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Static Analysis for Event-Based XML Processing
(Work-In-Progress Paper)

Anders Møller

BRICS, Department of Computer Science,
University of Aarhus, Denmark

amoeller@brics.dk

Abstract. Event-based processing of XML data – as exemplified by the
popular SAX framework – is a powerful alternative to using W3C’s DOM
or similar tree-based APIs. The event-based approach is particularly su-
perior when processing large XML documents in a streaming fashion
with minimal memory consumption.

This paper discusses challenges and presents some considerations for cre-
ating program analyses for SAX applications. In particular, we consider
the problem of statically guaranteeing that a given SAX application al-
ways produces only well-formed and valid XML output.

1 Introduction

Most existing work on providing static guarantees about programs that ma-
nipulate XML documents has concentrated on programming languages or APIs
that assume a tree-view of XML documents. (A survey is presented in [13].)
Naturally, this takes on a high-level view of XML that implies convenient pro-
gramming models and permits sophisticated type systems or program analyses.
However, many real-world applications are built using a fundamentally different
model where XML documents are viewed as streams of events, as produced by
an XML parser encountering tags and character data while reading documents
left-to-right. For many applications this model leads to significantly lower mem-
ory consumption although it is often regarded more difficult to program with.
The most well-known event-based framework is SAX [1], which is based on Java.

The goal is to provide static analysis for SAX, as a step towards complement-
ing the existing work for tree-based XML transformation systems. Specifically,
we attack the following problems for a given SAX application:

– if the application produces XML output, is the output guaranteed to be
well-formed and valid (according to some given schema)?

– if the input is XML and we have a schema describing the possible input, how
can that schema be exploited to improve precision of analyses of the Java
code?

– if both input and output are XML, does validity of the input imply validity
of the output?



To the extent possible, we wish to solve these problems without changing the
SAX framework or adding, for example, schema-based type annotations.

The approach suggested here builds upon existing work on static analysis
for the Xact system [9, 7], analysis for Java Servlets [8], and analysis of string
operations in Java [4]. It would of course be an interesting challenge to instead
try building on alternative approaches, for example regular expression types [6],
but we leave that to others.

First, in Section 2, we give a brief introduction to the SAX 2.0 framework,
discuss some of the challenges it imposes on static analysis, and present some
simple but typical examples. Section 3 outlines a well-formedness and validity
analysis of Java programs that produce SAX events as output, and Section 4
considers the – apparently more difficult – problem of reasoning about SAX
filters and relating input schemas with the control-flow and data-flow in the
program. Section 5 concludes by summarizing the key ideas.

In addition to focusing on the particular problem of analyzing SAX appli-
cations, the issues being raised here in many cases have a more general nature
where solutions may also be useful for other program analyses that work on Java
code, for example the need for precise modeling of field variables and conditional
statements. Conversely, it should ideally be possible to develop complex special-
ized program analyses, such as this one for SAX, in a compositional manner from
simpler analyses that each focus on one particular aspect. Furthermore, the con-
siderations presented here may (together with our analysis for XSLT [12]) provide
inspiration for developing type checking or static analysis for the domain-specific
event-based language STX [5].

2 The SAX 2.0 Framework and its Challenges for Static
Analysis

With SAX 2.0, an XML document is viewed as a stream of events, the most
important being of the following kinds: start document, end document, start ele-
ment, end element, and characters. The most central constituent is the Content-
Handler interface, which contains a method for each kind of event. In particular,
the method startElement has arguments for the element name, its namespace
URI, and the attributes. The latter are represented via the interface Attributes,
which allows access to attributes either as an ordered list or as a name–value
map. Namespace declarations are represented by two special kinds of event han-
dler methods: startPrefixMapping, which has arguments for the prefix and the
URI of a namespace declaration, and endPrefixMapping, which marks the end
of the scope of a namespace declaration.

XMLReader is an interface for parsers that produce events from, for example,
the textual representation of XML documents. The XMLWriter class is a simple
example of an implementation of the ContentHandler interface that converts
in the other direction: from events to (hopefully well-formed and namespace
compliant) textual XML documents.
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A common way to implement ContentHandler classes is to extend the class
DefaultHandler, which provides empty event handlers for all kinds of events.

