
BRICS
Basic Research in Computer Science

A Dynamic Continuation-Passing Style for
Dynamic Delimited Continuations

Dariusz Biernacki
Olivier Danvy
Kevin Millikin

BRICS Report Series RS-06-15

ISSN 0909-0878 October 2006

B
R

IC
S

R
S

-06-15
B

iernackietal.:
A

D
ynam

ic
C

ontinuation-P
assing

S
tyle

for
D

ynam
ic

D
elim

ited
C

ontinuations

Copyright c© 2006, Dariusz Biernacki & Olivier Danvy & Kevin
Millikin.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
IT-parken, Aabogade 34
DK–8200 Aarhus N
Denmark
Telephone: +45 8942 9300
Telefax: +45 8942 5601
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/06/15/

A Dynamic Continuation-Passing Style

for Dynamic Delimited Continuations∗

Dariusz Biernacki,† Olivier Danvy, and Kevin Millikin

BRICS‡

Department of Computer Science
University of Aarhus§

October 2006

Abstract

We put a pre-existing definitional abstract machine for dynamic delimited con-
tinuations in defunctionalized form, and we present the consequences of this ad-
justment.

We first prove the correctness of the adjusted abstract machine. Because it is
in defunctionalized form, we can refunctionalize it into a higher-order evalua-
tion function. This evaluation function, which is compositional, is in contin-
uation+state passing style and threads a trail of delimited continuations and a
meta-continuation. Since this style accounts for dynamic delimited continuations,
we refer to it as ‘dynamic continuation-passing style’ and we present the corre-
sponding dynamic CPS transformation. We show that the notion of computation
induced by dynamic CPS takes the form of a continuation monad with a recursive
answer type and we present a new simulation of dynamic delimited continuations
in terms of static ones as well as new applications of dynamic delimited continu-
ations.

The significance of the present work is that the computational artifacts surround-
ing dynamic CPS (i.e., simple motivating examples as well as more complex ap-
plications and simulations, a functional encoding in the form of a continuation-
passing evaluator, the corresponding CPS transformation, their first-order coun-
terparts, and the continuation monad) are not independent designs: they are
mechanical consequences of having put the definitional abstract machine in de-
functionalized form.

Technical Report BRICS RS-06-15
http://www.brics.dk/RS/06/Abs/BRICS-RS-06-Abs/BRICS-RS-06-Abs.html#BRICS-RS-06-15

∗Revised version of BRICS RS-05-16.
†Current affiliation: INRIA Futurs, Orsay, France.
‡Basic Research in Computer Science (www.brics.dk),
funded by the Danish National Research Foundation.

§IT-parken, Aabogade 34, DK-8200 Aarhus N, Denmark.
Email: {dabi,danvy,kmillikin}@brics.dk

i

Contents

1 Introduction 1

2 The definitional abstract machine 1

3 The adjusted abstract machine 2

4 Equivalence of the definitional machine and of the adjusted machine 5

5 The evaluator corresponding to the adjusted machine 8

6 The CPS transformer corresponding to the evaluator in dynamic CPS 8

7 The direct-style evaluator corresponding to the evaluator in dynamic CPS 10

8 Static and dynamic continuation-passing style 11
8.1 Static continuation-passing style . 12
8.2 Dynamic continuation-passing style . 12
8.3 A generalization . 14
8.4 Further examples . 14

9 A monad for dynamic continuation-passing style 15

10 A new implementation of control and prompt 18

11 Related work 20

12 Conclusion and issues 22

Appendices 22

A control0 22

B shift0 22

C An implementation of shift and reset 23

List of Figures

1 The definitional call-by-value abstract machine for the λ-calculus extended
with F and # . 3

2 The adjusted call-by-value abstract machine for the λ-calculus extended with
F and # . 4

3 A call-by-value evaluator for the λ-calculus extended with F and # 9
4 A direct-style evaluator for the λ-calculus extended with F and # 11
5 A monadic evaluator for the λ-calculus extended with F and # 17

ii

1 Introduction

The control operator call/cc [11, 35, 42, 49], by now, is an accepted component in the land-
scape of eager functional programming, where it provides the expressive power of CPS
(continuation-passing style) in direct-style programs. An integral part of its success is its
surrounding array of computational artifacts: simple motivating examples as well as more
complex applications, a functional encoding in the form of a continuation-passing evalua-
tor, the corresponding continuation-passing style and CPS transformation, their first-order
counterparts (e.g., the corresponding abstract machine), and the continuation monad.

The delimited-control operators control (alias F) and prompt (alias #) [27, 30, 53] were
designed to go ‘beyond continuations’ [29]. This vision was investigated in the early 1990’s [34,
37,38,46,48,54] and today it is receiving renewed attention: Shan and Kiselyov are studying
its simulation properties [43, 52], and Dybvig, Peyton Jones, and Sabry are proposing a
general framework where multiple control delimiters can coexist [25].

We observe, though, that none of these recent works on control and prompt uses the entire
array of artifacts that organically surrounds call/cc. Our goal here is to do so.

This work: We present an abstract machine that accounts for dynamic delimited con-
tinuations and that is in defunctionalized form [23, 49], and we prove its equivalence with
a definitional abstract machine that is not in defunctionalized form. We also present the
corresponding higher-order evaluator from which one can obtain the corresponding CPS
transformer. The resulting ‘dynamic continuation-passing style’ (dynamic CPS) threads a
list of trailing delimited continuations, i.e., it is a continuation+state-passing style. This style
is equivalent to, but simpler than, the one recently proposed by Shan [52]. It is structurally
related to the one recently proposed by Dybvig, Peyton Jones, and Sabry [25]. We also show
that it corresponds to a computational monad, and we present some new examples.

Overview: We first present the definitional machine for dynamic delimited continuations
in Section 2. In Section 3, we put the definitional machine into defunctionalized form and
we establish the equivalence of the two machines in Section 4. We present the corresponding
higher-order evaluator, which is compositional, in Section 5. This evaluator is expressed in
a dynamic continuation-passing style and we present the corresponding dynamic CPS trans-
former in Section 6 and the corresponding direct-style evaluator in Section 7: transforming
this direct-style evaluator into dynamic CPS yields the evaluator of Section 5. We illustrate
dynamic continuation-passing style in Section 8 and in Section 9, we show that it can be
characterized with a computational monad: macro-expanding the definition of this monad
into a monadic evaluator and CPS transforming the result yields a curried version of the
evaluator of Section 5. In Section 10, we present a new simulation of control and prompt

based on dynamic CPS. We then address related work and conclude. In Appendices A and
B we consider the abstract machines corresponding to the control operators control0 and
prompt0. Finally, for completeness, we give an ML implementation of shift and reset in
Appendix C.

Prerequisites and notation: We assume some basic familiarity with operational seman-
tics, abstract machines, eager functional programming in (Standard) ML, defunctionalization,
and continuations.

2 The definitional abstract machine

In our earlier work [4], we obtained an abstract machine for the static delimited-control op-
erators shift and reset by defunctionalizing a definitional evaluator that had two layered

1

continuations [18, 19]. In this abstract machine, the first continuation takes the form of
an evaluation context and the second takes the form of a stack of evaluation contexts. By
construction, this abstract machine is an extension of Felleisen et al.’s CEK machine [28],
which has one evaluation context and is itself a defunctionalized evaluator with one contin-
uation [2, 3, 13, 49].

The abstract machine for static delimited continuations implements the application of a
delimited continuation (represented as a captured context) by pushing the current context
onto the stack of contexts and installing the captured context as the new current context [4].
In contrast, the abstract machine for dynamic delimited continuations implements the appli-
cation of a delimited continuation (also represented as a captured context) by concatenating
the captured context to the current context [30]. As a result, static and dynamic delimited
continuations differ because a subsequent control operation will capture either the remain-
der of the reinstated context (in the static case) or the remainder of the reinstated context
together with the then-current context (in the dynamic case). An abstract machine imple-
menting dynamic delimited continuations therefore a priori requires defining an operation to
concatenate contexts.

Figure 1 displays the definitional abstract machine for dynamic delimited continuations,
including the operation to concatenate contexts. It only differs from our earlier abstract
machine for static delimited continuations [4, Figure 7 and Section 4.5] in the way captured
delimited continuations are applied, by concatenating their representation with the represen-
tation of the current continuation (the shaded transition in Figure 1).1 Biernacka and Danvy
present the corresponding calculus elsewhere [5, Section 6.2].

Contexts form a monoid:

Proposition 1. The operation ? defined in Figure 1 satisfies the following properties:

(1) C1 ? END = C1 = END ? C1,

(2) (C1 ? C′
1) ? C′′

1 = C1 ? (C′
1 ? C′′

1).

Proof. By induction on the structure of C1.

In the definitional machine, the constructors of contexts are not solely consumed in the
cont1 transitions, but also by ?. Therefore, the definitional abstract machine is not in the
range of defunctionalization [16, 23, 49]: it does not correspond to a higher-order evaluator.
In the next section, we present a new abstract machine that implements dynamic delimited
continuations and is in the range of defunctionalization.

3 The adjusted abstract machine

The definitional machine is not in the range of defunctionalization because of the concate-
nation of contexts. We therefore introduce a new component in the machine to avoid this
concatenation. This new component, the trail of contexts, holds the then-current contexts
that would have been concatenated to the captured context in the definitional machine.
These then-current contexts are then reinstated in turn when the captured context com-
pletes. Together, the current context and the trail of contexts represent the current dynamic
context. The final component of the machine holds a stack of dynamic contexts (represented
as a list: nil denotes the empty list, the infix operator :: denotes list construction, and the
infix operator @ denotes list concatenation, as in ML).

