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Undecidability Results for Bisimilarity

on Prefix Rewrite Systems

Petr Jančar1? and Jǐŕı Srba2??

1 Center of Applied Cybernetics, Department of Computer Science
Technical University of Ostrava, Czech Republic
2 BRICS? ? ?, Department of Computer Science

Aalborg University, Denmark

Abstract. We answer an open question related to bisimilarity check-
ing on labelled transition systems generated by prefix rewrite rules on
words. Stirling (1996, 1998) proved the decidability of bisimilarity for
normed pushdown processes. This result was substantially extended by
Sénizergues (1998, 2005) who showed the decidability for regular (or
equational) graphs of finite out-degree (which include unnormed push-
down processes). The question of decidability of bisimilarity for a more
general class of so called Type -1 systems (generated by prefix rewrite
rules of the form R

a−→ w where R is a regular language) was left open;
this was repeatedly indicated by both Stirling and Sénizergues. Here we
answer the question negatively, i.e., we show undecidability of bisimilar-
ity on Type -1 systems, even in the normed case. We complete the pic-
ture by considering classes of systems that use rewrite rules of the form
w

a−→ R and R1
a−→ R2 and show when they yield low undecidability

(Π0
1 -completeness) and when high undecidability (Σ1

1 -completeness), all
with and without the assumption of normedness.

1 Introduction

Bisimilarity [17], or bisimulation equivalence, has been recognized as a funda-
mental notion in concurrency theory, in verification of behaviour of (reactive)
systems, and in other areas. This has initiated several research directions, one of
them exploring the decidability and complexity questions for bisimilarity. The
obtained results differ from those known in the case of classical language equiv-
alence; we can refer to surveys like [3, 25].

Bisimilarity is defined on labelled transition systems which can be viewed
as (possibly infinite) edge-labelled directed graphs. Particular classes of graphs
which have been in the focus of researchers are defined by prefix rewrite systems.
We refer to a hierarchy defined by Stirling [27], which is interconnected with the
work of Caucal [7, 5, 9]. We focus on (subclasses of) so called Type -2 systems;
? The author is supported by the Czech Ministry of Education, Grant No. 1M0567.
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such a system is given by a finite set of rewrite rules of the form R1
a−→ R2

where a is an action name (i.e. edge-label) and R1, R2 are regular languages
over a finite alphabet. Processes (or states in the respective labelled transition
system) are finite sequences of alphabet symbols. A rule R1

a−→ R2 stands for a
potentially infinite set of rules {w a−→ w′ | w ∈ R1, w′ ∈ R2}, where w

a−→ w′

can be applied to a process v iff w is a prefix of v (which is then replaced by
w′). A process v is called normed iff each (finite) path from v can be prolonged
to reach the empty process (word) ε.

Important subclasses of Type -2 graphs are called Type -1 and Type 0, where
rules are of the form R

a−→ w and w
a−→ w′, respectively. The class of Type 0

systems is isomorphic to the class of pushdown graphs [7], also called Type
1 1

2 by Stirling. By imposing further restrictions we get Type 2 graphs which
correspond to BPA (Basic Process Algebra) and Type 3 graphs which coincide
with finite-state transition systems.

Several nontrivial results achieved for pushdown (Type 0) processes turned
out to be extendable to a superclass of Type -2 systems, namely the class of
prefix-recognizable graphs, also called RECRAT in [9]. This includes e.g. decid-
ability of monadic second order logic [9] and the existence of uniform winning
strategies for parity games [6]. The decidability questions for bisimilarity are,
however, more intricate.

In 1995 Caucal [8] formulated three open questions about decidability of
bisimilarity for (1) pushdown graphs, (2) regular graphs of finite out-degree, and
(3) regular graphs. A bit later, Stirling showed the decidability of bisimilarity
for restricted, namely normed, pushdown processes [27]. He stated the following
two questions:

– Is bisimilarity decidable for Type -1 systems?
– Is bisimilarity decidable for Type -2 systems?

The initial hope was that the technique for normed pushdown processes might be
extendable to these classes, in the normed case at least. Caucal’s problem (1) was
answered positively (in the full, i.e., unrestricted case) by Sénizergues [19] (who
extended the technique used in his famous result for deterministic pushdown
automata [20]). Stirling later presented a shorter proof in [29]. The result of
Sénizergues also gives a positive answer to Caucal’s problem (2); a complete
journal version appeared recently in [21]. Due to a terminology mismatch, it was
incorrectly indicated in [19] that the positive decidability result applies to Type -
1 systems as well; this was later corrected in [21] by noting that the result is valid
(just) for a significant subclass of Type -1 graphs. More precisely, in [21] it was
shown that regular graphs of finite out-degree (for which the decidability result
was obtained) coincide up to isomorphism with collapsed graphs of pushdown
automata with deterministic and popping only ε-transitions, and this is not the
full class of Type -1 systems (where nondeterministic popping is allowed).

Remark. In the appendix we show that the class of regular graphs of finite out-
degree can be characterized by Type -1 rules R

a−→ w with the restriction that
R is a prefix-free (regular) language.

2



Thus Stirling’s question about decidability of bisimilarity for Type -1 systems,
also in the normed case, remained open (as several times explicitly indicated in
the literature, most recently in [21]).

Our contribution. The main contribution of the present paper is the result show-
ing the undecidability of bisimilarity on Type -1 systems, even in the normed
case. Hence we have answered negatively the two open problems formulated by
Stirling. Besides this, we have performed a more detailed analysis of the unde-
cidability on related process classes.