Example 1. Assume that we want to convert a collection of Card objects, de-
scribed by the following class, into an XML stream representation.

class Card {

int id;

String name;

List<String> emails;

String phone; // null represents "not available"

}

The XML representation is described by the following schema, cards.xsd (using
XML Schema notation):

<schema xmlns="http://www.w3.org/2001/XMLSchema"

xmlns:b="http://businesscard.org"

targetNamespace="http://businesscard.org"

elementFormDefault="qualified">

<element name="cards">

<complexType>

<sequence>

<element name="card"

minOccurs="0" maxOccurs="unbounded">

<complexType>

<sequence>

<element name="name" type="string"/>

<element name="email" type="string"

minOccurs="0" maxOccurs="unbounded"/>

<element name="phone" type="string"

minOccurs="0"/>

</sequence>

<attribute name="id" type="integer"/>

</complexType>

</element>

</sequence>

</complexType>

</element>

</schema>

For instance, the output could be the following sequence of events for a single
Card object:

start document
start prefix mapping ”” 7→ http://businesscard.org

start element cards

start element card with attribute id=42

start element name
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characters John Doe

end element name

start element email
characters john.doewidget.inc

end element email

end element card

end element cards

end prefix mapping ””
end document

This conversion can be achieved with the following method that generates the
appropriate SAX events to a ContentHandler (which may be an instance of
XMLWriter):

void cards2xml(Collection<Card> cards, ContentHandler out)

throws SAXException {

String NS = "http://businesscard.org";

out.startDocument();

out.startPrefixMapping("", NS);

out.startElement(NS, "cards", null, new AttributesImpl());

for (Card c : cards) {

AttributesImpl empty_attr = new AttributesImpl();

AttributesImpl attr = new AttributesImpl();

attr.addAttribute("", "id", null, null,

Integer.toString(c.id));

out.startElement(NS, "card", null, attr);

out.startElement(NS, "name", null, empty_attr);

out.characters(c.name.toCharArray(), 0, c.name.length());

out.endElement(NS, "name", null);

for (String email : c.emails) {

out.startElement(NS, "email", null, empty_attr);

out.characters(email.toCharArray(), 0, email.length());

out.endElement(NS, "email", null);

}

if (c.phone != null) {

out.startElement(NS, "phone", null, empty_attr);

out.characters(c.phone.toCharArray(),

0, c.phone.length());

out.endElement(NS, "phone", null);

}

out.endElement(NS, "card", null);

}

out.endElement(NS, "cards", null);

out.endPrefixMapping("");

out.endDocument();

}

(We here ignore the QName arguments to startElement/endElement and the
type argument to addAttribute.) The big question is: is the output always well-
formed, namespace compliant, and valid relative to the schema? (Unlike the tree-
based XML processing frameworks, not even well-formedness and namespace
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compliance are guaranteed here, but in return it consumes a minimal amount of
memory.) Our program analysis should be able to automatically verify whether
this is indeed the case.

This tiny example already exposes a number of non-trivial challenges for static
analysis:

(1) The analysis must be able to extract an approximation of the possible se-
quences of events and transform it into a representation that is amendable
to checking well-formedness and validity, preferably with the widely used
schema language XML Schema.

(2) Element names, attribute names, attribute values, namespaces URIs, and
character data all come from, in general, dynamically computed strings, so
the analysis must be capable of reasoning about string operations in general
Java code.

(3) The argument to the characters method is a substring that is given as
an interval of a character array – so to obtain good analysis precision, the
character array and the interval bounds must be tracked collectively by the
analysis.

(4) The Attributes interface and its implementing classes must obtain spe-
cial treatment to be able to reason about attributes in the resulting XML
documents.

A SAX filter, represented by the interface XMLFilter, is a specialization of
XMLReader that obtains its events from another XML reader rather than a pri-
mary source like a textual XML document. Thus, a filter is an XML transforma-
tion that takes events as input and produces events as output. Typically, filters
are implemented as subclasses of XMLFilterImpl, which is both an XMLFilter
and a ContentHandler, by itself acting as the identity transformation. In sub-
classes of XMLFilterImpl, events can be modified by overriding the event han-
dler methods and producing events by invoking the appropriate event handler
methods in the super class.

Naturally, filters can be pipelined to make composite XML transformations.

