
BRICS
Basic Research in Computer Science

A Rational Deconstruction of
Landin’s J Operator

Olivier Danvy
Kevin Millikin

BRICS Report Series RS-06-4

ISSN 0909-0878 February 2006

B
R

IC
S

R
S

-06-4
D

anvy
&

M
illikin:

A
R

ationalD
econstruction

ofLandin’s
J

O
perator

Copyright c© 2006, Olivier Danvy & Kevin Millikin.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
IT-parken, Aabogade 34
DK–8200 Aarhus N
Denmark
Telephone: +45 8942 9300
Telefax: +45 8942 5601
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/06/4/

A Rational Deconstruction

of Landin’s J Operator∗

Olivier Danvy and Kevin Millikin

BRICS†

Department of Computer Science
University of Aarhus‡

February 28, 2006

Abstract

Landin’s J operator was the first control operator for functional languages,
and was specified with an extension of the SECD machine. Through a se-
ries of meaning-preserving transformations (transformation into continu-
ation-passing style (CPS) and defunctionalization) and their left inverses
(transformation into direct style and refunctionalization), we present a
compositional evaluation function corresponding to this extension of the
SECD machine. We then characterize the J operator in terms of CPS
and in terms of delimited-control operators in the CPS hierarchy. Finally,
we present a motivated wish to see Landin’s name added to the list of
co-discoverers of continuations.

∗Extended version of an article to appear in the proceedings of the 17th International
Workshop on the Implementation and Application of Functional Languages (IFL’05), Dublin,
Ireland, September 2005.

†Basic Research in Computer Science (www.brics.dk),
funded by the Danish National Research Foundation.

‡IT-parken, Aabogade 34, DK-8200 Aarhus N, Denmark.
Email: <danvy@brics.dk>, <kmillikin@brics.dk>

i

Contents

1 Introduction 1
1.1 Deconstruction of the SECD machine with the J operator 1
1.2 Prerequisites and domain of discourse 2
1.3 Overview . 4

2 Deconstruction of the SECD machine with the J operator 4
2.1 The starting specification . 4
2.2 A disentangled specification . 5
2.3 A higher-order counterpart . 6
2.4 A stack-less, caller-save counterpart 7
2.5 A dump-less direct-style counterpart 8
2.6 A control-less direct-style counterpart 9
2.7 A compositional counterpart . 10
2.8 Summary . 11

3 Three simulations of the J operator 11

4 Four more simulations of the J operator 12
4.1 The C operator and the CPS hierarchy 12
4.2 The call/cc operator and the CPS hierarchy 13

5 On the design of control operators 13

6 Related work 14
6.1 Landin and Burge . 14
6.2 Reynolds . 14
6.3 Felleisen . 15
6.4 Felleisen and Burge . 16

7 An alternative deconstruction 16
7.1 Our starting point: Burge’s specification 16
7.2 Burge’s specification in defunctionalized form 17
7.3 A higher-order counterpart . 18
7.4 The rest of the rational deconstruction 19
7.5 Three alternative simulations of the J operator 20
7.6 Related work . 21

8 Summary and conclusion 21

9 On the origin of first-class continuations 22

ii

1 Introduction

Forty years ago, Peter Landin unveiled the first control operator, J, to a hereto-
fore unsuspecting world [26–28]. He did so to generalize the notion of jumps and
labels and showed that the resulting notion of ‘program closure’ makes sense
not just in an imperative setting, but also in a functional one. He specified the
J operator by extending the SECD machine [25].

At IFL’04, Danvy presented a ‘rational deconstruction’ of Landin’s SECD
machine into a compositional evaluation function [9]. The goal of this work is
to extend this rational deconstruction to the J operator.

1.1 Deconstruction of the SECD machine with the J op-
erator

Let us outline our deconstruction of the SECD machine before substantiat-
ing it in Section 2. We essentially follow the order of Danvy’s deconstruc-
tion [9], though with a twist: in the middle of the derivation, we abandon the
stack-threading, callee-save features of the SECD machine for the more familiar
register-based, caller-save features of traditional definitional interpreters [19,31,
34].

The SECD machine is defined as the transitive closure of a transition func-
tion over a quadruple—a data stack containing intermediate values (of type S),
an environment (of type E), a control stack (of type C), and a dump (of type D):

run : S * E * C * D -> value

The definition of this transition function is complicated because it has several
induction variables, i.e., it dispatches on several components of the quadruple.

• We disentangle it into four transition functions, each of which has one
induction variable, i.e., dispatches on one component of the quadruple:

run_c : S * E * C * D -> value

run_d : value * D -> value

run_t : term * S * E * C * D -> value

run_a : S * E * C * D -> value

The first function, run c, dispatches towards run d if the control stack is
empty, run t if the top of the control stack contains a term, and run a if
the top of the control stack contains an apply directive. This disentangled
specification is in defunctionalized form: the control stack and the dump
are defunctionalized data types, and run c and run d are the corresponding
apply functions.

• Refunctionalization eliminates the two apply functions:

run_t : term * S * E * C * D -> value

run_a : S * E * C * D -> value

where C = S * E * D -> value and D = value -> value

1

As identified in the first rational deconstruction [9], the resulting program
is a stack-threading, callee-save interpreter in continuation-passing style
(CPS).

• In order to focus on the nature of the J operator, we eliminate the data
stack and adopt the more familiar caller-save evaluation strategy:

run_t : term * E * C * D -> value

run_a : value * value * C * D -> value

where C = value * D -> value and D = value -> value

The interpreter is still in CPS.

• The direct-style transformation eliminates the dump continuation:

run_t : term * E * C -> value

run_a : value * value * C -> value

where C = value -> value

The clause for the J operator and the main evaluation function are ex-
pressed using the delimited-control operators shift and reset [10]. The
resulting evaluator still threads an explicit continuation, even though it is
not tail-recursive.

• The direct-style transformation eliminates the control continuation:

run_t : term * E -> value

run_a : value * value -> value

The clauses catering for the non-tail-recursive uses of the control contin-
uation are expressed using the delimited-control operators shift1, reset1,
shift2, and reset2 [4, 10, 14, 23, 33]. The resulting evaluator is in direct
style. It is also in closure-converted form: the applicable values are a
defunctionalized data type and run a is the corresponding apply function.

• Refunctionalization eliminates the apply function:

run_t : term * E -> value

The resulting evaluator is compositional.

There is plenty of room for variation in the present reconstruction. The path
we are taking seems reasonably pedagogical—in particular, the departure from
threading a data stack and managing the environment in a callee-save fashion.
Each of the steps is reversible: one can CPS-transform and defunctionalize an
evaluator into an abstract machine [1–4,9].

1.2 Prerequisites and domain of discourse

Up to Section 2.4, we use pure ML as a meta-language. We assume a basic fa-
miliarity with Standard ML and with reasoning about ML programs as well as
an elementary understanding of defunctionalization [13, 34], the CPS transfor-
mation [10,11,19,31,34,37], and delimited continuations [4,10,14,17,23]. From
Section 2.5, we use pure ML with delimited-control operators.