We have also slightly extended the considered hierarchy. We view Stirling’s
Type -1 rules R

a−→ w as Type -1a, and we introduce a complementary class
called Type -1b to denote rules of the type w

a−→ R. Such a comparative study
provides a deeper insight into prefix rewriting systems by classifying the respec-
tive undecidability degrees.

Remark. In the appendix we also show that the classes -1a and -1b are incompa-
rable w.r.t. bisimilarity and strictly above Type 0 and below Type -2 systems.

Let us recall a general experience that the ‘natural’ undecidable problems we
encounter in computer science are either ‘lowly’ undecidable, i.e., at the first
levels of arithmetical hierarchy — typically equivalent to the halting problem
or its complement (Σ0

1 -complete or Π0
1 -complete), or ‘highly’ undecidable —

typically complete for the first levels of analytical hierarchy (Σ1
1 -complete or

Π1
1 -complete).

We demonstrate that bisimilarity is undecidable for normed Type -1a and
-1b processes. More precisely, we establish Π0

1 -completeness of bisimilarity, both
in the normed case and the unrestricted case, for Type -1a systems and in
the normed case also for Type -1b systems. High undecidability, in fact Σ1

1 -
completeness, is shown in the unrestricted case for Type -1b systems, and in the
normed case and the unrestricted case for Type -2 systems. These results are
completed by an observation that normedness of a given (Type -2) process is
decidable.

Last but not least, our results are achieved in a uniform way, using reductions
from two variants of Post’s Correspondence Problem (one Π0

1 -complete, the other
Σ1

1 -complete). An important technical ingredient of our reductions is the so
called Defender’s Choice technique (related to bisimulation games), which we
most recently used in [14].

Remark. The techniques from the undecidability proofs of weak bisimilar-
ity for pushdown automata [23, 24] can be used to prove undecidability (Σ1

1 -
completeness) of strong bisimilarity also for Type -2 systems (no conflict between
visible and ε-transitions means that ε-collapsed PDA graphs coincide with Type
-2 graphs [29]; even though the pushdown rules in [23, 24] do not avoid the men-
tioned conflict, they can be modified to suppress clashes between visible and
ε-moves). Nevertheless, the constructions from [23, 24] use pushdown processes
the collapsed graphs of which have infinite out-degree and it is not straightfor-
ward to adapt the reductions to work also for Type -1a systems.
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2 Preliminaries

A labelled transition system (LTS) is a triple (S,Act,−→) where S is a set of
states (or processes), Act is a set of labels (or actions), and −→⊆ S × Act × S

is a transition relation; for each a ∈ Act, we view a−→ as a binary relation on
S where α

a−→ β iff (α, a, β) ∈−→. The notation can be naturally extended to
α

s−→ β for finite sequences of actions s; and by α −→∗ β we mean that there is
s such that α

s−→ β.
Given (S,Act,−→), a binary relation R ⊆ S × S is a simulation iff for each

(α, β) ∈ R, a ∈ Act, and α′ such that α
a−→ α′ there is β′ such that β

a−→ β′

and (α′, β′) ∈ R. A bisimulation is a simulation which is symmetric. Processes α
and β are bisimilar, denoted α ∼ β, if there is a bisimulation containing (α, β).
We note that bisimilarity is an equivalence relation.

We shall use a standard game-theoretic characterization of bisimilarity [31,
26]. A bisimulation game on a pair of processes (α1, α2) is a two-player game
between Attacker and Defender. The game is played in rounds. In each round
(consisting of two moves) the players change the current pair of states (β1, β2)
(initially β1 = α1 and β2 = α2) according to the following rule:

1. Attacker chooses i ∈ {1, 2}, a ∈ Act and β′i ∈ S such that βi
a−→ β′i .

He thus creates an intermediate pair which is (β′1, β2) in the case
i = 1, and (β1, β

′
2) in the case i = 2.

2. Defender responds by choosing β′3−i ∈ S such that β3−i
a−→ β′3−i.

3. The pair (β′1, β′2) becomes the (new) current pair of states.

Any play (of the bisimulation game) thus corresponds to a sequence of pairs of
states such that Attacker is making a move from every odd position and Defender
from every even one (under the same action as in the previous Attacker’s move).

A play (and the corresponding sequence) is finite iff one of the players gets
stuck (cannot make a move); the player who got stuck lost the play and the other
player is the winner. (A play finishing in an intermediate pair on an even position
is winning for Attacker and a play finishing on an odd position is winning for
Defender.) If the play is infinite then Defender is the winner. We use the following
standard fact.

Proposition 1. It holds that α1 ∼ α2 iff Defender has a winning strategy in
the bisimulation game starting with the pair (α1, α2), and α1 6∼ α2 iff Attacker
has a winning strategy.

We shall now demonstrate a simple idea to establish semidecidability of non-
bisimilarity for a particular class of LTSs; the idea slightly extends the standard
argument used for image-finite systems [12]. (For example, for normed systems
of Type -1b considered in the proof of Theorem 2, we are able to argue about the
semidecidability of nonbisimilarity even though the systems are not necessarily
image-finite.)

We say that a labelled transition system (S,Act,−→) is effective iff both
S and Act are decidable subsets of the set of all finite strings in a given finite
alphabet and the relation −→ is decidable.
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An LTS (S,Act,−→) is called finitely over-approximable (w.r.t. bisimilar-
ity) iff for any α, β ∈ S, a ∈ Act, a finite set E(α,β,a) ⊆ S can be effectively
constructed such that whenever β

a−→ β′ and β′ ∼ α then β′ ∈ E(α,β,a). Thus
the (finite) set E(α,β,a) over-approximates the set of a-successors of β which are
bisimilar with α.

