) can be deduced, but f is a one-way hash function.
It follows that a deduction proposition would not characterise static equivalence
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and hence we do not include it in the logic. However, we shall see how to obtain
similar expressiveness using first order quantification in the next subsection.

5.1.2 First-order Logic

Adding the quantifier ∃ yields a much more interesting logic with a resulting
increase in expressiveness. It is however not obvious how the semantics for this
quantifier should be defined; in particular, the domain over which a quantifica-
tion ranges is of much significance. The intuition is that a frame ϕ should satisfy
a formula ∃xA (where A is another formula with the variable x free) if there is
some term M such that ϕ satisfies A{M/x}. A slightly nicer way of expressing
this is that ϕ{M/x} must satisfy A. The question is now which domain we allow
the term M to be drawn from.

A first idea may be to let quantification range over arbitrary terms. How-
ever this would result in characterisation failing; for example, ϕ′ defined in the
previous subsection would satisfy ∃x(x3 = f(x)) (choose x = b) while ϕ clearly
would not. The problem is intuitively that the quantified variable is bound to a
term occurring on sub-core level in the frame; this is problematic since subterms
of cores do not have any effect on static equivalence.

The solution is to let quantification range over the set of terms which can
already be deduced from the frame. For example, the terms f(b), f(f(b)) and
f(enc(f(b), k)) can be deduced from ϕ′ but b cannot (we formally define deduc-
tion in terms of a synthesis from ecores in the next section).

Existential quantification together with the atomic propositions can now be
used to express many interesting properties about frames. For example we may
express that the core b in ecores(x2, ϕ) has analysis recipe dec(x2, dec(x1, k

−))
as follows:

∃y1∃y2(dec(x2, dec(x1, k
−)) > y1 ∧ y1 > y2 ∧ ¬∃y3(y2 > y3))

because this formula is satisfied exactly if the term in question is the analysis
recipe for the core b. Notice how the formula is satisfied by both ϕ and ϕ′. We
shall rely on this idea when expressing ecores in the construction of characteristic
formulae later in this chapter.

Existential quantification can also be used to express that x2 can be de-
crypted using some private key known to the environment:

∃y1∃y2(dec(x2, y1) > y2)

Again this formulae is true in both ϕ and ϕ′ (for the former choose y1 = c−

and y2 = b, and for the latter choose y1 = f(c)− and y2 = f(b)). Alternatively
we can also use syntactic equality to express that the encrypted term in x1 is
known to the environment thus:

∃y(x1 = enc(y, k+))
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5.2 Syntax and Semantics

Formal syntax and semantics for the logic of frames will now be given. Having
discussed the motivation in the last section, we will be brief.

5.2.1 Syntax

The syntax for the chosen first order logic for frames, LF , is defined as follows,
where the Mi range over terms and x ranges over variables:

A ::=M1 =E M2 |M1 > M2 |M1 = M2 | A1 ∨A2

|¬A1 | (A1) | ∃x(A1)

The full set of logical connectives is defined from ¬,∨ and ∃ in the usual way:

A1 ∧A2
∆= ¬(¬A1 ∨ ¬A2)

A1 → A2
∆= A2 ∨ ¬A1

A1 ↔ A2
∆= A1 → A2 ∧A2 → A1

∀x(A1)
∆= ¬∃x(¬A1)

true ∆= x =E x

false ∆= ¬true

We assume that propositional connectives associate from the left i.e. A1∨A2∧A3

is interpreted as (A1∨A2)∧A3, but parenthesis can always be used to explicitly
override this. When there is no ambiguity we may omit parenthesis in existential
quantification (and write e.g. ∃y1∃y2M1 = M2). Free and bound variables in
formulae are defined as expected, i.e. quantification is the only binder.

Example 5.2.1. The following is an example of a formula generated from the
chosen grammar:

∃y1∃y2(dec(x2, y1) > y2 ∧ ¬∃y3∃y4(dec(y2, y3) > y4))

This expresses that x2 can be decrypted using some known key and that the
resulting term cannot be further decrypted.

5.2.2 Semantics

Common for all three atomic propositions is the requirement that terms do not
contain private names. Therefore we start by defining the notions of reduction
in frames and syntactic equality in frames along the same line as equality in
frames.

Definition 25 (Reduction in frame). M1 reduces to M2 in ϕ, written (M1 >
M2)ϕ, if and only if n(M1,M2) ∩ bn(ϕ) = ∅ and M1ϕ > M2ϕ.
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Definition 26 (Syntactic equality in frame). M1 is syntactically equal to
M2 in ϕ, written (M1 = M2)ϕ, if and only if n(M1,M2) ∩ bn(ϕ) = ∅ and
M1ϕ = M2ϕ.

We can now define the satisfaction relation � for the propositional logic:

ϕ � M1 =E M2
∆= (M1 =E M2)ϕ

ϕ � M1 > M2
∆= (M1 > M2)ϕ

ϕ � M1 = M2
∆= (M1 = M2)ϕ

ϕ � A1 ∨A2
∆= ϕ � A1 or ϕ � A2

ϕ � ¬A ∆= ϕ 6� A
As discussed in the previous section, quantification should be restricted to

the universe of terms which the environment can deduce from a given frame.
Intuitively these are the terms which can be constructed by applying function
symbols to terms from the ecores of the frame.

Definition 27 (Frame synthesis). The set of terms deducible from a frame
ϕ is called the synthesis of ϕ and is defined inductively as follows:

S0(ϕ) ∆= ecores(ϕ)

Si+1(ϕ) ∆= Si ∪ {f(T1, . . . , Tk) | f ∈ Σ(k) and T1, . . . , Tk ∈ Si(ϕ)}
It follows that the synthesis is infinite while the analysis and ecores are finite.

Since any analysis term can be written as a context over ecores, the containment
hierarchy between the three sets is

ecores(ϕ) ⊆ A(ϕ) ⊂ S(ϕ)

Note that the synthesis can alternatively be defined as the set of all contexts
over ecores.

Our definition of synthesis is similar to that of deduction from frames by
Abadi et al. in [2, Section 2.3], but there are two differences: first, deduction
includes terms with arbitrary fresh names (i.e. non-private names which do not
occur in the frame). Second, deduction also includes terms M with arbitrary
bound names, as long as bound names in M ↓ occur only as subterms of analysis
terms. For example, the termM = fst([a, b]) can be deduced from a frame where
b is private and not in the analysis, but M would not be in the synthesis of such
frame. The differences between deduction and synthesis are not significant for
our purpose though; we adopt synthesis for technical convenience since any
synthesis term per definition can be written as a primitive context over ecores.
Also there does not seem to be any reason why terms with fresh names should
be of interest in quantification.

The definition of satisfaction can now be completed with the case for exis-
tentially quantified formulae:

ϕ � ∃x(A1)
∆= ϕ{M/x} � A1 for some term M ∈ S(ϕ)
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Observe how bindings of quantified variables are represented in a natural way
by extending the frame with an additional substitution. In cases where x ∈
dom(ϕ) we assume alpha-conversion of x to some x′ 6∈ dom(ϕ), since otherwise
a quantification may overwrite existing terms in ϕ.

5.3 Characterisation

In this section we show that LF characterises ≈ss and hence ≈′
ss. In order to

do this, we need a result which says that two strong statically equivalent frames
ϕ and ϕ′ can be extended with appropriate terms M and M ′ while maintaining
strong static equivalence. This will be expressed in the following two extension
lemmas

Lemma 16 (Extension Lemma 1). Let ϕ = (νñ){Mi/xi}i∈I and ϕ′ = (νñ){M ′
i/xi}i∈I

be two frames with ϕ ≈ss ϕ
′, and let ecores(ϕ) = (N)j∈J and ecores(ϕ′) =

(N ′)j∈J . Then for any j ∈ J it holds that

ϕ{Nj/xs} ≈ss ϕ
′{N ′

j/xs}

(where s is any index with s 6∈ I).

Proof. It must be shown that both conditions of ≈ss hold for the extended
frames. For this we rely on Lemma 7 which says that Nj and N ′

j have the same
analysis recipes.

Condition 1. Suppose that (M1 =E M2)ϕ{Nj/y}, i.e. n(M1,M2)∩bn(ϕ{Nj/y}) =
∅ and M1ϕ{Nj/y} =E M2ϕ{Nj/y}. If xs 6∈ v(M1,M2) we are done, so suppose
that xs ∈ v(M1,M2). Suppose further for notational convenience and without
loss of generality that both xs ∈ v(M1) and xs ∈ v(M2). M1 and M2 are in fact
contexts, so we reason as follows:

M1ϕ{Nj/y}) =E M2ϕ{Nj/y}
C1[x̃, xs]ϕ{Nj/xs} =E C2[x̃, xs]ϕ{Nj/xs} m

C1[M̃,Nj ] =E C2[M̃,Nj]

Now let R[x̃] be the analysis recipe for Nj. By Lemma 7 on p. 52, R[M̃ ] >k Nj

and hence also R[M̃ ] =E Nj . Using that ϕ ≈ss ϕ
′ and condition 1 of ≈ss we

continue thus:

C1[M̃,R[M̃ ]] =E C2[M̃,R[M̃ ]]
(C1[x̃,R[x̃]] =E C2[x̃,R[x̃]])ϕ m
(C1[x̃,R[x̃]] =E C2[x̃,R[x̃]])ϕ′ m

C1[M̃ ′,R[M̃ ′]] =E C2[M̃ ′,R[M̃ ′]]
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By Lemma 7 again, R[x̃] is also the analysis recipe for N ′
j and R[M̃ ] >k N ′

j .
The proof of condition 1 can then be completed thus:

C1[M̃ ′, N ′
j ] =E C2[M̃ ′, N ′

j]

(C1[x̃, xs] =E C2[x̃, xs])ϕ′{N ′
j/xs} m

(M1 =E M2)ϕ′{N ′
j/xs}

Condition 2. This is somewhat similar to the proof of condition 1. If we
again have that R[M̃ ] >k Nj we use that ϕ ≈ss ϕ

′, and condition 2 in ≈ss then
allows us to reason as follows

(M >c)ϕ{Nj/xs}
(C[x̃, xs] >c)ϕ{Nj/xs} m
C[M̃,Nj] >c m

C[M̃,R[M̃ ]] >c+k m
(C[x̃,R[x̃]] >c+k)ϕ m
(C[x̃,R[x̃]] >c+k)ϕ′ m

C[M̃ ′,R[M̃ ′]] >c+k m
C[M̃ ′, N ′

j]] >
c m

(C[x̃, xs] >c)ϕ′{N ′
j/xs}

In contrast to the proof of condition 1, the above line of reasoning relies crucially
on Lemma 7 saying that R[M̃ ] >k Nj and R[M̃ ′] >k N ′

j , i.e. that the recipe
instances reduce in exactly the same number of steps to the respective cores.

Lemma 17 (Extension Lemma 2). Let ϕ = (νñ){Mi/xi}i∈I and ϕ′ = (νñ){M ′
i/xi}i∈I

be two frames with ϕ ≈ss ϕ
′, and let ecores(ϕ) = (N)j∈J and ecores(ϕ′) =

(N ′)j∈J . Then for any C[ỹ] it holds that

ϕ{C[Ñ]/xs} ≈ss ϕ
′{C[Ñ ′]/xs}

(where s is any index with s 6∈ I).
Proof. It must be shown that both conditions of ≈ss hold for the extended
frames. We just show condition 1 as condition 2 is similar.

Condition 1. Suppose that (M1 =E M2)ϕ{C[Ñ ]/y}), i.e. n(M1,M2) ∩
bn(ϕ{C[Ñ ]/y}) = ∅ and M1ϕ{C[Ñ]/y} =E M2ϕ{C[Ñ ]/y}. If xs 6∈ v(M1,M2) we
are done, so suppose that xs ∈ n(M1,M2). Suppose further for notational
convenience and without loss of generality that both xs ∈ v(M1) and xs ∈
v(M2).