2

The source language of the SECD machine. The source language is
the λ-calculus, extended with literals (as observables) and the J operator. A
program is a closed term.

datatype term = LIT of int

| VAR of string

| LAM of string * term

| APP of term * term

| J

type program = term

The control directives. A directive is a term or the tag APPLY:

datatype directive = TERM of term | APPLY

The environment. We use a structure Env with the following signature:

signature ENV = sig

type ’a env

val empty : ’a env

val extend : string * ’a * ’a env -> ’a env

val lookup : string * ’a env -> ’a

end

The empty environment is denoted by Env.empty. The function extending an
environment with a new binding is denoted by Env.extend. The function fetching
the value of an identifier from an environment is denoted by Env.lookup.

Values. There are five kinds of values: integers, the successor function, func-
tion closures, program closures, and “state appenders” [6, page 84]:

datatype value = INT of int

| SUCC

| FUNCLO of E * string * term

| PGMCLO of value * D

| STATE_APPENDER of D

withtype S = value list (* stack *)

and E = value Env.env (* environment *)

and C = directive list (* control *)

and D = (S * E * C) list (* dump *)

A function closure pairs a λ-abstraction (i.e., its formal parameter and its body)
and its lexical environment. A program closure is a first-class continuation. A
state appender is an intermediate value; applying it yields a program closure.

The initial environment. The initial environment binds the successor func-
tion:

val e_init = Env.extend ("succ", SUCC, Env.empty)

3

1.3 Overview

We first detail the deconstruction of the SECD machine into a compositional
evaluator in direct style (Section 2). We then analyze the J operator (Sections 3
and 4), review related work (Sections 6 and 5), and conclude (Sections 8 and 9).

2 Deconstruction of the SECD machine
with the J operator

2.1 The starting specification

Several formulations of the SECD machine with the J operator have been pub-
lished [6,16,27]. We take the most recent one, i.e., Felleisen’s [16], as our starting
point, and we consider the others in Section 6.

(* run : S * E * C * D -> value *)

(* where S = value list, E = value Env.env, C = directive list, *)

(* and D = (S * E * C) list *)

fun run (v :: nil, e, nil, nil)

= v

| run (v :: nil, e’, nil, (s, e, c) :: d)

= run (v :: s, e, c, d)

| run (s, e, (TERM (LIT n)) :: c, d)

= run ((INT n) :: s, e, c, d)

| run (s, e, (TERM (VAR x)) :: c, d)

= run ((Env.lookup (x, e)) :: s, e, c, d)

| run (s, e, (TERM (LAM (x, t))) :: c, d)

= run ((FUNCLO (e, x, t)) :: s, e, c, d)

| run (s, e, (TERM (APP (t0, t1))) :: c, d)

= run (s, e, (TERM t1) :: (TERM t0) :: APPLY :: c, d)

| run (s, e, (TERM J) :: c, d) (* 1 *)

= run ((STATE_APPENDER d) :: s, e, c, d)

| run (SUCC :: (INT n) :: s, e, APPLY :: c, d)

= run ((INT (n+1)) :: s, e, c, d)

| run ((FUNCLO (e’, x, t)) :: v :: s, e, APPLY :: c, d)

= run (nil, Env.extend (x, v, e’), (TERM t) :: nil, (s, e, c) :: d)

| run ((PGMCLO (v, d’)) :: v’ :: s, e, APPLY :: c, d) (* 2 *)

= run (v :: v’ :: nil, e_init, APPLY :: nil, d’)

| run ((STATE_APPENDER d’) :: v :: s, e, APPLY :: c, d) (* 3 *)

= run ((PGMCLO (v, d’)) :: s, e, c, d)

fun evaluate0 t (* evaluate0 : program -> value *)

= run (nil, e_init, (TERM t) :: nil, nil)

The SECD machine does not terminate for divergent source terms. If it becomes
stuck, an ML pattern-matching error is raised (alternatively, the codomain of
run could be made value option and a fallthrough else clause could be added).
Otherwise, the result of the evaluation is v for some ML value v : value. The
clause marked “1” specifies that the J operator, at any point, denotes the cur-
rent dump; evaluating it captures this dump and yields a state appender that,
when applied (in the clause marked “3”), yields a program closure. Applying a
program closure (in the clause marked “2”) restores the captured dump.

4

2.2 A disentangled specification

In the definition of Section 2.1, all the possible transitions are meshed together in
one recursive function, run. As in the first rational deconstruction [9], we factor
run into four mutually recursive functions, each of them with one induction
variable. In this disentangled definition,

• run c interprets the list of control directives, i.e., it specifies which transi-
tion to take according to whether the list is empty, starts with a term, or
starts with an apply directive. If the list is empty, it calls run d. If the list
starts with a term, it calls run t, caching the term in an extra component
(the first parameter of run t). If the list starts with an apply directive, it
calls run a.

• run d interprets the dump, i.e., it specifies which transition to take ac-
cording to whether the dump is empty or non-empty, given a valid data
stack.

• run t interprets the top term in the list of control directives.

• run a interprets the top value in the current data stack.

(* run_c : S * E * C * D -> value *)

(* run_d : value * D -> value *)

(* run_t : term * S * E * C * D -> value *)

(* run_a : S * E * C * D -> value *)

(* where S = value list, E = value Env.env, C = directive list, *)

(* and D = (S * E * C) list *)

fun run_c (v :: nil, e, nil, d)

= run_d (v, d)

| run_c (s, e, (TERM t) :: c, d)

= run_t (t, s, e, c, d)

| run_c (s, e, APPLY :: c, d)

= run_a (s, e, c, d)

and run_d (v, nil)

= v

| run_d (v, (s, e, c) :: d)

= run_c (v :: s, e, c, d)

and run_t (LIT n, s, e, c, d)

= run_c ((INT n) :: s, e, c, d)

| run_t (VAR x, s, e, c, d)

= run_c ((Env.lookup (x, e)) :: s, e, c, d)

| run_t (LAM (x, t), s, e, c, d)

= run_c ((FUNCLO (e, x, t)) :: s, e, c, d)

| run_t (APP (t0, t1), s, e, c, d)

= run_t (t1, s, e, (TERM t0) :: APPLY :: c, d)

| run_t (J, s, e, c, d)

= run_c ((STATE_APPENDER d) :: s, e, c, d)

5

and run_a (SUCC :: (INT n) :: s, e, c, d)

= run_c ((INT (n+1)) :: s, e, c, d)

| run_a ((FUNCLO (e’, x, t)) :: v :: s, e, c, d)

= run_t (t, nil, Env.extend (x, v, e’), nil, (s, e, c) :: d)

| run_a ((PGMCLO (v, d’)) :: v’ :: s, e, c, d)

= run_a (v :: v’ :: nil, e_init, nil, d’)

| run_a ((STATE_APPENDER d’) :: v :: s, e, c, d)

= run_c ((PGMCLO (v, d’)) :: s, e, c, d)

fun evaluate1 t (* evaluate1 : program -> value *)

= run_t (t, nil, e_init, nil, nil)

Proposition 1 (full correctness) Given a program, evaluate0 and evaluate1

either both diverge or both yield values that are structurally equal.

