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Monotonic Set-Extended Prefix Rewriting and

Verification of Recursive Ping-Pong Protocols

Giorgio Delzanno1, Javier Esparza2? and Jǐŕı Srba3??

1 Dipartimento di Informatica e Scienze dell’Informazione
Università di Genova, Italy

2 Institut für Formale Methoden der Informatik
Universität Stuttgart, Germany

3 BRICS? ? ?, Department of Computer Science
Aalborg University, Denmark

Abstract. Ping-pong protocols with recursive definitions of agents, but
without any active intruder, are a Turing powerful model. We show that
under the environment sensitive semantics (i.e. by adding an active in-
truder capable of storing all exchanged messages including full analysis
and synthesis of messages) some verification problems become decidable.
In particular we give an algorithm to decide control state reachability, a
problem related to security properties like secrecy and authenticity. The
proof is via a reduction to a new prefix rewriting model called Mono-
tonic Set-extended Prefix rewriting (MSP). We demonstrate further ap-
plicability of the introduced model by encoding a fragment of the ccp
(concurrent constraint programming) language into MSP.

1 Introduction

Motivation and related work. In recent years there has been an increasing interest
in formal analysis of cryptographic protocols. Even under the perfect encryption
hypothesis (an intruder cannot exploit weaknesses of the encryption algorithm
itself) a number of protocols presented in the literature were flawed, which esca-
lated the need for automatic verification of protocol properties like secrecy and
authenticity. Unfortunately, the general problem for fully featured languages
like the spi-calculus [1] is undecidable and hence finding a decidable yet rea-
sonably expressive subset of such Turing-powerful formalisms is desirable. We
contribute to this area by investigating the decidability borderline for protocols
with a restricted set of cryptographic primitives while still preserving complex
control-flow structures and with no restriction on the length of messages.

Recently, in [5, 13, 14] this kind of study has been carried out for models
of cryptographic protocols with the basic ping-pong behaviour as introduced
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by Dolev and Yao [11]. In a ping-pong protocol a message is a single piece
of data (plain text) possibly encrypted with a finite sequence of keys. Agents
are memory-less. The ping-pong communication mechanism can be naturally
modelled using prefix rewriting over finite words. The connection is based on
the idea of representing a piece of data d encrypted, e.g., with k1, k2 and then
k3, as the word k3k2k1d. On reception of a message, an agent can only apply a
finite sequence of keys to decrypt the message, and then use another sequence of
keys applied to the decrypted message to forge the reply. For example the prefix
rewrite rule k3k2 → k4 transforms k3k2k1d into k4k1d (the suffix k1d of the first
word is copied into the reply).

In [10] Dolev, Even and Karp showed that secrecy properties are decidable in
polynomial time for finite ping-pong protocols under an environment sensitive
semantics (active attacker) used to model possibly malicious agents. (Where
finite means that the length of all computations is syntactically bounded.) In the
context of cryptographic protocols, the aim of the attacker is to augment his/her
initial knowledge by listening on the communication channels, e.g., to learn some
of the secrets exchanged by the honest agents. A general way of defining active
attackers was introduced by Dolev and Yao in [11], now commonly known as the
Dolev-Yao intruder model. In this model, the communication among the agents
is asynchronous. The attacker can store and analyze all messages exchanged
among the agents using the current set of compromised keys. The attacker can
also synthesize new messages starting from the stored messages and compromised
keys.

In [5] Amadio, Lugiez and Vanackère extended the result of [10] by showing
that secrecy is decidable in polynomial time for ping-pong protocols with repli-
cation. The replication operator !P is peculiar of process algebraic languages.
The agent !P can generate an arbitrary number of identical copies of P operat-
ing in parallel. This work was later extended to protocols with a limited use of
pairing [4, 9].

A more powerful way of extending the class of finite ping-pong protocols is
to allow for recursive process definitions, as in CCS. Loosely speaking, recur-
sion allows to define processes with arbitrary flow-graphs; the finite case [11,
10] corresponds to acyclic graphs. Recursive definitions are more powerful than
replicative ones, in particular recursive protocols are not memory-less any more
as every agent can be seen as an automaton with finite memory. This enables
to verify not only secrecy but also authenticity (see e.g. a protocol by Woo and
Lam in Appendix A). The combination of ping-pong behaviour with recursive
definitions and finite memory enables us to encode several protocols studied
in the literature, including features like a limited notion of pairing, public key
encryption and others (see Appendix).

A process algebra for recursive ping-pong protocols was introduced in [13, 14]
where it was proved that the resulting model (without any notion of an attacker)
is Turing powerful.

Novel contribution. The results from [13, 14] were obtained for protocols in the
absence of an attacker. In this paper, we show that, maybe surprisingly, the
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control state reachability problem for recursive ping-pong protocols in the pres-
ence of a Dolev-Yao intruder is decidable (in particular, this new model is no
longer Turing powerful). Since secrecy/authenticity properties can be reduced
to the control state reachability problem by adding new control points that can
be reached if and only if secrecy/authenticity is violated, this also implies the
decidability of these properties. A few examples demonstrating the modelling
power of recursive ping-pong protocols are described in detail in Appendix.

Our main decidability result is consistent with the results on tail-recursive
cryptographic protocols from [4]. Indeed the necessary (but not sufficient) con-
ditions defined in [4] (locality, linearity and independency) for decidability of
control state reachability are all satisfied by recursive ping-pong protocols.

Methodology: reduction to a new computational model. In order to achieve this
result, we first introduce a new model called Monotonic Set-extended Prefix
rewriting system (MSP). Configurations in MSPs have the form (p, T ) where
p is a control state and T is a set of words (the current store or pool). MSP rules
enrich prefix rewrite rules with the update of the control state. Control states
are partially ordered, and a state update can only lead to states that are greater
or equal than the current one, like for instance in weak Büchi automata [19, 15],
or weak Process Rewrite Systems (wPRSs) [17].

Furthermore, when a rule is applied to a word w in the current store T with
the result w′, both w and w′ are included in the new store. Thus, the store can
only grow monotonically. In our application to ping-pong protocols, T represents
the current knowledge of the attacker (modulo analysis and synthesis). More
generally, it can be viewed as a monotonic store used for agent communication
in languages like ccp [22].

Technical contribution. As a main technical contribution, we will show that
known results on prefix rewrite systems, namely the efficient representation
of predecessor sets of words in prefix rewriting by nondeterministic finite au-
tomata [6], can be used to decide the control state reachability problem for MSPs.
Furthermore, we will demonstrate how to reduce the control state reachability
problem for recursive ping-pong protocols with Dolev-Yao attacker model to the
control state reachability problem for MSPs. This reduction gives us an EXP-
TIME algorithm to decide the control state reachability problem for recursive
ping-pong protocols. We also show that the problem is NP-hard. Closing the gap
between both results is left for future research. Finally, we also demonstrate that
an (infinite) fragment of the concurrent constraint programming language [22]
can be naturally encoded into our MSP formalism.

2 Facts about Prefix Rewriting on Words

Let us first state some standard facts about prefix rewriting.
Let Γ be a finite alphabet. A prefix rewriting system is a finite set R of rules

such that R ⊆ Γ ∗ × Γ ∗. For an element (v, w) ∈ R we usually write v −→ w.
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The system R generates a transition system via the standard prefix rewriting.

(v −→ w) ∈ R, t ∈ Γ ∗

vt −→R wt

Proposition 1 (see, e.g., [7, 12]). Let T ⊆ Γ ∗ be a regular set of words. Then
the sets preR(T ) def= {u′ ∈ Γ ∗ | ∃u ∈ T. u′ −→R u} and pre∗R(T ) def= {u′ ∈
Γ ∗ | ∃u ∈ T. u′ −→∗

R u} are also regular sets. Moreover, if T is given by a
nondeterministic finite automaton A then we can in polynomial time construct
the automata for preR(T ) and pre∗R(T ) of polynomial size w.r.t. to A.

3 Monotonic Set-Extended Prefix Rewriting

In this section we shall introduce a new computational model called Monotonic
Set-extended Prefix rewriting (MSP). First, we provide its definition and then
we argue for the decidability of control state reachability in MSP.

Let Γ be a finite alphabet and let Q be a finite set of control states together
with a partial ordering relation ≤⊆ Q×Q. By p < q we denote that p ≤ q and
p 6= q. A monotonic set-extended prefix rewriting system (MSP) is a finite set R
of rules of the form pv −→ qw where p, q ∈ Q such that p ≤ q and v, w ∈ Γ ∗.

Assume a fixed MSP R. A configuration of R is a pair (p, T ) where p ∈ Q
and T ⊆ Γ ∗. The semantics is given by the following rule.

(pv −→ qw) ∈ R, vt ∈ T

(p, T ) −→R (q, T ∪ {wt})
Let (p0, T0) be an initial configuration of MSP R such that T0 6= ∅ is a regular

set and let pG ∈ Q. The control state reachability problem is to decide whether
(p0, T0) −→∗

R (pG, T ) for some T .
We will demonstrate the decidability of control state reachability for MSPs.

From now on assume a fixed MSP R with an initial configuration (p0, T0) and
a goal control state pG. We proceed in three steps. First, we give some prelimi-
naries on the relationship between MSPs and prefix rewriting systems. Then we
introduce several notions: control path, π-scheme, and feasibility of a π-scheme.
We show that the control state reachability problem reduces to the feasibility
problem of π-schemes. Finally, we give an algorithm for feasibility of π-schemes,
and give an upper bound on the complexity of the control state reachability
problem.