First apply Lemma 16 iteratively to ϕ ≈ss ϕ
′ to get that

ϕ{Nj/yj}j∈J ≈ss ϕ
′{N ′

j/yj}j∈J
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We then use this to reason as follows.

C1[x̃, y]ϕ{C[Ñ]/y} =E C2[x̃, y]ϕ{C[Ñ]/y}
C1[M̃, C[Ñ ]] =E C2[M̃, C[Ñ ]] m

C1[x̃, C[ỹ]]ϕ{Nj/yj}j∈J =E C2[x̃, C[ỹ]]ϕ{Nj/yj}j∈J m
C1[x̃, C[ỹ]]ϕ′{N ′

j/yj}j∈J =E C2[x̃, C[ỹ]]ϕ′{N ′
j/yj}j∈J m

C1[M̃ ′, C[Ñ ′]] =E C2[M̃ ′, C[Ñ ′]] m
C1[x̃, y]ϕ′{C[Ñ ′]/y} =E C2[x̃, y]ϕ′{C[Ñ ′]/y} m

M1ϕ
′{C[Ñ ′]/y} =E M2ϕ

′{C[Ñ ′]/y}

Technically we could also have given a direct proof of Lemma 17 above,
but the presentation and notation would have been more involved. Note that
static equivalence is not preserved by extension with arbitrary terms – take for
example the following two frames in the theory Epub (where we only use hash
functions):

ϕ
∆= (νa){f(a)/x1}

ϕ′ ∆= (νa){a/x1}
Then ϕ ≈ss ϕ

′. But ϕ{f(a)/x2} 6≈ss ϕ
′{f(a)/x2} because the equality x1 =E x2

holds in the extended ϕ but not in the extended ϕ′. So even though all the
equalities which hold in the original frames also hold in the extended frames,
there may be new equalities which hold in only one of the extended frames.
Hence it is essential that the two frames are extended with the same context
over their respective cores.

With the second extension lemma in our toolbox we now arrive at the main
result of this section, namely that the logic LF characterises ≈ss. For stating
the characterisation theorem we find it convenient to introduce the notion of a
logical theory:

Definition 28. The logical theory of frame ϕ in the logic LF is the class of
formulae in LF which are true in ϕ:

ThLF (ϕ) ∆= {A ∈ LF | ϕ � A}
Theorem 4 (LF characterises ≈ss). ϕ ≈ss ϕ

′ ⇔ ThLF (ϕ) = ThLF (ϕ′).

Proof. Let ϕ ≡ (νñ){Mi/xi}i∈I and ϕ′ ≡ (νñ){M ′
i/xi}i∈I be any frames with

ecores(ϕ) = (N)j∈J and ecores(ϕ′) = (N ′)j∈J . There are two directions to
prove.

(⇐) Suppose that ThLF (ϕ) = ThLF (ϕ′), i.e. (ϕ � A ⇔ ϕ′ � A) for all
formulae A ∈ LF . In particular this holds for the class of formulae M1 =E M2,
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i.e. (ϕ � M1 =E M2 ⇔ ϕ′ � M1 =E M2). Per definition of satisfaction,
(M1 =E M2)ϕ⇔ (M1 =E M2)ϕ′, which proves condition 1.

Condition 2 in ≈ss states that (M >k)ϕ⇔ (M >k)ϕ′; we show the direction
from left to right (the converse is symmetric). So suppose that (M >k)ϕ, which
per definition of rewrites in frames means that n(M)∩bn(ϕ) = ∅ and M >k Mk

for some Mk. Expanding on the transitive closure relation, there are terms
M1, . . . ,Mk−1 such that M > M1 > · · · > Mk−1 > Mk. Each of these terms
are clearly in S(ϕ), so it holds that:

ϕ � ∃y1∃y2 . . .∃yk(M > y1 ∧ y1 > y2 ∧ · · · ∧ yk−1 > yk)

and per assumption also

ϕ′ � ∃y1∃y2 . . . ∃yk(M > y1 ∧ y1 > y2 ∧ · · · ∧ yk−1 > yk)

which per definition of satisfaction means that there are terms M1, . . . ,Mk ∈
S(ϕ′) such that M > M1 > · · · > Mk−1 > Mk. Hence (M >k)ϕ′.

(⇒) Suppose that ϕ ≈ss ϕ
′. We show by structural induction on formula A

that (ϕ � A ⇒ ϕ′ � A) holds for all formulae A; the proof of the converse is
identical.

Basis Case: A = (M1 =E M2). Per definition of satisfaction, (M1 =E
M2)ϕ. Per assumption of static equivalence also (M1 =E M2)ϕ′, which again
per definition of satisfaction means that ϕ′ � M1 =E M2.

Case: A = (M1 > M2). Per definition of satisfaction, M1ϕ > M2ϕ and
n(M1,M2) ∩ bn(ϕ) = ∅. We then have that M1 and M2 are in fact contexts
over variables and free names ñ, and as in the proof of Theorem 1 we get that

CM1 [Ma1 , . . .Mas , ñ] > CM2 [Mb1 , . . .Mbs , ñ]

Since ≈ss implies ≈′
ss, we can rely on the definition of ≈′

ss and the results from
Subsection 4.1. Condition 1 in ≈′

ss gives that each M ∈ im(ϕ) can be written
as a context over ecores, and since any free name is also an ecore we have that

CM1 [Ca1 [Ñ ], . . . Cas [Ñ ], Ñ ] > CM2 [Cb1 [Ñ ], . . . Cbs [Ñ ], Ñ ]

Applying Lemma 5 (p. 48) gives:

CM1 [Ca1 [Ñ ′], . . . Cas [Ñ ′], Ñ ] > CM2 [Cb1 [Ñ ′], . . . Cbs [Ñ ′], Ñ ]

By condition 1 of ≈′
ss again, each context Cai [Ñ ] is syntactically equal to the

corresponding term M ′
a1
∈ im(ϕ′), and since ϕ and ϕ′ have the same free names

we get

CM1 [M
′
a1
, . . .M ′

as
, ñ] > CM2 [M

′
b1 , . . .M

′
bs
, ñ]

Hence M1ϕ
′ > M2ϕ

′, which for the terms M1 and M2 is equivalent to (M1 >
M2)ϕ′.
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Case: A = (M1 = M2). Per definition of satisfaction, M1ϕ = M2ϕ and
n(M1,M2) ∩ bn(ϕ) = ∅. An argument similar to the proof above applies, ex-
cept that we call on Lemma 2 (p. 46) instead of Lemma 5. This gives that
M1ϕ

′ = M2ϕ
′, i.e. ϕ′ � M1 = M2.

Step Case: A = ¬A1. By the induction hypothesis and the assumption
ϕ ≈ss ϕ

′ we have that (ϕ � A1) ⇔ (ϕ′ � A1), which is equivalent to (ϕ 6� A1) ⇔
(ϕ′ 6� A1). This per definition of satisfaction implies that (ϕ � ¬A1) ⇔ (ϕ′ �
¬A1).

Case: A = A1 ∨ A2. By the induction hypothesis we have that (ϕ �
Ai) ⇔ (ϕ′ � Ai) for i = 1, 2. There are three sub-cases to consider: 1) ϕ and
ϕ′ both satisfy A1 and A2 and hence both satisfy A1 ∨ A2. 2) Neither ϕ nor
ϕ′ satisfy A1 and A2 and hence neither satisfy A1 ∨ A2. 3) ϕ and ϕ′ both
satisfy exactly one of A1 and A2 and hence they both satisfy A1 ∨ A2. Hence
(ϕ � A1 ∨A2) ⇔ (ϕ′ � A1 ∨A2)

Case: A = ∃xA1. Per definition of satisfaction, ϕ � ∃x(A1) means that
ϕ{M/x} � A1 for some M ∈ S(ϕ). Any synthesis term can be written as a
context over ecores, i.e. M = C[Ñ ] for some context C[ỹ]. Let M ′ = C[Ñ ′].
The second extension lemma (Lemma 17) then says that a ϕ{M/x} ≈ss ϕ

′{M ′
/x}.

Applying the induction hypothesis to this gives that also ϕ′{M ′
/x} � A1. Now

any context over cores is a synthesis term, so per definition of satisfaction we
get that ϕ′ � ∃xA1.

We have now shown that the first order logic LF characterises ≈ss (and
hence also ≈′

ss). One may ask if the propositional logic alone, without exis-
tential quantification, would also characterise ≈ss. The answer is probably no.
For existential quantification was used in the above proof to show condition 2
of ≈ss. Condition 2 states, as a special case, that whenever a term Mi ∈ im(ϕ)
can reveal a subterm Mi|w then the corresponding term M ′

i ∈ im(ϕ′) can re-
veal the corresponding subterm M ′

i |w. Hence condition 2 indirectly involves
analysis terms. But the basic propositions in LF cannot be used to reason
about arbitrary analysis terms because they cannot include terms with private
names. Hence it would seem that existential quantification over the synthesis
(and hence also over the analysis) is strictly necessary for characterisation.

5.4 Characteristic Formulae

We have now given syntax and semantics for a logic of frames and shown that
it characterises ≈′

ss. The development of ≈′
ss, and the choice of atomic proposi-

tions for the logic, has been guided by our desire to find characteristic formulae
for frames. But ≈′

ss is still too high-level to yield a direct encoding into charac-
teristic formula. The problem has been pointed out earlier, namely that condi-
tion 2 and 3 in ≈′

ss involve infinitely many contexts. In the first subsection we
therefore set out to give a further refinement of strong static equivalence which
does not exhibit this problem. In subsections 2 and 3, encodings of revelation
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and ecores into the logic are given. Subsection 4 gives an encoding of each of
the conditions in the further refined definition of strong static equivalence, and
subsection 5 collects the efforts to give a unified construction of characteristic
formula.

5.4.1 A Further Refinement of Strong Static Equivalence

Recall from Section 3.3 that condition 2 in the definition of≈′
ss generally involves

infinitely many partitioning contexts which are unifiable with, but neither more
general than or less general than, the LHS of some rewrite rule. We gave an
example with the public key rewrite rule which gives rise to the following infinite
sequence of partitioning contexts:

dec(enc(⊥, y1), y2),
dec(enc(⊥, y1+), y2),

dec(enc(⊥, f(y1)
+), y2),

dec(enc(⊥, f(f(y1))
+), y2),

. . .

A characteristic formula must capture all the instantiations of partitioning con-
texts which are not reducible, e.g. that

dec(enc(⊥, N1), N2) 6>,
dec(enc(⊥, N1

+), N2) 6>,
dec(enc(⊥, f(N1)

+), N2) 6>,
dec(enc(⊥, f(f(N1))

+), N2) 6>,
. . .

But expressing this directly in the logic would give rise to infinite conjunction.
Instead we just choose the first of the contexts and use existential quantification
to express that

¬∃y∗.dec(enc(⊥, y∗), N2) >

This works because existential quantification ranges over the synthesis of a frame
and because every synthesis term can be written as a context over cores. The
chosen context is what we refer to as a minimised context, the definition of which
is given next.

Definition 29 (Minimised Contexts). A minimised context C[ỹ, ỹ∗] is a
context with C[ỹ, ỹ∗] A such that every superterm of y∗ ∈ ỹ∗ contains ⊥ or
some y ∈ ỹ; formally, whenever C[ỹ]|w = y∗ ∈ ỹ∗ it holds for every proper
prefix w′ of w that st(C[ỹ]|w′) ∩ ({⊥} ∪ ỹ) 6= ∅.