2.3 A higher-order counterpart

In the disentangled definition of Section 2.2, there are two possible ways to con-
struct a dump—nil and consing a triple—and three possible ways to construct
a list of control directives—nil, consing a term, and consing an apply directive.
(We could phrase these constructions as two data types rather than as two lists.)

These data types, together with run d and run c, are in the image of defunc-
tionalization (run d and run c are the apply functions of these two data types).
The corresponding higher-order evaluator reads as follows; it is higher-order
because c and d now denote functions:

(* run_t : term * S * E * C * D -> value *)

(* run_a : S * E * C * D -> value *)

(* where S = value list, E = value Env.env, C = S * E * D -> value *)

(* and D = value -> value *)

fun run_t (LIT n, s, e, c, d)

= c ((INT n) :: s, e, d)

| run_t (VAR x, s, e, c, d)

= c ((Env.lookup (x, e)) :: s, e, d)

| run_t (LAM (x, t), s, e, c, d)

= c ((FUNCLO (e, x, t)) :: s, e, d)

| run_t (APP (t0, t1), s, e, c, d)

= run_t (t1, s, e,

fn (s, e, d) => run_t (t0, s, e,

fn (s, e, d) => run_a (s, e, c, d), d), d)

| run_t (J, s, e, c, d)

= c ((STATE_APPENDER d) :: s, e, d)

and run_a (SUCC :: (INT n) :: s, e, c, d)

= c ((INT (n+1)) :: s, e, d)

| run_a ((FUNCLO (e’, x, t)) :: v :: s, e, c, d)

= run_t (t, nil, Env.extend (x, v, e’), fn (v :: nil, e’’, d) => d v,

fn v => c (v :: s, e, d))

| run_a ((PGMCLO (v, d’)) :: v’ :: s, e, c, d)

= run_a (v :: v’ :: nil, e_init, fn (v :: nil, e, d) => d v, d’)

| run_a ((STATE_APPENDER d’) :: v :: s, e, c, d)

= c ((PGMCLO (v, d’)) :: s, e, d)

6

fun evaluate2 t (* evaluate2 : program -> value *)

= run_t (t, nil, e_init, fn (v :: nil, e, d) => d v, fn v => v)

The resulting evaluator is in CPS, with two layered continuations c and d.
It threads a stack of intermediate results (s), an environment (e), a control
continuation (c), and a dump continuation (d). Except for the environment
being callee-save, the evaluator follows a traditional eval–apply schema: run t

is eval and run a is apply. Defunctionalizing it yields the definition of Section 2.2.

Proposition 2 (full correctness) Given a program, evaluate1 and evaluate2

either both diverge or both yield values that are structurally equal.

2.4 A stack-less, caller-save counterpart

We want to focus on J, and the non-standard aspects of the evaluator of Sec-
tion 2.3 (the data stack and the callee-save environment) are a distraction.
We therefore transmogrify the evaluator into the more familiar register-based,
caller-save form [19,31,34], renaming run t as eval and run a as apply. Interme-
diate values are explicitly passed instead of being stored on the data stack, and
environments are no longer passed to apply and to the control continuation:

(* eval : term * E * C * D -> value *)

(* apply : value * value * C * D -> value *)

(* where E = value Env.env, C = value * D -> value, *)

(* and D = value -> value *)

fun eval (LIT n, e, c, d)

= c (INT n, d)

| eval (VAR x, e, c, d)

= c (Env.lookup (x, e), d)

| eval (LAM (x, t), e, c, d)

= c (FUNCLO (e, x, t), d)

| eval (APP (t0, t1), e, c, d)

= eval (t1, e,

fn (v1, d) => eval (t0, e,

fn (v0, d) => apply (v0, v1, c, d), d), d)

| eval (J, e, c, d)

= c (STATE_APPENDER d, d)

and apply (SUCC, INT n, c, d)

= c (INT (n+1), d)

| apply (FUNCLO (e’, x, t), v, c, d)

= eval (t, Env.extend (x, v, e’), fn (v, d) => d v,

fn v => c (v, d))

| apply (PGMCLO (v, d’), v’, c, d)

= apply (v, v’, fn (v, d) => d v, d’)

| apply (STATE_APPENDER d’, v, c, d)

= c (PGMCLO (v, d’), d)

fun evaluate3 t (* evaluate3 : program -> value *)

= eval (t, e_init, fn (v, d) => d v, fn v => v)

The new evaluator is still in CPS, with two layered continuations.

7

Proposition 3 (full correctness) Given a program, evaluate2 and evaluate3

either both diverge or both yield values that are structurally equal.

2.5 A dump-less direct-style counterpart

The evaluator of Section 2.4 is in continuation-passing style, and therefore it is
in the image of the CPS transformation. The clause for J captures the current
continuation (i.e., the dump), and therefore its direct-style counterpart naturally
uses call/cc [11]. With an eye on our next step, we do not, however, use call/cc
but its cousins shift and reset [10, 14] to write the direct-style counterpart.

Concretely, we use an ML functor to obtain an instance of shift and reset
with value as the type of intermediate answers [14,17]: reset delimits the (now
implicit) dump continuation in evaluate, and corresponds to its initialization
with the identity function; and shift captures it in the clauses where J is evalu-
ated and where a program closure is applied:

structure SR = Shift_and_Reset (type intermediate_answer = value)

(* eval : term * E * C -> value *)

(* apply : value * value * C -> value *)

(* where E = value Env.env and C = value -> value *)

fun eval (LIT n, e, c)

= c (INT n)

| eval (VAR x, e, c)

= c (Env.lookup (x, e))

| eval (LAM (x, t), e, c)

= c (FUNCLO (e, x, t))

| eval (APP (t0, t1), e, c)

= eval (t1, e, fn v1 => eval (t0, e, fn v0 => apply (v0, v1, c)))

| eval (J, e, c)

= SR.shift (fn d => d (c (STATE_APPENDER d))) (* * *)

and apply (SUCC, INT n, c)

= c (INT (n+1))

| apply (FUNCLO (e’, x, t), v, c)

= c (eval (t, Env.extend (x, v, e’), fn v => v)) (* * *)

| apply ((PGMCLO (v, d)), v’, c)

= SR.shift (fn d’ => d (apply (v, v’, fn v => v))) (* * *)

| apply (STATE_APPENDER d, v, c)

= c (PGMCLO (v, d))

fun evaluate4 t (* evaluate4 : program -> value *)

= SR.reset (fn () => eval (t, e_init, fn v => v))

The dump continuation is now implicit and is accessed using shift. CPS-trans-
forming this evaluator yields the evaluator of Section 2.4.

Proposition 4 (full correctness) Given a program, evaluate3 and evaluate4

either both diverge or both yield values that are structurally equal.

8

2.6 A control-less direct-style counterpart

The evaluator of Section 2.5 still threads an explicit continuation, the control
continuation. It however is not in continuation-passing style because of the
non-tail calls to c, eval, and apply (in the clauses marked “*”) and for the
occurrences of shift and reset. This pattern of control is characteristic of the
CPS hierarchy [4, 10, 14, 23]. We therefore use the delimited-control operators
shift1, reset1, shift2, and reset2 to write the direct-style counterpart of this
evaluator (shift2 and reset2 are the direct-style counterparts of shift1 and reset1,
and shift1 and reset1 are synonyms for shift and reset).