Preliminaries. Given a rule r = pv → qw of R, we denote by u1 −→r u2 the
fact that qu2 can be obtained from pu1 by applying r, i.e., that there is t ∈ Γ ∗

such that u1 = vt and u2 = wt. Furthermore, for every state p ∈ Q we define
the set Rp of rules from R that start from p and do not change the control

state, i.e., Rp
def= {pv −→ pw | (pv −→ pw) ∈ R}, and write v −→∗

Rp
w to

denote that there is a sequence v −→r1 v1 −→r2 . . . −→rn w such that ri ∈ Rp

for every i ∈ {1, . . . , n}. We have the following obvious connection between
(p, T ) −→∗

Rp
(p, T ′) and v −→∗

Rp
w.
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Lemma 1. If (p, T ) −→∗
Rp

(p, T ′) then for every w ∈ T ′ there is v ∈ T such
that v −→∗

Rp
w.

Control paths and π-schemes. Assume a given MSP R. A control path is a
sequence π = p0r1p1r2p2 . . . pn−1rnpn, where n ≥ 0, satisfying the following
properties:

– pi ∈ Q for i ∈ {0, . . . , n} and rj ∈ R for every j ∈ {1, . . . n},
– p0 < p1 < p2 < · · · < pn, and
– for every j ∈ {1, . . . n}, rj is a rule of the form pj−1v −→ pjw for some v

and w.

Note that the length of π is bounded by the length of the longest chain in (Q,≤).
An execution of R starting at (p0, T0) conforms to π if the sequence of rules used
in it belongs to the regular expression E(π) = R∗

p0
r1R

∗
p1

. . . R∗
pn−1

rn (for n = 0,
to the regular expression ε). Obviously, pG is reachable from (p0, T0) if and only
if there is a control path π = p0r1 . . . rn−1pn such that pn = pG and some
execution of R ending in pG conforms to π.

In the next lines, we will need to distinguish more precisely to which words
the rules from a control path are applied in a particular computation of R. For
this we introduce the notions of a π-scheme and feasibility of π-schemes.

A π-scheme is a labelled directed acyclic graph S = (N, E, λ) where N
is a finite set of nodes, E ⊆ N × N is a set of edges, and λ : E → X is
a function that assigns to each edge e an element λ(e) from the set X =
{R∗

p0
, r1, R

∗
p1

, . . . , R∗
pn−1

, rn}. Moreover, S satisfies the following properties (where

n l−→n′ denotes that S has an edge from n to n′ labelled by l):

(a) every node has at most one predecessor (i.e., S is a forest) and there are no
isolated nodes,

(b) for every i ∈ {1, . . . , n}, there is exactly one edge labelled by ri, and
(c) for every path n0

l1−−→n1 . . .nk−1
lk−−→nk leading from a root to a leaf, the

sequence l1 . . . lk can be obtained from E(π) by deleting 0 or more, but not
all, of r1, r2, . . . , rn, and there are no two different paths with the same
sequence of labels.

Figure 1 shows a π-scheme for the control path π = p0r1 . . . p3r4p4. Intuitively, a
π-scheme describes what type of words were necessary to perform the changes of
control states described by a given control path. In our example, the first upper
chain means that in order to employ the rule r4 which changes a control state p3

into p4, we need to take some word from the initial pool T0, modify it possibly
by the rules from R∗

p0
, . . . , R∗

p3
(in this order) and finally use the resulting word

to enable the application of the rule r4. In general, the situation can be more
complicated as demonstrated in the lower part of Figure 1 for the remaining
rules r1, r2 and r3. A word resulting from an initial word taken from the set T0

and possibly modified by R∗
p0

is used to enable the application of the rule r1.
The resulting word is later on necessary for both the application of the rule r2

and r3.
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•
R∗p0 // •

R∗p1 // •
R∗p2 // •

R∗p3 // • r4 // •

•
R∗p2 // • r3 // •

R∗p3 // •
•

R∗p0 // • r1 // •
R∗p1 44iiiiiii

R∗p1
**UUUUUUU

•
r2

// •
R∗p2

// •
R∗p3

// •

Fig. 1. A π-scheme for π = p0r1 . . . r4p4

Two π-schemes are isomorphic if they are equal up to renaming of the
nodes. Note that every π-scheme is finite and there are only finitely many non-
isomorphic π-schemes. We obtain a very rough upper bound on the number of
π-schemes for a given control path π.

Lemma 2. Let π = p0r1p1r2p2 . . . rnpn be a control path. There are at most
nO(n) π-schemes up to isomorphism.

Proof. Let X = {R∗
p0

, r1, R
∗
p1

, . . . , R∗
pn−1

, rn} be the alphabet of regular expres-
sions associated with the control path π. Given a π-scheme S, denote by P (S)
the words l1 . . . ln ∈ X∗ such that n0

l1−−→ . . .
ln−−→nn is a path of S leading from

a root to a leaf. By condition (c), every element of P (S) contains all the letters
R∗

p0
, . . . , R∗

pn−1
exactly once (and in that order), plus one or more of the letters

r1, . . . , rn, also in that order. Therefore, there exists a bijection between the par-
titions of the set {r1, . . . , rn} and the languages L ⊆ X∗ for which there is a
π-scheme S satisfying P (S) = L. Since the number of partitions is bounded by
nn, this is also an upper bound of the number of languages L.

Now, given a fixed language L, we give a bound on the number of schemes
S such that P (S) = L. For this, we observe that a π-scheme can be constructed
by adding paths corresponding to the words of L one by one. For instance, the
π-scheme of Figure 1 can be constructed by adding paths for R∗

p0
R∗

p1
R∗

p2
R∗

p3
r4,

R∗
p0

r1R
∗
p1

R∗
p2

r3R
∗
p3

and R∗
p0

r1R
∗
p1

r2R
∗
p2

R∗
p3

. Each time a new path is added, we
decide how to merge it with the previous ones. In the example, we decide to
keep the second path disjoint with the first, and merge the third path with the
second one up to R∗

p0
r1. Since the paths have length at most 2n (condition (c)),

for the second path we have at most 2n + 1 different ways of merging it with
the first one, for the third path at most 2(2n+1) ways, and for the i-th we have
i(2n + 1). Their product is bounded by nO(n) and so for each language L there
are at most nO(n) π-schemes. Since the number of languages is bounded by nn,
we get a bound of nn · nO(n) ∈ nO(n) on the total number of schemes. ut

We shall now formally define feasibility of π-schemes. A π-scheme is feasible
from T ⊆ Γ ∗ if there is a function f : N → Γ ∗ such that

(d) if n is a root, then f(n) ∈ T , and

(e) if n
R∗

pi−−−→n′, then f(n) −→∗
Rpi

f(n′), and if n ri−−→n′, then f(n) −→ri f(n′).

6



Intuitively, the function f determines which particular words are used in order
to realize a given π-scheme by some concrete execution in R.

Proposition 2. Let π be a control path. There is an execution of R starting
from (p0, T0) and conforming to π iff some π-scheme is feasible from T0.

Proof. (⇒): Let π = p0r1p1r2p2 . . . rnpn. The proof is by induction on n. In fact,
we are going to prove a stronger claim which moreover requires that the function
f from the definition of feasibility is injective on the roots of the scheme. If n = 0,
then π = p0. The empty π-scheme is obviously feasible from T0.

Assume n > 0. Let (p0, T0) −→∗
Rp0

(p0, T
′
0) −→r1 (p1, T1) be the initial part

of the execution conforming to π, which exists by assumption. Let v′0 be the
word of T ′0 to which the rule r1 is applied, and let v1 be the word obtained by
the application of the rule. We have T1 = T ′0 ∪ {v1}. By Lemma 1, there is a
word v0 ∈ T0 such that v0 −→∗

Rp0
v′0 −→r1 v1.

Now, let π1 = p1r2p2 . . . rnpn. The rest of the execution whose initial part
is given above conforms to π1. By induction hypothesis there is a π1-scheme S1

feasible from T1 by means of a function f1. Let n1 be a root of S1 such that
f1(n1) = v1 (if there is no such root, then redefine S1 as the result of adding a
new isolated path with root node n1 and with edges labelled by R∗

p1
, . . . , R∗

pn−1

and extend f1 by f1(n) = v1 for all nodes n on the added path). We construct
a π-scheme S and a function f showing that S is feasible from (p0, T0). S is
obtained by adding new nodes and edges to S1, and by extending f1 to a new
function f .

In a first step, we add a new edge n′ r1−−→n1 and set f(n′) = v′0. We claim
that every root n′1 of this new graph satisfies f(n′1) ∈ T ′0. For the proof, consider
two cases. If n′1 = n′, f(n′1) ∈ T ′0 by definition. Otherwise, n′1 is a root of π1,
n′1 6= n1. By the definition of feasibility, we have f(n′1) ∈ T1. Since f1 is injective
on roots, we have f1(n′1) 6= v1, and so, since T1 = T ′0 ∪ {v1} by the semantics of
MSPs, we have f(n′1) ∈ T ′0, and the claim is proved.

For the second step in the construction, observe that, by Lemma 1, for every
root n′1 of the graph obtained after the first step there is a word v0 ∈ T0 such
that v0 −→∗

Rp0
f(n′1). For each such v0 we add a new node nv0 and a new edge

nv0

R∗
p0−−−→n′1 to the graph, and set f(nv0) = v0. It is easy to see that the result

is a graph satisfying conditions (a)-(e) by means of the function f , and so this
π-scheme is feasible from T0.

(⇐): Let π = p0r1p1r2p2 . . . rnpn. Let S be a π-scheme feasible from T0 by
means of a function f . The proof is by induction on n. If n = 0 then E(π) = ε
and, by condition (c) and (a), S has no edges and no nodes. It follows that the
empty execution conforms to π.