ỹ∗ is a distinguished set of variables, referred to as the minimised variables,
which are intended to be bound to synthesis terms rather than ecores.
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Since minimised contexts are per definition more general than some rewrite
rule, there are only finitely many of them. This enables us to give a further
refinement of strong static equivalence using existential quantification and in-
volving only finitely many contexts in the rewrite conditions. The problem with
infinitely many contexts in condition 2 of ≈′

ss is resolved in a similar (but more
straight forward) manner.

Definition 30 (Further Refined Strong Static Equivalence). Let ϕ ≡
(νñ){Mi/xi}i∈I and ϕ′ ≡ (νñ){M ′

i/xi}i∈I be two frames with ecores(ϕ) = (N)j∈J ,
ecores(ϕ′) = (N ′)j∈J . Then define ϕ ≈′′

ss ϕ
′ iff dom(ϕ) = dom(ϕ′) and for each

i ∈ I the following conditions hold:

1 For some context C[ỹ] it holds that

• Mi = C[Ñ ]

• M ′
i = C[Ñ ′]

2a For all i, j ∈ J it holds that

Ni = Nj ⇔ N ′
i = N ′

j

2b For all contexts C[ỹ] and for all j ∈ J it holds that

C[Ñ ] = Nj ⇒ C[Ñ ′] = N ′
j

2c If there there is no context C[ỹ] and j ∈ J s.t. C[Ñ ] = Nj, then it must
hold for all f(x1, . . . , xk) ∈ Σ(k) that:

¬∃M1, . . . ,Mk ∈ S(ϕ′).f(M1, . . . ,Mk) = N ′
j

3a For any partitioning context C⊥
1 [ỹ] where C⊥

1 [ỹ] A it holds for all C⊥
2 [ỹ] that

C⊥
1 [Ñ ] > C⊥

2 [Ñ ] ⇔ C⊥
1 [Ñ ′] > C⊥

2 [Ñ ′]

3b For any partitioning context C⊥
1 [ỹ] where C⊥

1 [ỹ]� it holds for all C⊥
2 [ỹ] that

C1[Ñ ] > C2[Ñ ] ⇒ C1[Ñ ′] > C2[Ñ ′]

3c For any minimised partitioning context C⊥
1 [ỹ, ỹ∗] where C⊥

1 [ỹ, ỹ∗]� it holds
for all C⊥

2 [ỹ] that

¬∃T1, . . . , Tk ∈ S(ϕ).C1[Ñ , T1, . . . , Tk] >r C2[Ñ ] ⇒
¬∃T ′1, . . . , T ′k ∈ S(ϕ′).C1[Ñ ′, T ′1, . . . , T

′
k] >r C2[Ñ ′]

Lemma 18. ≈′
ss and ≈′′

ss coincide.
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Proof. In other words, we must show for all frames that ϕ ≈′
ss ϕ

′ ⇔ ϕ ≈′′
ss ϕ

′.
So there are two directions to prove; we start with the easiest one.

(⇒). Suppose that ϕ ≈′
ss ϕ

′. We must show that all conditions in ≈′′
ss are

satisfied.
Condition 1. This is the same as condition 1 in ≈′

ss.
Conditions 2a and 2b. These are both special cases of condition 2 in ≈′

ss

(to get condition 2a just choose C[Ñ ] to be the trivial context yj).
Condition 2c. Suppose for a contradiction that condition 2c fails, i.e. there

is no context C[ỹ] and j ∈ J such that C[Ñ ] = Nj, but there is some func-
tion symbol f(x1, . . . , xk) ∈ Σ(k) and some terms T ′1, . . . , T

′
k ∈ S(ϕ′) such that

f(T ′1, . . . , T ′k) = N ′
j . Per definition of synthesis, each T ′i can be written as a con-

text over cores, i.e. T ′i = Ci[Ñ ′]. This gives that f(C1[Ñ ′], . . . , Ck[Ñ ′]) = N ′
j .

By condition 2 in the definition of ≈′
ss it also holds that f(C1[Ñ ], . . . , Ck[Ñ ]) =

Nj , which contradicts the assumption that no such context exists.
Conditions 3a and 3b. These are both special cases of condition 3 in ≈′′

ss

Condition 3c. We show the contraposition of condition 3c (the idea is
similar to that employed for condition 2c). So suppose that there are terms
T ′1, . . . , T

′
k ∈ S(ϕ′) such that C1[Ñ ′, T ′1, . . . , T

′
k] > C2[Ñ ′]. Per definition of syn-

thesis, each T ′i can be written as a context over cores, i.e. T ′i = CTi [Ñ ′]. This
gives that C1[Ñ ′, CT1 [Ñ ′], . . . , CTk

[Ñ ′]] > C2[Ñ ′
j ]. By condition 2 in the def-

inition of ≈′
ss it also holds that C1[Ñ, CT1 [Ñ ], . . . , CTk

[Ñ ]] > C2[Ñ ]. Hence
there are T1, . . . , Tk ∈ S(ϕ) such that C1[Ñ , T1, . . . , Tk] > C2[Ñ ] (namely
Ti = CTi [Ñ ]).

(⇐). Suppose that ϕ ≈′′
ss ϕ

′. We must show that all three conditions in ≈′
ss

are satisfied.
Condition 1. This is the same as condition 1 in ≈′′

ss.
Condition 2. It must be shown that C[Ñ ] = Nj ⇔ C[Ñ ′] = N ′

j . The direc-
tion from left to right is immediate from condition 2b. For the other direction
we assume C[Ñ ′] = N ′

j and show that also C[Ñ ] = Nj . This goes by induction
in the height h of the parse tree of the term N ′

j .
Basis (h = 0). Then N ′ is a name and we get that C[ỹ] is the trivial

context yj for some j. The result then follows from condition 2a.
Step (assume for h, prove for h+ 1). If C[ỹ] is the trivial context, i.e.

C[ỹ] = yi for some i, we have that N ′
i = N ′

j and the result follows immediately
from condition 2a.

Otherwise we assume for notational simplicity that C[Ñ ′] = f(C2[Ñ ′]) = N ′
j

for some context C2[ỹ], i.e. the unary function symbol f is the outer-most
function symbol of N ′

j (the generalisation is straight forward). We first show
that

f(C3[Ñ ]) = Nj for some context C3[ỹ]

i.e. that f is also the outer-most function symbol of Nj . To see this observe
that there must be some context C4[ỹ] such that C4[Ñ ] = Nj . For otherwise
condition 2d gives that there is no function symbol f(x1, . . . , xk) ∈ Σ(k) and no
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terms T1, . . . , Tk ∈ S(ϕ′) such that f(T1, . . . , Tk) = N ′
j . But this is impossible

because each core N ′ is in S(ϕ) and C[Ñ ′] = N ′
j . Now condition 2c gives

that also C4[Ñ ′] = N ′
j, and hence C4[Ñ ′] = f(C2[Ñ ′]). So we conclude that

C4[Ñ ] = f(C3[Ñ ]) = Nj for some context C3[Ñ ].
Next we show that

C3[Ñ ] = C2[Ñ ]

It follows from f(C3[Ñ ]) = Nj and condition 2b that also f(C3[Ñ ′]) = N ′
j . We

also have that f(C2[Ñ ′]) = N ′
j , so it must hold that C3[Ñ ′] = C2[Ñ ′]. The

induction hypothesis gives that condition 2 in the definition of ≈′
ss holds for

cores with parse trees of height h or less, and thus Lemma 2 (p. 46) applies
for terms with parse trees of height h or less. Hence the lemma applies to
the present equality, and we may conclude that C3[Ñ ] = C2[Ñ ]. This in turn
establishes that C[Ñ ] = Nj, which completes the inductive proof of condition
2.

Condition 3. We must show that C1[Ñ ] >r C2[Ñ ] ⇔ C1[Ñ ′] >r C2[Ñ ′].
The direction from left to right is immediate from 3b. For the other direction
suppose that C1[Ñ ′] >r C2[Ñ ′]. In order to keep the notation simple, we just
show this result for a specific rewrite rule and a specific context. We choose
a rewrite rule which is sufficiently complex to exhibit the essence of the proof,
namely the extended public key encryption rule in Epub2– it should be clear as
we proceed that the arguments can be lifted to the general case:

Rewrite rule: dec(enc(z1, f(z2+, z3
+)), f(z−2 , z

−
3 ) >r z1

Context C1[Ñ ′] =dec(enc(⊥, y1), f(g(y2)−, y3)

Now, in this example we would have that

dec(enc(⊥, N ′
1), f(g(N ′

2)
−, N ′

3) > ⊥

and hence there is a T ′ ∈ S(ϕ′) (namely T ′ = g(N ′
2)−) such that

dec(enc(⊥, N ′
1), f(T ′, N ′

3) > ⊥

The relevant context, namely

dec(enc(⊥, y1), f(y∗2 , y3)

is a minimised context and hence condition 3c applies. From contraposition of
3c it follows that there is a T ∈ S(ϕ) such that

dec(enc(⊥, N1), f(T,N3) > ⊥

Since any synthesis term can be written as a context over cores, there is a
context C[ỹ] such that T = C[Ñ ], i.e.

dec(enc(⊥, N1), f(C[Ñ ], N3) > ⊥
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By condition 3b it also holds that

dec(enc(⊥, N ′
1), f(C[Ñ ′], N ′

3) > ⊥
This implies that C[Ñ ′] = g(N ′

2)
− because y∗2 is strongly correlated to y1 (in

general, Lemma 9 on p. 53 gives that minimised variables will always be strongly
correlated to some variable akin to y1). Hence also C[Ñ ] = g(N2)− by Lemma
2 (p. 46). This concludes the proof, since we now get that

dec(enc(⊥, N1), f(g(N2)−, N3) > ⊥

5.4.2 Encoding Revelation

Recall that we definedM �A(ϕ) M |w to express that there are terms T1, . . . , Tk ∈
A(ϕ) and a destructor context D[y, y1, . . . , yk] such that D[M,T1, . . . , Tk] >M

r

M |w. Observe that there are always infinitely many potential destructor con-
texts which can be used for a given revelation, again because it always holds
that D[y, y1, . . . , yk]�. In the theory of public key encryption, the following is
an example of an infinite sequence of destructor context:

dec(y1, y2)

dec(y1, y2+)

dec(y1, f(y2)
+)

dec(y1, f(f(y2))
+)
. . .

As in the previous subsection we rely on minimised contexts to avoid infinite
conjunctions. The key observation is the following: whenever a revelation from
M is possible by D[M, T̃ ] > M |w where T̃ ⊆ A(ϕ), the same revelation is also
possible using some minimised context D∗[y, ỹ∗] and terms from the synthesis,
i.e. D∗[M, T̃ ∗] > M |w where T̃ ∗ ⊂ S(ϕ). This is an immediate consequence of
the definition of minimised contexts and the fact that any context over analysis
terms is a synthesis term. We illustrate this fact with an example.

Example 5.4.1. Consider a frame ϕ and a term M = enc(a, k+) in the usual
public key theory Epub and suppose that T = k ∈ A(ϕ).Then M1 �A(ϕ) a
because the rewrite dec(M,T+) > a is possible. The relevant context, namely
dec(y1, y−2 ), can be minimised to obtain dec(y1, y∗2). The term T ∗ = k− is
in the synthesis of ϕ (because k is in the analysis), and we get the reduction
dec(M,T ∗) > a. So the revelation of a from M is possible using the minimised
context and synthesis terms instead of analysis terms.