Concretely, we use two ML functors to obtain layered instances of shift and
reset with value as the type of intermediate answers [14, 17]: reset2 delimits
the (now twice implicit) dump continuation in evaluate; shift2 captures it in
the clauses where J is evaluated and where a program closure is applied; reset1
delimits the (now implicit) control continuation in evaluate and in apply, and
corresponds to its initialization with the identity function; and shift1 captures
it in the clause where J is evaluated:

structure SR1 = Shift_and_Reset (type intermediate_answer = value)

structure SR2 = Shift_and_Reset_next (type intermediate_answer = value

structure over = SR1)

(* eval : term * E -> value *)

(* apply : value * value -> value *)

(* where E = value Env.env *)

fun eval (LIT n, e)

= INT n

| eval (VAR x, e)

= Env.lookup (x, e)

| eval (LAM (x, t), e)

= FUNCLO (e, x, t)

| eval (APP (t0, t1), e)

= let val v1 = eval (t1, e)

val v0 = eval (t0, e)

in apply (v0, v1) end

| eval (J, e)

= SR1.shift (fn c => SR2.shift (fn d => d (c (STATE_APPENDER d))))

and apply (SUCC, INT n)

= INT (n+1)

| apply (FUNCLO (e’, x, t), v)

= SR1.reset (fn () => eval (t, Env.extend (x, v, e’)))

| apply (PGMCLO (v, d), v’)

= SR1.shift (fn c’ => SR2.shift (fn d’ =>

d (SR1.reset (fn () => apply (v, v’))))

| apply (STATE_APPENDER d, v)

= PGMCLO (v, d)

fun evaluate5 t (* evaluate5 : program -> value *)

= SR2.reset (fn () => SR1.reset (fn () => eval (t, e_init)))

9

The control continuation is now implicit and is accessed using shift1. The dump
continuation is still implicit and is accessed using shift2. CPS-transforming this
evaluator yields the evaluator of Section 2.5.

Proposition 5 (full correctness) Given a program, evaluate4 and evaluate5

either both diverge or both yield values that are structurally equal.

2.7 A compositional counterpart

We now turn to the data flow of the evaluator of Section 2.6. As for the SECD
machine without J [9], this evaluator is in defunctionalized form: each of the val-
ues constructed with SUCC, FUNCLO, PGMCLO, and STATE APPENDER are constructed
at one place and consumed at another (the apply function). We therefore re-
functionalize them into the function space value -> value:

datatype value = INT of int

| FUN of value -> value

val e_init = Env.extend ("succ",

FUN (fn (INT n) => INT (n+1)),

Env.empty)

structure SR1 = Shift_and_Reset (type intermediate_answer = value)

structure SR2 = Shift_and_Reset_next (type intermediate_answer = value

structure over = SR1)

(* eval : term * E -> value *)

(* where E = value Env.env *)

fun eval (LIT n, e)

= INT n

| eval (VAR x, e)

= Env.lookup (x, e)

| eval (LAM (x, t), e)

= FUN (fn v => SR1.reset (fn () => eval (t, Env.extend (x, v, e))))

| eval (APP (t0, t1), e)

= let val v1 = eval (t1, e)

val (FUN f) = eval (t0, e)

in f v1 end

| eval (J, e)

= SR1.shift (fn c => SR2.shift (fn d =>

d (c (FUN (fn (FUN f) => FUN (fn v’ => SR1.shift (fn c’ =>

SR2.shift (fn d’ =>

d (SR1.reset (fn () =>

f v’))))))))))

fun evaluate5’ t (* evaluate5’ : program -> value *)

= SR2.reset (fn () => SR1.reset (fn () => eval (t, e_init)))

Defunctionalizing this evaluator yields the evaluator of Section 2.6.

Proposition 6 (full correctness) Given a program, evaluate5 and evaluate5’

either both diverge or both yield values that are related by defunctionalization.

10

2.8 Summary

We graphically summarize the derivations as follows. The evaluators in the top
row are the defunctionalized counterparts of the evaluators in the bottom row.

evaluate3 //

refunct.
��

evaluate4 //
CPS transf.oo

��

evaluate5
CPS transf.oo

��
evaluate3’

DS transf.
//

OO

evaluate4’
oo

DS transf.
//

OO

evaluate5’
oo

defunct.

OO

3 Three simulations of the J operator

The evaluator of Section 2.7 and the refunctionalized counterparts of the evalu-
ators of Sections 2.5 and 2.4 are compositional. They can be viewed as syntax-
directed encodings into their meta-language, as embodied in the first Futamura
projection [20]. Below, we state these encodings as three simulations of J: one
in direct style, one in CPS with one layer of continuations, and one in CPS with
two layers of continuations.

We assume a call-by-value meta-language with right-to-left evaluation.

• In direct style, using shift2 (S2), reset2 (〈〈〈·〉〉〉2), shift1 (S1), and reset1 (〈〈〈·〉〉〉1):

JnK = n
JxK = x

Jt0 t1K = Jt0K Jt1K
Jλx.tK = λx.〈〈〈JtK〉〉〉1

JJK = S1λc.S2λd.d (c λx.λx′.S1λc′.S2λd′.d 〈〈〈x x′〉〉〉1)

A program p is translated as 〈〈〈〈〈〈JpK〉〉〉1〉〉〉2.

• In CPS with one layer of continuations, using shift (S) and reset (〈〈〈·〉〉〉):
JnK′ = λc.c n
JxK′ = λc.c x

Jt0 t1K
′ = λc.Jt1K

′ λx1.Jt0K
′ λx0.x0 x1 c

Jλx.tK′ = λc.c λx.λc.c (JtK′ λx.x)
JJK′ = λc.Sλd.d (c λx.λc.c λx′.λc′.Sλd′.d (x x′ λx′′.x′′))

A program p is translated as 〈〈〈JpK′ λx.x〉〉〉.
• In CPS with two layers of continuations (the outer continuation, i.e., the

dump continuation, can be η-reduced in the first three clauses):

JnK′′ = λc.λd.c n d
JxK′′ = λc.λd.c x d

Jt0 t1K
′′ = λc.λd.Jt1K

′′ (λx1.λd.Jt0K
′′ (λx0.λd.x0 x1 c d) d) d

Jλx.tK′′ = λc.λd.c (λx.λc.λd.JtK′′ (λx.λd.d x) λx.c x d) d

JJK′′ = λc.λd.c (λx.λc.λd′′′.c (λx′.λc′.λd′.x x′ (λx′′.λd′′.d′′ x′′) d) d′′′) d

A program p is translated as JpK′′ (λx.λd.d x) λx.x.

11

Analysis: The simulation of literals, variables, and applications is standard.
The control continuation of the body of each λ-abstraction is delimited, cor-
responding to it being evaluated with an empty control stack in the SECD
machine. The J operator abstracts the control continuation and the dump
continuation and immediately restores them, resuming the computation with
a state appender which holds the abstracted dump continuation captive. Ap-
plying this state appender to a value v yields a program closure (boxed in the
three simulations above). Applying this program closure to a value v′ has the
effect of discarding both the current control continuation and the current dump
continuation, applying v to v′, and resuming the captured dump continuation
with the result.