1In contrast, static delimited continuations are applied as follows:

〈FUN (C′
1, C1), v, C2〉cont1 ⇒ 〈C′

1, v, C1 :: C2〉cont1

2

• Terms: e ::= x | λx .e | e0 e1 | #e | Fx .e

• Values (closures and captured continuations): v ::= [x , e, ρ] | C1

• Environments: ρ ::= ρmt | ρ{x 7→ v}
• Contexts: C1 ::= END | ARG ((e, ρ), C1) | FUN (v, C1)

• Concatenation of contexts:

END ? C′
1

def= C′
1

(ARG ((e, ρ), C1)) ? C′
1

def= ARG ((e, ρ), C1 ? C′
1)

(FUN (v, C1)) ? C′
1

def= FUN (v, C1 ? C′
1)

• Meta-contexts: C2 ::= nil | C1 :: C2

• Initial transition, transition rules, and final transition:

e ⇒def 〈e, ρmt , END, nil〉eval
〈x , ρ, C1, C2〉eval ⇒def 〈C1, ρ(x), C2〉cont1

〈λx .e, ρ, C1, C2〉eval ⇒def 〈C1, [x , e, ρ], C2〉cont1

〈e0 e1, ρ, C1, C2〉eval ⇒def 〈e0, ρ, ARG ((e1, ρ), C1), C2〉eval
〈#e, ρ, C1, C2〉eval ⇒def 〈e, ρ, END, C1 :: C2〉eval

〈Fx .e, ρ, C1, C2〉eval ⇒def 〈e, ρ{x 7→ C1}, END, C2〉eval
〈END, v, C2〉cont1 ⇒def 〈C2, v〉cont2

〈ARG ((e, ρ), C1), v, C2〉cont1 ⇒def 〈e, ρ, FUN (v, C1), C2〉eval
〈FUN ([x , e, ρ], C1), v, C2〉cont1 ⇒def 〈e, ρ{x 7→ v}, C1, C2〉eval

〈FUN (C′
1, C1), v, C2〉cont1 ⇒def 〈C′

1 ? C1, v, C2〉cont1

〈C1 :: C2, v〉cont2 ⇒def 〈C1, v, C2〉cont1

〈nil, v〉cont2 ⇒def v

Figure 1: The definitional call-by-value abstract machine
for the λ-calculus extended with F and #

Figure 2 displays the new abstract machine for dynamic delimited continuations. It only
differs from the definitional abstract machine in the way dynamic contexts are represented (a
context and a trail of contexts (represented as a list) instead of one concatenated context).
In Section 4, we establish the equivalence of the two machines.

In the new machine, the constructors of contexts are solely consumed in the cont1 transi-
tions. Therefore the new machine, unlike the definitional machine, is in the range of defunc-
tionalization [16]: it can be refunctionalized into a higher-order evaluator, which we present
in Section 5.

3

• Terms: e ::= x | λx .e | e0 e1 | #e | Fx .e

• Values (closures and captured continuations): v ::= [x , e, ρ] | [C1, T1]

• Environments: ρ ::= ρmt | ρ{x 7→ v}
• Contexts: C1 ::= END | ARG ((e, ρ), C1) | FUN (v, C1)

• Trail of contexts: T1 ::= nil | C1 :: T1

• Meta-contexts: C2 ::= nil | (C1, T1) :: C2

• Initial transition, transition rules, and final transition:

e ⇒adj 〈e, ρmt , END, nil, nil〉eval
〈x , ρ, C1, T1, C2〉eval ⇒adj 〈C1, ρ(x), T1, C2〉cont1

〈λx .e, ρ, C1, T1, C2〉eval ⇒adj 〈C1, [x , e, ρ], T1, C2〉cont1

〈e0 e1, ρ, C1, T1, C2〉eval ⇒adj 〈e0, ρ, ARG ((e1, ρ), C1), T1, C2〉eval
〈#e, ρ, C1, T1, C2〉eval ⇒adj 〈e, ρ, END, nil, (C1, T1) :: C2〉eval

〈Fx .e, ρ, C1, T1, C2〉eval ⇒adj 〈e, ρ{x 7→ [C1, T1]}, END, nil, C2〉eval
〈END, v, T1, C2〉cont1 ⇒adj 〈T1, v, C2〉trail1

〈ARG ((e, ρ), C1), v, T1, C2〉cont1 ⇒adj 〈e, ρ, FUN (v, C1), T1, C2〉eval
〈FUN ([x , e, ρ], C1), v, T1, C2〉cont1 ⇒adj 〈e, ρ{x 7→ v}, C1, T1, C2〉eval
〈FUN ([C′

1, T ′
1], C1), v, T1, C2〉cont1 ⇒adj 〈C′

1, v, T ′
1 @ (C1 :: T1), C2〉cont1

〈nil, v, C2〉trail1 ⇒adj 〈C2, v〉cont2

〈C1 :: T1, v, C2〉trail1 ⇒adj 〈C1, v, T1, C2〉cont1

〈(C1, T1) :: C2, v〉cont2 ⇒adj 〈C1, v, T1, C2〉cont1

〈nil, v〉cont2 ⇒adj v

Figure 2: The adjusted call-by-value abstract machine
for the λ-calculus extended with F and #

N.B.: The trail concatenation, in Figure 2, could be avoided by adding a new component
to the machine—a meta-trail of pairs of contexts and trails, managed last-in, first-out—and
the corresponding new transitions. A captured continuation would then be a triple of context,
trail, and meta-trail, and applying it would require this meta-trail to be concatenated to the
current trail. In turn, this concatenation could be avoided by adding a meta-meta-trail, etc.
Because each of the metan-trails (for n ≥ 1) but the last one has one point of consumption,
they all are in defunctionalized form except the last one. Adding metan-trails amounts to
trading space for time.

4

4 Equivalence of the definitional machine and of the ad-
justed machine

We relate the configurations and transitions of the definitional abstract machine to those of
the adjusted abstract machine. As a diacritical convention [44], we annotate the components,
configurations, and transitions of the definitional machine with a tilde (·̃). In order to relate
a dynamic context of the adjusted machine (a context and a trail of contexts) to a context
of the definitional machine, we convert it into a context of the adjusted machine:

Definition 1. We define an operation ?̂, concatenating a context and a trail of contexts, by
induction on its second argument:

C1 ?̂ nil
def= C1

C1 ?̂ (C′
1 :: T1) def= C1 ? (C′

1 ?̂ T1)

Proposition 2. C1 ?̂ (C′
1 :: T1) = (C1 ? C′

1) ?̂ T1,

Proof. Follows from Definition 1 and from the associativity of ? (Proposition 1(2)).

Proposition 3. (C1 ?̂ T1) ?̂ T ′
1 = C1 ?̂ (T1 @ T ′

1).

Proof. By induction on the structure of T1.

Definition 2. We relate the definitional abstract machine and the adjusted abstract machine
with the following family of relations ':

Terms: ẽ 'e e iff ẽ = e

Values: (a) [x̃ , ẽ, ρ̃] 'v [x , e, ρ] iff x̃ = x , ẽ 'e e and ρ̃ 'env ρ

(b) C̃1 'v [C1, T1] iff C̃1 'c C1 ?̂ T1

Environments: (a) ρ̃mt 'env ρmt

(b) ρ̃{x̃ 7→ ṽ} 'env ρ{x 7→ v} iff x̃ = x , ṽ 'v v and ρ̃ \ {x̃} 'env ρ \ {x},
where ρ \ {x} denotes the restriction of ρ to its domain excluding x

Contexts: (a) ẼND 'c END

(b) ÃRG ((ẽ, ρ̃), C̃1) 'c ARG ((e, ρ), C1) iff ẽ 'e e, ρ̃ 'env ρ, and C̃1 'c C1

(c) F̃UN (ṽ, C̃1) 'c FUN (v, C1) iff ṽ 'v v and C̃1 'c C1

Meta-contexts: (a) ñil 'mc nil

(b) C̃1 :: C̃2 'mc (C1, T1) :: C2 iff C̃1 'c C1 ?̂ T1 and C̃2 'mc C2

Configurations: (a) 〈ẽ, ρ̃, C̃1, C̃2〉geval
' 〈e, ρ, C1, T1, C2〉eval iff

ẽ 'e e, ρ̃ 'env ρ, C̃1 'c C1 ?̂ T1, and C̃2 'mc C2

(b) 〈C̃1, ṽ, C̃2〉c̃ont1
' 〈C1, v, T1, C2〉cont1 iff

C̃1 'c C1 ?̂ T1, ṽ 'v v, and C̃2 'mc C2

(c) 〈C̃2, ṽ〉
c̃ont2

' 〈C2, v〉cont2 iff

C̃2 'mc C2 and ṽ 'v v

5

By writing δ ⇒∗ δ′ and δ ⇒+ δ′, we mean that there is respectively zero or more and
one or more transitions leading from the configuration δ to the configuration δ′.

Definition 3. The partial evaluation functions evaldef and evaladj mapping terms to values
are defined as follows:

(1) evaldef (ẽ) = ṽ if and only if 〈ẽ, ρ̃mt , ẼND, ñil〉geval
⇒+

def 〈ñil, ṽ〉
c̃ont2

;

(2) evaladj (e) = v if and only if 〈e, ρmt , END, nil, nil〉eval ⇒+
adj 〈nil, v〉cont2 .

We want to prove that evaldef and evaladj are defined on the same programs (i.e., closed
terms), and that for any given program, they yield equivalent values.

Theorem 1 (Equivalence). For any programs ẽ and e such that ẽ 'e e (i.e., ẽ = e),
evaldef (ẽ) = ṽ for some value ṽ if and only if evaladj (e) = v for some value v such that
ṽ 'v v.

Proving Theorem 1 requires proving the following lemmas.

Lemma 1. If C̃1 'c C1 and C̃′
1 'c C′

1 then C̃1 ?̃ C̃′
1 'c C1 ? C′

1.