If n > 0, let S′0 be the graph obtained from S be removing all edges labelled
by R∗

p0
and all nodes that became isolated, and let S1 be the graph obtained

from S′0 by removing the unique edge labelled by r1 and possibly the source
node of this edge should it became an isolated node. Furthermore, let T ′0, T1 be
the sets of words v such that f(n) = v for some root of S′0, S1, respectively. It is
easy to see that S1 is a π1-scheme feasible from T1 by means of the restriction of

7



f to the nodes of S1, where π1 = p1r2p2 . . . rnpn. By induction hypothesis, there
is an execution of R starting from (p1, T1) and conforming to π1. We show that
there is a sequence

(p0, T0) −→∗
Rp0

(p0, T
′
0 ∪ T ) −→r1 (p1, T1 ∪ T )

conforming to π for an adequate set T .
Let n′0

r1−−→n1 be the unique edge of S′0 labelled by r1. Then, the set of roots
of S′0 is equal to the set of roots of S1 minus n1 plus n′0, and so T ′0 = (T1\f(n1))∪
{f(n′0)}. Since π is feasible by means of f , we have f(n′0) −→r1 f(n1),and so
(p0, T

′
0 ∪ T ) −→r1 (p1, T1 ∪ T ) for any set T . Let us now show that some set T

satisfies (p0, T0) −→∗
Rp0

(p0, T
′
0 ∪ T ). For this, it suffices to show that for every

v′0 ∈ T ′0 there is a word v0 ∈ T0 such that v0 −→∗
Rp0

v′0, because in this case
we can take for T all the words reached during the executions of the sequences
v0 −→∗

Rp0
v′0. To prove this, choose an arbitrary v′0 ∈ T ′0. By definition, there is

a root n′0 of S′0 such that f(n′0) = v′0. By the definition of π-scheme, S has an

edge n0

R∗
p0−−−→n′0, where n0 is a root. Since S is feasible by means of f , we have

f(n0) −→∗
Rp0

f(n′0). So we can just take v0 = f(n0). ut
Proposition 2 and Lemma 2 lead to the following algorithmic idea for deciding

if there is a set T such that (p0, T0) −→∗
R (pG, T ):

– enumerate all control paths π = p0r1 . . . rnpn such that pn = pG (their
number is finite, because the length of a control path is bounded by the
length of the longest ≤-chain in Q),

– for each control path π, enumerate all π-schemes (their number is finite by
Lemma 2), and

– for each π-scheme S, decide if S is feasible.

Checking feasibility of π-schemes. To check feasibility of a π-scheme S, we first
need to define the feasibility of a node n for a word v ∈ Γ ∗. Let n be a node of
S, and let Nn denote the set of all descendants of n. We say that n is feasible
for v ∈ Γ ∗ if there is a function fn : Nn → Γ ∗ satisfying condition (e) of the
definition of feasibility of a π-scheme, and such that fn(n) = v. Now, let W (n)
denote the set of all words v such that n is feasible for v. By Proposition 2, S is
feasible from a set T ⊆ Γ ∗ iff T ∩W (n) 6= ∅ for every root n of S.

An apparent complication to compute the set W (n) is the fact that it may
be infinite, which prevents us from enumerating its elements in finite time. We
solve this problem by showing that W (n) is always a regular language, and that
it is possible to effectively construct a nondeterministic automaton recognising
it. The key is the following characterization of W .

Proposition 3. Let n be a node of a π-scheme S, then

W (n) = Γ ∗ ∩
⋂

n
Rp

∗
−−−→n′

pre∗Rp
(W (n′)) ∩

⋂

n
r−→n′

prer(W (n′))

where prer(T ) def= pre{v−→w}(T ) such that r is of the form pv −→ qw.

8



Proof. By condition (e) in the definition of feasibility, n is feasible for v iff either

n is a leaf, or for every edge n
Rp

∗
−−−→n′ there is a word w ∈ W (n′) such that

v −→∗
Rp

w and for every edge n r−→n′ there is a word w ∈ W (n′) such that
v −→r w. The claim follows then immediately from the definition of pre∗Rp

and
prer. ut

Notice that if n is a leaf then W (n) = Γ ∗. Let n0 and n1 be the upper
and lower root in the π-scheme of Figure 1. If we abbreviate the expression
pre∗Rpi

(pre∗Rpi+1
(. . . (pre∗Rpj

(T )) . . .) to pre∗i...j(T ) for i ≤ j, we get

W (n0) = pre∗0123(prer4
(Γ ∗))

W (n1) = pre∗0
(
prer1

(
pre∗12(prer3

(pre∗3(Γ
∗))) ∩ pre∗1(prer2

(pre∗23(Γ
∗)))

))
.

Proposition 3 allows us to compute W (n) bottom-up, starting at the leaves
of S, and computing W (n) after having computed W (n′) for every immediate
successor of n. By Proposition 1, the pre∗ and pre operations preserve regu-
larity, and are effectively computable. Since regular languages are closed under
intersection, W (n) is effectively computable.

Hence control state reachability of monotonic set-extended prefix rewriting
systems is decidable.

Theorem 1. Control state reachability of monotonic set-extended prefix rewrit-
ing systems is decidable.

Finally, we also establish a singly exponential upper bound of the running
time of the algorithm.

Proposition 4. Let R be an MSP over a finite alphabet Γ and a set of control
states (Q,≤) and let c be the length of the longest ≤-chain. Let m be the maxi-
mum over all p, q ∈ Q, p 6= q, of the number of rules of the form pv −→ qw in R.
Let T0 ⊆ Γ ∗ be a regular set of words represented by a nondeterministic automa-
ton of size a. We can decide if there is a set T such that (p0, T0) −→∗

R (pG, T )
for a given control state pG in deterministic time (|Q|+ m + |Γ |)O(c) · a.

Proof. Since the number of states appearing in a control path is at most c,
the number of control paths of R is bounded by |Q|c · mc. Since the number
of π-schemes for a given control path with n states is nO(n) (Lemma 2) the
total number of schemes is at most |Q|c ·mc · cO(c), which can be bounded by
(|Q|+ m)O(c) because c ≤ |Q|.

Let us now compute the time required to check the feasibility of a scheme.
We claim that, given a scheme S with k leaves, the cost of computing W (n)
for every root n of S is |Γ |O(k). To see this, observe first that the size of the
automata accepting Γ ∗ (the set W (n) for a leaf n) is O(|Γ |). Moreover, if the
sizes of the automata for the children of a node have sizes a1, . . . , ak, the size of
the automaton for the node is bounded by the product a1a2 . . . ak, since we have
to intersect all the automata. Since the scheme has k leaves, we obtain |Γ |O(k)

as the total cost, which proves the claim. Finally, we have to check whether
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T0 ∩W (n) 6= ∅ holds for every root n, which can be done in time a · |Γ |O(k) · k
time. Since k ≤ c due to condition (c) in the definition of a π-scheme, the
feasibility of a scheme can be thus checked in a · |Γ |O(c) · c.

Since the number of schemes is (|Q|+ m)O(c) and the feasibility of each one
of them can be checked in a · |Γ |O(c) · c time, the running time of the algorithm
is (|Q|+ m + |Γ |)O(c) · a. ut

4 Recursive Ping-Pong Protocols

In this section we define the class of recursive ping-pong protocols.
Let K be a set of symmetric encryption keys. A word w ∈ K∗ naturally repre-

sents an encrypted message with the outer-most encryption on the left hand-side.
For example k1k2k represents the plain text message (key) k encrypted first by
the key k2, followed by the key k1. In the usual notation k1k2k hence stands
for {{k}k2}k1 . The analysis of a set of messages T ⊆ K∗ is the least set A(T )
satisfying

A(T ) = T ∪ {w | kw ∈ A(T ), k ∈ K ∩ A(T )}. (1)

The synthesis of a set of messages T ⊆ K∗ is the least set S(T ) satisfying

S(T ) = T ∪ {kw | w ∈ S(T ), k ∈ K ∩ S(T )}. (2)

Lemma 3. Let n be a natural number, T ⊆ K∗ and let Qi ∈ {A,S} for all i,
1 ≤ i ≤ n. It holds that Q1(Q2(. . . (Qn(T )) . . .)) ⊆ S(A(T )).

Proof. This standard fact (see also [5, Prop. 2.1]) follows directly from the fol-
lowing straightforward laws: S(S(T )) = S(T ); A(A(T )) = A(T ); A(S(T )) ⊆
S(A(T )); and T1 ⊆ T2 implies S(T1) ⊆ S(T2). ut
The set of compromised keys C(T ) ⊆ K for a given set T ⊆ K∗ of messages is
defined by C(T ) def= K ∩ A(T ). A recursive ping-pong protocol is a finite set ∆
of process definitions over a finite set Const of process constants such that for
every P ∈ Const the set ∆ contains exactly one process definition of the form

P
def=

∑
i∈I

[?viB .!wiB].Pi

where I is a finite index set such that Pi ∈ Const and vi, wi ∈ K∗ for all i ∈ I.
We shall denote the empty sum as Nil. The intuition is that for any i ∈ I the
process P can input a message of the form vit ∈ K∗, output wit, and behave as
Pi. The symbol ′?′ represents the input prefix, ′!′ the output prefix, and ′B′ the
rest (suffix) of the communicated message.

A configuration of a ping-pong protocol ∆ is a pair (P, T ) where P ∈ Const
and T ⊆ K∗. The set T is also called a pool. The reduction semantics is defined
by the following rule.

P
def=

∑
i∈I

[?viB .!wiB].Pi, i ∈ I, vit ∈ S(A(T ))

(P, T ) −→∆ (Pi, T ∪ {wit})
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Definition 1. Let (P0, T0) be a given initial configuration such that T0 6= ∅ is
a regular set and let PG ∈ Const. The control state reachability problem is to
decide whether (P0, T0) −→∗

∆ (PG, T ) for some T .