The first rational deconstruction [9] already characterized the SECD machine
in terms of the CPS hierarchy: the control stack is the first continuation, the
dump is the second one (i.e., the meta-continuation), and abstraction bodies
are evaluated within a control delimiter (i.e., an empty control stack). Our
work further characterizes the J operator as capturing (a copy of) the meta-
continuation.

4 Four more simulations of the J operator

4.1 The C operator and the CPS hierarchy

In the terminology of reflective towers [12], continuations captured with shift are
“pushy”—at their point of invocation, they compose with the current continu-
ation by “pushing” it on the meta-continuation. In the second encoding of J in
Section 3, the term Sλd′.d (x x′ λx′′.x′′) serves to discard the current continua-
tion d′ before applying the captured continuation d. Because of this use of shift
to discard d′, the continuation d is composed with the identity continuation.

On the other hand, still using the terminology of reflective towers, continua-
tions captured with call/cc [8] or with Felleisen’s C operator [15] are “jumpy”—
at their point of invocation, they discard the current continuation. If the con-
tinuation d were captured with C, then the term d (x x′ λx′′.x′′) would suffice
to discard the current continuation.

The first encoding of J in Section 3 uses the pushy control operators S1

(i.e., S) and S2. Murthy [33] and Kameyama [23] have investigated their jumpy
counterparts in the CPS hierarchy, C1 (i.e., C) and C2. Jumpy continuations
therefore suggest two new simulations of the J operator. We show only the
clauses for J, which are the only ones that change compared to Section 3. As
before, we assume a call-by-value meta-language with right-to-left evaluation.

• In direct style, using C2, reset2 (〈〈〈·〉〉〉2), C1, and reset1 (〈〈〈·〉〉〉1):

JJK = C1λc.C2λd.d (c λx.λx′.d 〈〈〈x x′〉〉〉1)

This simulation provides a new example of programming in the CPS hi-
erarchy with jumpy delimited continuations.

12

• In CPS with one layer of continuations, using C and reset (〈〈〈·〉〉〉):

JJK′ = λc.Cλd.d (c λx.λc.c λx′.λc′.d (x x′ λx′′.x′′))

The corresponding CPS simulation of J with two layers of continuations coin-
cides with the one in Section 3.

4.2 The call/cc operator and the CPS hierarchy

Like shift and C, call/cc takes a snapshot of the current context. However,
unlike shift and C, in so doing call/cc leaves the current context in place. So
for example, 1 + (call/cc λk.10) yields 11 because call/cc leaves the context
1 + [.] in place, whereas both 1 + (Sλk.10) and 1 + (Cλk.10) yield 10 because
the context 1 + [.] is tossed away.

Therefore J can be simulated in CPS with one layer of continuations, using
call/cc and exploiting its non-abortive behavior:

JJK′ = λc.call/cc λd.c λx.λc.c λx′.λc′.d (x x′ λx′′.x′′)

The obvious generalization of call/cc to the CPS hierarchy does not fit the
bill as well, however. One needs an abort operator as well in order for call/cc2

to capture the initial continuation and the current meta-continuation. We leave
the rest of this train of thoughts to the imagination of the reader.

5 On the design of control operators

We note that replacing C with S above (resp. C1 with S1 and C2 with S2) yields
a pushy counterpart for J, i.e., program closures returning to their point of
activation. (Similarly, replacing C with S in the specification of call/cc in terms
of C yields a pushy version of call/cc, assuming a global control delimiter.)
One can also envision an abortive version of J that tosses away the context
it abstracts. In that sense, control operators are easy to invent, though not
always easy to implement efficiently. Nowadays, however, the acid test for a
new control operator lies elsewhere, for example:

1. Which programming idiom does this control operator reflect?

2. What is the logical content of this control operator [22]?

Even though it was the first control operator ever, J passes this acid test. As
pointed out by Thielecke,

1. J is a generalized return [39, Section 2.1], and

2. the type of J λx.x is the law of the excluded middle [40, Section 5.2].

13

On the other hand, despite its remarkable fit to Algol labels and jumps [16,28],
J is unintuitive to use. For example, if a let expression is the syntactic sugar of
a beta-redex (and x1 is fresh), the equivalence

t0 t1 ∼= let x1 = t1 in t0 x1

does not hold in the presence of J, even though it does in the presence of call/cc,
C, and shift for right-to-left evaluation.

6 Related work

6.1 Landin and Burge

Landin [27] introduced the J operator as a new language feature motivated by
three questions about labels and jumps:

• Can a language have jumps without having assignment?

• Is there some component of jumping that is independent of labels?

• Is there some feature that corresponds to functions with arguments in the
same sense that labels correspond to procedures without arguments?

He gave the semantics of the J operator by extending the SECD machine. In
addition to using J to model jumps in Algol 60 [26], he gave examples of pro-
gramming with the J operator, using it to represent failure actions as program
closures where it is essential that they abandon the context of their application.

In his textbook [6, Section 2.10], Burge adjusted Landin’s original specifi-
cation of the J operator. Indeed, in Landin’s extension of the SECD machine,
J could only occur in the context of an application. Burge adjusted the orig-
inal specification so that J could occur in arbitrary contexts. To this end, he
introduced the notion of a “state appender” as the denotation of J.

Thielecke [39] gave a detailed introduction to the J operator as presented
by Landin and Burge. Burstall [7] illustrated the use of the J operator by
simulating threads for parallel search algorithms, which in retrospect is the first
simulation of threads in terms of first-class continuations.

6.2 Reynolds

Reynolds [34] gave a comparison of J to escape, the binder form of Scheme’s
call/cc [8].1 He gave encodings of Landin’s J (i.e., restricted to the context of
an application) and escape in terms of each other.

His encoding of escape in terms of J reads as follows:

(escape k in t)∗ = let k = J λx.x in t∗

As Thielecke notes [39], this encoding is only valid immediately inside an ab-
straction. Indeed, the dump continuation captured by J only coincides with

1escape k in t ≡ call/cc λk.t

14

the continuation captured by escape if the control continuation is the initial one
(i.e., immediately inside a control delimiter). Thielecke generalized the encoding
by adding a dummy abstraction:

(escape k in t)∗ = (λ().let k = J λx.x in t∗) ()

From the point of view of the rational deconstruction, this dummy abstraction
implicitly inserts a control delimiter.

Reynolds’s converse encoding of J in terms of escape reads as follows:

(let d = J λx.t1 in t0)◦ = escape k in (let d = λx.k t1
◦ in t0

◦)

where k does not occur free in t0 and t1. For the same reason as above, this
encoding is only valid immediately inside an abstraction.

6.3 Felleisen

Felleisen showed how to embed Landin’s extension of applicative expressions
with J into the Scheme programming language [16]. The embedding is defined
as Scheme syntactic extensions (i.e., macros). J is treated as a dynamic identifier
that is bound in the body of every abstraction. Its control aspect is handled
through Scheme’s control operator call/cc.