Proof. By induction on the structure of C̃1.

The following lemma addresses the configurations of the adjusted abstract machine that
break the one-to-one correspondence with the definitional abstract machine.

Lemma 2. If δ = 〈END, v, T1, C2〉cont1 then

(1) if T1 = END :: . . . :: END︸ ︷︷ ︸
n

:: nil, where n ≥ 0, then δ ⇒+
adj 〈C2, v〉cont2 ;

(2) if T1 = END :: . . . :: END︸ ︷︷ ︸
n

:: C1 :: T ′
1, where n ≥ 0 and C1 6= END,

then δ ⇒+
adj 〈C1, v, T ′

1, C2〉cont1 .

Proof. By induction on n.

The following key lemma relates single transitions of the two abstract machines.

Lemma 3. If δ̃ ' δ then

(1) if δ̃ ⇒def δ̃′ then there exists a configuration δ′ such that δ ⇒+
adj δ′ and δ̃′ ' δ′;

(2) if δ ⇒adj δ′ then there exist configurations δ̃′ and δ′′ such that δ̃ ⇒def δ̃′,
δ′ ⇒∗

adj δ′′ and δ̃′ ' δ′′.

Proof. By case analysis of δ̃ ' δ. Most of the cases follow directly from the definition of the
relation '. We show the proof of one such case:

Case: δ̃ = 〈x̃ , ρ̃, C̃1, C̃2〉geval
and δ = 〈x , ρ, C1, T1, C2〉eval

From the definition of the definitional abstract machine, δ̃ ⇒def δ̃′, where
δ̃′ = 〈C̃1, ρ̃(x̃), C̃2〉c̃ont1

.
From the definition of the adjusted abstract machine, δ ⇒adj δ′, where
δ′ = 〈C1, ρ(x), T1, C2〉cont1 .
By assumption, ρ̃(x̃) 'v ρ(x), C̃1 'c C1 ?̂ T1 and C̃2 'mc C2.
Hence, δ̃′ ' δ′ and both directions of Lemma 3 are proved in this case.

6

There are only three interesting cases. One of them arises when a captured continuation
is applied, and the remaining two explain why the two abstract machines do not operate in
lockstep:

Case: δ̃ = 〈F̃UN (C̃′
1, C̃1), ṽ, C̃2〉c̃ont1

and δ = 〈FUN ([C′
1, T ′

1], C1), v, T1, C2〉cont1

From the definition of the definitional abstract machine, δ̃ ⇒def δ̃′, where
δ̃′ = 〈C̃′

1 ?̃ C̃1, ṽ, C̃2〉c̃ont1
.

From the definition of the adjusted abstract machine, δ ⇒adj δ′, where
δ′ = 〈C′

1, v, T ′
1 @ (C1 :: T1), C2〉cont1 .

By assumption, C̃′
1 'c C′

1 ?̂ T ′
1 and C̃1 'c C1 ?̂ T1.

By Lemma 1, we have C̃′
1 ?̃ C̃1 'c (C′

1 ?̂ T ′
1) ? (C1 ?̂ T1).

By the definition of ?̂, (C′
1 ?̂ T ′

1) ? (C1 ?̂ T1) = (C′
1 ?̂ T ′

1) ?̂ (C1 :: T1).
By Proposition 3, (C′

1 ?̂ T ′
1) ?̂ (C1 :: T1) = C′

1 ?̂ (T ′
1 @ (C1 :: T1)).

Since ṽ 'v v and C̃2 'mc C2, we infer that δ̃′ ' δ′ and both directions of Lemma 3 are proved
in this case.

Case: δ̃ = 〈ẼND, ṽ, C̃2〉c̃ont1
and δ = 〈END, v, T1, C2〉cont1

From the definition of the definitional abstract machine, δ̃ ⇒def δ̃′, where δ̃′ = 〈C̃2, ṽ〉
c̃ont2

.

By the definition of ', ṽ 'v v, C̃2 'mc C2, and ẼND 'c END ?̂ T1.
Hence, it follows from the definition of 'c that END ?̂ T1 = END, which is possible only when
T1 = END :: . . . :: END︸ ︷︷ ︸

n

:: nil for some n ≥ 0.

Then by Lemma 2(1), δ ⇒+
adj δ′, where δ′ = 〈C2, v〉cont2 and δ̃′ ' δ′, and both directions of

the lemma are proved in this case.

Case: δ̃ = 〈C̃1, ṽ, C̃2〉c̃ont1
and δ = 〈END, v, T1, C2〉cont1 , where C̃1 6= ẼND

By the definition of ', ṽ 'v v, C̃2 'mc C2, and C̃1 'c END ?̂ T1.
Hence, it follows from the definition of 'c that END ?̂ T1 6= END, which is possible only when
T1 = END :: . . . :: END︸ ︷︷ ︸

n

:: C1 :: T ′
1 for some n ≥ 0 and C1 6= END.

Then by Lemma 2(2), δ ⇒+
adj δ′, where δ′ = 〈C1, v, T ′

1, C2〉cont1 , C1 6= END, and since

END ?̂ T1 = C1 ?̂ T ′
1, we have δ̃ ' δ′. By one of the trivial cases for δ̃ ' δ′ (not shown in the

proof), both directions of the lemma are proved in this case.

Given the relation between single-step transitions of the two abstract machines, it is
straightforward to generalize it to the relation between their multi-step transitions.

Lemma 4. If δ̃ ' δ then

(1) if δ̃ ⇒+
def δ̃′ then there exists a configuration δ′ such that δ ⇒+

adj δ′ and δ̃′ ' δ′;

(2) if δ ⇒+
adj δ′ then there exist configurations δ̃′ and δ′′ such that δ̃ ⇒+

def δ̃′,

δ′ ⇒∗
adj δ′′ and δ̃′ ' δ′′.

Proof. Both directions follow from Lemma 3 by induction on the number of transitions.

We are now in position to prove the equivalence theorem.

7

Proof of Theorem 1. The initial configuration of the definitional abstract machine, i.e.,
〈ẽ, ρ̃mt , ẼND, ñil〉geval

, and the initial configuration of the adjusted abstract machine, i.e.,
〈e, ρmt , END, nil, nil〉eval , are in the relation ' when ẽ = e. Therefore, if the definitional
abstract machine reaches the final configuration 〈ñil, ṽ〉

c̃ont2
, then by Lemma 4(1), there is

a configuration δ′ such that δ ⇒+
adj δ′ and δ̃′ ' δ′. By the definition of ', δ′ must be

〈nil, v〉cont2 , with ṽ 'v v. The proof of the converse direction follows similar steps.

5 The evaluator corresponding to the adjusted machine

The raison d’être of the adjusted abstract machine is that it is in defunctionalized form.
Refunctionalizing its contexts and meta-contexts yields the higher-order evaluator of Fig-
ure 3. This evaluator is compositional, i.e., the recursive calls on each right-hand side are
over a proper sub-term of the corresponding left-hand side. The evaluator is expressed in
a continuation+state-passing style where the state consists of a trail of continuations and a
meta-continuation. Defunctionalizing it gives the abstract machine of Figure 2. Since this
continuation+state-passing style came into being to account for dynamic delimited continu-
ations, we refer to it as a ‘dynamic continuation-passing style’ (dynamic CPS).

6 The CPS transformer corresponding to the evaluator
in dynamic CPS

The dynamic CPS transformer corresponding to the evaluator of Figure 3 can be immediately
obtained as the associated syntax-directed encoding into the term model of the meta-language
(using fresh variables):

Jx K = λ(k1, t1, k2).k1 (x , t1, k2)
Jλx .eK = λ(k1, t1, k2).k1 (λ(x , k1, t1, k2). JeK (k1, t1, k2), t1, k2)
Je0 e1K = λ(k1, t1, k2).Je0K (λ(v0, t1, k2). Je1K (λ(v1, t1, k2). v0 (v1, k1, t1, k2), t1, k2), t1, k2)

J#eK = λ(k1, t1, k2).JeK (θ1, nil, λv. k1 (v, t1, k2))
JFx .eK = λ(k1, t1, k2).let x = λ(v, k′1, t

′
1, k2). k1 (v, t1 @ (k′1 :: t′1), k2)

in JeK (θ1, nil, k2)

A transformed term is evaluated by supplying an initial continuation, trail, and meta-
continuation as follows: JeK (θ1, nil, θ2), where θ1 and θ2 are defined in Figure 3. As usual,
this initialization is equivalent to delimiting control in the translated term.

It is straightforward to write a one-pass version of the dynamic CPS transformer [19].

An example: In our earlier work [8, Section 2.5], we presented a simple example where
using control and prompt led to one result and using shift and reset led to another. We
displayed the CPS counterpart of the latter and stated that no such simple functional en-
coding existed for the former. Dynamic CPS, however, provides such a functional encoding.
The example reads as follows:

fun test ()

= prompt (fn () => control (fn k => 10 + (k 100)) + control (fn k’ => 1))

Applying test to () yields 1 since the second occurrence of control wipes out the entire
delimited evaluation context. Its shift and reset counterpart yields 11 since the second
occurrence of control only wipes out the evaluation context up to the application of k to 100.

