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Abstract

Higher-order matching is a special case of unification of simply-typed
lambda-terms: in a matching equation, one of the two sides contains no
unification variables. Loader has recently shown that higher-order match-
ing up to beta equivalence is undecidable, but decidability of higher-order
matching up to beta-eta equivalence is a long-standing open problem.

We show that higher-order matching up to beta-eta equivalence is
decidable if and only if a restricted form of higher-order matching up to
beta equivalence is decidable: the restriction is that solutions must be in
long beta-eta normal form.
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1 Introduction and related work

The higher-order matching problem [7, 12, 20] is the following decision prob-
lem:

Given closed, simply-typed lambda-terms M : A → B and N : B,
is there a closed term X : A such that MX =βη N?

Algorithms performing higher-order matching, as well as more general forms
of higher-order unification, are core parts of systems for automated deduction
and higher-order logic programming [8].

Much effort has gone into determining whether the higher-order matching
problem is decidable, a question first asked by Huet in 1976 [7, page 2-40].
The problem is decidable in the case where the order of the type A is 4 or
less [2, 4, 9, 14, 22, 24], as well as in other special cases [3, 13, 16, 17, 18, 19].
A terminating algorithm has been proposed [25], but it is not known to be
complete. In the words of Huet [8], “This vexing but important problem is
thus still open after 30 years of intense investigation.”

In contrast, the variant of the higher-order matching problem where one
considers β-equivalence instead of βη-equivalence has recently been shown to
be undecidable [11, 12]. Therefore it seems natural to investigate relations
between β-equivalence and βη-equivalence in order to try to shed some light
on the complications of higher-order matching. In this article we show that
the higher-order matching problem is decidable if and only if the following
“hybrid” problem is decidable:

Given closed, simply-typed lambda-terms M : A → B and N : B,
is there a closed term X : A in long βη-normal form such that
MX =β N?

For convenience we call this problem the long β-matching problem. Here the
equivalence relation on terms is β-equivalence, but solutions must be in long
βη-normal form. Lifting the latter restriction gives the (general) β-matching
problem which, as mentioned above, is undecidable.

The most interesting direction of the proof, a reduction from the long
β-matching problem to the higher-order matching problem, proceeds by a
simply-typed encoding of a “thunk translation” [5], which intuitively has the
effect of blocking η-redexes.

What are the consequences of the equivalence between higher-order match-
ing and long β-matching? Assume for the moment that the higher-order
matching problem is in fact decidable, as conjectured by Huet. Then the long
β-matching problem is also decidable, unlike the general β-matching problem.
So if higher-order matching is decidable, the equivalence shown in this article
informally indicates that the “computational power” of general β-matching
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lies in the unbounded search for terms in β-normal—but not necessarily long
βη-normal—form.

Here is an example of the difference between the general β-matching prob-
lem and the long β-matching problem: let M = λf (b→b)→(b→b). f and N =
λgb→b. g. Then M N =β N , but there is no X in long βη-normal form such
that M X =β N . Indeed, let X be in long βη-normal form; then the β-normal
form of M X is X. The term N is already in β-normal form, but not in long
βη-normal form. Therefore X and N are different terms, which means that
M X and N have different β-normal forms.

2 Background and notation

The reader is assumed to be familiar with basic properties of the simply-
typed lambda calculus, as presented for example in the first three sections of
Barendregt’s handbook chapter [1].

We consider the simply-typed lambda calculus with a countable set of
ground types. Let b range over ground types; the set of types is then given by
the following grammar:

A ::= b | A → A

Variables are explicitly typed in the style of Church [1, p. 159], but with a
minor variation: first, fix an infinite set of objects called pre-variables. A
variable is then a pair consisting of a pre-variable x and a simple type A; such
a pair is written xA. In particular, if A1 and A2 are different types, then xA1

and xA2 are different variables.
Lambda-terms are constructed from variables in the standard way:

M ::= xA | λxA.M | M M

Terms are identified up to α-equivalence; note that with the present defini-
tion of variables, the standard definitions of substitution and α-equivalence
(as well as η-equivalence) naturally accommodate that a pre-variable may oc-
cur in different positions with different associated types. The constructions in
this article do not depend on such occurrences of the same pre-variable with
different types in a single term. Rather, allowing a pre-variable to be asso-
ciated with different types in different terms is technically convenient in the
definition of the thunk translation.

We often omit writing the type of a variable if the type is clear from the
context or unimportant.