As pointed out by Thielecke [39], Felleisen’s simulation can be stated in direct
style, assuming a call-by-value meta-language with right-to-left evaluation and
call/cc. In addition, we present the corresponding simulations using C and reset,
using shift and reset, and in CPS:

• In direct style, using either of call/cc, C, or shift (S), and one global control
delimiter (〈〈〈·〉〉〉):

JxK = x
Jt0 t1K = Jt0K Jt1K

Jλx.tK = λx.call/cc λd.let J = λx.λx′.d (x x′) in JtK

= λx.Cλd.let J = λx.λx′.d (x x′) in d JtK

= λx.Sλd.let J = λx.λx′.Sλc′.d (x x′) in d JtK

A program p is translated as 〈〈〈JpK〉〉〉.
• In CPS:

JxK′ = λc.c x
Jt0 t1K

′ = λc.Jt1K
′ λx1.Jt0K

′ λx0.x0 x1 c

Jλx.tK′ = λc.c (λx.λd.let J = λx.λc.c λx′.λc′.x x′ d in JtK′ d)

A program p is translated as JpK′ λx.x.

15

Analysis: The simulation of variables and applications is standard. The con-
tinuation of the body of each λ-abstraction is captured, and the identifier J
is dynamically bound to a function closure (the state appender) which holds
the continuation captive. Applying this function closure to a value v yields a
program closure (boxed in the simulations above). Applying this program clo-
sure to a value v′ has the effect of applying v to v′ and resuming the captured
continuation with the result, abandoning the current continuation.

6.4 Felleisen and Burge

Felleisen’s version of the SECD machine with the J operator differs from Burge’s.
In the notation of Section 2.1, Burge’s clause for applying program closures reads

| run ((PGMCLO (v, (s’, e’, c’) :: d’’)) :: v’ :: s, e, APPLY :: c, d)

= run (v :: v’ :: s’, e’, APPLY :: c’, d’’)

instead of

| run ((PGMCLO (v, d’)) :: v’ :: s, e, APPLY :: c, d)

= run (v :: v’ :: nil, e_init, APPLY :: nil, d’)

Felleisen’s version delays the consumption of the dump until the function, in the
program closure, completes, whereas Burge’s version does not. The modification
is unobservable because a program cannot capture the control continuation and
because applying the argument of a state appender pushes the data stack, the
environment, and the control stack on the dump. Felleisen’s modification can be
characterized as wrapping a control delimiter around the argument of a dump
continuation, similarly to the simulation of static delimited continuations in
terms of dynamic ones [5].

Burge’s version, however, is not in defunctionalized form. In Section 7, we
put it in defunctionalized form without inserting a control delimiter and we
outline the corresponding compositional evaluation functions and simulations.

7 An alternative deconstruction

7.1 Our starting point: Burge’s specification

As pointed out in Section 6.4, Felleisen’s version of the SECD machine applies
the value contained in a program closure before restoring the components of
the captured dump. Burge’s version differs by restoring the components of the
captured dump before applying the value contained in the program closure. In
other words,

• Felleisen’s version applies the value contained in a program closure with
an empty data stack, a dummy environment, an empty control stack, and
the captured dump, whereas

• Burge’s version applies the value contained in a program closure with the
captured data stack, environment, control stack, and previous dump.

16

The versions induce a minor programming difference because the first makes it
possible to use J in any context whereas the second restricts J to occur only
inside a λ-abstraction.

Burge’s specification of the SECD machine with J follows. Ellipses mark
what does not change from the specification of Section 2.1:

(* run : S * E * C * D -> value *)

(* where S = value list, E = value Env.env, C = directive list, *)

(* and D = (S * E * C) list *)

fun run (v :: nil, e, nil, d)

= ...

| run (s, e, (TERM t) :: c, d)

= ...

| run (SUCC :: (INT n) :: s, e, APPLY :: c, d)

= ...

| run ((FUNCLO (e’, x, t)) :: v :: s, e, APPLY :: c, d)

= ...

| run ((PGMCLO (v, (s’, e’, c’) :: d’)) :: v’ :: s, e, APPLY :: c, d)

= run (v :: v’ :: s’, e’, APPLY :: c’, d’)

| run ((STATE_APPENDER d’) :: v :: s, e, APPLY :: c, d)

= ...

fun evaluate0_alt t (* evaluate0_alt : program -> value *)

= ...

Just as in Section 2.2, Burge’s specification can be disentangled into four mutually-
recursive transition functions. The disentangled specification, however, is not in
defunctionalized form. We put it next in defunctionalized form without inserting
a control delimiter, and then repeat the rest of the rational deconstruction.

7.2 Burge’s specification in defunctionalized form

The disentangled specification of Burge is not in defunctionalized form because
the dump does not have a single point of consumption. It is consumed by run d

for values yielded by the body of λ-abstractions and in run a for values thrown to
program closures. In order to be in the image of Reynolds’s defunctionalization
and have run d as the apply function, the dump should be solely consumed by
run d. We therefore distinguish values yielded by normal evaluation and values
thrown to program closures, and we make run d dispatch on these two kinds
of returned values. For values yielded by normal evaluation (i.e., in the call
from run c to run d), run d proceeds as before. For values thrown to program
closures, run d calls run a. Our modification therefore adds one transition (from
run a to run d) for values thrown to program closures.

The change only concerns three clauses and ellipses mark what does not
change from the evaluator of Section 2.2:

datatype returned_value = YIELD of value

| THROW of value * value

17

(* run_c : S * E * C * D -> value *)

(* run_d : returned_value * D -> value *)

(* run_t : term * S * E * C * D -> value *)

(* run_a : S * E * C * D -> value *)

(* where S = value list, E = value Env.env, C = directive list, *)

(* and D = (S * E * C) list *)

fun run_c (v :: nil, e, nil, d)

= run_d (YIELD v, d) (* 1 *)

| run_c (s, e, (TERM t) :: c, d)

= run_t (t, s, e, c, d)

| run_c (s, e, APPLY :: c, d)

= run_a (s, e, c, d)

and run_d (YIELD v, nil)

= v

| run_d (YIELD v, (s, e, c) :: d)

= run_c (v :: s, e, c, d)

| run_d (THROW (v, v’), (s, e, c) :: d)

= run_a (v :: v’ :: s, e, c, d) (* 2 *)

and run_t ...

= ...

and run_a ...

= ...

| run_a ((PGMCLO (v, d’)) :: v’ :: s, e, c, d)

= run_d (THROW (v, v’), d’) (* 3 *)

fun evaluate1_alt t (* evaluate1_alt : program -> value *)

= ...

YIELD is used to tag values returned by function closures (in the clause marked
“1” above), and THROW is used to tag values sent to program closures (in the
clause marked “3”). THROW tags a pair of values, which will be applied in run d

(by calling run a in the clause marked “2”).

Proposition 7 (full correctness) Given a program, evaluate0 alt and evalu-

ate1 alt either both diverge or both yield values that are structurally equal.