Proposition 2. The problem of nonbisimilarity on effective and finitely over-
approximable labelled transition systems is semidecidable, i.e., the bisimilarity
problem is in Π0

1 .

Proof. (Sketch) It is sufficient to provide a procedure which halts, for a given
pair (α1, α2) of a given effective and finitely over-approximable system, iff there
is a winning strategy for Attacker. Such a strategy can be naturally viewed as
a tree where each vertex is labelled by a pair of processes and each edge, la-
belled by an action, corresponds to a move (of Attacker or Defender). While
each vertex on an odd level has just one outgoing edge (Attacker’s moves are
fixed by the strategy), the vertices on even levels (corresponding to the ‘inter-
mediate’ pairs) can have more successors (corresponding to Defender’s choices).
Each branch of the tree corresponds to a possible play when Attacker plays ac-
cording to the assumed winning strategy; each branch is thus finite (finishing
by Defender’s getting stuck). Due to the assumed finite over-approximability,
it is always sufficient to consider only finitely many possibilities for Defender’s
moves; the respective strategy-tree is then finitely branching and thus finite. So
it is sufficient to systematically generate all finite trees and check for each of
them if it happens to represent a winning strategy of Attacker; the checking can
be done algorithmically due to our effectiveness assumptions. ut

2.1 A Hierarchy of Regular Prefix Rewriting

We are interested in special labelled transition systems, namely those generated
by systems of prefix rewrite rules. We now provide the relevant definitions.

The most general systems we consider are Type -2 systems. Such a system
S can be viewed as a triple S = (Γ,Act, ∆) where Γ is a finite set of process
symbols, Act is a finite set of actions, and ∆ is a finite set of rewrite rules. Each
rewrite rule is of the form R1

a−→ R2 where a ∈ Act and R1 and R2 are regular
languages over Γ such that ε 6∈ R1; for concreteness, we can assume that R1, R2

are given by regular expressions.
We view the system S as generating a certain LTS (Γ ∗,Act,−→). A process

(or a state in the respective LTS) is any finite sequence of process symbols, i.e.,
any element of Γ ∗; we shall use u, v, w, . . . for denoting elements of Γ ∗, and ε
for denoting the empty sequence. The transition relation −→ (i.e., the collection
of relations a−→) is defined by the following derivation rule:

(R1
a−→ R2) ∈ ∆, w ∈ R1, w′ ∈ R2, u ∈ Γ ∗

wu
a−→ w′u
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Thus any rule (R1
a−→ R2) ∈ ∆ represents possibly infinitely many rewrite rules

w
a−→ w′ where w ∈ R1 and w′ ∈ R2.
We shall also need the notion of normedness. We say that a process w ∈ Γ ∗

is normed if for any w′ such that w −→∗ w′ we have w′ −→∗ ε. In other words, a
process w is normed iff any path from w in the respective LTS can be prolonged
to finish in ε. A norm of a normed process w, denoted by norm(w), is the length
of the shortest action sequence s such that w

s−→ ε.

Proposition 3. If two normed processes are bisimilar then they have the same
norm.

Proof. Assume normed u, v with norm(u) < norm(v). For the shortest sequence
s such that u

s−→ ε we have: if v
s−→ v′ then v′ is normed and v′ 6= ε (thus v′

can perform an action). This implies that u and v are not bisimilar. ut

Proposition 4. There is an algorithm which given a Type -2 process v decides
whether v is normed, and computes its norm in the positive case.

Proof. (Sketch) We can base the algorithm on the well-known fact regarding
(classical) pushdown automata: given a pushdown automaton and an initial
state× stack configuration, the set of all state× stack configurations reachable
from the initial one is regular, and its representation can be effectively con-
structed [2, 10].

We observe (see also [29]) that applying a rule R1
a−→ R2 to v, i.e., replacing

a prefix w ∈ R1 of v by w′ ∈ R2, can be implemented by a series of ε-moves of a
pushdown automaton (whose control unit includes finite automata for R1, R2).

In this way we can easily derive that, given a Type -2 system and a process v,
the set post∗(v) — consisting of all processes reachable from v — is an effectively
constructible regular set. Similarly, the set pre∗(ε) — consisting of all processes
from which ε is reachable — is an effectively constructible regular set. Checking
normedness of v now amounts to verifying whether post∗(v) ⊆ pre∗(ε).

Computing norm(v) for a normed v can be accomplished by stepwise con-
structing pre(ε), pre( pre(ε) ), pre( pre( pre(ε) ) ), . . . until v is included; here
pre(R) denotes the set of processes from which some u ∈ R is reachable in one
step. Such a computation can be again easily reduced to computing the sets of
reachable configurations of pushdown automata. ut

The other systems we consider arise from the above defined Type -2 systems
by restricting the form of rewrite rules. We use the terminology introduced by
Stirling (see, e.g., [30]). In the following table, R1, R2 and R stand for regular
sets over Γ ; w, w′ stand for elements of Γ ∗ (the respective regular languages are
thus singletons); and X, Y, p, q stand for elements of Γ . We have added Type -1b
to Stirling’s table; his Type -1 coincides with our Type -1a. In the appendix it
is shown that Type -1a and -1b classes are incomparable w.r.t. bisimilarity and
strictly above Type 0 and below Type -2 systems.
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Type Form of Rewrite Rules
Type -2 R1

a−→ R2

Type -1a/-1b R
a−→ w / w

a−→ R

Type 0 w
a−→ w′

Type 1 1
2 pX

a−→ qw

Type 2 X
a−→ w

Type 3 X
a−→ Y, X

a−→ ε

Type -2

yy
yy EE

EE

Type -1a
EEE

E Type -1b
yyy

y

Type 0 = Type 1 1
2

Type 2

Type 3

We can note that Type 1 1
2 rules are classical pushdown rules (p, q are ‘high-

lighted’ as finite control states and are disjoint with the stack alphabet); this
class was shown to coincide up to isomorphism with Type 0 systems [7]. Type
2 systems are also called BPA (Basic Process Algebra) systems, and Type 3
systems correspond to finite labelled transition systems.