The two usual equivalences between lambda-terms are used, β-equivalence
(written =β) and βη-equivalence (written =βη). One-step β-reduction is writ-
ten −→β and its reflexive-transitive closure is written −→∗

β; similarly for βη-
reduction. Every simply-typed term is βη-equivalent to a unique term in long
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βη-normal form [7]: a term of the form λx1 . . . λxk . zA M1 . . . Mn where A
has the form A1 → A2 → . . . → An → b and where each of M1, . . . ,Mn is in
long βη-normal form. In this article, it is convenient to use a slightly more
detailed definition of long βη-normal forms:

Definition 1. The set of simply-typed terms in long βη-normal form and the
set of simply-typed terms in atomic form are defined inductively as follows:

(a) Every variable xA is in atomic form.

(b) If M : A → B is in atomic form and N : A is in long βη-normal form,
then M N is in atomic form.

(c) If M is in atomic form and M is of ground type, then M is in long βη-
normal form.

(d) If M is in long βη-normal form, then λxA.M is in long βη-normal form.

There is a simple algorithm for computing the long βη-normal form of a
given term in β-normal form [7, p. 4-3]. Therefore, by strong normalization
of β-reduction, the function mapping each simply-typed term to its long βη-
normal form is computable.

3 The thunk translation

We first define a thunk translation [5] from lambda-terms to lambda-terms.
(The notation used for the translation is different from the original nota-
tion [5].) For our purposes, the key property of the translation is that it
“blocks” η-redexes, as formalized in Proposition 4 below.

Definition 2 (Thunk translation).

1. Let 0 be a distinguished ground type. For each simple type A, a type Ã
is defined as follows:

b̃ = b

Ã → B = (0 → Ã) → B̃

2. Let •0 and d0 be two different, distinguished variables. For each simply-
typed term M of type A, a simply-typed term M̃ of type Ã is defined
as follows:

x̃A = x0→ eA •0
M̃1M2 = M̃1 (λd 0. M̃2)

λ̃xA.M = λx0→ eA. M̃
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If xA1
1 , . . . , xAn

n are the free variables of M , then •0, x0→fA1
1 , . . . , x0→fAn

n are
the free variables of M̃ . Therefore, in every subterm λd0.M of a translated
term, d0 is not free in M : by assumption, d0 is different from •0, and moreover,
d0 is different from each x0→fAi

i since the types are different.
The analogy with programming-language implementation is that in a trans-

lated term, every argument to a function is a “thunk” λd 0.M which must be
“forced”, by applying it to •0, before use.

The translation gives rise to an equational correspondence. In particular,
the translation is sound and complete with respect to β-equivalence:

Proposition 3. M =β N ⇐⇒ M̃ =β Ñ .

Proof. See the original report on the thunk translation [6, Theorem 7.3].
Adapting the proof to a simply-typed calculus presents no problems. Com-
pleteness, i.e., the implication from right to left, is the difficult part: the idea is
to consider a partial left inverse to the thunk translation, show that it preserves
(many-step) β-reduction, and conclude by the Church-Rosser Theorem.

Now, the key property: η-reduction never applies to a translated term, or
to any of its β-reducts:

Proposition 4. M̃ −→∗
βη N ⇒ M̃ −→∗

β N .

Proof. Consider the set of terms Mt defined by the following grammar:

Mt ::= x0→ eA •0 | Mt (λd0.Mt) | λx0→ eA.Mt | (λd0.Mt) •0

As observed by Hatcliff and Danvy [5, 6], every thunk-translated term M̃
belongs to Mt, and furthermore Mt is closed under β-reduction. Now observe
that no term in Mt contains an η-redex. Therefore: if M̃ −→∗

βη N then

M̃ −→∗
β N , since no η-redex occurs during the reduction.

Proposition 5. M̃ =βη Ñ ⇐⇒ M̃ =β Ñ .

Proof. The implication from right to left is trivial. For the other direction, let
M̃ =βη Ñ . By the Church-Rosser Theorem for βη-reduction on simply typed
terms [21] there is a V such that M̃ −→∗

βη V and Ñ −→∗
βη V . By the previous

proposition M̃ −→∗
β V and Ñ −→∗

β V , hence M̃ =β Ñ .

Corollary 6. M =β N ⇐⇒ M̃ =βη Ñ .

Proof. By Propositions 3 and 5.
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4 Thunk translation using simply typed terms

Even though the thunk translation is sound and complete, in the sense of
Corollary 6, it is not “fully complete”: there is a type A and a term N of type
Ã such that N is not βη-equivalent to any translated term. Intuitively, this
means that a search for a term X : A can not immediately be reduced to a
search for a term X̃ : Ã. To see that there are such A and N , choose for exam-
ple A = (b → b) → (b → b) and N = λf0→((0→b)→b). λx0→b. f •0 (λd0. f d x).
The only properties of N which are needed here are that N is normal with re-
spect to βη-reduction, and that N is not generated from the grammar used in
the proof of Proposition 4. Assume now that N =βη M̃ . Then by the Church-
Rosser Theorem, M̃ −→∗

βη N . By Proposition 4, M̃ −→∗
β N , and therefore N

can be generated from the grammar used in proof of Proposition 4. But N
can in fact not be generated from that grammar, hence N is not βη-equivalent
to M̃ after all. One could modify the thunk translation by requiring that the
types of the terms to be translated do not contain the special ground type 0;
the above choice of A and N works under that restriction as well.