7.3 A higher-order counterpart

In the modified specification of Section 7.2, the data types of control stacks and
dumps are identical to those of the disentangled machine of Section 2.2. These
data types, together with run d and run c, are in the image of defunctionalization
(run d and run c are their apply functions). The corresponding higher-order
evaluator reads as follows:

(* run_t : term * S * E * C * D -> value *)

(* run_a : S * E * C * D -> value *)

(* where S = value list, E = value Env.env, C = S * E * D -> value *)

(* and D = returned_value -> value *)

fun run_t ...

= ...

18

and run_a (SUCC :: (INT n) :: s, e, c, d)

= c ((INT (n+1)) :: s, e, d)

| run_a ((FUNCLO (e’, x, t)) :: v :: s, e, c, d)

= run_t (t, nil, Env.extend (x, v, e’),

fn (v :: nil, e, d) => d (YIELD v),

fn (YIELD v)

=> c (v :: s, e, d)

| (THROW (f, v))

=> run_a (f :: v :: s, e, c, d))

| run_a ((PGMCLO (v, d’)) :: v’ :: s, e, c, d)

= d’ (THROW (v, v’))

| run_a ((STATE_APPENDER d’) :: v :: s, e, c, d)

= c ((PGMCLO (v, d’)) :: s, e, d)

fun evaluate2_alt t (* evaluate2_alt : program -> value *)

= run_t (t, nil, e_init, fn (v :: nil, e, d) => d (YIELD v),

fn (YIELD v) => v)

As before, the resulting evaluator is in continuation-passing style (CPS), with
two layered continuations. It threads a stack of intermediate results, a (callee-
save) environment, a control continuation, and a dump continuation. The values
sent to dump continuations are tagged to indicate whether they represent the
result of a function closure or an application of a program closure. Defunction-
alizing this evaluator yields the definition of Section 7.2.

Proposition 8 (full correctness) Given a program, evaluate1 alt and evalu-

ate2 alt either both diverge or yield expressible values that are structurally equal.

7.4 The rest of the rational deconstruction

The evaluator of Section 7.3 can be transformed exactly as the higher-order
evaluator of Section 2.3:

1. Eliminating the data stack and the callee-save environment yields a tra-
ditional eval–apply evaluator, with run t as eval and run a as apply. The
evaluator is in CPS with two layers of continuations.

2. Direct-style transformation with respect to the dump yields an evaluator
that uses shift and reset (or C and a global reset, or again call/cc and a
global reset) to manipulate the implicit dump continuation.

3. A second direct-style transformation with respect to the control stack
yields an evaluator in direct style that uses the delimited-control operators
shift1, reset1, shift2, and reset2 (or C1, reset1, C2, and reset2) to manipulate
the implicit control and dump continuations.

4. Refunctionalizing the applicable values yields a compositional, higher-
order, direct-style evaluator corresponding to Burge’s specification of the
J operator.

19

7.5 Three alternative simulations of the J operator

As in Section 3, the compositional counterpart of the evaluators of Section 7.4
can be viewed as syntax-directed encodings into their meta-language. Below, we
state these encodings as three simulations of J: one in direct style, one in CPS
with one layer of continuations, and one in CPS with two layers of continuations.

Again, we assume a call-by-value meta-language with right-to-left evaluation
and with a sum (to distinguish values returned by functions and values sent to
program closures), a case expression (for the body of λ-abstractions) and a
destructuring let expression (at the top level).

• In direct style, using either of shift2, reset2, shift1, and reset1 or of C2,
reset2, C1, and reset1:

JnK = n
JxK = x

Jt0 t1K = Jt0K Jt1K
Jλx.tK = λx.case 〈〈〈inLJtK〉〉〉1

of inL(x) ⇒ x
| inR(x, x′) ⇒ x x′

JJK = S1λc.S2λd.d (c λx.λx′.S1λc′.S2λd′.d (inR(x, x′)))

= C1λc.C2λd.d (c λx.λx′.d (inR(x, x′)))

A program p is translated as 〈〈〈let inL(x) = 〈〈〈inL(JpK)〉〉〉1 in x〉〉〉2.

• In CPS with one layer of continuations, using either of shift and reset, of
C and reset, or of call/cc and reset:

JnK′ = λc.c n
JxK′ = λc.c x

Jt0 t1K
′ = λc.Jt1K

′ (λx1.Jt0K
′ λx0.x0 x1 c)

Jλx.tK′ = λc.c (λx.λc.case JtK′ λx.inL(x)
of inL(x) ⇒ c x
| inR(x, x′) ⇒ x x′ c)

JJK′ = λc.Sλd.d (c λx.λc.c λx′.λc′.Sλd′.d (inR(x, x′)))

= λc.Cλd.d (c λx.λc.c λx′.λc′.d (inR(x, x′)))

= λc.call/cc λd.c λx.λc.c λx′.λc′.d (inR(x, x′))

A program p is translated as 〈〈〈let inL(x) = JpK′ λx.inL(x) in x〉〉〉.
• In CPS with two layers of continuations:

JnK′′ = λc.λd.c n d
JxK′′ = λc.λd.c x d

Jt0 t1K
′′ = λc.λd.Jt1K

′′ (λx1.λd.Jt0K
′′ (λx0.λd.x0 x1 c d) d) d

Jλx.tK′′ = λc.λd.c (λx.λc.λd.JtK′′ (λx.λd.d (inL(x)))
λx′′.case x′′

of inL(x) ⇒ c x d
| inR(x, x′) ⇒ x x′ c d) d

JJK′′ = λc.λd.c (λx.λc.λd′′′.c (λx′.λc′.λd′.d (inR(x, x′))) d′′′) d

20

A program p is translated as JpK′′ (λx.λd.d (inL(x)))
λx.let inL(x′) = x in x′.

Analysis: The simulation of literals, variables, and applications is standard.
The body of each λ-abstraction is evaluated with a control continuation inject-
ing the resulting value into the sum type to indicate normal completion and
resuming the current dump continuation, and with a dump continuation in-
specting the resulting sum to determine whether to continue normally or to
apply a program closure. Continuing normally consists of invoking the control
continuation with the resulting value and the dump continuation. Applying a
program closure consists of restoring the components of the dump and then
performing the application. The J operator abstracts both the control continu-
ation and the dump continuation and immediately restores them, resuming the
computation with a state appender holding the abstracted dump continuation
captive. Applying this state appender to a value v yields a program closure
(boxed in the three simulations above). Applying this program closure to a
value v′ has the effect of discarding both the current control continuation and
the current dump continuation, injecting v and v′ into the sum type to indicate
exceptional completion, and resuming the captured dump continuation. It is an
error to evaluate J outside of a λ-abstraction.

7.6 Related work

Kiselyov’s encoding of dynamic delimited continuations in terms of the static
delimited-continuation operators shift and reset [24] is similar to this alternative
encoding of the J operator. Both encodings tag the argument to the meta-
continuation to indicate whether it represents a normal return or a value thrown
to a first-class continuation. However, in order to encode dynamic delimited
continuations, Kiselyov uses a recursive meta-continuation.