2.2 Versions of Post’s Correspondence Problem

Here we recall the versions of Post’s Correspondence Problem (PCP) which will
be used in the later reductions.

A PCP-instance is a nonempty sequence (u1, v1), (u2, v2), . . . , (un, vn) of
pairs of nonempty words in the alphabet {A, B} such that |ui| ≤ |vi| for all
i, 1 ≤ i ≤ n (where |u| denotes the length of u).

An infinite initial solution of the given instance is an infinite sequence of
indices i1, i2, i3, . . . from the set {1, 2, . . . , n} such that i1=1 and the infinite
words ui1ui2ui3 · · · and vi1vi2vi3 · · · are equal. An infinite recurrent solution is
an infinite initial solution in which the index 1 appears infinitely often.

By inf-PCP we denote the problem to decide whether a given PCP instance
has an infinite initial solution; rec-PCP denotes the problem to decide whether
a given PCP instance has an infinite recurrent solution.

Proposition 5. Problems inf-PCP and rec-PCP are Π0
1 -complete and Σ1

1 -
complete, respectively.

These facts can be easily established from well-known results but we can refer,
e.g., to [18] for the (low) undecidability and to [11] for the high undecidability.
Our (additional) requirement |ui| ≤ |vi| is non-standard but it can be easily
checked to be harmless; we use it for its technical convenience. (The harmlessness
of the extra requirement follows directly from the standard textbook reduction
from Turing machines to PCP. The reduction produces an instance of PCP
which satisfies our requirement, except for the last category of pairs of strings
that are used to equalize the lengths of the two generated words in case that an
accepting configuration is reached. As our question is about the existence of an
infinite computation, we can safely omit the pairs from the last category.)

It is also useful to note the following obvious fact.
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Proposition 6. Given a PCP-instance (u1, v1), (u2, v2), . . . , (un, vn) and a se-
quence i1, i2, i3, . . . of indices where i1 = 1, the following three conditions are
equivalent:

– i1, i2, i3, . . . is an infinite initial solution,
– for each ` = 1, 2, 3, . . . , the word ui1ui2 . . . ui`

is a prefix of vi1vi2 . . . vi`
,

– for infinitely many ` ≥ 1, the word ui1ui2 . . . ui`
is a prefix of vi1vi2 . . . vi`

.

3 Proof Strategy

A crucial point in proving completeness results for bisimilarity on prefix rewriting
systems are the hardness reductions, from inf-PCP or rec-PCP to the respective
bisimilarity problems. Here we describe the general idea of these reductions,
which will be implemented later by suitable sets of rewrite rules.

In each particular case studied in this paper, we assume a fixed PCP-instance
(u1, v1), (u2, v2), . . . , (un, vn) (over the alphabet {A, B}) and show how to con-
struct an appropriate rewrite system (Γ,Act, ∆). The set of process symbols
Γ will always contain the alphabet symbols A, B, ‘index-symbols’ I1, I2, . . . , In,
and auxiliary symbols X, X ′,⊥ and others.

Our constructions will guarantee that XI1⊥ ∼ X ′I1⊥ (and hence that De-
fender has a winning strategy from the pair (XI1⊥ , X ′I1⊥)) if and only if there
is an infinite initial solution or an infinite recurrent solution — depending on
the source problem (inf-PCP or rec-PCP).

Our intention is that each play starting from (XI1⊥ , X ′I1⊥ ) will begin with
a generating phase: this phase produces pairs (of current states) of the form

(XIi`
Ii`−1 . . . Ii1⊥ , X ′Ii`

Ii`−1 . . . Ii1⊥ ) (where i1=1) (1)

where the players are stepwise building longer and longer prefixes of an infinite
sequence i1, i2, i3, . . . ; this means that the pair (1) can only be ‘prolonged’, i.e.,
followed by the pair

(XIimIim−1 . . . Ii`+1Ii`
Ii`−1 . . . Ii1⊥ , X ′IimIim−1 . . . Ii`+1Ii`

Ii`−1 . . . Ii1⊥)

for m > `. Moreover, in the case of rec-PCP we will guarantee that im = 1,
which ensures that the first index has to be repeatedly inserted into the states.

Remark. Due to the nature of prefix rewrite rules, we represent generating of a
sequence Ii1 , Ii2 , Ii3 , . . . by using the ‘right-to-left’ direction.

A subtle point is that the elements of the sequence i1, i2, i3, . . . arising during
the generating phase must be freely chosen by Defender. We implement this by
a variant of so-called Defender’s Choice technique (which we used, e.g., in [14]).

The generating phase can go on arbitrarily long, maybe forever (in which case
Defender wins). Attacker will always have the possibility to finish this phase by
switching to a verification phase; our rules will guarantee that Attacker can thus
force his win from the current pair (1) if and only if ui1ui2 . . . ui`

is not a prefix
of vi1vi2 . . . vi`

.
The correctness of the described general strategy follows from Proposition 6.