Example 2. The following filter takes as input a document that is valid according
to cards.xsd (such as, the output from Example 1) and produces as output a list
of the name elements that appear inside card elements where a phone element
is present:

class NamesFilter extends XMLFilterImpl {

private static final String NS = "http://businesscard.org";

private boolean is_name, has_phone;

private StringBuffer name;

public NamesFilter() {}

public NamesFilter(XMLReader parent) {
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super(parent);

}

public void startElement(String uri, String localName,

String qName, Attributes atts)

throws SAXException {

is_name = localName.equals("name");

if (is_name)

name = new StringBuffer();

if (localName.equals("phone"))

has_phone = true;

}

public void characters(char[] ch, int start, int length)

throws SAXException {

if (is_name)

name.append(ch, start, length);

}

public void endElement(String uri, String localName,

String qName)

throws SAXException {

if (localName.equals("card") && has_phone) {

AttributesImpl empty_attr = new AttributesImpl();

super.startElement(NS, "name", null, empty_attr);

super.characters(name.toString().toCharArray(),

0, name.length());

super.endElement(NS, "name", null);

has_phone = false;

}

}

}

This filter uses several recurring pattern in SAX programs: First, field variables
are used to correlate events. In this particular program, when a start tag is en-
countered, information about its name is stored to be able to determine whether
or not character data is relevant and output should be emitted. Second, the
SAX specification allows contiguous character data to be reported as several
consecutive characters events, so the name data needs to be collected via a
StringBuffer.

The following simple XML Schema type describes the intended output for-
mat:

<complexType name="Names">

<sequence minOccurs="0" maxOccurs="unbounded">

<element name="name" type="string"/>

</sequence>

</complexType>
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The big question is now: given that the input to the filter is valid according to
cards.xsd, is the output in fact always valid according to the Names type?

This example illustrates a number of additional challenges for the static analysis:

(5) The control-flow and data-flow clearly depends on the possible sequences of
input events, so in order to reason precisely about flow, the input schema
must be taken into account. In particular, the following problem must be
addressed: Given a schema (written in XML Schema), we need a represen-
tation of the event sequences that correspond to valid documents, in a way
that can be combined with control/data-flow graphs. Moreover, we need to
consider the possibility of pipelining filters. Do we need schema annotations
as pre/post conditions at each filter, or is it possible to reason fully automat-
ically about a whole pipeline? Fortunately, it appears that filter pipelines are
usually fixed at compile time rather than being assembled dynamically.

(6) Field variables in the filter object are commonly used for transferring infor-
mation between event handler methods (as the two booleans and the string
buffer in the example above). The analysis must be able to model such fields
flow sensitively and with strong updating to maintain precision.

(7) The analysis must be path sensitive to properly model the effect of the
conditional statements in the event handlers. At least, it cannot disregard
boolean variables and simple string comparisons.

It should be evident from the discussions above that developing a high-
precision static analyzer for SAX applications is a considerable task with plenty
of obstacles. Nevertheless, the situation is far from hopeless: First, SAX appli-
cations tend to be fairly small, at least if slicing away code that is not directly
related to producing or consuming events. Second, as argued in the following,
many of the challenges seem closely related to problems that have been attacked
by other program analysis techniques in the past, and others can be viewed as
inspiration for developing new analysis techniques for general Java programs.

3 Analyzing SAX Event Producers

As a modest first step, we will focus on programs that only produce SAX events,
like Example 1.

This problem is remarkably close to analyzing the output of applications built
with Java Servlets, which is the topic of the paper [8] and described briefly below.
(See also the recent work by Minamide and Tozawa [11].) With servlets, output
is generated by printing strings to an output stream in a way that hopefully
results in well-formed and valid XML documents. To reason about generation
of SAX events instead, the idea is simply to treat event generation, for example
endElement(..., "E", ...) (let us for now ignore namespaces), as an alterna-
tive way of writing the string </E> to a servlet-like output stream. If we slightly
rewrite Example 1 in this way by outputting strings to a PrintWriter stream
rather than outputting events to a ContentHandler, the connection to servlet
analysis should be evident:
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void cards2xml(Collection<Card> cards, PrintWriter out) {

out.print("<cards>");

for (Card c : cards) {

out.print("<card id=\""+escapeXML(c.id)+">");

out.print("<name>");

out.print(escapeXML(c.name));

out.print("</name>");

for (String email : c.emails) {

out.print("<email>");

out.print(escapeXML(email));

out.print("</email>");

}

if (c.phone != null) {

out.print("<phone>");

out.print(escapeXML(phone));

out.print("</phone>");

}

out.print("</card>");

}

out.print("</cards>");

}

(We here use a method escapeXML for escaping the special XML characters, <,
&, etc.) In other words, the key idea is to translate the SAX event generation
method invocations into servlet-like stream printing commands and then apply
the existing analysis. In fact, the situation is in a way simpler than in the general
servlet analysis since output here always comes in entire tags rather than in indi-
vidual characters. (Technically, some of the grammar transformation steps in [8]
then become superfluous.) Building on string analysis [4], the servlet analysis is
already capable of reasoning about the possible values of dynamically computed
strings, so we already have a grip on challenges (1) and (2) from Section 2.