8

• Terms: Exp 3 e ::= x | λx .e | e0 e1 | #e | Fx .e

• Values, continuations, meta-continuations, and trails of continuations:

v ∈ Val = Val × Cont1 × Trail1 × Cont2 → Val
θ1, k1 ∈ Cont1 = Val × Trail1 × Cont2 → Val
θ2, k2 ∈ Cont2 = Val → Val

t1 ∈ Trail1 = List(Cont1)

• Environments: Env 3 ρ ::= ρmt | ρ{x 7→ v}
• Initial continuation: θ1 = λ(v, t1, k2). case t1

of nil ⇒ k2 v
| k1 :: t′1 ⇒ k1 (v, t′1, k2)

• Initial meta-continuation: θ2 = λv. v

• Evaluation function: eval : Exp × Env × Cont1 × Trail1 × Cont2 → Val

evaldcps (x , ρ, k1, t1, k2) = k1 (ρ(x), t1, k2)
evaldcps (λx .e, ρ, k1, t1, k2) = k1 (λ(v, k1, t1, k2). evaldcps (e, ρ{x 7→ v}, k1, t1, k2), t1, k2)
evaldcps (e0 e1, ρ, k1, t1, k2) = evaldcps (e0, ρ, λ(v0, t1, k2). evaldcps (e1, ρ, λ(v1, t1, k2). v0 (v1, k1, t1, k2), t1, k2), t1, k2)

evaldcps (#e, ρ, k1, t1, k2) = evaldcps (e, ρ, θ1, nil, λv. k1 (v, t1, k2))
evaldcps (Fx .e, ρ, k1, t1, k2) = evaldcps (e, ρ{x 7→ λ(v, k′1, t

′
1, k2). k1 (v, t1 @ (k′1 :: t′1), k2)}, θ1, nil, k2)

• Main function: evaluate : Exp → Val

evaluatedcps (e) = evaldcps (e, ρmt , θ1, nil, θ2)

Figure 3: A call-by-value evaluator for the λ-calculus extended with F and #

9

The dynamic CPS transformation yields the following program, which we write in the
syntax of ML:

datatype (’a, ’b) cont1 = CONT1 of ’a * ’b trail1 * ’b cont2 -> ’b

withtype ’a trail1 = (’a, ’a) cont1 list

and ’a cont2 = ’a -> ’a

(* theta1 : ’a * (’a, ’a) trail1 * ’a cont2 -> ’a *)

fun theta1 (v, nil, k2)

= k2 v

| theta1 (v, (CONT1 k1) :: t1, k2)

= k1 (v, t1, k2)

(* theta2 : ’a cont2 *)

fun theta2 v

= v

fun test_dcps () (k1, t1, k2)

= let fun k (v, k1’, t1’, k2)

= let fun k’ (v’, k1’’, t1’’, k2)

= k1 (v + v’, t1’ @ (k1’’ :: t1’’), k2)

in theta1 (1, nil, k2)

end

in k (100, CONT1 (fn (v, t1, k2) => theta1 (10 + v, t1, k2)), nil, k2)

end

or again, unfolding the two let expressions and inlining theta1:

fun test_dcps () (k1, t1, k2)

= k2 1

The initial call is test dcps () (theta1, nil, theta2). In our experience, out-of-the-box
dynamic CPS programs are rarely enlightening the way normal CPS programs (at least after
some practice) tend to be. However, again in our experience, a combination of simplifications
(e.g., inlining theta1 in the example just above) and defunctionalization often clarifies the
intent and the behavior of the original direct-style program. We illustrate this point in
Section 8.

7 The direct-style evaluator corresponding to the eval-

uator in dynamic CPS

Figure 4 shows a direct-style evaluator for the λ-calculus extended with F and # written in
a meta-language enriched with F and #.

The following coherence property holds. Transforming this direct-style evaluator into
dynamic continuation-passing style, using the one-pass version of the dynamic CPS trans-
former of Section 6, yields the evaluator of Figure 3. Earlier on [18, Section 2], Danvy and
Filinski have shown that a similar coherence property holds for static delimited continua-
tions: CPS-transforming a direct-style evaluator for the λ-calculus extended with shift and
reset written in a meta-language extended with shift and reset yields the definitional in-
terpreter for the λ-calculus extended with shift and reset. (In the same spirit, Danvy and
Lawall have transformed into direct style a continuation-passing evaluator for the λ-calculus
extended with call/cc, obtaining a traditional direct-style evaluator interpreting call/cc with
call/cc [20, Section 1.2.1].)

10

• Terms: Exp 3 e ::= x | λx .e | e0 e1 | #e | Fx .e

• Values: v ∈ Val = Val → Val

• Environments: Env 3 ρ ::= ρmt | ρ{x 7→ v}
• Evaluation function: eval : Exp × Env → Ans

evalds (x , ρ) = ρ(x)
evalds (λx .e, ρ) = λv. evalds (e, ρ{x 7→ v})
evalds (e0 e1, ρ) = evalds (e0, ρ) (evalds (e1, ρ))

evalds (#e, ρ) = #(evalds (e, ρ))
evalds (Fx .e, ρ) = Fv.evalds (e, ρ{x 7→ v})

• Main function: evaluate : Exp → Val

evaluateds (e) = evalds (e, ρmt)

Figure 4: A direct-style evaluator for the λ-calculus extended with F and #

8 Static and dynamic continuation-passing style

Biernacka, Biernacki, and Danvy have recently presented the following simple example to
contrast the effects of shift and of control [4, Section 4.6]. We write it below in ML,
using Filinski’s implementation of shift and reset [32] shown in Appendix C, and using the
implementation of control and prompt presented in Section 10. In both cases, the type of the
intermediate answers is int list:

(* foo : int list -> int list *) (* bar : int list -> int list *)

fun foo xs fun bar xs

= let fun visit nil = let fun visit nil

= nil = nil

| visit (x :: xs) | visit (x :: xs)

= visit = visit

(shift (control

(fn k => x :: (k xs))) (fn k => x :: (k xs)))

in reset (fn () => visit xs) in prompt (fn () => visit xs)

end end

The two functions traverse their input list recursively, and construct an output list. They only
differ in that to abstract the recursive call to visit into a delimited continuation, foo uses
shift and reset whereas bar uses control and prompt. This seemingly minor difference has
a major effect since it makes foo behave as a list-copying function and bar as a list-reversing
function.

To illustrate this difference of behavior, Biernacka, Biernacki, and Danvy have used con-
texts and meta-contexts [4, Section 4.6], and Biernacki and Danvy have used an intuitive
source representation of the successive contexts [7, Section 2.3]: given the list [1,2,3], the
captured delimited continuation in foo is always fn v => visit v, whereas for bar, it is suc-
cessively fn v => visit v, fn v => 1 :: (visit v), fn v => 2 :: 1 :: (visit v), and fn v

=> 3 :: 2 :: 1 :: (visit v), making it clear that foo copies its argument whereas bar re-
verses it. In this section, we use static and dynamic continuation-passing style to illustrate
the difference of behavior.

11

8.1 Static continuation-passing style

Applying the canonical CPS transformation for shift and reset [18] to the definition of foo
yields the following purely functional program:

fun foo_scps xs

= let fun visit (nil, k1, k2)

= k1 (nil, k2)

| visit (x :: xs, k1, k2)

= let fun k (v, k1’, k2’)

= visit (v, k1, fn v => k1’ (v, k2’))

in k (xs, fn (v, k2) => k2 (x :: v), k2)

end

in visit (xs, fn (v, k2) => k2 v, fn v => v)

end

Inlining k and k1’ and lambda-dropping k1 [24] and then inlining it yields the following
simpler program:

fun foo_scps_simplified xs

= let fun visit (nil, k2)

= k2 nil

| visit (x :: xs, k2)

= visit (xs, fn v => k2 (x :: v))

in visit (xs, fn v => v)

end

Defunctionalizing k2 into a list yields the following first-order program:

fun foo_scps_defunct xs

= let fun visit (nil, k2)

= continue (k2, nil)

| visit (x :: xs, k2)

= visit (xs, x :: k2)

and continue (nil, v)

= v

| continue (x :: k2, v)

= continue (k2, x :: v)

in visit (xs, nil)

end

These successive equivalent views make it increasingly clearer that the program copies its
input list by first reversing it using the meta-continuation as an accumulator (in visit), and
then by reversing the accumulator (in continue).

8.2 Dynamic continuation-passing style

Applying the dynamic CPS transformation for control and prompt (Section 6) to the defini-
tion of bar yields the following purely functional program:

datatype (’a, ’b) cont1 = CONT1 of ’a * ’b trail1 * ’b cont2 -> ’b

withtype ’a trail1 = (’a, ’a) cont1 list

and ’a cont2 = ’a -> ’a

12

fun theta1 (v, nil, k2)

= k2 v

| theta1 (v, (CONT1 k1) :: t1, k2)

= k1 (v, t1, k2)

fun theta2 v

= v

fun bar_dcps xs

= let fun visit (nil, k1, t1, k2)

= k1 (nil, t1, k2)

| visit (x :: xs, k1, t1, k2)

= let fun k (v, k1’, t1’, k2)

= visit (v, k1, t1 @ (k1’ :: t1’), k2)

in k (xs, CONT1 (fn (v, t1, k2) => theta1 (x :: v, t1, k2)),

nil, k2)

end

in visit (xs, theta1, nil, theta2)

end

Inlining k, lambda-dropping k1 and k2 and then inlining them, defunctionalizing the contin-
uation into the ML option type, and using an auxiliary function continue aux to interpret
the trail, yields the following first-order program:

fun bar_dcps_defunct xs

= let fun visit (nil, t1)

= continue (NONE, nil, t1)

| visit (x :: xs, t1)

= visit (xs, t1 @ ((SOME x) :: nil))

and continue (NONE, v, t1)

= continue_aux (t1, v)

| continue (SOME x, v, t1)

= continue (NONE, x :: v, t1)

and continue_aux (nil, v)

= v

| continue_aux (k1 :: t1, v)

= continue (k1, v, t1)

in visit (xs, nil)

end

Further simplifications (essentially inlining the calls to continue) lead one to the following
program:

fun bar_dcps_defunct_simplified xs

= let fun visit (nil, t1)

= continue_aux (t1, nil)

| visit (x :: xs, t1)

= visit (xs, t1 @ (x :: nil))

and continue_aux (nil, v)

= v

| continue_aux (k1 :: t1, v)

= continue_aux (t1, k1 :: v)

in visit (xs, nil)

end

These successive equivalent views make it increasingly clearer that the program reverses its
input list by first copying it to the trail through a series of concatenations (with visit), and
then by reversing the trail (with continue aux).