Since there finitely many minimised contexts, the following set is finite:

Sdestruct = {D[y, ỹ∗] | D[y, ỹ∗] is a minimised destructor context}
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We are now in a position to encode the revelation relation in our logic:

M � T
∆=

∨
D[y,y∗1 ,...,y∗k]∈Sdestruct

∃y∗1 . . .∃y∗k(D[M, y∗1 , . . . , y
∗
k] > T )

5.4.3 Encoding Ecores

Let ϕ ≡ (νñ){Mi/xi}i∈I be any frame, let ecores(ϕ) = N1, . . . , Ns, let Rj [x̃] be
the analysis recipe for each Nj and let kj ∈ N be such that Rj [M̃ ] >kj Nj .
For each ecore Nj we can construct a formula ψecore−j(y) with a free variable
y which says that y is the ecore Nj:

ψecore−j(y)
∆= ∃y1 . . . ∃ykj (Rj [x̃] > y1 ∧ y2 > y3 ∧ · · · ∧ ykj−1 > y)∧

[¬∃y2(y � y2)∨∧
f(y1,...,ys)∈Σ(s)

∀y1, . . . , ys¬(y = f(y1, . . . , ys))]

The first part of this formula says that the recipe instance for Nj must reduce
to y in exactly kj steps. The second part is a disjunction which expresses that
either y is a pure core (the first disjunct) or y is an extended core (the second
disjunct).

The characteristic formulae must first of all bind each ecore Nj to some vari-
able yj . No ”let” construct is available in the logic, but existential quantification
can serve a similar purpose (this is sound since every core is a synthesis term).
Below is given the first step in the construction of a characteristic formula for ϕ.
The sub-formula C′ϕ encodes each of the conditions in ≈′′

ss and will be defined
in the subsequent sections.

Cϕ = ∃y1 . . . ∃yk(ψecore−1(y1) ∧ · · · ∧ ψecore−k(yk) ∧ C′ϕ)

5.4.4 Encoding The Conditions

Let ϕ ≡ (νñ){Mi/xi}i∈I and let ecores(ϕ) = N1, . . . , Ns. We continue the
construction of the characteristic formula Cϕ for ϕ by encoding each of the
conditions in ≈′′

ss into a formulae ψcond, each of which will feature as a conjunct
in C′ϕ. The encodings will refer to the ecores bound to the variables ỹ above.

Condition 1

Each Mi can be written as a context over ecores – let Ci[ỹ] be any such context.
Condition 1 in ≈′′

ss is then expressed in the following formulae:

ψcond−1
∆=

∧
i∈I

xi = Ci[ỹ]
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Condition 2a

Define the sets

S2a
∆= {(i, j) | Ni = Nj}

S̄2a
∆= {(i, j) | Ni 6= Nj}

The following formula encodes condition 2a:

ψcond−2a
∆=

∧
(i,j)∈S2a

yi = yj ∧
∧

(i,j)∈S̄2a

yi 6= yj

Condition 2b

Define the set

S2b
∆= {(C[ỹ], j) | C[Ñ ] = Nj}

The following formula encodes condition 2b:

ψcond−2b
∆=

∧
(C[ỹ],j)∈S2b

C[ỹ] = yj

Condition 2c

Define the set

S2c
∆= {j | there is no context C[ỹ] such that C[Ñ ] = Nj}

The following formula encodes condition 2c:

ψcond−2c
∆=

∧
j∈S2c

∧
f(z1,...,zk)∈Σk

∀z1 . . .∀zk(¬f(z1, . . . , zk) = yj)

Condition 3a

Define the sets

S3a
∆= {(C⊥

1 [ỹ], C⊥
2 [ỹ]) | C1[ỹ] is partitioning ∧ C⊥

1 [Ñ ] A ∧C⊥
1 [Ñ ] > C⊥

2 [Ñ ]}
S̄3a

∆= {(C⊥
1 [ỹ], C⊥

2 [ỹ]) | C1[ỹ] is partitioning ∧ C⊥
1 [Ñ ] A ∧C⊥

1 [Ñ ] 6> C⊥
2 [Ñ ]}

The following formula encodes condition 3a:

ψcond−3a
∆=

∧
(C⊥

1 [ỹ],C⊥
2 [ỹ])∈S3a

C⊥
1 [ỹ] > C⊥

2 [ỹ] ∧
∧

(C⊥
1 [ỹ],C⊥

2 [ỹ])∈S̄3a

¬C⊥
1 [ỹ] > C⊥

2 [ỹ]
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Condition 3b

Define the set

S3b
∆= {(C⊥

1 [ỹ], C⊥
2 [ỹ]) | C1[ỹ] is partitioning ∧ C⊥

1 [Ñ ]� ∧ C⊥
1 [Ñ ] > C⊥

2 [Ñ ]}

The following formula encodes condition 3b:

ψcond−3b
∆=

∧
(C⊥

1 [ỹ],C⊥
2 [ỹ])∈S3b

C⊥
1 [ỹ] > C⊥

2 [ỹ]

Condition 3c

Define the set

S3c
∆= {C⊥

1 [ỹ, z1, . . . , zt] | C⊥
1 [ỹ, z1, . . . , zt] is a minimised partitioning context ∧

¬∃T1, . . . , Tk ∈ S(ϕ).C1[Ñ , T1, . . . , Tk] >}
The following formula encodes condition 3c:

ψcond−3c
∆=

∧
C⊥

1 [ỹ,z1,...,zt]∈S3c

∀z1 . . .∀zk∀z(¬C⊥
1 [ỹ, z1, . . . , zk] > z)

5.4.5 Putting it Together

The construction of a characteristic formula Cϕ was started in Subsection 5.4.3
and Subsection 5.4.4 gave an encoding of the conditions in ≈′′

ss, each of which
should feature as a conjunct in Cϕ. All that remains now is to put it all together.

Definition 31 (Characteristic Formula). Let ϕ ≡ (νñ){Mi/xi}i∈I be any
frame, let ecores(ϕ) = N1, . . . , Ns, let Rj [x̃] be the analysis recipe for each Nj

and let kj ∈ N be such that Rj [M̃ ] >kj Nj. We now rely on the constructions
in the previous subsections to give a definition of the characteristic formula for
ϕ, Cϕ:

Cϕ
∆= ∃y1 . . . ∃yk(
ψecore−1(y1) ∧ · · · ∧ ψecore−k(yk)∧
ψcond−1∧
ψcond−2a ∧ ψcond−2b ∧ ψcond−2c

ψcond−3a ∧ ψcond−3b ∧ ψcond−3c)

Theorem 5. For any frames ϕ and ϕ′ with dom(ϕ) = dom(ϕ′) it holds that

ϕ ≈ss ϕ
′ ⇔ ϕ′ � Cϕ
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Proof. It is clear from the construction of Cϕ that

ϕ ≈′′
ss ϕ

′ ⇔ ϕ′ � Cϕ

By Lemma 18, ≈′′
ss and ≈′

ss coincide, and by Theorem 1 and Theorem 2, ≈′
ss

and ≈ss coincide.

5.5 Summary

We have given a first order logic for frames, LF , with atomic propositions
for asserting equality, syntactic equality and reductions, which enable direct
reasoning about the terms contained in a frame. Quantification ranges over the
synthesis of a frame which intuitively is the set of terms that can be constructed
by applying function symbols to ecores. Quantification hence enables indirect
reasoning about the knowledge represented by a frame, which is essential for
expressing e.g. that there is some term y1 (known to the environment) that can
be used to decrypt x1 and obtain some analysis term y2.

It has been shown that LF characterises strong static equivalence. Further-
more, we have given a construction of characteristic formulae. This construction
relies on a further refinement of strong static equivalence which does not involve
any universal quantification over contexts. The existence of characteristic for-
mulae is an important result which shows the expressive power of the logic: LF
is sufficiently powerful to describe all the essential features of a frame (with
respect to static equivalence) in a single finite formula.
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Chapter 6

A Logic for Applied π

In the previous chapter a logic for frames was developed. It was shown that the
logic characterises static equivalence on frames and a construction of charac-
teristic formulae was given. In this chapter we build upon the logic for frames
and extend it with Hennessy-Milner modalities, yielding a logic for Applied π
processes which characterises labelled bisimilarity. The resulting logic can be
used to reason about the dynamic behaviour of a process as well as the static
knowledge represented by the frame of the process, allowing assertions such as
process P can perform an input of an encrypted term M1 followed by some out-
put, after which the decryption key for the term M1 is known by the environment
to be expressed.

Section 1 presents the syntax of the Applied π logic and Section 2 gives the
semantics in terms of a satisfaction relation. The choice of syntax and semantics
is to some extent predetermined by our intention for the logic to characterise
labelled bisimilarity, so we will be brief with the presentation. Section 3 dis-
cusses two additional logical construct which can be defined from the basic
logic, namely match and the matching input modality. Finally section 4 con-
tains a proof that the logic characterises labelled bisimilarity; this relies on the
results from the previous chapter which say that the underlying logic of frames
characterises strong static equivalence.

6.1 Syntax

The definition of labelled bisimilarity between processes includes conditions on
internal reduction, output transitions, bound output transitions and input tran-
sitions. The syntax of the logic LA for Applied π must therefore include modal-
ities for each of these transitions in addition to the propositional connectives
and the constructs from the logic of frames:
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A ::=M1 =E M2 |M1 > M2 |M1 = M2 | ∃x(A1)
|¬A1 | A1 ∨A2 | (A1)
|〈τ〉A1

|〈ā〉A1

|〈νā〉A1

|〈a(u)〉A1

For example, the modal formula 〈a(x)〉A1 expresses that a process can do an
input on channel a, bound to the variable x, after which the process satisfies
A1. The full range of propositional and first order connectives can be defined
in the same manner as for LF . Similarly, the dual modalities (necessity) can
be defined as usual; for example the dual modality of 〈τ〉 is defined thus:

[τ ]A1
∆= ¬〈τ〉¬A1

Note that constructs from the logic of frames may be freely mixed with
the modalities. This opens up the possibility to reason about environment
knowledge over time. Take for example the following formula:

∃x1(〈ā〉〈a(y)〉∃x2(dec(y, x1) > x2))

This formula expresses that a decryption key x1 for the term which is input
at some later stage is known up front; more specifically, it says that there is a
known decryption key x1 such that, after outputting some arbitrary term and
inputting y, y can be decrypted with x1 to obtain some x2. A bigger example
will be given in the next chapter where the logic is applied to reasoning about
a security protocol.

6.2 Semantics

Semantics for the modalities is guided by our intention for LA to characterise
labelled bisimilarity. Since this is a weak bisimilarity, the modalities must also
be weak, i.e. input and output actions may be preceded and followed by any
number of internal actions. Let �LF be the satisfaction relation for LF . The
satisfaction relation for LA can then be defined as follows:
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P � M1 =E M2
∆= ϕ(P ) �LF M1 =E M2

P � M1 = M2
∆= ϕ(P ) �LF M1 = M2

P � M1 > M2
∆= ϕ(P ) �LF M1 > M2

P � ∃x(A1)
∆= there exists M ∈ S(ϕ(P )) s.t. (P | {M/x}) � A1

P � ¬A1
∆= P 6� A1

P � A1 ∨A2
∆= P � A1 or P � A2

P � (A1)
∆= P � A1

P � 〈τ〉A1
∆= there exists P ′ s.t. P τ−→∗

P ′ and P ′ � A1

P � 〈ā〉A1
∆= there exists u, P ′ s.t. P τ−→∗ a〈u〉−−−→ τ−→∗

P ′ and P ′ � A1

P � 〈νā〉A1
∆= there exists u, P ′ s.t. P τ−→∗ (νu)a〈u〉−−−−−→ τ−→∗

P ′ and P ′ � A1

P � 〈a(x)〉A1
∆= there exists M,P ′ s.t. P τ−→∗ a(M)−−−→ τ−→∗

P ′ and P ′ � A1{M/x}

6.3 Match and Matching Input Modality

Syntax and semantics for the Applied π logic have now been given. In this
section we consider two additional operators which are not part of the basic
logic. The first is match ([M1 =E M2]A) which asserts that whenever the match
predicate holds, the formula A must be true. The second is the matching input
modality (〈a(M/x)〉A) which requires that M be input on a; this is in contrast
to the modality 〈a(x)〉A where any term can be input on a.