Since the thunk translation is not fully complete in this sense, it does
not immediately appear useful for reducing the general β-matching problem
to the higher-order matching problem: given closed terms M and N , one can
construct a term M ′ such that M X =β N if and only if M ′ X̃ =βη Ñ ; but even
if M ′ Y =βη Ñ for some Y , there is no guarantee that this Y is βη-equivalent
to a translated term X̃ .

It is, however, possible to define simply-typed terms TA : A → Ã which
“implement” the thunk translation on source terms in long βη-normal form
in the following sense: if X is a closed term in long βη-normal form, then
TAX =βη X̃ . Therefore, with the notation used above, M X =β N if and
only if M ′ (TA X) =βη Ñ , provided that X is in long βη-normal form. This
is the idea behind our reduction from the long β-matching problem to the
higher-order matching problem.

We now turn to the definition of the terms TA. These terms are strictly
speaking not combinators; they contain the free variable •0.

Definition 7. By induction on the type A, define two families of terms TA :
A → Ã and UA : Ã → A:

Tb = λxb. x
Ub = λxb. x

TA→B = λfA→B. λx0→ eA. TB (f (UA (x •)))
UA→B = λf Ã→B. λxA. UB (f (λd0. TA x))

Such mutually inductive definitions of type-indexed families of lambda-
terms are well-known [12, 20].
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Proposition 8. Let M be a term of type A and let the free variables of M be
included in the set {xA1

1 , . . . , xAn
n }.

1. If M is in long βη-normal form, then

TA (M [(UAi (x0→fAi
i •0))/xAi

i ]ni=1) =β M̃.

2. If M is in atomic form, then

M [(UAi (x0→fAi
i •0))/xAi

i ]ni=1 =β UA (M̃ ).

Here M [Ni/x
Ai
i ]ni=1 denotes the substitution M [N1/x

A1
1 . . . Nn/xAn

n ].

Proof. By induction on the definition of long βη-normal forms and atomic
forms, using straightforward calculations. First, introduce the abbreviation

N∗ = N [(UAi (xi •))/xi]ni=1.

Using this abbreviation, we have to show: (1) If M is in long βη-normal form,
then TA (M∗) =β M̃ , and (2) if M is in atomic form, then M∗ =β UA (M̃ ).

1. Let M be in long βη-normal form. There are two cases:

(a) M is in atomic form and M has some ground type b. Then Tb (M∗) =
(λxb. x) M∗ =β M∗, and by part (2) of the induction hypothesis,
M∗ =β Ub (M̃ ) = (λxb. x) M̃ =β M̃ .

(b) M = λxB1 .N and A = B1 → B2 where N : B2 is in long βη-normal
form and xB1 is chosen distinct from the xAi

i . Then, using part (1)
of the induction hypothesis:

TB1→B2 ((λxB1 .N)∗) = TB1→B2 (λxB1 .N∗)
=β λx0→fB1 . TB2 (N∗[(UB1 (x •))/x])
=β λx0→fB1 . Ñ

=β M̃.

2. Let M be in atomic form. There are two cases:

(c) M = xj
Aj and A = Aj. Then M∗ = xj [(UAi (xi •))/xi]ni=1 =

UAj (xj •) = UA (M̃).
(d) M = N1 N2 where N1 : B → A is in atomic form and N2 : B is

in long βη-normal form. Then, using both parts of the induction
hypothesis:

(N1 N2)∗ = N∗
1 N∗

2 =β (UB→A Ñ1) N∗
2

=β UA (Ñ1 (λd0. TB N∗
2 ))

=β UA (Ñ1 (λd0. Ñ2))
= UA (M̃ ).

7



Corollary 9. For every closed term M of type A in long βη-normal form,

TA M =β M̃.

Remark. The condition in Corollary 9 that M is in long βη-normal form is
necessary. In fact, one can show that if M is an arbitrary closed term of type
A, then TA M =β Ñ where N is the long βη-normal form of M .

5 Long β-matching reduces to
higher-order matching

We now use the results of the two previous sections to show that the long
β-matching problem reduces to the higher-order matching problem.

Proposition 10. Let M : A → B and N : B be closed terms. Define

P = (λxA. λ•0. M̃ (λd0. TA x)) and

Q = λ•0. Ñ

Then for every closed term X of type A in long βη-normal form, M X =β N
if and only if P X =βη Q.