8



4 (Low) Undecidability Results

In this section we show that bisimilarity is Π0
1 -complete for both normed and

unrestricted Type -1a systems, and for normed Type -1b systems; this in par-
ticular entails the undecidability for (normed) Type -1a systems (i.e., Stirling’s
Type -1 systems).
As explained in Section 3, in what follows we assume a fixed PCP-instance
(u1, v1), (u2, v2), . . . , (un, vn) (over the alphabet {A, B}); the instance is now
viewed as an input of inf-PCP.

4.1 Π0
1 -Completeness of Normed and Unrestricted Type -1a

Systems

We first provide the rules and then explain how they implement the above de-
scribed strategy. For the generating phase we add auxiliary process symbols Y
and Y1, Y2, . . . , Yn, actions 1, 2, . . . , n and c, and

(G1) rules: X
c−→ Y

X
c−→ Yi X ′ c−→ Yi for all i ∈ {1, 2, . . . , n}

Y
i−→ XIi Yi

i−→ X ′Ii for all i ∈ {1, 2, . . . , n}
Yi

j−→ XIj for all i, j ∈ {1, 2, . . . , n}, i 6= j.

For switching we add the symbols C, C′, an action d, and

(S1) rules: X
d−→ C

X(I∗)Ii
d−→ C′w X ′(I∗)Ii

d−→ C′w for all i ∈ {1, 2, . . . , n}
and all suffixes w of vR

i .

Notation. I∗ stands for the regular expression (I1 + I2 + · · ·+ In)∗; this uses the
possibility allowed by Type -1a rules. For a word u, by uR we denote the reverse
image of u.

For the verification phase we add actions a, b, e, and the following rules in
which we use a further piece of notation.
Notation. By head(w) we denote the first symbol of w; tail (w) is the rest of w.
By h(w) (head-action) we mean a when head(w) = A, and b when head(w) = B.

(V1) rules: CA
a−→ C C′A a−→ C′

CB
b−→ C C′B b−→ C′

C⊥ e−→ ε C′⊥ e−→ ε

CIi
h(uR

i )−→ C tail(uR
i ) C′Ii

h(vR
i )−→ C′ tail(vR

i )
for all i ∈ {1, 2, . . . , n}

9



Let us now consider the system with the rules (G1), (S1), (V1), and the pair
(XI1⊥ , X ′I1⊥ ). Attacker can decide to perform a step of the generating phase
by choosing the action c. He then has to use the rule X

c−→ Y ; any other c-move
could be followed by Defender’s response reaching syntactically equal processes
(YiI1⊥ , YiI1⊥ ) (which are trivially bisimilar). So it is Defender who (after
Attacker’s move X

c−→ Y ) chooses some i ∈ {1, 2, . . . , n} by performing the
rule X ′ c−→ Yi. We thus get (Y I1⊥ , YiI1⊥ ). The next action will be some
j ∈ {1, 2, . . . , n}. If Attacker chooses j 6= i then Defender installs syntactic
equality (XIjI1⊥ , XIjI1⊥ ); so Attacker is forced to use the action i which
means that the current round finishes in (XIiI1⊥ , X ′IiI1⊥ ).

Attacker can decide to prolong the generating phase arbitrarily long but he
always has the possibility to switch, by choosing the action d. In such case, from
a current pair (XIi`

Ii`−1 . . . Ii1⊥ , X ′Ii`
Ii`−1 . . . Ii1⊥ ) he is forced to perform

X
d−→ C to avoid syntactic equality. So the ‘left-hand side’ process becomes

CIi`
Ii`−1 . . . Ii1⊥ , and Defender installs some C′wIimIim−1 . . . Ii1⊥ on the ‘right-

hand side’, where m < ` and w is a suffix of vR
im+1

.
One can easily check that the rules (V1) guarantee

CIi`
Ii`−1 . . . Ii1⊥ ∼ C′wIimIim−1 . . . Ii1⊥ iff ui1 . . . ui`

= vi1 . . . vimwR

and that Defender has the possibility to install such a bisimilar pair (by using
the rule X ′(I∗)Ii

d−→ C′w ) iff ui1 . . . ui`
is a prefix of vi1 . . . vi`

.
We also observe that XI1⊥ and X ′I1⊥ are normed; we have thus proved the

following lemma.

Lemma 1. Problem inf-PCP is reducible to bisimilarity on normed Type -1a
systems.

Theorem 1. Bisimilarity on Type -1a systems is Π0
1 -complete in both the

normed case and the unrestricted case.

Proof. Lemma 1 shows that bisimilarity is Π0
1 -hard already for normed Type -1a

systems. Since (unrestricted) Type -1a systems are effectively image-finite, i.e.,
for each process w and every action a the set of a-successors of w is finite and
effectively constructible, semidecidability of nonbisimilarity follows from Propo-
sition 2. ut

4.2 Π0
1 -Completeness of Normed Type -1b Systems

Normed Type -1b systems are handled very similarly as Type -1a, we only use
different switching rules.

(S2) rules: X ′ d−→ C′

X
d−→ C(A + B)∗ X ′ d−→ C(A + B)∗

10



When now, i.e., in the system (G1), (S2), (V1), Attacker decides to switch to
the verification phase, in a current pair (XIi`

Ii`−1 . . . Ii1⊥ , X ′Ii`
Ii`−1 . . . Ii1⊥ ),

he is forced to use X ′ d−→ C′ (on the right-hand side); Defender responds by
extending the left-hand side. It is clear that there is an extension which guaran-
tees Defender’s win if and only if ui1ui2 . . . ui`

is a prefix of vi1vi2 . . . vi`
.