We discover that a naive adoption of the match operator from the π calculus
logics [23] and the Spi logics [13] yields a logic which does not characterise
labelled bisimilarity. A weaker match operator can however be defined from
the equality predicate in the underlying frames logic, and this is also the key to
defining the matching input modality from the existing input modality.

6.3.1 The Problem with Match

As in the π calculus, Applied π includes the process construct

if M1 =E M2 then P else Q

for testing equivalence between two terms and, based on the outcome, continuing
either as process P or Q. One might therefore expect that a match operator
[M1 =E M2]A must be included in the logic in order for the logic to characterise
labelled bisimilarity. Since tests on arbitrary terms (possibly containing private
names) is allowed in the calculus, one might further expect that the match
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operator in the logic can take arbitrary terms and that satisfaction could then
be defined as follows:

P � [M1 =E M2]A
∆= if M1ϕ =E M2ϕ then P � A

Note how this definition does not rely on equality in frames (i.e. we just require
that M1ϕ =E M2ϕ instead of (M1 =E M2)ϕ), reflecting the intuition that
an equality may hold even when M1 and M2 contain private names as in the
conditional process construct. As we shall see in the next chapter, this definition
of the match operator would be useful in applications. However, the resulting
logic would not characterise labelled bisimilarity. To illustrate this fact consider
the following two processes which are vacuously labelled bisimilar because they
are statically equivalent and have no dynamic behaviour:

P
∆= (νk)({k/x})

Q
∆= (νk)({f(k)/x})

Take the match formula A ∆= ¬[x =E k]false which expresses that x =E k.
Then P � A while Q 6� A, which serves to show that a logic with arbitrary match
does not characterise labelled bisimilarity. The reason is, intuitively, that even
though processes have the power to test for this kind of equalities, they might
not do so – and hence their behaviour may be independent of the outcome of
the test.

The Spi logic includes a match predicate similar to the one above, and an ex-
ample similar to the one above suggests that the Spi logic does not characterise
the relevant bisimulation. Hence it would seem that the Spi characterisation
theorem [13, Theorem 1 p. 8] does not hold; the proof of this theorem, given in
[14], does not resolve the doubt since the case for match is omitted.

What is needed is a weaker test operator which cannot be used to distinguish
statically equivalent processes, and the natural choice is to define the match
operator in terms of equality in frames:

P � [M1 =E M2]A
∆= if (M1 =E M2)ϕ then P � A

However this operator is redundant since the test proposition M1 =E M2 is
already part of the logic. We can then use this together with the propositional
connectives to give an equivalent definition of the above weaker version of the
match operator, thus:

P � [M1 =E M2]A
∆= (M1 =E M2 → A)

Similar test operators can be defined for syntactic equality and for reductions.

6.3.2 Matching Input Modality

The basic input modality 〈a(x)〉A asserts that a process can afford a transition
labelled a(M) for some term M to a derivative which satisfies A{M/x}. We also
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wish to consider a stronger matching input modality, 〈a(M/x)〉A, which asserts
that a process can afford the transitions labelled a(M) for exactly the term
M , to a derivative which satisfies A{M/x}. Matching input modality is strictly
necessary to prove that the logic characterises labelled bisimilarity in the next
section. Satisfaction can be defined as follows:

P � 〈a(M/x)〉A ∆= there exists P ′ s.t. P τ−→∗ a(M)−−−→ τ−→∗
P ′ and P ′ � A{M/x}

As with the match operator, it turns out that the matching input modality
is redundant; it can be defined from the standard input modality together with
syntactic equality, thus:

〈a(M/x)〉A ∆= 〈a(x)〉(x = M ∧A)

Informally, this definition says that a process satisfies 〈a(M/x)〉A if it can input
some term bound to variable x and if this term is syntactically equal to M .
This seems sensible; however there is a catch, for the semantics for x = M is
defined in terms of syntactic equality in frames, i.e. a process P satisfies x = M
if and only if (x = M)ϕ(P ). For this to be true, it must first of all hold that
n(M) ∩ bn(ϕ(P )) = ∅. The following lemma establishes that this is indeed the
case for any input M , and it follows immediately that the above definition of the
matching input modality in terms of the standard input modality and syntactic
equality captures the intended meaning.

Lemma 19. For any transition P
a(M)−−−→ P ′ where M occurs free (i.e. with

no names under restriction) in some sub-process of P ′ it holds that n(M) ⊆
fn(ϕ(P ′)).

Proof. By transition induction, i.e. induction in the height of the derivation

tree of P
a(M)−−−→ P ′ with case distinction on the last rule applied.

Case: transition concluded by In . Then P = a(x).P ′ and by definition
of (extended) processes no active substitution can occur within the scope of an
input. Hence ϕ(P ′) = (ν∅)∅ so contains no private names, and the result holds
vacuously.

Case: transition concluded by Scope . Then P = (νn)Q, Q
a(M)−−−→ Q′

and P ′ = (νn)Q′. The induction hypothesis gives that n(M) ∩ bn(ϕ(Q′)) = ∅
and the side condition in the Scope rule gives that n does not occur in M .
Since the frame of P is just the frame of Q with an additional restriction on n,
we have that also n(M) ∩ bn(ϕ(Q′)) = ∅ and hence that n(M) ⊆ fn(ϕ(Q′))

Case: transition concluded by Par . Then we have that P = Q | Q′,

Q
a(M)−−−→ Q′′ and P ′ = Q′′ | Q′. Now recall how to obtain the frame of P ′: first

obtain ϕ(Q′′) = ñ1σ1 and ϕ(Q′) = ñ2σ2 such that ñ1 ∩ n(σ2) = ñ2 ∩ n(σ1) = ∅
by α-converting as necessary. By induction hypothesis n(M) ∩ ñ1 = ∅. Per
assumption we also have that n(M) ⊆ n(Q′′) and therefore n(M) ∩ ñ2 = ∅.
Hence n(M) ∩ (ñ1 ∪ ñ2) = ∅ giving that n(M) ∩ bn(ϕ(P ′)) = ∅. Since M does
occur in P ′ we conclude that n(M) ⊆ fn(ϕ(P ′)).
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Case: transition concluded by Struct . Then P ≡ Q, Q
a(M)−−−→ Q′ and

Q′ ≡ P ′. Since M occurs free in a subcomponent of P it follows by inspection of
the rules for structural congruence that M also occurs free as a subcomponent
of Q. By induction hypothesis n(M) ⊆ fn(ϕ(Q′)), and again by inspection of
rules for structural congruence it holds that n(M) ⊆ fn(ϕ(P ′)).

Note that it does not necessarily hold that the names of an input are free in
the derived process. Here is an example:

P
∆= (νk)({k/x}) | a(y).b〈y〉.0

Then P affords the input transition P
a(k)−−−→ P ′ where

P ′ = (νk)({k/x}) | b〈k〉.0

and hence k ∈ bn(P ′). However, the frame of the derivative P ′ above is obtained
by α-converting the bound k thus:

ϕ(P ′) = (νc)({c/x} | b〈k〉.0)

and then we have that k 6∈ bn(ϕ(P ′)). Hence it is strictly necessary to speak
only about the frame of the derived process in Lemma 19.

We have now introduced the matching input modality and shown how this
can be defined from the basic input modality and equality. As a final remark
we note that a matching output modality 〈a〈M〉〉 would result in a logic which
does not characterise labelled bisimilarity. Because for P and Q to be labelled
bisimilar, the output condition requires only that whenever P can perform an
output action a〈x〉, then Q can also perform this output action – there is no
requirement for x to be bound to the same term in the two processes.

6.4 Characterisation

In this section we show the expected result that LA characterises labelled bisim-
ilarity. Existential quantification can now have any formulae in its scope (and
not just LF formulae), so we must start by proving a new extension lemma say-
ing that labelled bisimilarity between processes is preserved by extension with
certain active substitutions.

Lemma 20 (Process extension lemma). Let P and Q be two processes with
P ≈l Q. Let ecores(ϕ(P )) = (N)j∈J and ecores(ϕ(P )) = (N ′)j∈J . Then for
any context C[ỹ] and any variable x fresh in P and Q it holds that

P | {C[Ñ]/x} ≈l Q | {C[Ñ ′]/x}
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Proof. Suppose that P ≈l Q. By condition 1 of labelled bisimilarity we have
that ϕ(P ) ≈ss ϕ(Q). By the second extension lemma for frames (Lemma 17) it
also holds that

ϕ(P ){C[Ñ ]/x} ≈ss ϕ(Q){C[Ñ ′]/x}
which is equivalent to

ϕ(P | {C[Ñ]/x}) ≈ss ϕ(Q | {C[Ñ ′]/x})
This establishes condition 1 of labelled bisimilarity for the extended processes.

For the other two conditions it suffices to show that P can perform exactly
the same actions as the extended process P | {C[Ñ ]/x}. This amounts to showing
that any action which P can perform can also be performed by the extended
process, and conversely that any action that the extended process can perform
can also be performed by P .

Suppose that P can perform some action. If the action is an internal re-
duction then the extended process can perform the same action since internal
reduction is closed by application of evaluation contexts. If P can perform a
labelled action, the Par rule gives that the extended process can perform the
same action (here we use that the variable x does not occur anywhere in P , so
the premise of the rule is satisfied).

For the converse suppose that the extended process can perform some action.
If the action is an internal reduction, this can only be done by process P since
active substitutions have neither match or communication capabilities. Note
that a reduction using the Then or Else rules is independent of the active
substitution since the variable x per assumption does not occur in the match
predicate. If the extended process can perform a labelled action, then this action
can only be concluded using the Par rule where the process P performs the
same action.

We are now ready to show the main characterisation result. The proof is
fairly standard and follows the structure in e.g. [23, Proof of Theorem 1, p. 24].
As is common for this kind of characterisation theorem we assume that processes
are image finite: it must hold for any process P that the set {P ′ | P α−→ P ′} is
finite. In the parts of the proof concerning the frame logic we rely on the above
extension lemma together with the results from the previous chapter saying that
the logic of frames characterises strong static equivalence.

Theorem 6. For image-finite processes, LA characterises labelled bisimilarity
(based on strong static equivalence):

P ≈l Q⇔ ThLA(P ) = ThLA(Q)

Proof. There are two directions to show.
(⇒) Suppose that P ≈l Q and P � A. We show by structural induction

in A that also Q � A. We only show the base cases, the step for existential
quantification, and the step for the input modalities; the remaining cases are
similar or standard.
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Basis.
Case: A = M1 ◦ M2 where ◦ is either =E , = or >. Per definition

of satisfaction, ϕ(P ) �LF M1 ◦M2. From the assumption that P ≈l Q and
condition 1 of labelled bisimilarity, we have that ϕ(P ) ≈ss ϕ(Q). By Theorem
4 also ϕ(Q) �LF M1 ◦M2, i.e. Q � M1 ◦M2.

Step.
Case: A = ∃x(A1). Per definition of satisfaction there is a M ∈ S(ϕ(P ))

such that (P | {M/x}) � A1. We then proceed as in the corresponding case
in the proof of Theorem 4. Any synthesis term can be written as a context
over cores, i.e. M = C[Ñ ] for some context C[ỹ]. From the assumption that
P ≈l Q and the extension lemma for processes (Lemma 20), we have that
also P | {M/x} ≈l Q | {M ′

/x} where M ′ = C[Ñ ′]. Therefore the induction
hypothesis gives that Q | {M ′

/x} � A1, and since M ′ ∈ S(ϕ(Q)) we conclude
from the definition of satisfaction that Q � ∃x(A1).