Example 1. Let ∆ be a protocol consisting of P0
def= [?k1k2B .!k2k1B].P1, P1

def=
[?k2k1B .!k∗k2B].P2, and P2

def= Nil. Let T0 = {k∗, k1k2} be the initial pool
in which k∗ is the only compromised key. Then, (P0, T0) −→∆ (P1, T1) −→∆

(P2, T2) where T1 = T0 ∪ {k2k1}, and T2 = T1 ∪ {k∗k2}. At control point P2

(but not before) the attacker can learn the keys k1 and k2. Indeed, he can use
the compromised key k∗ to extract k2 from the last message k∗k2 exchanged
in the protocol, and k2 to extract k1 from the message k2k1. Thus, we have
that C(T2) = {k∗, k1, k2}. Suppose that messages are always terminated by
the symbol ⊥. In order to test if the attacker has uncovered, e.g., the key k1,
we can add (using +) to each process definition the observer process defined as
[?k1⊥B.!k1⊥B].Error . Reachability of the control state Error denotes a violation
of secrecy for our protocol.

Remark 1. Since we allow nondeterminism in the definitions of process con-
stants, the control state reachability problem for a parallel composition of re-
cursive ping-pong processes can be reduced (using a standard product con-
struction) to control state reachability for a single recursive process. For ex-
ample assume that Const = {P1, P2, P

′
2} such that P1

def= [?k1 B .!k2B].P1,
P2

def= [?k1B .!B].P ′
2 + [?k2B .!B].P2, and P ′

2
def= [?k1k2B .!k2k1B].P2.

The parallel composition P1 ‖ P2 as defined e.g. in [4] can be modelled by
the following protocol with Const = {(P1, P2), (P1, P

′
2)}, where

(P1, P2)
def= [?k1B .!k2B].(P1, P2) + [?k1B .!B].(P1, P

′
2) + [?k2B .!B].(P1, P2)

(P1, P
′
2)

def= [?k1B .!k2B].(P1, P
′
2) + [?k1k2B .!k2k1B].(P1, P2) .

Note that by applying the reduction above, there is a possible exponential
state-space explosion (however, it is exponential only in the number of parallel
agents; in many protocols this number is fixed and small). In what follows we
measure our complexity results in terms of the flat (single process) system.

Remark 2. In [14] the reachability problem for a replicative variant of the ping-
pong calculus without any notion of an active intruder was reduced to reacha-
bility of weak Process Rewrite Systems (wPRSs) [17]. In a wPRS rewriting rules
contain both parallel and sequential operators and are moreover enriched with
a control state unit defined over a partially ordered set of states. Configurations
consist of a control state together with a term built using sequential and parallel
composition as in PRS [18]. These kinds of terms can be used, e.g., to represent
a multiset of words (for this we in fact only need a subclass of wPRS called
wPAD). The main restriction of wPRSs, which guarantees that reachability is
still decidable, is that state updates can only lead to states that are greater or
equal than the current one. MSPs borrow this idea from wPRSs although they
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represent a different (incomparable) extension of prefix rewriting. To illustrate
this, let us go back to Example 1. Suppose that we model the protocol using the
wPRS rules

p0 k1k2 → p1 k2k1

p1 k2k1 → p2 k∗k2

where p0, p1 and p2 are control states such that p0 < p1 < p2. In wPRS we
can consider configurations like (p, w1 ‖ . . . ‖ wn) where p is a control state and
w1, . . . , wn are words. The initial pool can be modelled then as (p0, k1k2 ‖ k∗).
However, in order to give the attacker the possibility of extracting k1, we in
general need to duplicate an arbitrary number of times any message floating in
the pool (otherwise they get consumed by a rewriting step). Thus, we would
need an additional meta-rule w → w||w for any word w. This kind of rules are
not expressible in wPRS (they generate term languages that are not regular)
and replicating a bounded number of initial messages is not sufficient to solve
the problem.

5 Translating Recursive Ping-Pong Protocols to MSP

In this section we provide a reduction from control state reachability for recursive
ping-pong protocols to control state reachability for MSP.

There are two main problems: (i) How can the analysis and synthesis be
captured by prefix rewriting rules? and (ii) How to ensure that the control state
unit is monotonic even for arbitrary recursive ping-pong protocols?

We shall now provide answers to these problems. Intuitively, problem (i) can
be solved by keeping track of the set of compromised keys. The set of compro-
mised keys grows monotonically and can be stored as a part of the control state.
The rules for analysis and synthesis can then use the knowledge of the currently
compromised keys and once a new compromised key is discovered, the control
state unit is updated accordingly. Problem (ii) is more challenging. We can-
not simply store the current process constant in the control state as this would
destroy monotonicity (we allow arbitrary recursive behaviour in the protocol).
Instead, we observe that a recursive ping-pong protocol is essentially a directed
graph where nodes are process constants and edges are labelled by actions of
the form α = [?vB .!wB]. Once a certain action was taken due to some message
present in the pool then it is permanently enabled also any time in the future
(messages added to the pool T are persistent). Assume that there is a cycle of
length ` (counting the number of edges) in the graph such that all the actions
α1, . . . , α` on this cycle were already taken in the past. Then it is irrelevant in
exactly which process constant on the cycle we are as we can freely move along
the cycle as many times as needed. This essentially means that we can replace
such a cycle with !(α1) ‖ · · · ‖!(α`) where ! is the operator of replication. This
observation can be further generalized to strongly connected components in the
graph.

Let ∆ be a recursive ping-pong protocol with a set of process constants
Const and encryption keys K. We shall formally demonstrate the reduction men-
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tioned above. First, we introduce some notation. Let T def= {(P, αi, Pi) | P ∈
Const, P

def=
∑

i∈I αi.Pi, i ∈ I} be a set of directed edges between process con-
stants labelled by the corresponding actions. Let E ⊆ T . We write P =⇒E P ′

whenever there is some α such that (P, α, P ′) ∈ E. Assume that P ∈ Const and
E ⊆ T . We define a strongly connected component in E represented by a process
constant P as Scc(P, E) def= {P ′ ∈ Const | P =⇒∗

E P ′ ∧ P ′ =⇒∗
E P}.

Let us now define an MSP R. The alphabet is Γ
def= K ∪ {⊥} where ⊥ is a

fresh symbol representing the end of messages. The control states of R are of
the form 〈S, E, C〉 where

– S ⊆ Const is the current strongly connected component,
– E ⊆ T is the set of already executed edges, and
– C ⊆ K is the set of compromised keys.

There are four types of rules in R called (analz), (synth), (learn) and (comm).
The first three rules represent intruder’s capabilities and the fourth rule models
the communication with the environment.

(analz) 〈S, E, C〉k −→ 〈S, E, C〉ε for all k ∈ C
(synth) 〈S, E, C〉ε −→ 〈S, E, C〉k for all k ∈ C
(learn) 〈S, E, C〉k⊥ −→ 〈S, E, C ∪ {k}〉k⊥ for all k ∈ K
(comm) 〈S, E, C〉v −→ 〈Scc(P ′, E′), E′, C〉w where E′ = E ∪ {(P, α, P ′)}

whenever there exists P ∈ S and
(P, α, P ′) ∈ T such that
α = [?vB .!wB]

It is easy to define an ordering on states such that R is monotonic. The second
and third component in the control states are non-decreasing w.r.t. ⊆ and T
and K are finite sets. For a fixed second coordinate E the strongly connected
components (i.e. the values that the first coordinate S in the control state can
take) form a directed acyclic graph. Let T ⊆ K∗. By T⊥ we denote the set
{w⊥ | w ∈ T }, i.e., the end symbol ⊥ is appended to every message from T .

Lemma 4. Let P0, P ∈ Const and T0 ⊆ K∗. If (P0, T0) −→∗
∆ (P, T ) for some T

then (〈{P0}, ∅, ∅〉, T⊥0 ) −→∗
R (〈S, E, C〉, T ′⊥) for some S, E, C and T ′ such that

P ∈ S and T⊥ ⊆ T ′⊥.

Proof. By induction on the length of derivation in ∆ we shall prove that for
all natural numbers n it holds that if (P0, T0) −→n

∆ (P, T ) for some T then
(〈{P0}, ∅, ∅〉, T⊥0 ) −→∗

R (〈S, E, C〉, T ′⊥) for some S, E, C and T ′ such that P ∈ S
and T⊥ ⊆ T ′⊥.

The case n = 0 is trivial. Let n > 0 which means that the derivation in ∆
can be written as

(P0, T0) −→n−1
∆ (P1, T1) −→∆ (P, T ).
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By induction hypothesis we know that

(〈{P0}, ∅, ∅〉, T⊥0 ) −→∗
R (〈S1, E1, C1〉, T ′⊥1 )

such that P1 ∈ S1 and T⊥1 ⊆ T ′⊥1 . From the definition we know that the step
(P1, T1) −→∆ (P, T ) is because (P1, [?vB .!wB], P ) ∈ T such that vt ∈ S(A(T1))
for some t and T = T1∪{wt}. Starting from (〈S1, E1, C1〉, T ′⊥1 ) we can update the
third component C1 to the set of compromised keys C(T ′1) by repeatedly using
the rules (analz) and (learn) and reach a configuration (〈S1, E1, C(T ′1)〉, T ′′⊥1 ).
Now we can build the message vt using the rules (analz) and (synth) and reach
a configuration (〈S1, E1, C(T ′1)〉, T ′′′⊥1 ) such that vt⊥ ∈ T ′′′⊥1 and T ′1 ⊆ T ′′′1 .
Finally, by one application of the rule (comm), we get

(〈S1, E1, C(T ′1)〉, T ′′′⊥1 ) −→R (〈Scc(P, E), E, C(T ′1)〉, T ′⊥)

where E = E1 ∪ {(P1, [?v B .!wB], P )}, T ′⊥ = T ′′′⊥1 ∪ {wt⊥} and of course
P ∈ Scc(P, E) and T⊥ ⊆ T ′⊥. Hence

(〈{P0}, ∅, ∅〉, T⊥0 ) −→∗
R (〈Scc(P, E), E, C(T ′1)〉, T ′⊥)

as required. ut

We will now proceed to prove the other implication. In order to do that we
will need the following straightforward proposition which essentially says that
(i) messages are persistent and once a certain step from a process constant P
in the protocol was possible in the past then it is permanently enabled also in
any future configuration in the control location P , and (ii) that the set C in the
control state is always a subset of the compromised keys.