The following sections describes the approach in more detail. The structure
of the analysis is illustrated in Figure 1.

SAX
program

input
schema schema

output

program that
prints to an

output stream graph
flow 
graph

context−free
grammar

XML validity
analysis
result

Sec. 4

Sec. 3

Fig. 1. Structure of the analysis. The dashed box contains parts that are described in
earlier papers [8, 7].
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3.1 Analysis of String Operations

The string analysis, as presented in [4], works by first extracting an abstract flow
graph from the given Java program, and then converting that into a context-free
grammar (extended with a suitable collection of additional string operations).
Finally, regular approximations are applied to obtain, for each program point of
interest, a finite-state automaton whose language approximates the set of strings
that may appear at runtime.

The analysis has some well-known limitations regarding precision, but related
work [3] shows that it can smoothly be extended with standard techniques for
better heap modeling [2] and context sensitivity [14].

As an example, the string analyzer provides the information that the possible
values of the expression Integer.toString(c.id) in Example 1 are described
by the regular expression 0|-?[1-9][0-9]* (or rather, an equivalent automa-
ton), which eventually will allow the remaining analysis to verify validity of the
generated id attributes. In fact, the analyzer will also point out that the values
of the name, email, and phone fields can be any strings, including characters,
such as Unicode code point 0, that are not allowed in XML documents, so the
resulting output will in this case not be well-formed XML, which the subsequent
output stream analysis will report. (In this particular case, the actual possible
values of those strings will presumably be more well behaved. In a forthcoming
version of the string analyzer, this can be controlled by the programmer using a
string type annotation feature.)

3.2 Analysis of String-based Output Streams

The overall structure of the analysis of output streams, as presented in [8], is
as follows. First, it runs the string analyzer to obtain a regular language for
all string expressions that appear as arguments to operations that print to the
output stream. Based on these regular languages, a flow graph is constructed for
modeling the order of output stream operations and their arguments. The flow
graph is divided into fragments corresponding to the methods in the program.
Edges represent control flow, and nodes have the following kinds:

– append nodes describe operations that output strings to the stream (where
the possible strings are represented by automata);

– invoke nodes describe method invocations and are labeled with the possible
targets;

– return nodes describe method exits1; and
– nop nodes correspond to flow join points.

This flow graph is then transformed straightforwardly into a context-free gram-
mar whose language approximates the possible output of running the program.

The next phase of the analysis checks that all strings in the language of the
grammar are well-formed XML documents. This is done in three steps: First,
1 In [8], return nodes are defined as a special kind of nop nodes.

9



CHOICE

SEQ SEQ

card

SEQ

CHOICEnameid

SEQ SEQ

email

CHOICE

SEQ phone

cards

ANY

ANYINT

ANY

1 2

1
2 3 4

1 2

Fig. 2. XML graph for Example 1.

the grammar is converted to a balanced grammar (treating the tag delimiters <
and </ as left and right parentheses, respectively) using a modified version of
Knuth’s algorithm [10]. Second, the balanced grammar is converted to a grammar
on tag-form, if possible. (If not, then there are non-well-formed documents in
the language.) A grammar on tag-form clearly shows the XML element tags
and attributes that appear in the derivable strings. Third, it is checked that
these tags and attributes satisfy the requirements for XML well-formedness (and
namespace compliance).

If the well-formedness check is passed, the last phase of the analysis converts
the grammar to an XML graph (also called a summary graph in earlier papers).
The Xact project [7] provides an algorithm for checking language inclusion
between an XML graph and a schema written in XML Schema, which gives the
final step to checking validity.

For the output stream version of Example 1, the analysis will infer the XML
graph shown in Figure 2 using the graphical notation explained in [8]. As this
example indicates, there are different kinds of nodes in XML graphs: element
nodes, attribute nodes, text nodes, sequence nodes, and choice nodes. (See [8]
for a more formal description.) The text node INT is here the regular language
for integers described in Section 3.1, and ANY is the set of all Unicode strings.
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3.3 Remaining Issues

One remaining problem is the modeling of the namespace mapping events. A sim-
ple approach for also handling those events would be to treat startPrefixMapping
and endPrefixMapping as generating special tags, such as, <:P: ns="N"> and
</:P:> for prefix P and namespace URI N, and then – at the level of XML graphs
– transform this into ordinary namespace mappings. However, for elements with
multiple namespace declarations, the SAX specification allows the invocations of
endPrefixMapping to come in any order, so the analysis might need to reorder
them to match the the invocations of startPrefixMapping.