Case: A = 〈a(x)〉A1. Per definition of satisfaction there exists a term M ,
and processes P ′,P ′′ and P ′′′ such that

P
τ−→∗

P ′ a(M)−−−→ P ′′ τ−→∗
P ′′′ and P ′′′ � A1{M/x}

From the assumption that P ≈l Q and by inductively using condition 2 in the
definition of labelled bisimilarity, there is a process Q′ such that Q τ−→∗

Q′ and

P ′ ≈l Q
′. By condition 3 there is a process Q′′ such that Q′ a(M)−−−→ Q′′ with

P ′′ ≈l Q
′′. Using condition 2 inductively again we conclude that there is a

process Q′′′ such that

Q
τ−→∗

Q′ a(M)−−−→ Q′′ τ−→∗
Q′′′

where P ′′′ ≈l Q
′′′. The induction hypothesis gives that Q′′′ � A1{M/x}, and

hence we conclude from the definition of satisfaction that Q � 〈a(x)〉A1.

(⇐) For the other direction suppose that ThLA(P ) = ThLA(Q), i.e. P
and Q satisfy the same formulae. We must show that P and Q are related
by some labelled bisimulation. Define the relation L where PLQ if and only
if ThLA(P ) = ThLA(Q). Then clearly PLQ; we show that L is a labelled
bisimulation, i.e. that it satisfies the three conditions in the definition of ≈l.

P and Q satisfy the same formulae, and in particular they satisfy the same
frame formulae. It follows by Theorem 4 that ϕ(P ) ≈ss ϕ(Q) which establishes
condition 1 in the definition of labelled bisimilarity.

Next we show condition 3 for the case where α = a(M). So suppose that

P
a(M)−−−→ P ′ and let (Q)i∈I be an enumeration of the set {Q′ | Q a(M)−−−→ Q′}.

Suppose for a contradiction that Q cannot simulate P , i.e. that (P ′, Qi) 6∈ L
for all i ∈ I. Then P ′ and Qi do not satisfy the same formulae (this follows
by contraposition of the direction proven above), i.e. for each i ∈ I there is
a formulae Ai ∈ ThLA(P ′) − ThLA(Qi). Per assumption of image-finiteness
the enumeration (Q)i∈I is finite, so the formula A = 〈a(M/x)〉∧i∈I Ai is well
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defined (if I = ∅ we define
∧

i∈I Ai to be true). Then by construction A ∈
ThLA(P )− ThLA(Q), contradicting that P ≈l Q.

The proofs for the other labels in condition 3, and the proof for condition 2,
are similar.

Note how the input modality 〈a(M/x)〉, which was defined from 〈a(x)〉 and
equality, plays an essential role in the proof of the input case in condition 3. For
if we only had 〈a(x)〉 available we could conclude only that Q can match P ’s
transition with some input on a, but not necessarily with an input of M on a;
this would not be strong enough to prove bisimilarity.

6.5 Summary

We have extended the logic of frames with four modalities, namely an internal
action modality, two output modalities and an input modality. An additional
input matching input modality has been introduced and shown to be definable
from the basic logic. We have also argued that a generic match operator (where
private names may occur in terms) would result in the logic not characteris-
ing labelled bisimilarity, but a weaker match operator can be defined from the
equality proposition inherited from the frame logic.

The result is a logic LA for Applied π which characterises labelled bisimi-
larity. The logic allows intermixing frame formulae from LF (including existen-
tial quantification) with modalities, which opens up the possibility of reasoning
about knowledge over time.
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Chapter 7

An Application to the
Needham-Schroeder Public
Key Protocol

In this chapter we demonstrate how the logic for Applied π, based on the logic
of frames, can be used to reason about a security protocol. The Needham-
Schroeder Public Key Protocol [24] has been chosen for this purpose because its
specification in Applied π is fairly simple and because it affords a well known
attack [20] which can be expressed in the logic.

We start by explaining the Needham-Schroeder Public Key Protocol and a
known attack in Section 1, after which we present an Applied π specification
of the protocol in Section 2. In Section 3 we show how to express security
properties in the logic, including a property which captures the attack on the
protocol.

7.1 The Needham-Schroeder Public Key Proto-

col

The basic Needham-Schroeder Public Key Protocol is presented in the first
subsection followed by an explanation of the attack in the second subsection.

7.1.1 The Protocol

The Needham-Schroeder Public Key Protocol can be used to authenticate two
principals A and B to each other using public key cryptography, where we let
A+ and B+ denote the public keys of A and B respectively. The protocol also
employs nonces Na and Nb which are random messages, generated by A and B
respectively, intended to be used only in a single run of the protocol.
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The complete Needham-Schroeder Public Key Protocol includes steps for
obtaining public keys from a trusted key server. For simplicity we omit these
steps and assume that the public keys are already available to the participating
principals; following [20], the core protocol can then be described informally
thus:

Message 1 A→ B : A,B, {Na, A}B+

Message 2 B → A : B,A, {Na, Nb}A+

Message 3 A→ B : A,B, {Nb}B+

Principal A initiates the protocol by sending a message to B in step 1. The
first two parts of the message simply express the fact that A wishes to establish
a session with B. The third part of the message contains the nonce Na and
the identity A encrypted under B’s public key. Upon receiving this message, B
uses its private key for decryption and obtains the nonce Na. B then returns
this nonce, together with a freshly generated nonce Nb, encrypted under A’s
public key. When A receives this message, A believes that the message must
originate from B because only B would be able to decrypt the contents of
the first message to obtain the nonce Na. Hence A happily returns the nonce
Nb to B, again encrypted with B’s public key, in the belief that the nonce
is a shared secret between the two principals. Similarly, B believes that the
messages originated from A and that Nb is their shared secret, since only A
should be able to decrypt the second message.

Following the three steps outlined above, A and B could proceed to generate
a secret symmetric encryption key from the nonce Nb, which could be used for
encryption in the remainder of the session. Symmetric key cryptography offers
the advantage of speed compared to public key cryptography, so after the initial
authentication using public keys, symmetric keys are employed in many practical
applications such as the Secure Shell (ssh) program.

7.1.2 An Attack

An attack on the protocol which compromises the secrecy of the nonce Nb (and
potentially subsequent symmetric encryption keys) is revealed in [20]. This is a
classical example of how formal methods can be applied to reveal weaknesses in
a protocol which for many years was believed to be secure. The attack involves
an intruder I acting as a “man in the middle”: If A initiates a session with
I, I can establish a new session with B impersonating A. B will then believe
that it is carrying out a session with A instead of I. Hence the attack involves
interleaving two runs of the protocol; we denote these two runs by α and β and
write e.g. α.2 to refer to step two in run α. We also write I(A) to indicate
that I is impersonating A. The attack on the protocol can then be described as
follows:
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Message α.1 A→ I : A, I, {Na, A}I+

Message β.1 I(A) → B : A,B, {Na, A}B+

Message β.2 B → I(A) : B,A, {Na, Nb}A+

Message α.2 I → A : I, A, {Na, Nb}A+

Message α.3 A→ I : A, I, {Nb}I+

Message β.3 I(A) → B : A,B, {Nb}B+

In step β.2 the intruder receives the nonce Nb, but it is encrypted under
A’s public key and hence I cannot decrypt it. Instead the intruder uses A as
an oracle by replaying this message in α.2, and in message α.3 I receives the
nonce Nb encrypted under I’s own public key; it can thus use its private key
to obtain Nb. Note that B still believes that it has successfully carried out the
authentication session with A and that Nb is a shared secret between A and B.

The protocol can be fixed simply by including the identity of the responder
B in the encrypted part of message 2. A can then test if the message in step 3
originates from the expected principal.

7.2 The Specification

In this section we model the Needham-Schroeder Public Key Protocol in Applied
π. We start in Subsection 1 by outlining some general assumptions, known as
the Dolev-Yao Model. In Subsection 2 we present the equational theory used in
the specification, which is based on public key encryption and lists. Subsection
3 discusses how to represent public keys in the specification and how these
are used as process identifiers. Subsection 4 introduces some notational short
hand which is useful in the specification, namely agent identifiers and output-
guarded nondeterministic choice. Finally the complete specification is presented
in Subsection 5, and we conclude with a transition trace leading to the attack
in Subsection 6.

7.2.1 The Dolev-Yao Model

Applications of formal methods to security protocol often rely on what is known
as the Dolev-Yao model [12]. The Dolev-Yao model is based on the following
two assumptions:

• An intruder has complete knowledge of and access to communication chan-
nels in the sense that he/she can send arbitrary messages, can intercept
any message, and modify it any way he/she sees fit.

• Cryptographic functions are perfect: decryption is only possible with the
appropriate decryption key.
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In Applied π the first assumption is realised through the labelled semantics
and active substitutions: any output will result in a new active substitution
which contributes to the frame of the process, and the frame is thus a represen-
tation of the environment knowledge which is a available to an attacker. The
environment (or attacker) may compose any message by analysing and synthe-
sising the frame of a process and send the message back to the process using
labelled input.

The second assumption is realised through the algebraic specification of cryp-
tographic functions by rewrite rules generating an equational theory. In a theory
with symmetric key encryption, the equality dec(enc(x1, x2), x3) =E a holds if
and only if x2 = x3.

7.2.2 The Equational Theory

From the informal presentation of the protocol it is clear that an equational
theory with public key encryption is required. We also need means of sending
multiple terms in one message, and for this purpose an equational theory with
lists is convenient. Hence we arrive at the following definition:

Definition 32. The signature and equational theory used for the subsequent
specification is defined below.

Theory ENS .
Signature: enc(·, ·), dec(·, ·), ·+, ·−,cons(·, ·),head (·),tail (·), NIL.
Rewrite System:

dec(enc(z1, z2+), z−2 ) >r1 z1

head(cons(z1, z2)) >r2 z1

tail (cons(z1, z2)) >r3 z2

The part of ENS concerning public key encryption has been explained ear-
lier in the report. The function symbol cons(z1, z2) is the list constructor: it
takes a head z1 and a tail z2 (which itself is a list) to obtain a new list. The
function symbols head and tail are used to extract the head and tail from a list,
respectively, as expressed in the rewrite rules r2 and r3. Finally, the constant
function symbol NIL represents the empty list.

For the present purpose we shall only be needing lists with two or three
elements. Therefore we define the following notational short hands.

Definition 33. Pair construction, triple construction, and projection of first,
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second and third elements, are defined as follows:

[z1, z2]
∆= cons(z1, cons(z2,NIL))

[z1, z2, z3]
∆= cons(z1, [z2, z3])

fst(z) ∆= head(z)

snd(z) ∆= head(tail (z))

trd(z) ∆= head(tail (tailz))

7.2.3 Process Identifiers and Public Keys

In the formal specification of the protocol in Applied π, principals are repre-
sented by processes. The informal protocol description requires that principals
have identifiers which can be sent along in messages, e.g. in message 1 which
includes the information that the message is from A to B. There is however
no immediate way of identifying processes in Applied π (replication would pose
problems for such identifiers). Instead we adopt the convention that principals
are identified by their public keys.

As explained earlier we assume that public keys have been exchanged and
are known to all principals prior to protocol execution. To model this assump-
tion we simply include in the specification an active substitution with the public
key for each principal. For instance there will be an active substitution {a+

/za}
representing the public key for A. When other processes (e.g. B and potential
intruders) refer to A’s public key, this reference must be through the variable
za in the relevant active substitution because the seed a is private for principal
A. If the public key were to be used directly to encrypt a term, the encrypted
term could not be sent to A because scope extrusion would fail.