Proposition 5. If (〈{P0}, ∅, ∅〉, T⊥0 ) −→∗
R (〈S, E, C〉, T⊥) for some S, E, C and

T then (i) for any (P, α, P ′) ∈ E there is some T ′ such that (P, T ) −→∆ (P ′, T ′)
by using the transition (P, α, P ′), and (ii) C ⊆ C(T ).

Lemma 5. Let P0 ∈ Const and T0 ⊆ K∗. If we have (〈{P0}, ∅, ∅〉, T⊥0 ) −→∗
R

(〈S, E, C〉, T⊥) for some S, E, C and T then for all P ∈ S also (P0, T0) −→∗
∆

(P, T ′) such that T ⊆ S(A(T ′)).

Proof. By induction on the length of derivation in R we shall prove that for
all natural numbers n it holds that if (〈{P0}, ∅, ∅〉, T⊥0 ) −→n

R (〈S, E, C〉, T⊥) for
some S, E, C and T then for all P ∈ S also (P0, T0) −→∗

∆ (P, T ′) such that
T ⊆ S(A(T ′)).

The case n = 0 is trivial. Let n > 0 which means that the derivation in R
can be written as

(〈{P0}, ∅, ∅〉, T⊥0 ) −→n−1
R (〈S1, E1, C1〉, T⊥1 ) −→R (〈S, E, C〉, T⊥)

and by the induction hypothesis we can assume that for all P1 ∈ S1 there is
some T ′1 such that T1 ⊆ S(A(T ′1)) and (P0, T0) −→∗

∆ (P1, T
′
1). There are now

four cases according to the type of rule used in the last derivation step in R:
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– If (analz), (synth) or (learn) was used in the last step then no additional
transition is needed to match this sequence in ∆ as T ⊆ S(A(T ′1)) (see also
Proposition 5 part (ii) and Lemma 3).

– Assume now that (comm) was used in the last derivation step. As P1 was
freely selected from the set S1 we can assume that the application of (comm)
was due to some (P1, α, P2) ∈ T . By definition S = Scc(P2, E). Let us con-
sider an arbitrary P ∈ Scc(P2, E) and we will show that this process constant
is reachable from (P1, T

′
1). Let the first transition be (P1, T

′
1) −→∆ (P2, T

′′
1 )

and we know that T ⊆ S(A(T ′′1 )). Because P2 =⇒E P , by a repeated appli-
cation of Proposition 5 part (i) we get that (P2, T

′′
1 ) −→∗

∆ (P, T ′) such that
T ′′1 ⊆ T ′ and hence also T ⊆ S(A(T ′)).

ut

The next theorem states the correctness of our reduction and follows directly
from Lemma 4 and Lemma 5.

Theorem 2. Let P0, P ∈ Const and T0 ⊆ K∗. It holds that (P0, T0) −→∗
∆ (P, T )

for some T if and only if (〈{P0}, ∅, ∅〉, T⊥0 ) −→∗
R (〈S, E, C〉, T ′⊥) for some S, E,

C and T ′ such that P ∈ S.

Hence control state reachability for recursive ping-pong protocols is reducible
to control state reachability for monotonic set-extended prefix rewriting systems,
which is decidable by Theorem 1. We also obtain the following complexity upper
bound.

Corollary 1. Control state reachability for recursive ping-pong protocols is de-
cidable in deterministic time 2O(n4) ·a where n is the size of the protocol written
as a string and a is the size of a nondeterministic automaton representing the
pool T0.

Proof. Observe that for a protocol ∆ of size n (written as a string) we create
an MSP with 2O(n) control states (states consist of three components 〈S, E, C〉
where S, E and C are subsets of the sets Const, T and K, respectively, and
|Const|, |T |, |K| ≤ n). Observe also that the longest ≤-chain in the resulting MSP
is of length O(n3). This is due to the fact that the components E and C grow
monotonically (see the rules (learn) and (comm)) and for a fixed component
E there are at most |Const| ≤ n strongly connected components in the first
coordinate S and they form a directed acyclic graph.

All together in combination with Proposition 4 we get the 2O(n4) complexity
upper bound for one query on the MSP and according to Theorem 2 we issue at
most 2O(n) of such queries, which gives the total 2O(n4) upper bound. ut

Finally, we show that control state reachability for recursive ping-pong pro-
tocols is at least NP-hard.

Theorem 3. Control state reachability of recursive ping-pong protocols is NP-
hard.
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Proof. By reduction from the satisfiability problem of boolean formulae in CNF.
Let C = C1 ∧ C2 ∧ . . . ∧ Ck be a formula over boolean variables x1, . . . , xn such
that for all i, 1 ≤ i ≤ k, Ci is a disjunction of literals. We shall construct a
ping-pong protocol ∆ where Const

def= {X1, . . . , Xn+1, Y1, . . . , Yk+1} and K =
{C1, . . . , Ck,⊥}. Let for all i, 1 ≤ i ≤ n, ti be the sequence of keys Ci1Ci2 · · ·Ci`

such that 1 ≤ i1 < i2 < · · · < i` ≤ k and Ci1 , Ci2 , . . . , Ci`
are all the clauses

where xi occurs positively, and let fi be the sequence of keys Ci1Ci2 · · ·Ci`
such

that 1 ≤ i1 < i2 < · · · < i` ≤ k and Ci1 , Ci2 , . . . , Ci`
are all the clauses where xi

occurs negatively. The set ∆ of process definitions is given as follows.

Xi
def= [?⊥B .!ti⊥B].Xi+1 + [?⊥B .!fi⊥B].Xi+1 for all i, 1 ≤ i ≤ n

Xn+1
def= [?⊥B .!⊥B].Y1

Yi
def= [?CiB .!B].Yi+1 +

∑
1≤j<i

[?CjB .!B].Yi for all i, 1 ≤ i ≤ k

It is now easy to observe that the given formula C is satisfiable if and only if
(X1, {⊥}) −→ ∗(Yk+1, T ) for some T . The computation from (X1, {⊥}) starts by
going through the sequence of control constants X1, . . . , Xn+1 where for every i,
1 ≤ i ≤ n, there is a choice, whether ti⊥ or fi⊥ (but not both) is added to the
pool of messages. This corresponds to selecting a truth assignment. Then the
control constant is changed from Xn+1 to Y1 without modifying the pool and the
second (verification) phase starts. The move from Yi to Yi+1 is possible only if
the key Ci is present somewhere in the pool (which means that the corresponding
clause is satisfied). The second summand in the definition of Yi enables to remove
duplicate clauses from the messages in order to access Ci. The control constant is
not changed if the second summand of Yi is used. Observe that the operations of
analysis and synthesis cannot add any of the keys C1, . . . , Ck to the pool, unless
the protocol does it itself. Hence we can reach the control constant Yk+1 if and
only if it was possible to satisfy all the clauses by the given truth assignment
generated during the first phase. ut

6 MSP and Concurrent Constraint Programming

We shall now outline some further applicability of our model of monotonic set-
extended prefix rewriting. The MSP model shares some similarities with the ccp
(concurrent constraint programming) language [22]. The ccp language is based
on the notion of a monotonic store which is used by a collection of agents as a
common blackboard to communicate by means of two primitives: ask to query
the store without removing information, and tell to add information to the store.

This feature of the ccp semantics is similar in spirit to the way we defined
the semantics of MSP. In an MSP configuration (p, T ) the component T can be
viewed as the current store. Since prefix rules never remove information from T ,
we can view them as a special case of the ask and tell operations. To make the
connection between ccp and MSP more informal, we define next a fragment of
ccp whose semantics can be directly encoded in MSP.
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For this purpose, given a finite alphabet A, we will consider an instance of
the ccp framework in which the constraint store is a set of strings T ⊆ A∗.
Furthermore, we consider only one type of constraint formula of the form v · x
where v is a string and x is a variable. If T is a set of strings (the current store),
then T |= v · x via the binding x w if vw ∈ T .

Concerning the syntax of our ccp instance, we will restrict ourselves to pro-
cesses defined as follows. A process declaration is defined as p ← A where p is
a process constant taken from a finite set P , and A is an agent. Agents (and
actions) are defined by the following grammar.

A ::= stop | Σk
i=1 Acti

Act ::= ask(v · x)→ p | ask(v · x)→ tell(w · x)→ p

Given a finite set of declarations D = {D1, . . . , Dn}, a process P is defined as
the (bounded) parallel compositions of ` agents, i.e., P = A1 || . . . || A`. We
assume that || is associative and commutative. The operational semantics of a
process P is defined in accordance with the semantics of ccp. Configurations are
pairs 〈P, T 〉 where P is a process and T is a store. The transition relation is
defined as follows.