13

8.3 A generalization

Let us briefly generalize the programming pattern above from lists to binary trees:

datatype tree = EMPTY

| NODE of tree * int * tree

In the following two definitions, the type of the intermediate answers is int list:

• Here, the two recursive calls to visit are abstracted into a static delimited continuation
using shift and reset:

fun traverse_sr t

= let fun visit (EMPTY, a)

= a

| visit (NODE (t1, i, t2), a)

= visit (t1, visit (t2, shift (fn k => i :: (k a))))

in reset (fn () => visit (t, nil))

end

• Here, the two recursive calls to visit are abstracted into a dynamic delimited contin-
uation using control and prompt:

fun traverse_cp t

= let fun visit (EMPTY, a)

= a

| visit (NODE (t1, i, t2), a)

= visit (t1, visit (t2, control (fn k => i :: (k a))))

in prompt (fn () => visit (t, nil))

end

The static delimited continuations yield a preorder and right-to-left traversal, whereas the
dynamic delimited continuation yield a postorder and left-to-right traversal. The resulting
two lists are reverse of each other.

Again, CPS transformation and defunctionalization yield first-order programs whose be-
havior is more patent.

8.4 Further examples

We now turn to the lazy depth-first and breadth-first traversals recently presented by Bier-
nacki, Danvy, and Shan [8]. To support laziness, they used the following signature of gener-
ators:

signature GENERATOR

= sig

type ’a computation

datatype sequence = END

| NEXT of int * sequence computation

val make_sequence : tree -> sequence

val compute : sequence computation -> sequence

end

The following generator is parameterized by a scheduler that is given four commands (i.e.,
unit-yieldings thunks) to be applied in turn. The functor make Control and Prompt is defined
in Section 10.

14

signature SCHEDULER

= sig

type command = unit -> unit

val schedule : command * command * command * command -> unit

end

functor make_Lazy_Generator (S : SCHEDULER) : GENERATOR

= struct

datatype sequence = END

| NEXT of int * sequence computation

withtype ’a computation = unit -> ’a

structure CP = make_Control_and_Prompt (type answer = sequence)

(* visit : tree -> unit *)

fun visit EMPTY

= ()

| visit (NODE (t1, i, t2))

= CP.control

(fn k =>

let val () = S.schedule

(fn () => visit t1,

fn () => CP.control (fn k’ => NEXT (i, k’)),

fn () => visit t2,

fn () => let val _ = k () in () end)

in END

end)

(* make_sequence : tree -> sequence *)

fun make_sequence t

= CP.prompt (fn () => let val () = visit t

in END

end)

(* compute : sequence computation -> sequence *)

fun compute k

= CP.prompt (fn () => k ())

end

The relative scheduling of the first and third commands determines whether the traversal
of the input tree is from left to right or from right to left. The relative scheduling of the
second command with respect to the first and the third determines whether the traversal is
preorder, inorder, or postorder. The relative scheduling of the fourth command determines
whether the traversal is depth-first, breadth-first, or a mix of both.

In each case, dynamic CPS transformation and defunctionalization yield first-order pro-
grams whose behavior is patent in that the depth-first traversal uses a stack, the breadth-first
traversal uses a queue, and the mixed traversal uses a queue to hold the right (respectively
the left) subtrees while visiting the left (respectively the right) ones.

9 A monad for dynamic continuation-passing style

The evaluator of Figure 3 is compositional, and has the following type:

Exp × Env × Cont1 × Trail1 × Cont2 → Val

15

Let us curry and map the evaluator to direct style with respect to the meta-continuation [12].
The type signature of the resulting evaluator eval′dcps is as follows:

Exp × Env → Cont1 → Trail1 → Val

where
Cont1 = Val → Trail1 → Val

Val = Val → Cont1 → Trail1 → Val

Trail1 = List(Cont1)

In all clauses of the evaluator but the one defining prompt, the direct-style transformation
consists of eliminating the meta-continuation, whereas the new clause defining prompt is
transformed into continuation-composing style [18]:

eval′dcps (#e, ρ) k1 t1 = k1 (eval′dcps (e, ρ) θ nil) t1

The initial continuation also is transformed:

θ1 = λv. λt1. case t1
of nil ⇒ v
| k′1 :: t′1 ⇒ k′1 v t′1

The new evaluator operates on values only of one type Val, so in order to exhibit the general
notion of computation dynamic CPS induces, we abstract both the argument type (α) and the
final answer type (o) of continuations and we introduce the following type constructor [45,55]:

D(α) = Cont1(α) → Trail1 → o

where
Cont1(α) = α → Trail1 → o

Trail1 = List(Cont1(o))

We observe that for a fixed type o, D can be expressed as follows:

D(α) = (α → Ans) → Ans

where
Ans = List(o → Ans) → o

Therefore, the notion of computation induced by dynamic CPS takes the form of the con-
tinuation monad with the recursive answer type Ans (which confirms Shan’s point that a
static simulation of dynamic continuations requires a recursive answer type [52]), the type
constructor D, and the usual continuation monad operations unit and bind:

unit : α → D(α)
unit v = λk. k v

bind : D(α) → (α → D(β)) → D(β)
bind c f = λk. c (λv. f v k)

Having identified the monad for dynamic continuation-passing style, we are now in posi-
tion to define control and prompt as operations in this monad:

16

• Terms: Exp 3 e ::= x | λx .e | e0 e1 | #e | Fx .e

• Values: v ∈ Val = Val → D(Val)

• Environments: Env 3 ρ ::= ρmt | ρ{x 7→ v}
• Evaluation function: eval : Exp × Env → D(Val)

evalmon (x , ρ) = unit (ρ(x))
evalmon (λx .e, ρ) = unit (λv. evalmon (e, ρ{x 7→ v}))
evalmon (e0 e1, ρ) = bind (evalmon (e0, ρ)) (λv0. bind (evalmon (e1, ρ)) (λv1. v0 v1)))

evalmon (#e, ρ) = prompt (evalmon (e, ρ))
evalmon (Fx .e, ρ) = control (λv. evalmon (e, ρ{x 7→ v}))

• Main function: evaluate : Exp → Val

evaluatemon (e) = run (evalmon (e, ρmt))

Figure 5: A monadic evaluator for the λ-calculus extended with F and #

Definition 4. We define the monad operations control, prompt and run as follows:

control : ((α → D(o)) → D(o)) → D(α)
control f = λk1. λt1. let x = λv. λk′1. λt′1. k1 v (t1 @ (k′1 :: t′1))

in f x θ1 nil

prompt : D(o) → D(o)
prompt c = λk1. λt1. k1 (c θ1 nil) t1

run : D(o) → o
run c = c θ1 nil

We can now extend the usual call-by-value monadic evaluator for the λ-calculus to F
and # by taking α = o = Val (see Figure 5). Inlining the abstraction layer provided by
the monad yields the evaluator eval′dcps, and uncurrying and CPS-transforming the evaluator
eval′dcps yields the evaluator of Figure 3. Dynamic continuation-passing style therefore fits
the functional correspondence between evaluators and abstract machines advocated by the
first two authors [1–3,6,14,15]. Furthermore, and as has been observed before for other CPS
transformations and for the continuation monad [36, 55], the dynamic CPS transformation
itself can be factored through Moggi’s monadic metalanguage and the monad above.

The monad presented in this section determines a simple type system that accounts for
dynamic delimited-control operators, where, for a fixed type o, control and prompt have the
following type signatures:

control : ((α → o) → o) → α
prompt : o → o

This type system is expressive enough to type most of the existing programming examples
and makes it possible to implement control and prompt in ML (see Section 10). It requires,
however, that the answer type of each delimited continuation be the same as the final answer
type of the entire program. In order to obtain more liberal and expressive type systems
for dynamic continuations, we could follow Wadler [56] and parameterize the monad by
intermediate answer types. Allowing for one additional type parameter would yield a type-
and-effect system à la Murthy [47], whereas allowing for two additional type parameters
would yield a type-and-effect system à la Danvy and Filinski [17].

17

10 A new implementation of control and prompt

The operations control and prompt in the continuation monad can be implemented in direct
style in terms of shift and reset. In direct style, we use the monadic reflection operators reify
and reflect to convert between implicit and explicit representations of computations [32].
They have types:

reify : (unit → α) → D(α)
reflect : D(α) → α

The reify operator takes a computation (represented as a thunk in call by value) that may
have implicit effects and coerces it into an effect-free value that represents those effects. The
reflect operator takes an effect-free value and coerces it into a computation, performing the
effects represented by the value.

We insert occurrences of reify and reflect in the definitions of control and prompt from
Section 9 guided by the types: we reify a computation that possibly has control effects in
order to explicitly apply it to a continuation, and we reflect pure functional values that expect
a continuation. Since our implementation language is a call-by-value functional language, we
require the argument to prompt (a computation which may have control effects) to be a
thunk:

control : ((α → o) → o) → α
control f = reflect λk1. λt1. let x = λv. reflectλk′1. λt′1. k1 v (t1 @ (k′1 :: t′1))

in reify (λ(). f x) θ1 nil

prompt : (unit → o) → o
prompt c = reflect λk1. λt1. k1 (reify c θ1 nil) t1

Since control and prompt are operations in the continuation monad, we use the definitions
of reify and reflect for the continuation monad [33]:2

reify c = λk. reset λ(). k (c ())
reflect f = shift f

We obtain definitions of control and prompt in terms of shift and reset by inlining the
occurrences of reify and reflect and simplifying:

control f = {definition of control}
reflect λk1. λt1. let x = λv. reflectλk′1. λt′1. k1 v (t1 @ (k′1 :: t′1))

in reify (λ(). f x) θ1 nil
= {definition of reify and reflect}

shift λk1. λt1. let x = λv. shift λk′1. λt′1. k1 v (t1 @ (k′1 :: t′1))
in (λk. reset λ(). k ((λ(). f x) ())) θ1 nil

= {two βv-reductions}
shift λk1. λt1. let x = λv. shift λk′1. λt′1. k1 v (t1 @ (k′1 :: t′1))

in reset (λ(). θ1 (f x)) nil

prompt c = {definition of prompt}
reflect λk1. λt1. k1 (reify c θ1 nil) t1

= {definition of reify and reflect}
shift λk1. λt1. k1 ((λk. reset λ(). k (c ())) θ1 nil) t1

2The definitions given here for reify and reflect are simplifications of the ones given in Filinski’s disserta-
tion [33, page 82]. They are obtained by erasing the level tags and then simplifying according to standard
call-by-value reasoning.