7.2.4 Agent Definitions and Choice

When specifying the protocol in Applied π it will be convenient to employ two
notions which are not explicitly part of the calculus, namely agent definitions
and nondeterministic choice. Agent definition are on the form

A1
∆= P1

A2
∆= P2

. . .

where P1 is the process we wish to identify with A1 etc. The agent identifiers
may then occur in any process, the intuition being that the identifier Ai is
replaced by its definition Pi, which may lead to recursion. Although agent
identifiers are not explicitly part of the calculus, they can easily be encoded
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using the bang operator (!) [25, Section 3.4]. Hence we can safely use agent
identifiers in the protocol specification.

Nondeterministic choice, +, can be used to write processes on the form
P

∆= a〈x〉.P1 + a〈y〉.P2, the intuition being that P can choose nondeterminis-
tically to proceed as either a〈x〉.P1 or a〈y〉.P2. Nondeterministic choice cannot
generally be encoded in Applied π, but many special cases can [25, Section 3.2],
including the output-guarded process P above. For instance, assuming that
z 6∈ fv(P1, P2), the process P above is observationally equivalent to the process

P ′ ∆= (νb)(b〈d〉 | b(z).a〈x〉.P1 | b(z).a〈y〉.P2)

When specifying the protocol we shall use output-guarded nondeterministic
choice, knowing that this can be encoded in the basic Applied π calculus.

7.2.5 The Specification

We are now ready to present the formal specification of the Needham-Schroeder
Public Key Protocol in Applied π– the specification is given in Table 7.1.

The processes A and B represent the two main principals in the protocol.
There is no explicit encoding of potential intruders since this aspect is implicit
in processes being able to communicate with the environment. Note however
the definition of process A: since A initiates the protocol, it must as a first step
choose which principal to engage in a protocol run with. This initial choice is
essential to include in the specification, since this is the choice leading to A
contacting a potential intruder. We assume that A only has two friends which
are identified by the public keys zb0 and zb1 . The first is intuitively the “correct”
process B , identified by the public key variable zb0 , while the second may be a
hostile intruder and is identified by the public key variable zb1 . Process A uses
nondeterministic choice to decide which of these to initiate a protocol run with.
The process T (i) generalises the first step of the protocol, where the argument
i indicates which of A’s two friends should be contacted. The derivatives of A
are indexed by the identifier (0 or 1) of the responder chosen in the first step.

The process PK consists of active substitutions representing the public key
of A, the public key of the well-behaved process B, and the public key of a
potential intruder. The process SPEC gathers the agents A and B in a coherent
system together with PK, which reflects the assumption that public keys are
known in advance. The secrecy of the key seeds a and b0 is modelled with name
restriction to the relevant processes; so is the freshness of nonces na and nb0 .
Note that the intruders key seed nb1 is not private.

Note how the processes A2(i) and B3 use the conditional process construct to
check if the expected nonce is received. If B3 receives the expected nonce, then
the protocol run is successful and the process can continue its business in B5.
Before doing so,B4 announces the successful completion of the authentication by
sending a “success message” on a distinguished channel s. The success action is
necessary when describing the trace with a LA formula in the next section. The
reason is that the test includes the private name nb0 and, as we demonstrated
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T (i) ∆= c〈[za, zbi , enc([na, za], zbi)]〉
A

∆= T (0).A1(0) + T (1).A1(1)

A1(i)
∆= c(y2).A2(i)

A2(i)
∆= if fst(dec(trd(y2), a−)) =E na then A3(i) else FA

A3(i)
∆= c〈[za, zbi , enc(snd(dec(trd(y2), a−)), zbi)]〉.A4(i)

A4(i)
∆= . . .

B
∆= c(y1).B1

B1
∆= c〈[zb0 , fst(y1), enc([fst(dec(trd(y1), b−0 )), nb0 ], fst(y1))]〉.B2

B2
∆= c(y3).B3

B3
∆= if dec(trd(y3, b−0 )) =E nb0 then B4 else FB

B4
∆= s〈succ〉.B5

B5
∆= . . .

FA
∆= . . .

FB
∆= . . .

PK
∆= {a+

/za} | {b0
+
/zb0

} | {b1
+
/zb1

}
SPEC

∆= (νa, na)A | (νb0, nb0)B | PK

Table 7.1: An Applied π specification of the Needham-Schroeder Public Key
Protocol. The specification uses short hand notations for agent definitions and
output-guarded choice which can be defined from the basic Applied π calculus.
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in Section 6.3, this kind of test cannot be made in the logic. Instead we ensure
that the outcome of the test is readily observable by performing an output on
channel s, and this output action can be captured in the logic.

The remainder of the specification should be fairly self explanatory. The
processes A4(i), B5, FA and FB are left unspecified; the first two express the
behaviour of the respective principals after a successful run of the authentication
protocol (and may e.g. continue communication with a symmetric key generated
from a nonce), and the last two processes specify the behaviour on unexpected
input (which we will not concern ourselves with for the present purpose).

7.2.6 A Trace of The Attack

A formal derivation from the SPEC process, which demonstrates the attack on
the protocol, is given in Table 7.2.

The active substitutions arising from the three process outputs have variables
x1,x2 and x3. For convenience we also represent the three environment inputs
by active substitutions with variables y1,y2 and y3 which are under restriction.
The labelled semantics prescribe that environment input is substituted directly
into the process in question (since we are working with the early semantics).
We then use the fact that A{M/x} ≡ (νx)({M/x} | A) to introduce a new active
substitution with private variable.

7.3 Logical Properties

7.3.1 Capturing the Trace of the Attack

Here is a formula in the logic LA which expresses that a process can exhibit
the trace shown in Table 7.2, and hence the formula is satisfied by the SPEC
process:

A1
∆= 〈νc̄〉〈c(y1)〉〈νc̄〉〈c(y2)〉〈νc̄〉〈c(y3)〉〈s̄〉true

Note how we use the output action on the distinguished success channel to
implicitly test if the input bound to y3 contains the expected nonce. The formula
A1 is not in itself interesting though: we would also wish to express the security
breach, i.e. that the nonce nb0 is revealed to the environment by the end of the
trace. This is where the underlying logic of frames becomes useful. The variable
y3 is bound to the term [a+, b0

+, enc(nb0 , b0
+)]. As a first attempt, one might

assert that the encrypted nonce nb0 contained in this message can be decrypted
using environment knowledge:

A2
∆= 〈νc̄〉〈c(y1)〉〈νc̄〉〈c(y2)〉〈νc̄〉〈c(y3)〉〈s̄〉

∃x∃x′∃x′′(trd(y3) > x ∧ dec(x, x′) > x′′)

Recall that existential quantification ranges over the synthesis of the frame in
question, which intuitively corresponds to the environment knowledge. Note also
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SPEC ≡(νa, na)(c〈ξ1〉.A1(1)) | (νb0, nb0)c(y1).B1 | PK
≡ νx1c〈x1〉−−−−−→(νa, na)({ξ1/x1} | A1(1)) | (νb0, nb0)c(y1).B1 | PK

≡(νa, na, b0, nb0)({ξ1/x1} | A1(1) | c(y1).B1) | PK
c(y1)−−−→≡(νa, na, b0, nb0 , y1)({ξ1/x1} | {ξ2/y1} | A1(1) | B1) | PK

=(νa, na, b0, nb0 , y1)({ξ1/x1} | {ξ2/y1} | A1(1) | c〈ξ3〉.B2) | PK
≡ νx2.c〈x2〉−−−−−−→(νa, na, b0, nb0 , y1, y2)({ξ1/x1} | {ξ2/y1} | {ξ3/x2} | A1(1) | B2) | PK

=(νa, na, b0, nb0 , y1, y2)({ξ1/x1} | {ξ2/y1} | {ξ3/x2} | c(y2).A2(1) | B2) | PK
c(y2)−−−→≡(νa, na, b0, nb0 , y1, y2)({ξ1/x1} | {ξ2/y1} | {ξ3/x2} | {ξ4/y2}

| (if ξ5 =E na then A3 else FA) | B2) | PK
→(νa, na, b0, nb0 , y1, y2)({ξ1/x1} | {ξ2/y1} | {ξ3/x2} | {ξ4/y2} | A3 | B2 | PK
=(νa, na, b0, nb0 , y1, y2)({ξ1/x1} | {ξ2/y1} | {ξ3/x2} | {ξ4/y2} | c〈ξ6〉.A4 | B2 | PK

≡ νx3c〈x3〉−−−−−→(νa, na, b0, nb0 , y1, y2)({ξ1/x1} | {ξ2/y1} | {ξ3/x2} | {ξ4/y2} | {ξ6/x3} | A4 | B2 | PK
=(νa, na, b0, nb0 , y1, y2)({ξ1/x1} | {ξ2/y1} | {ξ3/x2} | {ξ4/y2} | {ξ6/x3} | A4 | c(y3).B3 | PK

c(y3)−−−→≡(νa, na, b0, nb0 , y1, y2, y3)({ξ1/x1} | {ξ2/y1} | {ξ3/x2} | {ξ4/y2} | {ξ6/x3} | {ξ7/y3}
| A4 | if ξ8 =E nb0 then B4 else FB) | PK

→(νa, na, b0, nb0 , y1, y2, y3)({ξ1/x1} | {ξ2/y1} | {ξ3/x2} | {ξ4/y2} | {ξ6/x3} | {ξ7/y3}
| A4 | s〈succ〉.B5) | PK

≡ νx4c〈x4〉−−−−−→(νa, na, b0, nb0 , y1, y2, y3)({ξ1/x1} | {ξ2/y1} | {ξ3/x2} | {ξ4/y2} | {ξ6/x3} | {ξ7/y3}
| {succ/x4} | A4 | B5) | PK

ξ1 = [z1, zb1 , enc([na, za], zb1)] [a+, b1
+, enc([na, a

+], b1+)]

ξ2 = [za, zb0 , enc([fst(dec(trd(x1), b−1 )), za], zb1)] [a+, b0
+, enc([na, a

+], b0+)]

ξ3 = [zb0 , fst(y1), enc([fst(dec(trd(y1), b−0 )), nb0 ], fst(y1))] [b0+, a+, enc([na, nb0 ], a
+)]

ξ4 = [zb1 , za, trd(x2)] [b1+, a+, enc([na, nb0 ], a
+)]

ξ5 = fst(dec(trd(y2), a−)) na

ξ6 = [za, zb1 , enc(snd(dec(trd(y2), a−)), zb1)] [a+, b1
+, enc(nb0 , b1

+)]

ξ7 = [za, zb0 , enc(dec(trd(x3), b−1 ), zb0)] [a+, b0
+, enc(nb0 , b0

+)]

ξ8 = dec(trd(y3, b−0 )) nb0

Table 7.2: A trace of the attack on the Needham-Schroeder Public Key Protocol.
The trace is shown in the top part of the table and relies on auxiliary definitions
of terms as given in the bottom part, which consists of two columns: the left
column gives the actual terms, while the right column gives the corresponding
normal forms of the terms after applying active substitutions.
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that we have to use an existentially quantified variable x′′ instead of directly
using nb0 because this is a private name. Does the process SPEC satisfy A2?
The answer is no, because b−0 is not in the frame synthesis of the relevant
derivative of SPEC. The reason is that the name b is private in process B and
is not revealed to the environment at any point in the trace. This corresponds
to the intuition of the attack: the nonce nb0 is not obtained by decrypting the
message embedded in y3, but rather by using A as an oracle and tricking A into
decrypting the message embedded in y3.