1. 〈P1||P2, T 〉 → 〈P ′
1||P2, T

′〉 if 〈P1, T 〉 → 〈P ′
1, T

′〉
2. 〈p, T 〉 → 〈A, T 〉 if p← A ∈ D
3. 〈Σk

i=1Acti, T 〉 → 〈p, T 〉 if Acti = ask(v · x)→ p and vz ∈ T for 1 ≤ i ≤ k

4. 〈Σk
i=1Acti, T 〉 → 〈p, T ∪ {wz}〉 if Acti = ask(v · x)→ tell(w · x)→ p

and vz ∈ T for 1 ≤ i ≤ k

Remark 3. The seemingly nonstandard action ask(v ·x)→ tell(w ·x)→ p can be
in full ccp encoded as ask(v · x)→ ∃n.

(
tell(w · x & tok(n)) || ask(tok(n))→ p

)
where tok(x) is a new type of constraint with one argument x.

Following the reduction schemes of the recursive definition of ping-pong pro-
cesses, we know that we can extract a set of partially ordered locations from the
parallel control flow graph of n recursive processes (by using the idea of strongly
connected components). Under this assumption, we can focus our attention on
the way we can model ccp agents and actions. Actions can be naturally mapped
into prefix rules:

– The definition a ← ask(v · x) → b for the i-th thread is mapped to a rule
like pv → qv in which p and q are related by the change of the local state of
the i-th thread from a to b.

– The definition a← ask(v ·x)→ tell(w ·x)→ b for the i-th thread is mapped
to a rule like pv → qw in which p and q are related by the change of the
local state of the i-th thread from a to b.

Although quite limited with respect to the original ccp model (e.g. it is not pos-
sible to spawn new processes), this instance is still nontrivial since the constraint
store can grow unboundedly during the execution of a process.
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The decidability of the control reachability problem for this instance of the
ccp framework follows then from our result for MSP. Further extensions of the
restricted ccp formalism are left for future work.

7 Conclusion

We proved that the control state reachability problem for recursive ping-pong
protocols with Dolev-Yao attacker is decidable in deterministic exponential time.
This result may seem surprising when one observes that recursive ping-pong
protocols without any attacker are Turing powerful [13, 14]. However, a similar
phenomenon occurs in FIFO-channel systems (automata whose transitions may
add or retrieve items from channels, modelled as unbounded queues): if the
channels are perfect, then the model is Turing powerful, but if one assumes that
the channels are lossy, i.e., that the queues can spontaneously lose messages,
then several important verification problems become decidable [8, 3].

We have used our results to prove the authenticity of Woo and Lam’s proto-
col; to find a flaw in Otway and Rees’ key distribution protocol and prove secrecy
of a corrected version for arbitrarily many sessions; and to prove secrecy of Bull
and Otway’s recursive authentication protocol. To the best of our knowledge, no
other method in the literature can deal simultaneously with these three prob-
lems in a fully automatic way. The approach of Rusinowitch and Turuani [21]
can be used to prove authenticity of Woo and Lam’s protocol, and Küsters has
used regular transducers to automatically verify Bull and Otway’s protocol [16].
However, these techniques can only deal with a bounded number of protocol
sessions. In order to find the flaw in Otway and Rees’ protocol they have to
guess the right number of sessions, and they cannot directly prove secrecy of the
corrected version. The replicative calculus of Amadio, Lugiez and Vanackère [5]
can be used to model protocols with an unbounded number of sessions. How-
ever, the model over-approximates the semantics, i.e., there are executions of
the model that do not correspond to executions of the protocol. Due to this
over-approximation the secrecy or authenticity analysis can report false attacks.
Appendix D explains this point in more detail.

Since our technique does not over-approximate the semantics, it is strictly
more powerful than that of [5], at the price of a higher complexity (the algorithm
of [5] runs in polynomial time), and it is incomparable with the techniques of
[21, 16]. On the one hand, it provides an exact analysis for an arbitrary number
of sessions; on the other hand, it is restricted to prefix rewriting, which can only
deal with very restricted forms of pairing. Our model also allows only a bounded
number of nonces. The distinguishing feature of our technique seems to be the
possibility to model open-ended protocols with messages of unbounded length,
in combination with an unrestricted (cyclic) communication structure.

The overall aim of the paper was to explore the verification boundaries for
protocols with an unbounded number of rounds and to show the difference be-
tween protocols with and without an explicit Dolev-Yao attacker. We have there-
fore chosen a rather simple calculus to demonstrate our ideas. The contribution
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of the paper should be understood as the first step towards the development of
more general calculi which include a wider range of cryptographic primitives as
outlined in the appendix. In particular, we think that decidability may then be
proved by moving from regular word languages to regular tree languages (which
would allow to introduce a more general notion of pairing into the language).

Our work also opens several venues for further research. MSPs are a rather
natural computational model, which may have further applications, in particu-
lar in the area of coordination-based languages. To demonstrate this, we have
presented an encoding of a fragment of the ccp language into MSP.
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16. R. Küsters. On the decidability of cryptographic protocols with open-ended data
structures. In Proceedings of the 13th International Conference on Concurrency
Theory (CONCUR’02), volume 2421 of LNCS, pages 515–530. Springer-Verlag,
2002.
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Appendix

We shall now outline a few encoding techniques to show that recursive ping-
pong protocols reach beyond the pure ping-pong behaviour and allow us to
encode a larger range of cryptographic protocols. In the first example we con-
sider Woo and Lam’s protocol, on which we demonstrate the basic encoding of
communication channels, symmetric encryption, a limited notion of pairing and
in particular we show that we can verify for authenticity properties. In the sec-
ond example, we consider a protocol for key distribution by Otway and Rees on
which we demonstrate that recursive definitions might be necessary to discover
subtle flaws in some protocols. The third example describes modelling of the
recursive authentication protocol with open-ended messages by Bull and Otway.
The fourth example highlights the difference between ping-pong processes with
replicative and recursive definitions. We finish this appendix by providing a short
discussion.

A Authentication Protocol by Woo and Lam

Woo and Lam presented in [24, pages 42–43] an authentication protocol based
on symmetric-key cryptography. A participant C wants to communicate with
participants A and B and make sure that the communication is authentic. The
protocol uses a trusted server S which shares with A, B and C secret symmetric
keys kAS , kBS , and kCS , respectively. The communication protocol to ensure
that C talks exclusively with A is as follows (the protocol for authentication
between B and C is according to the same general scheme):

1. A→ C : A

2. C → A : NA

3. A→ C : {NA}kAS

4. C → S : {A, {NA}kAS}kCS

5. S → C : {NA}kCS

Here NA is a nonce and {m}k denotes that a message m is encrypted by a
key k. In the first message, A claims his identity and C responds by returning a
nonce challenge NA; A then encrypts this nonce by the key kAS and passes the
message back to C; the participant C adds A’s identity to the received message
and forwards it, encrypted by the key kCS , to the server S for verification; S first
decrypts the message to obtain A and {NA}kAS and if the key kAS is indeed the
shared key with A, it returns the nonce NA encrypted by kCS back to C; finally
C decrypts the message and in case that the nonce he received is the same as
the challenge sent to A, then C is convinced that it was A who responded to the
challenge NA. The participant C is running the same protocol also with B but
it uses a different nonce NB to authenticate B.

21



We shall now present how the protocol can be modelled using our recursive
calculus for ping-pong protocols. The set of keys we shall be using is defined by

K def= {cX→Y | X, Y ∈ {A, B, C, S}} ∪ {kAS, kBS , kCS} ∪

{A, B, C, S, NA, NB, start , end}.
The intuitive meaning is that whenever cX→Y is appended as the outer-most key
of some message, it signals the claimed sender X and receiver Y of the message,
i.e., it represents a communication channel from X to Y ; kAS , kBS , kCS are the
symmetric keys shared between the server and the corresponding agent; A, B,
C, S are the names of the participants; NA and NB are two different nonces.
The special keys start and end are added only for technical reasons to initiate
the run of the protocol and to signal the end of an execution of a particular
agent, respectively.

We shall start by describing the defining equations for the participant A.

A
def= [?start B .!cA→C AB].A1 (3)

A1
def= [?cC→A B .!cA→C kASB].Aend (4)

The meaning is that A can read the message start (which shall always be
present in the initial pool of messages) and output on the channel from A to
C that the agent A wants to start the authentication protocol with the agent
C. After that the agent changes into A1. Once A1 receives a nonce challenge
from C, he returns it encrypted by his symmetric key kAS (shared only with the
server S) and finishes the protocol. Symmetric definitions are added also for the
participant B.

B
def= [?start B .!cB→C BB].B1 (5)

B1
def= [?cC→B B .!cB→C kBSB].Bend (6)

Since the agent C has to be able to handle both authentication with A and
B, it consists of two (parallel) parts CA and and CB. We shall first define CA.

CA def= [?cA→C AB .!cC→A NAB].CA
1 (7)

CA
1

def= [?cA→C B .!cC→S kCS AB].CA
2 (8)

CA
2

def= [?cS→C kCS NA B .!endB].CA
end (9)

On receiving a communication request from A, the agent CA responds by
sending a nonce NA back to A and changes into CA

1 . Next, the message received
on the channel from A to C is, together with the identity of the agent A, en-
crypted by the key kCS and sent to the server S for verification. The state of
CA

1 changes to CA
2 . Now if CA

2 receives a message encrypted by the key shared
with the server, it compares it with the initially issued nonce NA and in case of
a match, it enters the state CA

end meaning that C is now sure that the commu-
nication happened exclusively with the participant A.
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Remark 4. Our ping-pong formalism enables to encode a restricted notion of
pairing, like the one in step 4. of the Woo and Lam’s protocol. More generally,
a message of the form {A1, . . . , An, {m}k2}k1 where A1, . . . , An are single keys
which are by default contained in the initial pool (e.g. the names of the partic-
ipants in the protocol), and {m}k2 is an arbitrary message m encrypted by the
key k2, can be encoded as k1A1 A2 . . . An k2 m. Assuming now that the intruder
knows the key k1, he is able to analyze the message and in particular to do a pro-
jection on any component of the encrypted tuple. In the case of Woo and Lam’s
protocol, we encode the message that C sends to S in step 4. by kCS AkAS NA.