18

= {βv-reduction}
shift λk1. λt1. k1 (reset (λ(). θ1 (c ())) nil) t1

= {η-reduction}
shift λk1. k1 (reset (λ(). θ1 (c ())) nil)

= {S-elim: Sk.k M = M , if k /∈ FV (M)}
reset (λ(). θ1 (c ())) nil

where the final step is justified by Kameyama and Hasegawa’s S-elim axiom [41].
Translating these definitions into an implementation in Standard ML is straightforward:

signature CONTROL_AND_PROMPT

= sig

type answer

val control : ((’a -> answer) -> answer) -> ’a

val prompt : (unit -> answer) -> answer

end

functor make_Control_and_Prompt (type answer) : CONTROL_AND_PROMPT

= struct

type answer = answer (* final answer type *)

datatype ans = ANS of trail1 -> answer (* answer type of the *)

withtype ’a cont1 = ’a -> ans (* continuation monad *)

and trail1 = answer cont1 list

exception MISSING_PROMPT

structure SR = make_Shift_and_Reset (type answer = ans)

fun continue (ANS f) t1 (* continue : ans -> trail1 -> answer *)

= f t1

fun theta1 v (* theta1 : ’a cont1 *)

= ANS (fn nil => v

| (k1 :: t1) => continue (k1 v) t1)

fun control f (* control : ((’a -> answer) -> answer) -> ’a *)

= SR.shift

(fn k1 => ANS (fn t1 =>

let val x = fn v =>

SR.shift

(fn k1’ => ANS (fn t1’ =>

continue (k1 v) (t1 @ (k1’ :: t1’))))

in continue (SR.reset (fn () => theta1 (f x))) nil

end)) handle MISSING_RESET => raise MISSING_PROMPT

fun prompt c (* prompt : (unit -> answer) -> answer *)

= continue (SR.reset (fn () => theta1 (c ()))) nil

end

This implementation is a direct consequence of the abstract-machine semantics of con-
trol and prompt. It is formally connected to the operations in the continuation monad by
monadic reflection and the monad is formally connected to the abstract machine by defunc-
tionalization.

19

As usual with implementations of delimited control operators, a program using control

and prompt needs a toplevel control delimiter: not only the capture of the current delimited
continuation (like for shift and reset) but also the application of a captured continuation
(unlike for shift and reset) must occur within a delimited context.

11 Related work

The concept of meta-continuation and its representation as a function originate in Wand
and Friedman’s formalization of reflective towers [58], and its representation as a list in
Danvy and Malmkjær’s followup study [21]. Danvy and Filinski then realized that a meta-
continuation naturally arises by “one more” CPS transformation, giving rise to success and
failure continuations [18], and later Danvy and Nielsen observed that the list representation
naturally arises by defunctionalization [23].

As for delimited continuations, the representation of the meta-continuation as a list has a
long history. Johnson and Duggan use it in their early work on composable continuations [39].
Danvy and Filinski use it to specify (what is now known as) shift0 [17, Appendix C]. Moreau
and Queinnec later used it to specify their control operators call/pc and marker [46]. Dybvig,
Peyton Jones, and Sabry have recently used it in their monadic framework for delimited
continuations [25].

The original approaches to delimited continuations were split between composing continu-
ations dynamically by concatenating their representations [30] and composing them statically
using continuation-passing function composition [18]. Recently, Shan [52], Dybvig, Peyton
Jones, and Sabry [25], and Kiselyov [43] have each proposed accounts of dynamic delimited
continuations:

• Shan gives a continuation semantics for dynamic delimited continuations. His continua-
tion semantics threads a state equivalent to our trail. This state is a functional represen-
tation of a binary tree with continuations at the leaves. He extends Felleisen et al.’s idea
of an algebra of contexts [30] and uses the algebraic operators Send and Compose rather
than standard list operators to propagate intermediate results and compose delimited
continuations.

The abstract machine corresponding to Shan’s continuation semantics is similar to our
adjusted abstract machine. Like ours it uses an extra component to delay the concatena-
tion of contexts. Shan’s approach corresponds to viewing the composition operator (?)
as a context constructor rather than a meta-level operation, thus obtaining a machine in
defunctionalized form. He justifies the correctness of his continuation semantics by (1)
using defunctionalization to obtain the corresponding abstract machine, and (2) relating
it to the definitional machine for control and prompt given here in Section 2.

Shan informally connects his continuation semantics to his direct-style implementation in
Scheme via a pair of transformations. He transforms an abstraction over a continuation
into a use of shift and transforms an application to a continuation into an application of
a continuation guarded by a reset. Here we show that these transformations are formally
justified by the monadic reflection operators reflect and reify for the continuation monad.

Shan considers two other dynamic delimited continuation operators. He gives them con-
tinuation semantics and implementations that correspond to two other abstract machines.
Our adjusted abstract machine and the corresponding dynamic continuation-passing style
can be adapted to account for either of these variations as well, by leaving the meta-
continuation defunctionalized (see Appendices A and B).

20

• Dybvig, Peyton Jones, and Sabry provide a general framework for delimited continua-
tions. They give a continuation semantics that threads a state that is a list of continu-
ations annotated with multiple control delimiters. This state is related to our trail and
meta-continuation. Defunctionalizing our meta-continuation, inserting explicit delimiters
between its segments, flattening it, and appending it to our trail of continuations yields
their state specialized to a single delimiter. Their framework, however, was designed
independently of defunctionalization.
They exhibit an abstract machine that corresponds to their continuation semantics. Our
adjusted abstract machine is related to their machine specialized to a single delimiter and
restricted to control and prompt. We find this coincidence of result remarkable considering
the difference of motivation and methodology:

– Dybvig, Peyton Jones, and Sabry sought “a typed monadic framework in which one
can define and experiment with control operators that manipulate delimited continu-
ations” [25, Section 8], based on Moreau and Queinnec’s representation of the meta-
continuation as a list of control-delimiter tags and of continuations, and using Gunter,
Rémy, and Riecke’s control operators set and cupto [34] as a common basis, whereas

– we wanted an abstract machine for control and prompt that is in the range of Reynolds’s
defunctionalization in order to provide a consistent spectrum of tools for program-
ming with and reasoning about delimited continuations, both in direct style and in
continuation-passing style.

Dybvig et al. give a direct-style Scheme implementation of their framework in terms of
call/cc and state, but do not formally justify the correctness of this implementation.

Their framework is more general than the present work: it can account for all the varia-
tions on control operators considered by Shan, as well as variations with multiple delim-
iters. In contrast, we have focused on specifying control and prompt and on illustrating
them.

• Kiselyov gives an encoding of dynamic delimited continuations in terms of shift and reset

and recursion. His approach is qualitatively different from ours, Shan’s, and Dybvig et
al.’s. It does not thread an extra state parameter, but rather tags values sent to the
meta-continuation to indicate control effects or their absence. His transformation wraps
code around delimiters and the bodies of continuation functions in order to handle control
effects.

The abstract machine corresponding to Kiselyov’s encoding does not have an extra com-
ponent to delay the concatenation of contexts. Instead, it uses the meta-continuation for
temporary storage of continuations to delay their concatenation to the current continua-
tion.

Kiselyov proves his encoding correct by showing that its behavior under reduction agrees
with the reduction semantics of control and prompt.

His approach allows variations on delimited continuations by choosing how to handle
delimiters and continuation application.

As for adjusting an abstract machine to put it in defunctionalized form, there are prece-
dents. For example, as pointed out by the two last authors [22], Felleisen’s version of the
SECD machine with the J operator [26] differs from its predecessors in that it is in defunc-
tionalized form. (In effect, it uses a control delimiter.)

Finally, just as repeated CPS transformations give rise to a static CPS hierarchy [4,18,40,
47], repeated dynamic CPS transformations give rise to a dynamic CPS hierarchy—a future
work.

21

12 Conclusion and issues

In our earlier work [8], we argued that dynamic delimited continuations need examples, rea-
soning tools, and meaning-preserving program transformations, not only new variations, new
formalizations, or new implementations. The present work fulfills these wishes for control

and prompt by providing, in a concerted way, an abstract machine that is in defunction-
alized form, the corresponding evaluator, the corresponding continuation-passing style and
CPS transformer, a monadic account of this continuation-passing style, a new simulation of
dynamic delimited-control operators in terms of static ones, and several new examples.

Compared to static delimited continuations, and despite recent implementation advances,
the topic of dynamic delimited continuations still remains largely unexplored. We believe
that the spectrum of compatible computational artifacts presented here—abstract machine,
evaluator, computational monad, and dynamic continuation-passing style—puts one in a
better position to assess them.

Acknowledgments: We are grateful to Mads Sig Ager, Ma lgorzata Biernacka, Julia Lawall,
Kristian Støvring, and the anonymous reviewers for their comments. This work is supported
by the Danish Natural Science Research Council, Grant no. 21-03-0545 and by the ESPRIT
Working Group APPSEM (http://www.appsem.org).