Since XI1⊥ and X ′I1⊥ are normed also in the system (G1), (S2), (V1), we have
shown the following lemma.

Lemma 2. Problem inf-PCP is reducible to bisimilarity on normed Type -1b
systems.

Theorem 2. Bisimilarity on normed Type -1b systems is Π0
1 -complete.

Proof. Π0
1 -hardness follows from Lemma 2. Type -1b systems are obviously effec-

tive, and for semidecidability of nonbisimilarity it is thus sufficient to show that
normed Type -1b systems are finitely over-approximable and then use Proposi-
tion 2. (Note that Type -1b systems are in general not image-finite and hence the
standard argument about semidecidability of the negative case does not directly
apply.)

We recall that normed bisimilar processes must have equal norms (Proposi-
tion 3), and we note that norm(u) ≥ |u|/k where k is the length of the longest
left-hand side in the rules w

a−→ R of the respective Type -1b system. Since
norm(u) is computable by Proposition 4, the required (finite) set E(u,v,a) for
given processes u, v and an action a can be defined as { v′ | |v′| ≤ k · norm(u) }.

ut

5 High Undecidability Results

We first note that (unrestricted) Type -2 systems represent a class of LTSs which
satisfies the (straightforward) general criteria guaranteeing that the bisimilarity
problem is in Σ1

1 (see, e.g., [14]). (Processes u and v are bisimilar iff there ex-
ists a set of pairs which contains (u, v) and satisfies the conditions required by
the definition of bisimulation.) So the main point in the following completeness
results is to show Σ1

1 -hardness.
We again assume a fixed PCP-instance (u1, v1), (u2, v2), . . . , (un, vn) (over

the alphabet {A, B}); the instance is now viewed as an input of rec-PCP.

5.1 Σ1
1-Completeness of (Unrestricted) Type -1b Systems

We modify the previously defined (normed) Type -1b system (G1), (S2), (V1).
We first replace the (generating) rules (G1) with the following variant (G2),
which repeatedly forces Defender to include the index 1 into the generated se-
quence. As before, I∗ denotes (I1 + I2 + · · ·+ In)∗.

11



(G2) rules: X
c−→ Y

X
c−→ Y ′I1I

∗ X ′ c−→ Y ′I1I
∗

Y ′ c−→ X ′

Y
c−→ XI∗⊥ Y ′ c−→ XI∗⊥

Given a pair (XIi`
Ii`−1 . . . Ii1⊥ , X ′Ii`

Ii`−1 . . . Ii1⊥ ) (with i1=i`=1), if At-
tacker decides to continue the generating phase (i.e., chooses the action c)
then he is forced to perform X

c−→ Y (on the left-hand side), otherwise
he loses. Defender responds by the rule X ′ c−→ Y ′I1I

∗ (on the right-hand
side), i.e., he prolongs the right-hand side sequence by an arbitrarily chosen
finite segment finishing with I1 (viewed from right to left). So we get the pair
(Y Ii`

Ii`−1 . . . Ii1⊥ , Y ′IimIim−1 . . . Ii`+1Ii`
Ii`−1 . . . Ii1⊥ ) where m > ` and im=1.

Now unnormedness comes ‘into play’. Our rules maintain the property that
the suffix after (the leftmost) ⊥ does not matter. So Attacker is forced to perform
Y ′ c−→ X ′ (on the right-hand side). Defender responds by ‘killing’ the left-hand
side sequence (using a new occurrence of ⊥) and creating a completely new one;
important is that he has the possibility to install the pair

(XIimIim−1 . . . Ii1⊥w , X ′IimIim−1 . . . Ii1⊥ )

where w is unimportant and can be deemed omitted (which leaves the process
in the same bisimilarity class).

However, we are not done yet. Unlike (G1), the new rules (G2) allow Defender
to install an index sequence on the left-hand side which differs from the sequence
he previously installed on the right-hand side. To prevent Defender from such
‘cheating’, we add some further switching and verification rules to (S2) and (V1).
For this purpose we add new process symbols Z, Z ′ and an action f .

(S2’) rules: (S2) and X
f−→ Z X ′ f−→ Z ′

(V1’) rules: (V1) and ZIi
i−→ Z Z ′Ii

i−→ Z ′ for all i ∈ {1, 2, . . . , n}
Z⊥ e−→ ε Z ′⊥ e−→ ε

We remind the reader of the fact that even though the last two rules above
remove the symbol ⊥ from the sequence of process symbols, whatever remains
after ⊥ can only start with some process symbol from the set {I1, . . . , In} and
hence the remaining process is stuck (no left-hand side of any rule in our system
begins with any Ii). Type -1b system (G2), (S2’), (V1’) thus proves the next
lemma, from which the following theorem is derived.

Lemma 3. Problem rec-PCP is reducible to bisimilarity on (unrestricted)
Type -1b systems.

Theorem 3. Bisimilarity on (unrestricted) Type -1b systems is Σ1
1 -complete.
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5.2 Σ1
1-Completeness of Normed and Unrestricted Type -2 Systems

Σ1
1 -completeness for (unrestricted) Type -2 systems follows immediately from

the previous results (Type -1b is a subclass of Type -2). So we just have to show
that normedness does not make the problem easier in this case.