The agent CB for handling the authentication with B is completely symmet-
ric to CA.

CB def= [?cB→C B B .!cC→B NBB].CB
1 (10)

CB
1

def= [?cB→C B .!cC→S kCS BB].CB
2 (11)

CB
2

def= [?cS→C kCS NB B .!endB].CB
end (12)

Under the agent C we shall understand the parallel composition CA ‖ CB

(which could be, of course, defined also by a single agent using the cross product
construction of Remark 1).

Finally, the behaviour of the server S can be described by the following
recursive definition.

S
def= [?cC→S kCS AkAS B .!cS→C kCSB].S + (13)

[?cC→S kCS B kBS B .!cS→C kCSB].S (14)

The intuition is that the server accepts requests only from C by verifying
that the message is encrypted by the shared key kCS and checks whether the
claimed identity (either A or B) really corresponds with the shared key (either
kAS or kBS) by which the nonce is encrypted. If this is the case, S sends to C
the rest of the message (in this case a nonce) encrypted by the key kCS and is
ready to accept another request.

It was showed in [2] that the protocol is flawed. In case that a symmetric
key of one of the participants, let us say B, is compromised then the protocol
does not guarantee authenticity for A (even if the key kAS is assumed to be
secure). Indeed, also in our modelling of the protocol, we can discover the flaw
by showing that we can reach a configuration where the first component of C is
in the state CA

end while A did not participate in any communication with C (i.e.
it is still in its initial state A). This is demonstrated by the following sequence
of reductions.

We start from the initial configuration (P0, T0) where P0 = A ‖ B ‖ C ‖ S
and T0 = {cX→Y | X, Y ∈ {A, B, C, S}} ∪ {A, B, C, S, start} ∪ {kBS}. (The
parallel composition P0 can in fact be expressed as a single process without any
parallel composition due to Remark 1.) Note that we assume that the shared
key kBS of B is compromised and hence contained in the initial knowledge T0.
We shall now describe a possible attack on the protocol as published in [2].
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First, the (implicit) intruder claims to be A and sends a request to C, on
which C answers by issuing a nonce challenge NA. This corresponds to the
following transition in our protocol

by cA→C A ∈ S(A(T0)) and (7)
(A ‖ B ‖ C ‖ S, T0) −→ (A ‖ B ‖ CA

1 ‖ CB ‖ S, T1)

where T1 = T0 ∪ {cC→A NA}.

Next, the intruder claims the identity of B and initiates the protocol acting
as B. Agent C answers by providing a nonce challenge NB. The corresponding
transition is

by cB→C B ∈ S(A(T1)) and (10)
(A ‖ B ‖ CA

1 ‖ CB ‖ S, T1) −→ (A ‖ B ‖ CA
1 ‖ CB

1 ‖ S, T2)

where T2 = T1 ∪ {cC→B NB}.

The intruder now synthesizes {NA}kBS because he knows the key kBS and for-
wards this message twice to C. First time acting as A and second time as B.
The agent C reacts on these two messages by asking the server for verification.
This is described by the following two rules

by cA→C kBS NA ∈ S(A(T2)) and (8)
(A ‖ B ‖ CA

1 ‖ CB
1 ‖ S, T2) −→ (A ‖ B ‖ CA

2 ‖ CB
1 ‖ S, T3)

where T3 = T2 ∪ {cC→S kCS AkBS NA}, and

by cB→C kBS NA ∈ S(A(T2)) and (11)
(A ‖ B ‖ CA

2 ‖ CB
1 ‖ S, T3) −→ (A ‖ B ‖ CA

2 ‖ CB
2 ‖ S, T4)

where T4 = T3 ∪ {cC→S kCS B kBS NA}.

The server cannot, of course, confirm the first message, however, it can con-
firm the second one and return {NA}kCS to the agent C by the following rule

by cC→S kCS B kBS NA ∈ S(A(T2)) and (14)
(A ‖ B ‖ CA

2 ‖ CB
2 ‖ S, T4) −→ (A ‖ B ‖ CA

2 ‖ CB
2 ‖ S, T5)

where T5 = T4 ∪ {cS→C kCS NA}.

Finally, the agent C receives the message from the server and because it has
the expected format, C wrongly believes that he was communicating with A
and enters the state CA

end (while A is still in its initial state and did not at all
participate in the communication) by the rule

by cS→C kCS NA ∈ S(A(T2)) and (9)
(A ‖ B ‖ CA

2 ‖ CB
2 ‖ S, T5) −→ (A ‖ B ‖ CA

end ‖ CB
2 ‖ S, T6)
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where T6 = T5 ∪ {end}.

The main decidability result of our paper moreover enables to find such a
transition sequence algorithmically.

In [2] the authors suggested a fix by adding the agent’s identity to the last
message sent from the server to C so that it looks as follows.

5’. S → C : {A, NA}kCS

This can be also modelled in our formalism by changing the definition of the
server S into

S
def= [?cC→S kCS AkAS B .!cS→C kCS AB].S +

[?cC→S kCS B kBS B .!cS→C kCS BB].S

and the equations (9) and (12) into

CA
2

def= [!cS→C kCS ANA B .!endB].CA
end

and

CB
2

def= [!cS→C kCS B NB B .!endB].CA
end .

Indeed, the previously described attack is not possible any more and one
can show this in an algorithmic way by checking that it is impossible to reach
a configuration where the first component is still in its initial state A (or A1),
while the third component is in CA

end .

B Key Distribution Protocol by Otway and Rees

Let us have a look at further modelling possibilities of our recursive ping-pong
formalism. In this example we aim to demonstrate the convenient use of recursive
definitions. We consider a protocol by Otway and Rees for the distribution of
shared symmetric keys by a trusted server, or rather its secure optimization by
Abadi and Needham [2]. The protocol by which A and B want to obtain a joint
symmetric key generated by a trusted server S is as follows.

1. A→ B : A, B, NA

2. B → S : A, B, NA, NB

3. S → B : {A, B, kAB, NA}kAS , {A, B, kAB, NB}kBS

4. B → A : {A, B, kAB, NA}kAS

We consider the following variant where messages sent in steps 2. and 3. are
split into two parts dealing with A and B separately, but with some additional
encryptions which could allow us to remove the identity of agents from the
encrypted messages (indeed, in the original protocol with the flaw the identity
of the agents was not connected enough to the corresponding nonces).
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1. A→ B : A, B, {NA}kAS

2. B → S : A, B, {NA}kAS

3. S → B : {A, {kAB, NA}kAS}kBS

4. B → A : {kAB, NA}kAS

5. B → S : {NB}kBS

6. S → B : {kAB, NB}kBS

We can model this protocol using similar tricks that we used in Woo and
Lam’s protocol. In particular, the definition of the server S might look as follows
(where N is the set of names of protocol participants and the notation is as in
the previous example).

S
def=

∑
X,Y ∈N

[?cY→S X Y kXS .!cS→Y kY S X kXS kXY ]. (15)

[?cY→SkY S .!cS→Y kY S kXY ].S (16)

Note that in our definition of S we use (for the notational convenience) se-
quencing of two prefixes which can, however, easily be encoded into the standard
format. The server behaves so that on receiving a message from Y of the form
cY→S X Y kXS NX it returns cS→Y kY S X kXS kXY NX and on the successive re-
quest from Y of the form cY→S kY S NY it answers by sending cS→Y kY S kXY NY .
The other participants A and B of the protocol can be defined in a similar way
as before and it is assumed that there is one more agent’s name C with a com-
promised shared key kCS .

The protocol is flawed. An intruder can make the participants A and B
believe that they share a secret symmetric key kAB, while in fact they both
share a key together with the intruder (A shares with C the key kAC and B
shares with C the key kBC).

The flaw can be discovered only if the server is defined recursively — even
though the participants A and B make only one run of the protocol (including
two requests on the server), the server must be asked five times in total to make
the flaw appear. A possible attack can look as follows.

1. A→ B : A, B, {NA}kAS

2. B → S : A, B, {NA}kAS

3. S → B : {A, {kAB, NA}kAS}kBS

4. B → A : {kAB, NA}kAS (intercepted by the intruder)
5. B → S : {NB}kBS

6. S → B : {kAB, NB}kBS (intercepted by the intruder)
7. C → S : A, C, {NA}kAS (intruder acts as C)
8. S → C : {A, {kAC , NA}kAS}kCS

9. B′ → A : {kAC , NA}kAS (intruder knows kCS and acts as B)
10. C → S : {NC}kCS (intruder acts as C and sends any nonce)
11. S → C : {kAC , NC}kCS (intercepted by the intruder)
12. C → S : B, C, {NB}kBS (intruder acts as C)
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13. S → C : {B, {kBC , NB}kBS}kCS (intercepted by the intruder)
14. S′ → B : {kBC , NB}kBS (intruder knows kCS and acts as S)

Now both A and be B followed the protocol and could not see any problem
but the key they received is known to the intruder who can now listen to any
private communication between A and B in the following way: A sends a message
{m}kAC to B; it is intercepted by the intruder, decrypted, changed into {m}kBS

and forwarded to B; similarly in the opposite direction.
Observe that a non-recursive definition of the server is not enough to discover

the flaw in the protocol (assuming that we do not know in advance how many
times the server has to be able to answer requests — in our case it was five times
but it could be more times in other protocols).

C Recursive Authentication Protocol by Bull and Otway

Bull and Otway proposed an extension to the Otway-Rees authentication pro-
tocol, called the Recursive Authentication (RA) protocol (see [20]), to establish
session keys between an arbitrary number of principals in one protocol run.