Proof. By Corollary 6, M X =β N if and only if M̃ X =βη Ñ . By Corol-
lary 9 (and the definition of the thunk translation), M̃ X = M̃ (λd. X̃) =βη

M̃ (λd. TAX). Therefore:

M X =β N ⇐⇒ M̃ X =βη Ñ

⇐⇒ M̃ (λd. X̃) =βη Ñ

⇐⇒ M̃ (λd. TAX) =βη Ñ

⇐⇒ λ•. M̃ (λd. TAX) =βη λ•. Ñ
⇐⇒ P X =βη Q.

Theorem 11. If the higher-order matching problem is decidable, then the long
β-matching problem is decidable.

Proof. By reducing the long β-matching problem to the higher-order matching
problem. Let M : A → B and N : B be closed terms, and let the closed terms
P and Q be defined as in Proposition 10. Notice that P and Q are indeed
closed: they contain no free occurrences of the variable •0.

8



Assume that a closed term X in long βη-normal term satisfies that M X =β

N . Then by Proposition 10, P X =βη Q. Conversely, assume that a closed
term Y satisfies that P Y =βη Q. Let X be the long βη-normal form of Y ;
then P X =βη Q and M X =β N by Proposition 10. Finally, observe that the
terms P and Q are computable from M and N .

6 Higher-order matching reduces to
long β-matching

Consider now the other direction of the equivalence: in this section we show
that the higher-order matching problem reduces to the long β-matching prob-
lem. The reduction proceeds in the same way as a reduction outlined by
Joly [11, p. 137] from the higher-order matching problem to the general β-
matching problem.

The reduction is based on the following property: if M : A → B, X : A,
and N : B are closed, simply-typed lambda-terms in long βη-normal form,
then M X =βη N if and only if M X =β N . This follows from the fact that
the set of terms in normal form with respect to restricted η-expansion [10] is
closed under substitution and β-reduction [15, p. 108]. We instead outline a
slightly simpler proof, based on similar closure properties observed by Huet [7,
p. 4-4 to 4-5].

Definition 12. The expanded terms are the simply-typed terms defined in-
ductively as follows:

1. If A = A1 → · · · → An → b and if M1, . . . ,Mn are expanded terms of
appropriate types, then xA M1 . . . Mn is expanded.

2. If M : A → B and N : A are expanded, then M N is expanded.

3. If M is expanded, then λxA.M is expanded.

Intuitively, a term is expanded if every occurrence of a variable in the term
is “fully applied”.

Proposition 13.

1. If M is expanded and M −→β N , then N is expanded.

2. A term is in long βη-normal form if and only if it is in β-normal form
and expanded.

Proof. For part (1), one first shows that the set of expanded terms is closed
under substitution, using induction on the definition of expanded terms. For
part (2), the “if” direction follows by induction on the definition of expanded
terms, while the “only if” direction follows by induction on the definition of
long βη-normal forms.
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Proposition 14. If M : A → B and X : A are closed terms in long βη-normal
form, then the β-normal form of M X is in long βη-normal form.

Proof. Use the previous proposition: by part (2), M and X are expanded,
therefore, by the definition of expanded terms, M X is expanded. By part (1),
the β-normal form of M X is expanded, hence by part (2) it is also in long
βη-normal form.

Theorem 15. If the long β-matching problem is decidable, then the higher-
order matching problem is decidable.

Proof. By reducing the higher-order matching problem to the long β-matching
problem. Let M : A → B and N : B be closed terms; we are interested in
whether there exists a closed term X such that M X =βη N . Since every
closed, simply-typed term P has a long βη-normal form (which is computable
from P ), we can assume without loss of generality that M and N are in long
βη-normal form, and that we only ask for solutions X in long βη-normal form.
It is then enough to show the following property: for every X in long βη-normal
form, M X =βη N if and only M X =β N . So assume that M X =βη N .
Then by the previous proposition, the β-normal form of M X is actually the
long βη-normal form of M X, which is N (by uniqueness of long βη-normal
forms).

7 Conclusion

Decidability of higher-order matching is a long-standing open problem moti-
vated by algorithms used in systems for automated deduction and higher-order
logic programming. We have shown that higher-order matching is decidable if
and only if a restricted variant of β-matching is decidable. General β-matching
is known to be undecidable.

The proof relies on a translation from lambda-terms to lambda-terms. A
natural direction for future work would be to investigate other translations
in connection with other variants of higher-order matching. Another idea is
to look for negative results on the existence of fully complete translations,
thereby determining inherent limitations of the translation approach.

Acknowledgements. Thanks are due to Ma lgorzata Biernacka, Olivier
Danvy, Andrzej Filinski, and the anonymous referees for comments on this
work.

Added in final version. Stirling has recently proposed a game-theoretic
argument that higher-order matching is decidable [23].
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