We recall the unnormed Type -1b system (G2), (S2’), (V1’). It is sufficient
to replace the last two rules of (G2) (resp. their left-hand sides); we thus get

(G3) rules: X
c−→ Y

X
c−→ Y ′I1I

∗ X ′ c−→ Y ′I1I
∗

Y ′ c−→ X ′

Y I∗⊥ c−→ XI∗⊥ Y ′I∗⊥ c−→ XI∗⊥ .

The processes XI1⊥ and X ′I1⊥ in the resulting Type -2 system (G3), (S2’),
(V1’) are obviously normed (in any reachable process, ⊥ can only occur as the
last element in the sequence), and the correctness arguments remain the same.
We have thus shown the following theorem.

Theorem 4. Bisimilarity on Type -2 systems is Σ1
1-complete in both the normed

case and the unrestricted case.

6 Conclusion and Final Remarks

We have answered negatively the open problem stated in 1996 by Stirling [27]:
“Is strong bisimilarity decidable for Type -1 and Type -2 transition graphs?”. A
precise borderline between decidability and undecidability has been found: for
Type -1a systems with rules of the form R

a−→ w where R is a prefix-free regular
language bisimilarity is decidable [21], while it is undecidable for the same class
without the prefix-freeness restriction. We have also given a full characterization
of the undecidability degrees of the studied problems. A summary of the re-
sults for bisimilarity checking is provided in the following table. Results without
references were obtained in this paper.

Normed Processes Unnormed Processes
Type -2 Σ1

1-complete Σ1
1 -complete

Type -1b Π0
1 -complete Σ1

1 -complete
Type -1a Π0

1 -complete Π0
1 -complete

Type 0, and decidable [28] decidable [19, 21]
Type 1 1

2 EXPTIME-hard [16] EXPTIME-hard [16]
Type 2 ∈ P [13] ∈ 2-EXPTIME [4]

P-hard [1] PSPACE-hard [22]
Type 3 P-complete [15, 1] P-complete [15, 1]

We note that the results for Type -1b systems illustrate a significant differ-
ence between normed and unnormed processes. An open problem is the precise
complexity for PDA and BPA, and decidability of bisimilarity for unrestricted
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regular (equational) graphs. As a side result, our paper provides an alterna-
tive and easily understandable proof of undecidability of weak bisimilarity for
normed pushdown processes since the class of ε-collapsed pushdown graphs is
a superclass of Type -2 systems [29] and hence (high) undecidability of strong
bisimilarity for normed Type -2 graphs implies (high) undecidability of weak
bisimilarity for normed pushdown processes.
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discussion (at University of Stuttgart) and acknowledge a support from the
Alexander von Humboldt Foundation.
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Appendix

Regular Graphs of Finite Out-Degree vs. Prefix-Free Type -1a

We shall argue that the class of regular (equational) graphs of finite out-degree
is isomorphic with the class of Type -1a systems where each rule R −→ w has
an additional restriction that R is a prefix-free (regular) language.

In order to provide the argument, we will use a characterization of regular
graphs of finite out-degree by means of collapsed ε-deterministic and ε-popping
pushdown graphs. We follow the exposition by Stirling [29]. Basic transitions in
pushdown systems have the form pX

a−→ qβ where p and q are control states,
X is a stack symbol, β is a sequence of stack symbols and a is from the action
set which contains also a distinguished action ε. We consider only pushdown
systems which satisfy the following three properties.

disjointness: if pX
ε−→ qβ then for every a 6= ε it holds that pX 6 a−→

ε-determinism: if pX
ε−→ qβ and pX

ε−→ q′β′ then q = q′ and β = β′

ε-popping: if pX
ε−→ qβ then β = ε

A pushdown process is called stable if it cannot make any ε-transition, oth-
erwise we call it unstable (and then it can make only ε-transitions). States of the
collapsed graph of a given pushdown process consist of stable processes only, and
the transition relation is defined by pα

a−→ qβ iff pα
a−→ p′α′( ε−→)∗qβ, where

pα and qβ are stable processes.
In [21] Sénizergues proved that regular (equational) graphs of finite out-

degree coincide up to isomorphism with collapsed graphs of pushdown processes
that satisfy disjointness, ε-determinism and ε-popping. We shall further demon-
strate that such collapsed pushdown graphs are isomorphic with Type -1a sys-
tems that use only prefix-free (regular) languages.

Remark. We remind the reader of the fact that collapsed pushdown graphs which
satisfy disjointness and ε-popping (not necessarily ε-determinism) coincide ex-
actly with Type -1a systems as noted in [29].

Let us first show that for the collapsed graph of a pushdown system satisfying
the conditions above we can find an isomorphic Type -1a system S such that its
rules use prefix-free languages only. Without loss of generality we may assume
that the pushdown system never empties its stack (if it does then we can find
an isomorphic system by introducing a new symbol representing the bottom of
the stack).

For every pushdown rule of the form pX
a−→ qβ where pX and qβ are stable

processes (and hence a 6= ε) we copy the same rule also to the system S. For
every rule r = pX

a−→ p′γ′ where pX is stable and p′γ′ is unstable (and hence
a 6= ε), for every control state q and for every γ which is a suffix of γ′ (excluding
the suffix ε) such that qγ is stable, we add to the system S the rule R

a−→ qγ
such that R is a regular set defined by

R
def= prer(pre

∗
ε(qγ))
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where prer stands for a one step predecessor of a given set when the rule r is
used, and pre∗ε stands for all predecessors via arbitrarily many ε-steps. We also
add the rule R

a−→ qY for every state q and every stack symbol Y such that qY
is stable, where R is a regular set defined by

R
def= prer(pre

∗
ε(qY )) .