The RA protocol operates over an arbitrarily long chain of protocol agents
A, B, C . . . terminating with a key-server S that shares long-terms keys with the
principals. Every agent in the chain appends a request for a session key to the
message received by the agent on his left, and sends the new message to the
agent to the right. The recursive definition is terminated when the message is
sent to the server. At that point the server inspects the (potentially unbounded)
structure of the message and distributes fresh session keys to the principals,
encrypted with their long-term keys. Notice that the request message is an open-
ended structure (it has an unbounded number of fields). The server must be
defined in an inductive way. To formalize the protocol, we need some further
notation.

Let h(m) be the hash of message m, and hk(m) be the messages h(km)m,
where km is the message obtained from k and m by concatenation, and h(km)m
is the concatenation of h(km) and m. If Ka is a long-term key shared between
A and S, hashKa(m) is used by the server to identify principal A. If principal
A wants to establish a session with B, he/she sends a request message to B:

A −→ B : hashKa(A, B, Na,−)

where Ka is a long-term key shared between A and S, Na is a fresh nonce, and
− indicates that this message started the protocol run. Let M be the message
hashKa(A, B, Na,−). Differently from Otway-Rees, B can attach his request for
a session key with C to the message M received from A and send the resulting
message to C, i.e.,

B −→ C : hashKb
(B, C, Nb, M) .

This step can be repeated an arbitrary number of times. This phase of the
protocol is terminated when a principal contacts the server S. For instance, if
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C is the last principal in the chain, then he sends the message, say M ′, received
from B to S.

C −→ S : hashKc(C, S, Nc, M
′)

The server now has to process the complete message

hashKc(C, S, Nc, hashKb
(B, C, Nb, hashKa(A, B, Na,−))) .

Namely, by looking at the two outer hashes the server generates two fresh keys
Kcs (which is redundant but makes the protocol easier to write) and Kbc to be
used as session keys between C and S and between B and C, respectively. These
keys are encrypted using the long-term keys of principal C, i.e., S prepares the
certificates encKc(Kcs, S, Nc) and encKc(Kbc, S, Nc). After this step, S proceeds
with the remaining part of the message performing similar operations for B (and,
in the general case, for all other agents of the chain). Finally, to process the
message hashKa(A, B, Na,−), S only needs to prepare the message with session
key Kab (the same sent to B) to agent A, and then terminate the operation.
After this second phase, S sends all certificates to C.

S −→ C : encKc(Kcs, S, Nc)encKc(Kbc, S, Nc)encKb
(Kbc, S, Nb)

encKb
(Kab, S, Nb)encKa(Kab, S, Na)

C accepts the first two certificates, and forwards the rest to B, and so on for all
the principals in the chain, i.e.,

C −→ B : encKb
(Kbc, S, Nb)encKb

(Kab, S, Nb)encKa(Kab, S, Na)
B −→ A : encKa(Kab, S, Na) .

We model the RA protocol by considering only the hashes of the messages
exchanged in the protocol, i.e., instead of hashKa(m) (defined as hash(Kam)m)
we consider the hash hash(Kam) without the plain text copy m. The nonces are
sent in clear together with the hash, too.
The set of keys K used in our model is obtained as the union of the following
finite sets:

– P = {p1, p2, . . . , pm} to model principal’s identities where pm = S (the
server),

– N = {n1, . . . , nm} to model nonces,
– L = {k1, . . . , km} to model long-term keys,
– S = {sij |1 ≤ i, j ≤ m} to model session keys,
– C = {ci→j | 1 ≤ i, j ≤ m, i 6= j} to model communication channels between

principals,
– O = {end, srv, h, start} contains the keys end to model the terminator of

the protocol messages, srv to hide the internal steps of the server, h to model
hashes, and start to start the protocol.

The initial knowledge of the intruder contains C ∪ P . If Pi is a malicious agent,
then we can include ki, ni into the initial intruder’s knowledge. The intruder
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has the additional capability of building the hash of any message in the current
knowledge by using the following recursive definition.

HASH
def= [?B .!h B].HASH

In our model we assume that at most m agents can participate in the protocol.
Thus, we put a bound on the number of receive-send messages executed by the
principals in one session of the protocol. The intruder can, however, contribute
to building of messages of potentially unbounded size. Hence the server has to
be able to handle messages of arbitrary size.

To model the behaviour of the principal Pi, we use the following set of process
definitions.
For any i, j, l ∈ I = {1, . . . , m} and a ∈ S:

P (i) def=




∑
j∈I\{i}

[?start B . !ci→j h ki pi pj ni end B].KEY (i, j)

+ ∑
j 6=l∈I\{i}

∑
a∈L

[?cj→i B . !ci→l h ki pi pl ni B].KEY (i, j, l)

KEY (i, j) def=
∑
a∈S

[?ki a pm ni B .!B].EndP (i, j, a)

KEY (i, j, l) def=
∑
a∈S

[?ki a pm ni B .!B].KEY (i, j, l, a)

KEY (i, j, l, a) def=
∑
b∈S

[?ki b pm ni B .!B].HALT (i, j, l, a, b)

To model the server, we use the following set of recursive definition for all a ∈ S.

SRV
def=

∑
i∈I

∑
a∈N

[?ci→m h ki pi pm b B . !ki sim pm b srv B].SRV (a)

SRV (a) def=
∑

i,j∈I

∑
b∈N

[?srv h ki pi pj b B . !kj sij pm a ki sij pm b srv B].SRV (b)

SRV (a) def= [?srv end B . !endB].HALTS

If the intruder learns a secret key s ∈ S during the execution of the protocol,
then he/she can forge a message using s as encryption key. Thus, in order to
verify that secret keys are never exposed to the intruder we can add an observer
process defined as follows

OBS
def=

∑
s∈S

[?sB .!B].ERR .

Thus, the initial configuration of the system is defined by

HASH || P (1) || P (2) || . . . || P (m) || SRV || OBS

29



and by the initial message start. Since the reachability of the control location
ERR of the process OBS identifies a violation of the secrecy of one of the keys
in S, our algorithm can be used to verify secrecy for our model of the protocol.

Other approaches to verification of the recursive authentication protocol by
using transducers can be found in [16, 23].

D Comparison of Recursive and Replicative Definitions

The aim of this section is to demonstrate that recursive ping-pong protocols can
model the execution of a protocol more faithfully than the replicative ones, like
e.g. the calculus of Amadio, Lugiez and Vanackère [5]. For this purpose, consider
the following simple protocol.

A
def= [?init B .!kA init B].A1

A1 def= [?kA B .!kA ok B].A2

B
def= [?init B .!kB init B].B1

B1 def= [?kB B .!kB ok B].B2

C
def= [?kA B .!kA secret B].C1 + [?kB B .!kB secret B].C1

C1 def= [?kA ok secret B .!B].CA + [?kB ok secret B .!B].CB

The idea is that after the agent A or B initiates the protocol, the agent C
can communicate with the initiator and send a secret message secret encrypted
by the other agent’s private (symmetric) key (kA or kB). Once C started the
communication with one of the agents, it is expecting an ok confirmation from
the same agent. (Note that C never again executes the first step once it already
sent the key secret). Normally, the protocol is supposed to be run from the initial
configuration

(A ‖ B ‖ C, {init , ok})

and it is easy to see that if C reaches the state CA, then only A knows the
secret. Moreover, even if the agent B is compromised, i.e., we run the protocol
from the initial configuration

(A ‖ B ‖ C, {init , ok , kB})

where the attacker knows B’s private key, once the agent C enters the state CA,
there is a guarantee that the message secret cannot be known to the attacker.
The reason is that after C finishes the first step of the protocol, C will never
ever again forward the secret to anybody else.

In [5] the authors suggest a possible encoding of sequences of actions in the
replicative variant of the calculus. This, to a certain extend, enables to model
e.g. our example protocol in their calculus. The main difference is, however, that
their approach provides an over-approximation of the real protocol behaviour
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(and would return a false positive in the example protocol with the compromised
key kB). The reason is, that is not possible to disable performing repeatedly
the first step of C in the replicative calculus. The modelling of the protocol in
the recursive ping-pong formalism is more precise, as it corresponds exactly to
the intuitive semantics. On the other hand, the price we pay for it is a worse
complexity upper bound.

E Final Remarks

Let us finish our examples with a few observations. First of all, as already noted
in [5], ping-pong protocols have the capability to model public key cryptography.
This can be done by a simple syntactic restriction so that a private key of an
agent A can only appear in agent’s own input prefix but any other agent (in-
cluding A) can use the key in any of the output prefixes. Originally, ping-pong
protocols were studied as a communication scheme between two memory-less
agents [10, 11]. In [5] the formalism was extended to handle any (finite) number
of participants, moreover with the possibility of a replicated behaviour. Never-
theless, the agents in [5] were still memory-less and once a certain prefix became
executable, it remained so also anytime in the future. Checking for authenticity
was not possible in this setting.

In our recursive calculus (which subsumes both of the above mentioned ones),
the agents can moreover remember a finite amount of information (they behave
essentially as finite-state machines) plus they have the possibility of changing
behaviour. For example once a certain key gets compromised, an agent can switch
to another key and reject any future communication using the compromised
key. We can also use a (fixed) finite number of nonces; allowing an unbounded
number of nonces would cause undecidability of the reachability problem. Finally,
allowing the agents to remember their current states provides the possibility to
verify not only for security properties but also for authenticity. Moreover, the
formalism enables to start from an infinite (but regular) pool of initially known
messages, which could be used for parameterized reasoning about protocols.

Finally, we showed that our calculus can have further applications in mod-
elling of protocols which are defined recursively and the length of exchanged
messages is potentially unbounded, like for example the recursive authentication
protocol of Bull and Otway.
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