Appendices

A control0

Shan [52] considers a variation of control, control0 (−F− in the parlance of Dybvig, Peyton
Jones, and Sabry [25]). Informally, control0 is like control except that capturing a delimited
continuation removes a delimiter (and therefore programs using control0 may need more than
one toplevel control delimiter or alternatively a “master,” undiscardable control delimiter).
Our adjusted abstract machine can be modified to account for this variation.

The adjusted machine is modified to implement the semantics of control0 by replacing
the clause for capturing a delimited continuation as follows:

〈−F−x .e, ρ, C1, T1, (C′
1, T

′
1) :: C2〉eval ⇒adj 〈e, ρ{x 7→ [C1, T1]}, C′

1, T ′
1, C2〉eval

The machine is still in defunctionalized form with respect to its contexts. It can thus be
refunctionalized, which yields a compositional continuation-passing evaluator. The rest of
the development (CPS transformation, direct-style evaluator, monad, and implementation)
follows Sections 6, 7, 9, and 10 mutatis mutandis.3

B shift0

The fourth control operator considered by Shan is shift0 (−F+ in the parlance of Dybvig,
Peyton Jones, and Sabry [25]). Informally, shift0 is like shift except that capturing a
delimited continuation removes a delimiter (and therefore programs using shift0 may need
more than one toplevel control delimiter). Our adjusted abstract machine can be modified
to account for this variation as well.

3The meta-contexts remain defunctionalized, and therefore cannot be eliminated from the evaluator (and
thus the monad and implementation) via direct-style transformation.

22

The adjusted machine is modified to implement the semantics of shift0 by replacing the
clause for applying a captured continuation as follows, in addition to the modification of
Appendix A:

〈−F+x .e, ρ, C1, T1, (C′
1, T

′
1) :: C2〉eval ⇒adj 〈e, ρ{x 7→ [C1, T1]}, C′

1, T ′
1, C2〉eval

〈FUN ([C′
1, T ′

1], C1), v, T1, C2〉cont1 ⇒adj 〈C′
1, v, T ′

1, (C1, T1) :: C2〉cont1

The machine is still in defunctionalized form with respect to its contexts. It can thus be
refunctionalized, which yields a compositional continuation-passing evaluator. Just as in
Appendix A, the rest of the development follows Sections 6, 7, 9, and 10.

C An implementation of shift and reset

We use Filinski’s implementation of shift and reset in SML [32], renaming some identifiers
for uniformity:

signature ESCAPE

= sig

type void

val coerce : void -> ’a

val escape : ((’a -> void) -> ’a) -> ’a

end

structure Escape : ESCAPE

= struct

open SMLofNJ.Cont

datatype void = VOID of void

fun coerce (VOID v) = coerce v

fun escape f = callcc (fn k => f (fn x => throw k x))

end

signature SHIFT_AND_RESET

= sig

type answer

val shift : ((’a -> answer) -> answer) -> ’a

val reset : (unit -> answer) -> answer

end

functor make_Shift_and_Reset (type answer) : SHIFT_AND_RESET

= struct

open Escape

type answer = answer

exception MISSING_RESET

val mk : (answer -> void) ref = ref (fn _ => raise MISSING_RESET)

fun abort x = coerce (!mk x)

fun reset t

= escape (fn k => let val m = !mk

in mk := (fn r => (mk := m; k r));

abort (t ())

end)

fun shift h

= escape (fn k => abort (h (fn v => reset (fn () => coerce (k v)))))

end

23

References

[1] Mads Sig Ager. Partial Evaluation of String Matchers & Constructions of Abstract
Machines. PhD thesis, BRICS PhD School, University of Aarhus, Aarhus, Denmark,
January 2006.

[2] Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan Midtgaard. A functional cor-
respondence between evaluators and abstract machines. In Dale Miller, editor, Proceed-
ings of the Fifth ACM-SIGPLAN International Conference on Principles and Practice
of Declarative Programming (PPDP’03), pages 8–19, Uppsala, Sweden, August 2003.
ACM Press.

[3] Mads Sig Ager, Olivier Danvy, and Jan Midtgaard. A functional correspondence between
monadic evaluators and abstract machines for languages with computational effects.
Theoretical Computer Science, 342(1):149–172, 2005. Extended version available as the
technical report BRICS RS-04-28.

[4] Ma lgorzata Biernacka, Dariusz Biernacki, and Olivier Danvy. An operational foundation
for delimited continuations in the CPS hierarchy. Logical Methods in Computer Science,
1(2:5):1–39, November 2005. A preliminary version was presented at the Fourth ACM
SIGPLAN Workshop on Continuations (CW’04).

[5] Ma lgorzata Biernacka and Olivier Danvy. A syntactic correspondence between context-
sensitive calculi and abstract machines. Technical Report BRICS RS-05-38, DAIMI,
Department of Computer Science, University of Aarhus, Aarhus, Denmark, December
2005. Accepted for publication in Theoretical Computer Science (March 2006).

[6] Dariusz Biernacki. The Theory and Practice of Programming Languages with Delimited
Continuations. PhD thesis, BRICS PhD School, University of Aarhus, Aarhus, Denmark,
December 2005.

[7] Dariusz Biernacki and Olivier Danvy. A simple proof of a folklore theorem about delim-
ited control. Journal of Functional Programming, 16(3):269–280, 2006.

[8] Dariusz Biernacki, Olivier Danvy, and Chung-chieh Shan. On the static and dynamic
extents of delimited continuations. Science of Computer Programming, 60:274–297, 2006.

[9] Hans-J. Boehm, editor. Proceedings of the Twenty-First Annual ACM Symposium on
Principles of Programming Languages, Portland, Oregon, January 1994. ACM Press.

[10] Robert (Corky) Cartwright, editor. Proceedings of the 1988 ACM Conference on Lisp
and Functional Programming, Snowbird, Utah, July 1988. ACM Press.

[11] William Clinger, Daniel P. Friedman, and Mitchell Wand. A scheme for a higher-level
semantic algebra. In John Reynolds and Maurice Nivat, editors, Algebraic Methods in
Semantics, pages 237–250. Cambridge University Press, 1985.

[12] Olivier Danvy. Back to direct style. Science of Computer Programming, 22(3):183–
195, 1994. A preliminary version was presented at the Fourth European Symposium on
Programming (ESOP 1992).

[13] Olivier Danvy. On evaluation contexts, continuations, and the rest of the computation.
In Hayo Thielecke, editor, Proceedings of the Fourth ACM SIGPLAN Workshop on
Continuations (CW’04), Technical report CSR-04-1, Department of Computer Science,
Queen Mary’s College, pages 13–23, Venice, Italy, January 2004. Invited talk.

24

[14] Olivier Danvy. A rational deconstruction of Landin’s SECD machine. In Clemens Grelck,
Frank Huch, Greg J. Michaelson, and Phil Trinder, editors, Implementation and Appli-
cation of Functional Languages, 16th International Workshop, IFL’04, number 3474 in
Lecture Notes in Computer Science, pages 52–71, Lübeck, Germany, September 2004.
Springer-Verlag. Recipient of the 2004 Peter Landin prize. Extended version available
as the technical report BRICS RS-03-33.

[15] Olivier Danvy. An Analytical Approach to Program as Data Objects. DSc thesis, De-
partment of Computer Science, University of Aarhus, Aarhus, Denmark, October 2006.

[16] Olivier Danvy. Refunctionalization at work. In Preliminary proceedings of the 8th Inter-
national Conference on Mathematics of Program Construction (MPC ’06), Kuressaare,
Estonia, July 2006. Invited talk.

[17] Olivier Danvy and Andrzej Filinski. A functional abstraction of typed contexts. DIKU
Rapport 89/12, DIKU, Computer Science Department, University of Copenhagen,
Copenhagen, Denmark, July 1989.

[18] Olivier Danvy and Andrzej Filinski. Abstracting control. In Wand [57], pages 151–160.

[19] Olivier Danvy and Andrzej Filinski. Representing control, a study of the CPS transfor-
mation. Mathematical Structures in Computer Science, 2(4):361–391, 1992.

[20] Olivier Danvy and Julia L. Lawall. Back to direct style II: First-class continuations. In
William Clinger, editor, Proceedings of the 1992 ACM Conference on Lisp and Func-
tional Programming, LISP Pointers, Vol. V, No. 1, pages 299–310, San Francisco, Cali-
fornia, June 1992. ACM Press.

[21] Olivier Danvy and Karoline Malmkjær. Intensions and extensions in a reflective tower.
In Cartwright [10], pages 327–341.

[22] Olivier Danvy and Kevin Millikin. A rational deconstruction of Landin’s J operator.
In Andrew Butterfield, Clemens Grelck, and Frank Huch, editors, Implementation and
Application of Functional Languages, 17th International Workshop, IFL’05, number
4015 in Lecture Notes in Computer Science, pages 55–73, Dublin, Ireland, September
2005. Springer-Verlag. Extended version available as the technical report BRICS RS-06-4
(February 2006).

[23] Olivier Danvy and Lasse R. Nielsen. Defunctionalization at work. In Harald
Søndergaard, editor, Proceedings of the Third International ACM SIGPLAN Confer-
ence on Principles and Practice of Declarative Programming (PPDP’01), pages 162–174,
Firenze, Italy, September 2001. ACM Press. Extended version available as the technical
report BRICS RS-01-23.

[24] Olivier Danvy and Ulrik P. Schultz. Lambda-dropping: Transforming recursive equations
into programs with block structure. Theoretical Computer Science, 248(1-2):243–287,
2000.