Hence an alternative formulation is called for:

A3
∆= 〈νc̄〉〈c(y1)〉〈νc̄〉〈c(y2)〉〈νc̄〉〈c(y3)〉〈s̄〉∃x(trd(y3) = enc(x, zb0))

This formula asserts that there is some synthesis term (x) which is syntactically
equal to the term encrypted in y3, namely nb0 . The process SPEC does satisfy
A3 because nb0 is in the frame synthesis of the relevant derivative of SPEC.
More precisely, the frame of the second last derivate of SPEC is given as follows:

ϕ = (νa, na, b0, nb0 , y1, y2, y3)({ξ1/x1} | {ξ2/y1} | {ξ3/x2} | {ξ4/y2} | {ξ6/x3} | {ξ7/y3})
The interesting term is ξ6 (bound to x3) which, when the private active sub-
stitutions are applied, reduces to the triple [a+, b1

+, enc(nb0 , b1
+)]. Since the

name b1 is free in ϕ, the last term of this triple can be decrypted so we have
that

ecores(x3, ϕ) = {a+, b1
+, enc(nb0 , b1

+), nb0}
Since ecores(ϕ) ⊆ S(ϕ) we have that nb0 ∈ S(ϕ), confirming the satisfaction

ϕ �LF ∃x(trd(y3) = enc(x, zb0))

and hence SPEC � A3.

Yet another approach would be employ the technique in the proof of Propo-
sition 3 in [2], which states that the problem of deciding static equivalence
reduces to deciding membership of the synthesis set in theories which include
public-key axioms. The idea is to add an active substitution with a fresh private
name encrypted under the public key generated from nb0 to the SPEC process:

SPEC ′ ∆= SPEC | (νh){enc(h,nb0
+)/y}

Then the nonce nb0 can be deduced by the environment in the end of a successful
protocol run exactly if SPEC′ satisfies the following formulae:

A4
∆= 〈νc̄〉〈c(y1)〉〈νc̄〉〈c(y2)〉〈νc̄〉〈c(y3)〉〈s〈succ〉〉∃x∃x′(dec(y, x) > x′)

The formula A3 describes the desired assertion more directly than A4, but A4

has the advantage of also working in a setting with symmetric key encryption.
If the message containing the nonce nb0 were encrypted with a symmetric key
not known by the environment, the term containing the nonce nb0 could not be
reconstructed in the logic and hence syntactical equality could not be tested as
in A3.
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7.3.2 General Safety Properties – Invariance

We have now demonstrated that the logic is sufficiently strong to capture the
attack on the Needham-Schroeder Public Key Protocol. However the formulae
A3 and A4 exhibited above were designed with the specific attack in mind. In
a more general situation, when one is faced with a protocol specification to be
verified, one would wish to express more general safety properties, e.g. that
there is no possible trace leading to the disclosure of the nonce nb0 .

More specifically, we would like to assert that whenever an (arbitrary) exe-
cution trace of the protocol leads to the input of y3 in B3 followed an output
of the success message, the nonce embedded in the input cannot be deduced by
the environment. This amounts to asserting that the following formula (which
is just the last part of A3) holds invariantly – i.e. in any possible derived state
of SPEC:

A5
∆= 〈c(y3)〉〈s〈succ〉〉¬∃x(trd(y3) = enc(x, zb0))

If we assume that A4(i), B5, FA and FB are finite processes, in the sense that
they do not afford infinite transition sequences, then the SPEC process is also
finite. In this case invariance can be defined using only constructs from the
basic logic LA. Let U be any finite set of names and variables. We then define
invariance of A in k steps inductively as follows:

Inv0
U (A) ∆= A

Invk+1
U (A) ∆= A ∧ [τ ]Invk

U (A)∧∧
u∈U

[ū]Invk
U(A) ∧ [νū]Invk

U (A) ∧ [u(x)]Invk
U (A)

Recall that the box modalities express necessity, so e.g. [τ ]A expresses that no
matter how an internal reduction is performed, the derived process must satisfy
A. Hence the formula Invk(A) expresses that no matter how a process performs
k consecutive actions, the resulting derived process must satisfy A.

Let U be the set of variables and names occurring in SPEC and let kmax

be the upper bound on the length of possible transition sequences that SPEC
can afford. We are now equipped to express a safety property which asserts
that SPEC does not reveal the nonce nb0 to the environment at any point in
its execution:

A6
∆= Invkmax

U (A5)

Clearly SPEC 6� A6 as exemplified by the formula A3 given in the previous
subsection, i.e. the safety property is not satisfied by our specification.

The definition of the invariance operator relies on processes with finite-length
transition sequences (not to be mistaken for processes with finite states). How-
ever, systems with infinite behaviour arise in many settings where the above
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definition of invariance therefore would not suffice. A standard solution is to
introduce process variables and recursion into the logic and thereby obtain a µ-
calculus [17]. This allows invariance to be defined as a maximal fixed point of an
appropriate semantic function over a complete lattice [6, Section 5.2]. Tarski’s
Fixed Point Theorem [6, Appendix A] gives us that a unique such fixed point
exists if the function is monotonic, and in order to satisfy this one would have
to omit negation from the logic. We leave further developments in this direction
for future work.

7.4 Summary

This chapter has demonstrated how the logic for Applied π can be applied to
express properties of security protocols. We have introduced the Needham-
Schroeder Public Key Protocol and shown a well known “man in the middle”
attack in which an intruder may learn a secret nonce. We have modelled the
protocol in Applied π and shown a transition sequence leading to the attack.
Finally we have discussed how the logic for Applied π may be used to express
properties of the protocol, and presented formulae which capture the attack.
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Conclusion

We have introduced Abadi and Fournet’s Applied π calculus and presented a
logic for the calculus which characterises labelled bisimilarity and hence also
observational equivalence. The motivation is similar to that of Applied π itself,
namely generality: the logic can be adapted to a particular application simply
by defining a suitable function signature and equational theory.

Since labelled bisimilarity contains a condition on static equivalence on
frames, the first step towards a logic for Applied π is a logic for frames which
characterises static equivalence. A logic for frames in turn relies on a definition
of static equivalence which does not contain a universal quantification over ar-
bitrary terms. The following section summarises the major contributions of this
report, and the subsequent section gives pointers to future work.

8.1 Contributions

8.1.1 Strong Static Equivalence

The first major contribution of this report is an strong version of static equiv-
alence, ≈ss, in which frames may be distinguished by testing on reduction of
terms in addition to equality. We have argued that strong static equivalence is
meaningful in applications. But strong static equivalence is particularly useful
because a refined definition, ≈′

ss, can be given which does not depend on uni-
versal quantification over arbitrary terms. The refined definition is based on
the notion of ecores (extended cores, which intuitively are the minimal relevant
terms which can be deduced from a frame): corresponding terms in the two
frames must be equal up to ecores, and any syntactic equalities and reductions
on contexts over ecores which hold in one frame must also hold in the other.
We then show that ≈ss and ≈′

ss coincide in independent convergent subterm
theories, which are the theories we have considered in this report. The refined
definition is used as a basis for the logic of frames and to show that this logic
characterises strong static equivalence. A further refinement, ≈′′

ss, which is also
shown to be equivalent to ≈ss, is given and used as a basis for characteristic
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formulae in the logic of frames. Finally we show that strong static equivalence
coincides with the standard static equivalence in cases where frames do not
contain inaccessible terms. This is for example satisfied by theories of symmet-
ric key encryption and by theories of public key encryption if public keys are
assumed to always be known.

8.1.2 A Logic for Frames

The second major contribution of this report is a first order logic for frames,
LF , which characterises strong static equivalence and which is amenable to
construction of characteristic formulae. LF includes the atomic propositions
M1 =E M2 (equality), M1 > M2 (reduction) and M1 = M2 (syntactic equality)
which allow direct reasoning about the terms in a frame. Common to all three
is that M1 and M2 may not contain private names of a frame in order for
the frame to satisfy them. LF also contains first order quantification on the
form ∃x(A) ranging over the synthesis of a frame (i.e. any terms which can be
constructed from ecores), which allows indirect reasoning about the terms that
can be deduced from a frame and greatly increases the expressiveness of the
logic. This enables formulae which e.g. express that
there exists a term y (known by the environment) such that x1 can be decrypted
with y to obtain x2

8.1.3 A Logic for Applied π

The third and final major contribution of this report is a modal logic for Applied
π, LA, which characterises labelled bisimilarity on processes. LA is obtained by
adding suitable Hennessy-Milner style modalities to LF . More specifically, we
add the modalities 〈τ〉A1 (possibility of internal reduction), 〈ā〉A1 (possibility
of some output on a), 〈νā〉A1 (possibility of bound output on a) and 〈a(x)〉A1

(possibility of input of some term bound to x on a). We have further demon-
strated how a restricted version of match can be defined based on the underlying
frame logic, and likewise how a matching input modality 〈a(M/x)〉A1 (possibil-
ity of input of term M on a) can be defined from the standard input modality
and match. The result is a logic which can reason both about the dynamic be-
haviour and static characteristics of processes, and which can be used to make
assertions on the form
process P can perform an input of an encrypted term M1 followed by some out-
put, after which the decryption key for the term M1 is known by the environment
Finally, we have demonstrated how LF can be applied to capture a well known
attack on the Needham-Schroeder Public Key Protocol.

8.2 Future Work

Many interesting directions for future work still remain, and in this section we
discuss a few of them.
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8.2.1 A Broader Class of Theories.

In this report we have focused on independent convergent subterm theories. We
have argued that the assumption of independence (namely that destructor func-
tion symbols do not occur inside rewrite rules) is not very strong. However the
assumption of subterm theories is rather strong, and convergent theories which
are not subterm theories arise in many practical applications. For example,
in [19] an analysis of security protocols based on weaknesses in block chaining
modes is carried out. A block chaining mode such as ECB (Electronic Code
Book) specifies how a clear text can be broken into a list of blocks which are
encrypted separately. A decryption function symbol operating on lists could
therefore be defined as follows (where the cons(·, ·) function symbol is the list
constructor from the theory ENS defined in Subsection 7.2.2):

dec(cons(enc(z1, z2), z3), z2) > cons(z1, dec(z3, z2))

This is however not a subterm rule. Hence it would be interesting to extend the
results in this report to convergent theories which are not necessarily subterm
theories. We expect this to be fairly easy since we only use the assumption of
subterm theories to argue that the reduct of a context over ecores is itself a
context over ecores. However, a more careful definition of cores and ecores may
be necessary.

8.2.2 Expressiveness

We have demonstrated how the logic LA can be used to reason about an au-
thentication protocol. One of the key motivations for a logic for Applied π is
generality, so one would hope that the logic captures other logics given a suit-
able equational theory. We have suggested that LA resembles the Spi logic in
a theory of symmetric key encryption. There are also similarities to the BAN
logic [11] which has been used to reason about authentication protocols. The
BAN logic includes formulae such as ”P sees X”, which asserts that process P
can see message X based on the messages it has received in its current state;
this resembles existential quantification over synthesis terms in LA. Therefore,
a general future direction could be to investigate the expressiveness of LA in
relation to existing logics.

8.2.3 Algorithms and Complexity

Decidability of refined strong static equivalence and of satisfiability in the logics
clearly rely on finding algorithms for computing the analysis, cores and ecores
of a frame. Although we are fairly confident that such algorithms exist, we
have not paid much attention to them in this report. Hence a possible future
direction would be to devise and implement such algorithms. It would also
be interesting to analyse the time complexity of deciding static equivalence
in convergent subterm theories using our refined definitions of strong static
equivalence. In particular it would be interesting to investigate if one could
match or improve on the polynomial time bound given in [2].
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CHAPTER 8. CONCLUSION

8.2.4 Tool Support

Analysis of models in Applied π is supported by the tool ProVerif [8] by Bruno
Blanchet. The motivation for introducing a logic for Applied π is to provide an
alternative approach to specifying security properties about a model. Hence it
would be of interest to extend ProVerif with support for our logic LA.

8.2.5 Recursion

In Chapter 7 we described how the logic LA can be used to specify properties
about a security protocol. We also motivated the need for invariance formulae,
which can be realised by introducing recursion and hence obtaining a µ-calculus.
This extension has however been left for future work and, although standard,
may involve making restrictions to the logic such as disallowing negation.
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