Element name strings can be computed dynamically and used for producing
events in the following style:

String foo = ...;

out.startElement(..., foo, ..., ...);

out.endElement(..., foo, ..., ...);

Existing string analyses may be able to find out that the only possible values
of foo are, say, A and B, but to avoid spurious well-formedness warnings it is
necessary to be able to determine and exploit the fact that foo always has the
same value when startElement and endElement are invoked. One approach
to achieve this could be to augment the context-free grammars being produced
with knowledge about such string identities and take that into account when
performing the well-formedness checking step, but it may also be interesting to
look for a more general solution. Experiments with real applications will show
whether this is altogether a problem occurring in practice.

The challenges (3) and (4) remain. Regarding the character array intervals,
the following observations have been made on a tiny study of SAX programs:
First, the typical case where a string is converted into a character array interval
(as in Example 1) is easily recognized and modeled. Second, most other character
array intervals presumably come as arguments in the characters event handler
method in filters or content handlers, and in these cases it is unlikely that any
integer operations are performed on the interval end points or that the array
content is modified. This means that it appears to be sufficient to track character
array intervals that flow unmodified from arguments in the characters event
handler method to arguments in the event construction method.

Regarding construction of objects of type Attributes, it appears reasonable
to concentrate the effort on the standard implementing class AttributesImpl
as other implementations are uncommon. If furthermore only considering the
method addAttribute (of course, some experiments should be made to find out
to what extent other methods are being used), then these objects can simply be
represented as finite maps from attribute names to attribute values where both
are modeled as regular languages. (Since the string analysis already operates
with regular languages, this is the obvious choice here.) A lesson learned from
developing analyses for XSLT [12] that could also be useful here is that a good
balance between analysis precision, performance, and simplicity can be obtained
from a preliminary study of a large collection of real programs.
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4 Analyzing SAX Event Consumers

To reason about applications that consume SAX events, such as content handlers
or filters like Example 2, the main problem is how to incorporate the schemas
that describe the possible input (challenge (5) in Section 2).

The key idea for attacking this problem is to translate the input schema
into a flow graph that corresponds to the possible events being generated by a
SAX parser reading valid input. This flow graph then acts as a “main” method
that invokes the appropriate event handlers. (As mentioned in Section 3.2, a
flow graph is divided into fragments, each abstractly describing a method.) The
combined program – consisting of this main method and the actual code to be
analyzed – is then processed as described in the previous sections.

Let us now explain in more detail how this will work and identify the re-
maining problems. First, the Xact project provides a translation from schemas
written in XML Schema into XML graphs [7]. For instance, the XML graph
being generated for the schema cards.xsd from Section 2 is essentially the one
shown in Section 3.2. Each node in the XML graph is then translated into a flow
graph fragment, which abstractly represents a method, as follows:

– An element node results in a method that first calls startElement (using
an invoke node), then it calls the method that corresponds to its content
node, and finally it calls endElement. To properly model the element names,
which are described by regular languages in XML graphs, we augment the
generated invoke nodes with such regular languages.

– A sequence node, which has a sequence of successor nodes, becomes a method
that calls each of the corresponding methods in order.

– A choice node, which has a set of successor nodes, becomes a method that
contains a single invoke node with edges to the corresponding methods.

(We defer the modeling of attribute and text nodes to Section 4.1.) For the root
node we add an extra method called main, which first calls startDocument then
the method corresponding to its content node and finally endDocument. The
resulting flow graph effectively combines the input schema with the program
code.

As an example, the schema cards.xsd is converted into flow graph fragments
that can be described by the following (abbreviated) pseudo-code:

main {
invoke[startDocument]
invoke[element1]
invoke[endDocument]
return
}

element1 {
invoke[startElement(”cards”)]
invoke[choice1]
invoke[endElement(”cards”)]
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return
}

choice1 {
invoke[seq1,seq2]
return
}

seq1 {
return
}

seq2 {
invoke[element2]
invoke[choice1]
return
}

...

Together with the flow graph fragments produced from the code from Example 2
we can now continue the analysis as in Section 3.

4.1 Remaining Issues

The translation from schemas to flow graphs explained above is a key to ad-
dressing challenge (5), however, there still are a few problems.