[25] R. Kent Dybvig, Simon Peyton-Jones, and Amr Sabry. A monadic framework for
subcontinuations. To appear in the Journal of Functional Programming. Available at
<http://www.cs.indiana.edu/~sabry/research.html>, May 2006.

[26] Matthias Felleisen. Reflections on Landin’s J operator: a partly historical note. Com-
puter Languages, 12(3/4):197–207, 1987.

25

[27] Matthias Felleisen. The theory and practice of first-class prompts. In Ferrante and
Mager [31], pages 180–190.

[28] Matthias Felleisen and Daniel P. Friedman. Control operators, the SECD machine, and
the λ-calculus. In Martin Wirsing, editor, Formal Description of Programming Concepts
III, pages 193–217. Elsevier Science Publishers B.V. (North-Holland), Amsterdam, 1986.

[29] Matthias Felleisen, Daniel P. Friedman, Bruce Duba, and John Merrill. Beyond con-
tinuations. Technical Report 216, Computer Science Department, Indiana University,
Bloomington, Indiana, February 1987.

[30] Matthias Felleisen, Mitchell Wand, Daniel P. Friedman, and Bruce F. Duba. Ab-
stract continuations: A mathematical semantics for handling full functional jumps. In
Cartwright [10], pages 52–62.

[31] Jeanne Ferrante and Peter Mager, editors. Proceedings of the Fifteenth Annual ACM
Symposium on Principles of Programming Languages, San Diego, California, January
1988. ACM Press.

[32] Andrzej Filinski. Representing monads. In Boehm [9], pages 446–457.

[33] Andrzej Filinski. Controlling Effects. PhD thesis, School of Computer Science, Carnegie
Mellon University, Pittsburgh, Pennsylvania, May 1996. Technical Report CMU-CS-96-
119.

[34] Carl Gunter, Didier Rémy, and Jon G. Riecke. A generalization of exceptions and control
in ML-like languages. In Simon Peyton Jones, editor, Proceedings of the Seventh ACM
Conference on Functional Programming and Computer Architecture, pages 12–23, La
Jolla, California, June 1995. ACM Press.

[35] Robert Harper, Bruce F. Duba, and David MacQueen. Typing first-class continuations
in ML. Journal of Functional Programming, 3(4):465–484, October 1993.

[36] John Hatcliff and Olivier Danvy. A generic account of continuation-passing styles. In
Boehm [9], pages 458–471.

[37] Robert Hieb and R. Kent Dybvig. Continuations and concurrency. In Proceedings of the
Second ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming,
SIGPLAN Notices, Vol. 25, No. 3, pages 128–136, Seattle, Washington, March 1990.
ACM Press.

[38] Robert Hieb, R. Kent Dybvig, and Claude W. Anderson, III. Subcontinuations. Lisp
and Symbolic Computation, 5(4):295–326, December 1993.

[39] Gregory F. Johnson and Dominic Duggan. Stores and partial continuations as first-class
objects in a language and its environment. In Ferrante and Mager [31], pages 158–168.

[40] Yukiyoshi Kameyama. Axioms for delimited continuations in the CPS hierarchy. In Jerzy
Marcinkowski and Andrzej Tarlecki, editors, Computer Science Logic, 18th International
Workshop, CSL 2004, 13th Annual Conference of the EACSL, Proceedings, volume 3210
of Lecture Notes in Computer Science, pages 442–457, Karpacz, Poland, September 2004.
Springer.

[41] Yukiyoshi Kameyama and Masahito Hasegawa. A sound and complete axiomatization
of delimited continuations. In Olin Shivers, editor, Proceedings of the 2003 ACM SIG-
PLAN International Conference on Functional Programming (ICFP’03), pages 177–188,
Uppsala, Sweden, August 2003. ACM Press.

26

[42] Richard Kelsey, William Clinger, and Jonathan Rees, editors. Revised5 report on the
algorithmic language Scheme. Higher-Order and Symbolic Computation, 11(1):7–105,
1998.

[43] Oleg Kiselyov. How to remove a dynamic prompt: Static and dynamic delimited con-
tinuation operators are equally expressible. Technical Report 611, Computer Science
Department, Indiana University, Bloomington, Indiana, March 2005.

[44] Robert E. Milne and Christopher Strachey. A Theory of Programming Language Se-
mantics. Chapman and Hall, London, and John Wiley, New York, 1976.

[45] Eugenio Moggi. Notions of computation and monads. Information and Computation,
93:55–92, 1991.

[46] Luc Moreau and Christian Queinnec. Partial continuations as the difference of contin-
uations, a duumvirate of control operators. In Manuel Hermenegildo and Jaan Penjam,
editors, Sixth International Symposium on Programming Language Implementation and
Logic Programming, number 844 in Lecture Notes in Computer Science, pages 182–197,
Madrid, Spain, September 1994. Springer-Verlag.

[47] Chethan R. Murthy. Control operators, hierarchies, and pseudo-classical type systems:
A-translation at work. In Olivier Danvy and Carolyn L. Talcott, editors, Proceedings
of the First ACM SIGPLAN Workshop on Continuations (CW’92), Technical report
STAN-CS-92-1426, Stanford University, pages 49–72, San Francisco, California, June
1992.

[48] Christian Queinnec and Bernard Serpette. A dynamic extent control operator for par-
tial continuations. In Robert (Corky) Cartwright, editor, Proceedings of the Eighteenth
Annual ACM Symposium on Principles of Programming Languages, pages 174–184, Or-
lando, Florida, January 1991. ACM Press.

[49] John C. Reynolds. Definitional interpreters for higher-order programming languages. In
Proceedings of 25th ACM National Conference, pages 717–740, Boston, Massachusetts,
1972. Reprinted in Higher-Order and Symbolic Computation 11(4):363–397, 1998, with
a foreword [50].

[50] John C. Reynolds. Definitional interpreters revisited. Higher-Order and Symbolic Com-
putation, 11(4):355–361, 1998.

[51] Chung-chieh Shan. Shift to control. In Olin Shivers and Oscar Waddell, editors, Proceed-
ings of the 2004 ACM SIGPLAN Workshop on Scheme and Functional Programming,
Technical report TR600, Computer Science Department, Indiana University, Snowbird,
Utah, September 2004.

[52] Chung-chieh Shan. A static simulation of dynamic delimited control. Higher-Order and
Symbolic Computation, 2007. Journal version of [51]. To appear.

[53] Dorai Sitaram and Matthias Felleisen. Control delimiters and their hierarchies. Lisp
and Symbolic Computation, 3(1):67–99, January 1990.

[54] Dorai Sitaram and Matthias Felleisen. Reasoning with continuations II: Full abstraction
for models of control. In Wand [57], pages 161–175.

[55] Philip Wadler. Comprehending monads. Mathematical Structures in Computer Science,
2(4):461–493, 1992.

27

[56] Philip Wadler. Monads and composable continuations. LISP and Symbolic Computation,
7(1):39–55, January 1994.

[57] Mitchell Wand, editor. Proceedings of the 1990 ACM Conference on Lisp and Functional
Programming, Nice, France, June 1990. ACM Press.

[58] Mitchell Wand and Daniel P. Friedman. The mystery of the tower revealed: A non-
reflective description of the reflective tower. Lisp and Symbolic Computation, 1(1):11–38,
May 1988. A preliminary version was presented at the 1986 ACM Conference on Lisp
and Functional Programming (LFP 1986).

28

Recent BRICS Report Series Publications

RS-06-15 Dariusz Biernacki, Olivier Danvy, and Kevin Millikin. A Dy-
namic Continuation-Passing Style for Dynamic Delimited Con-
tinuations. October 2006. ii+28 pp. Revised version of BRICS
RS-05-16.

RS-06-14 Giorgio Delzanno, Javier Esparza, and Jiř ı́ Srba. Mono-
tonic Set-Extended Prefix Rewriting and Verification of Recur-
sive Ping-Pong Protocols. July 2006. 31 pp. To appear in
ATVA ’06.

RS-06-13 Jǐr ı́ Srba. Visibly Pushdown Automata: From Language Equiv-
alence to Simulation and Bisimulation. July 2006. 21 pp. To
appear in CSL ’06.

RS-06-12 Kristian Støvring. Higher-Order Beta Matching with Solutions
in Long Beta-Eta Normal Form. June 2006. 13 pp. To appear
in Nordic Journal of Computing, 2006.

RS-06-11 Kim G. Larsen, Ulrik Nyman, and Andrzej Wasowski. An In-
terface Theory for Input/Output Automata. June 2006. 40 pp.
Appears in Misra, Nipkow and Sekerinski, editors, Formal
Methods: 14th International Symposium, FM ’06 Proceedings,
LNCS 4085, 2006, pages 82–97.

RS-06-10 Christian Kirkegaard and Anders Møller. Static Analysis for
Java Servlets and JSP. June 2006. 23 pp. Full version of paper
presented at SAS ’06.

RS-06-9 Claus Brabrand, Robert Giegerich, and Anders Møller.Ana-
lyzing Ambiguity of Context-Free Grammars. April 2006. 19 pp.

RS-06-8 Christian Kirkegaard and Anders Møller. Static Analysis for
Java Servlets and JSP. April 2006. 22 pp.

RS-06-7 Petr Jaňcar and Jiř ı́ Srba. Undecidability Results for Bisimilar-
ity on Prefix Rewrite Systems. April 2006. 20 pp. Presented at
FoSSaCS 2006, LNCS 3921:277–291.

RS-06-6 Luca Aceto, Willem Jan Fokkink, Anna Inǵolfsdóttir, and Bas
Luttik. A Finite Equational Base for CCS with Left Merge and
Communication Merge. March 2006. 22 pp.

RS-06-5 Kristian Støvring. Extending the Extensional Lambda Calculus
with Surjective Pairing is Conservative. March 2006. 18 pp.
To appear in Logical Methods in Computer Science. Supersedes
RS-05-35.