It is well-known that the sets R defined above are regular languages (see,
e.g., [2, 10]); moreover, due to ε-popping and ε-determinism, these languages are
prefix-free.

Assume now that pα
a−→ p′α′( ε−→)∗qβ, where pα and qβ are stable processes.

We will argue that pα
a−→ qβ is possible also is the system S. The first transition

pα
a−→ p′α′ is necessarily due to some pushdown rule r = pX

a−→ p′γ′ such that
α = Xα1. Hence pα = pXα1

a−→ p′γ′α1. There are now two situations during
the deterministic ε-popping steps to follow. Either the whole γ′ (and possibly
more) from the state p′γ′α1 is deleted but then the following rule in the Type -1a
system S

prer(pre
∗
ε(qY )) a−→ qY

where Y is the first symbol of β has the same effect as the a-transition followed
by the ε-steps. It can be also the case that only a prefix of γ′ is deleted during
the ε-steps, which means that some suffix γ of γ′ is still present. In this situation,
the rule

prer(pre
∗
ε(qγ)) a−→ qγ

has the same effect.
On the other hand, if some transition is possible in the system S, it follows

directly from the definition that the same effect can be achieved by an application
of some pushdown rule followed by a sequence of ε-popping steps.

Let us now argue about the other direction, i.e., we shall show that any
Type -1a system with rules using only prefix-free regular languages can be de-
scribed by an isomorphic collapsed graph of some pushdown process satisfying
disjointness, ε-determinism and ε-popping.

Let us assume a rule R
a−→ w of Type -1a. As R is a regular prefix-free

language, there is a finite automaton AR recognizing R. We may assume that all
transitions in AR are deterministic and that there are no outgoing edges from the
accepting states of AR. We may now replace the rule R

a−→ w with a sequence of
one a-transition followed by a number of ε-steps that mimic the computation of
AR (current configuration of AR can be stored in the control state unit). The top
of the stack always serves as the next input letter, all transitions are ε-popping
and ε-deterministic. Once an accept state in AR is reached, we perform one more
ε-step and push the word w on the stack. In fact, the last ε-step is not ε-popping,
however, there are only finitely many rules in the Type -1a system (of the type
R

a−→ w) and hence there is a bound on the length of the longest word ever
pushed on the stack. Such a pushdown system can be turned into an isomorphic
one (and without ε-pushing rules) by a standard trick: the top (of a fixed length)
of the stack can be stored in the control state unit and the first visible transition
always pushes the top of the stack from the control unit onto the stack.
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Hierarchy of Prefix Rewriting is Strict

Type -1b which has no bisimilar Type -1a. We recall that any Type -1a pro-
cess has only finitely many (immediate) successors (finite out-degree). Since the
process X of the following Type -1b system

X
b−→ A∗ A

a−→ ε

obviously has infinitely many pairwise nonbisimilar (immediate) successors, it is
not bisimilar to any Type -1a process.

Type -1a which has no bisimilar Type -1b. We shall now demonstrate a Type
-1a process which is not bisimilar to any Type -1b process. We start with some
simple observations regarding Type -1b systems.

(i) If u
s−→ u′ then uv

s−→ u′v.
(ii) Let us denote by k the maximal length of the left-hand sides of rules (which

are of the form w −→ R). Let s be a sequence of actions of length at most
`, and let |u| ≥ k`. For any v it holds that if uv

s−→ v′ then v′ = u′v and
u

s−→ u′.

Let us consider the following Type -1a system:

Y
d−→ Y C Y C∗ e−→ ε C

c−→ ε .

For the sake of contradiction, let us assume that Y is bisimilar to some word u0

in a Type -1b system. Observe now that

– from Y we can reach Y Cn for all n = 0, 1, 2, . . . ; this must be matched from
u0 by processes (words) u0, u1, u2, . . . (Y Cn ∼ un), and

– from Y Cn we can use the rule Y C∗ e−→ ε to obtain exactly n + 1 pairwise
nonbisimilar successors, namely Cn, Cn−1, . . . , C, ε.

We observe that there must be a bound r (depending just on the -1b system)
such that for any un = wv, any rule w

e−→ R and any w′ ∈ R, the sequence
cr is not performable from w′. (Should there be no such r, we can derive a
contradiction with Y Cn ∼ un for some n.)

Let us now take a sufficiently large n and let k be the constant from (ii) and
r be as defined above. For each m, m ≤ n, consider a move un

e−→ vn,m which
matches the move Y Cn e−→ Cm (hence Cm ∼ vn,m). Many of these matching
moves necessarily use instances of the same rule w

e−→ R; so un = wv and
vn,m = wmv, wm ∈ R for the respective m’s. Since vn,n, vn,n−1, . . . , vn,0 must
be pairwise different, we could choose (n and) w

e−→ R so that Cm ∼ wmv for
m > r and |wm| > rk.

However, that is a contradiction: wmv must be able to perform cr, which
would mean that also wm can perform cr (see observation (ii) above). This is
impossible due to our choice of r.
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Strictness w.r.t. Type 0 and Type -2. The examples above show that Type -1a
and Type -1b systems are also more expressive than Type 0 systems w.r.t. bisim-
ilarity.

We can combine the above systems into Type -2 system by adding the rules

Z
f−→ X Z

f−→ Y

to demonstrate that Type -2 systems are more expressive than both Type -1a
and Type -1b systems, as there cannot be any Type -1a nor Type -1b process
bisimilar to Z.
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