First, as explained above, some invoke nodes (those with target startElement
or endElement) now use regular languages to describe the possible string val-
ues that may flow as method arguments. What we essentially need to maintain
this information throughout the rest of the analysis is to extend it with a suit-
able degree of context sensitivity [14]. A starting point could be to analyze the
startElement/endElement handlers polyvariantly with a flow graph fragment
copy for each of the finitely many regular languages that arise. Practical exper-
iments are necessary to find out whether this is enough (at least it would be
enough to handle Example 2), but fortunately the literature provides plenty of
general techniques for making context sensitive analyses.

To model attributes, we need a way of converting attribute nodes in XML
graphs into additional information on the invoke nodes that have target start-
Element. This is naturally connected to the discussion of the Attributes inter-
face in Section 3.3, and we leave this aspect of the analysis to future work.

Character data, which is represented by text nodes in the XML graphs,
similarly needs to be handled in the conversion to flow graphs. This is also con-
nected to the discussion of characters events in Section 3.3. A text node is
labeled with a regular language describing the possible values. Again, we aug-
ment the relevant flow graph nodes (invoke nodes with target characters) with
regular languages describing the possible character data values, and analyze the
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characters event handlers polyvariantly. However, since contiguous character
data may be reported as multiple events as mentioned earlier, one text node
must be converted to a loop containing an invoke node augmented with a regu-
lar language describing all possible substrings of the character data in order to
preserve soundness. Clearly, this will incur a loss of precision in some cases. A
possible way around that could be to identify occurrences of the pattern used in
Example 2 for collecting the substrings in a StringBuffer and for these cases di-
rectly model these StringBuffers as the regular languages from the text nodes.
Again, experiments will show whether this suffices in practice.

Regarding modeling of fields (challenge (6) in Section 2), we can take ad-
vantage of the following pattern that appears to be common in SAX filters: the
fields are typically modified only from inside the filter (perhaps they are declared
private), and by only one thread. This means that each field can be modeled
flow sensitivity as a global variable. For programs not adhering to this pattern,
a significant loss of analysis precision at present seems inevitable.

A part of the problem with conditionals (challenge (7)) has already been
solved by making the analysis context sensitive with respect to element names.
However, it is easy to construct plausible SAX programs where path sensitivity
is crucial. We leave also this aspect to future work.

Let us now return to the issue of pipelines of filters. Pipelines can be handled
rather elegantly through the use of XML graphs for modeling both input and
output of individual filters. Assume that we have a pipeline consisting of n filters,
F1, . . . , Fn, a schema S0 describing the initial input, and a schema Sn describing
the final output. We now run the analysis of F1 using S0 as input schema, which
gives us an XML graph X1 describing the possible output of the first filter.
Rather than involve a schema describing the possible input of F2 we may now
simply bypass that step and use X1 for the purpose. This process is repeated
until the last filter, Fn, whose output XML graph Xn is compared against the
schema Sn. Thus, the analysis is inherently compositional, assuming that the
filter pipeline is known statically.

For instance, this would allow us to check validity of the output of pipelining
Example 1 and Example 2:

cards2xml
Names

NamesFilter XML

As an alternative (or supplementary) strategy we could annotate each in-
termediate pipeline stage with a schema, much like the use of optional schema
annotations in Xact [7].

5 Conclusion

We have exposed some of the considerable challenges that must be tackled in
order to provide static analysis of event-based XML processing applications.
Concretely, this paper has focused on SAX. The challenges include reasoning
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about sequences of SAX events both as input and as output, flow-sensitive string
computations, attribute maps, and field variables in a general-purpose object-
oriented language.

In addition to discussing the challenges, we have outlined a preliminary strat-
egy for a particular program analysis that may serve as a starting point. To
summarize, the key ideas suggested here are the following, which build on top
of the existing program analysis technique for Java Servlets and Xact:

– producers of SAX events can be modeled via a translation into string-based
output stream operations; and

– consumers of SAX event, in particular filters, can be modeled via a transla-
tion from XML schemas to flow graphs.

Besides fitting naturally with the existing analysis techniques, the use of XML
graphs for representing sets of XML documents makes the analysis inherently
compositional, making it capable of also handling filter pipelines.

The next step is to implement the central parts of the analysis and evaluate
the performance and precision on real SAX applications to be able to prioritize
the efforts on the remaining challenges.
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tonic Set-Extended Prefix Rewriting and Verification of Recur-
sive Ping-Pong Protocols. July 2006. 31 pp. To appear in
ATVA ’06.
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