8 Summary and conclusion

We have extended the rational deconstruction of the SECD machine to the J op-
erator, and we have presented a series of alternative implementations, including
a compositional evaluation function in CPS. In passing, we have also presented
new applications of defunctionalization and new examples of control delimiters
and of both pushy and jumpy delimited continuations in programming practice.

21

9 On the origin of first-class continuations
We have shown that jumping and labels are not essentially connected with
strings of imperatives and in particular, with assignment. Second, that
jumping is not essentially connected with labels. In performing this piece
of logical analysis we have provided a precisely limited sense in which the
“value of a label” has meaning. Also, we have discovered a new language
feature, not present in current programming languages, that promises to
clarify and simplify a notoriously untidy area of programming—that con-
cerned with success/failure situations, and the actions needed on failure.

– Peter J. Landin, 1965 [27, page 133]

It was Strachey who coined the term “first-class functions” [38, Section 3.5.1].2

In turn it was Landin who, through the J operator, invented what we know
today as first-class continuations [18]. Indeed, like Reynolds for escape, Landin
defined J in an unconstrained way, i.e., with no regard for it to be compatible
with the last-in, first-out allocation discipline prevalent for control stacks since
Algol 60.3

Today, ‘continuations’ is an overloaded term, that may refer

• to the original semantic description technique for representing ‘the mean-
ing of the rest of the program’ as a function, the continuation, as multiply
co-discovered at the turn of the 1970’s [35]; or

• to the programming-language feature of first-class continuations as typ-
ically provided by a control operator such as J, escape, or call/cc, as
invented by Landin.

Whether a semantic description technique or a programming-language feature,
the goal of continuations was the same: to formalize Algol’s labels and jumps.
But where Wadsworth and Abdali gave a continuation semantics to Algol,
Landin translated Algol programs into applicative expressions in direct style.
In turn, he specified the semantics of applicative expressions with the SECD
machine, i.e., using first-order means. The meaning of an Algol label was an
ISWIM ‘program closure’ as obtained by the J operator. Program closures were
defined by extending the SECD machine, i.e., still using first-order means.

Landin did not use an explicit representation of the rest of the computation in
his direct semantics of Algol 60, and so he is not listed among the co-discoverers
of continuations [35]. Such an explicit representation, however, exists in the
SECD machine, in first-order form: the dump, which represents the rest of the
computation after returning from the current function call.

In this article, we have shown that, though it is first-order, the SECD ma-
chine directly corresponds to a compositional evaluation function in CPS—the
tool of choice for specifying control operators since Reynolds’s work [34]. As a
corollary, the dump directly corresponds to a functional representation of con-
trol, since it is a defunctionalized continuation. Therefore, in the light of defunc-
tionalization, we wish to see Landin’s name added to the list of co-discoverers
of continuations.

2“Out of Quine’s dictum: To be is to be the value of a variable, grew Strachey’s ‘first-class
citizens’.” Peter J. Landin, 2000 [30, page 75]

3“Dumps and program-closures are data-items, with all the implied latency for unruly mul-
tiple use and other privileges of first-class-citizenship.” Peter J. Landin, 1997 [29, Section 1]

22

Acknowledgments: Thanks are due to Dariusz Biernacki, Julia L. Lawall,
Kristian Støvring, and the anonymous reviewers of IFL’05 for comments. We
are also grateful to Andrzej Filinski, Dan Friedman, Lockwood Morris, John
Reynolds, Guy Steele, Carolyn Talcott, Bob Tennent, Hayo Thielecke, and Chris
Wadsworth for their feedback on Section 9.

This work was partly carried out while the two authors visited the TOPPS
group at DIKU (http://www.diku.dk/topps). It is partly supported by the Dan-
ish Natural Science Research Council, Grant no. 21-03-0545 and by the ESPRIT
Working Group APPSEM II (http://www.appsem.org).

References

[1] Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan Midtgaard.
A functional correspondence between evaluators and abstract machines.
In Dale Miller, editor, Proceedings of the Fifth ACM-SIGPLAN Interna-
tional Conference on Principles and Practice of Declarative Programming
(PPDP’03), pages 8–19. ACM Press, August 2003.

[2] Mads Sig Ager, Olivier Danvy, and Jan Midtgaard. A functional correspon-
dence between call-by-need evaluators and lazy abstract machines. Infor-
mation Processing Letters, 90(5):223–232, 2004. Extended version available
as the technical report BRICS RS-04-3.

[3] Mads Sig Ager, Olivier Danvy, and Jan Midtgaard. A functional correspon-
dence between monadic evaluators and abstract machines for languages
with computational effects. Theoretical Computer Science, 342(1):149–172,
2005. Extended version available as the technical report BRICS RS-04-28.

[4] Ma lgorzata Biernacka, Dariusz Biernacki, and Olivier Danvy. An opera-
tional foundation for delimited continuations in the CPS hierarchy. Logical
Methods in Computer Science, 1(2:5):1–39, November 2005. A prelimi-
nary version was presented at the Fourth ACM SIGPLAN Workshop on
Continuations (CW’04).

[5] Dariusz Biernacki and Olivier Danvy. A simple proof of a folklore theorem
about delimited control. Research Report BRICS RS-05-25, DAIMI, De-
partment of Computer Science, University of Aarhus, Aarhus, Denmark,
August 2005. Theoretical Pearl to appear in the Journal of Functional
Programming.

[6] William H. Burge. Recursive Programming Techniques. Addison-Wesley,
1975.

[7] Rod M. Burstall. Writing search algorithms in functional form. In Donald
Michie, editor, Machine Intelligence, volume 5, pages 373–385. Edinburgh
University Press, 1969.

[8] William Clinger, Daniel P. Friedman, and Mitchell Wand. A scheme for a
higher-level semantic algebra. In John Reynolds and Maurice Nivat, edi-

23

tors, Algebraic Methods in Semantics, pages 237–250. Cambridge University
Press, 1985.

[9] Olivier Danvy. A rational deconstruction of Landin’s SECD machine. In
Clemens Grelck, Frank Huch, Greg J. Michaelson, and Phil Trinder, edi-
tors, Implementation and Application of Functional Languages, 16th Inter-
national Workshop, IFL’04, number 3474 in Lecture Notes in Computer
Science, pages 52–71, Lübeck, Germany, September 2004. Springer-Verlag.
Recipient of the 2004 Peter Landin prize. Extended version available as the
technical report BRICS RS-03-33.

[10] Olivier Danvy and Andrzej Filinski. Abstracting control. In Mitchell Wand,
editor, Proceedings of the 1990 ACM Conference on Lisp and Functional
Programming, pages 151–160, Nice, France, June 1990. ACM Press.

[11] Olivier Danvy and Julia L. Lawall. Back to direct style II: First-class
continuations. In William Clinger, editor, Proceedings of the 1992 ACM
Conference on Lisp and Functional Programming, LISP Pointers, Vol. V,
No. 1, pages 299–310, San Francisco, California, June 1992. ACM Press.

[12] Olivier Danvy and Karoline Malmkjær. Intensions and extensions in a
reflective tower. In Robert (Corky) Cartwright, editor, Proceedings of the
1988 ACM Conference on Lisp and Functional Programming, pages 327–
341, Snowbird, Utah, July 1988. ACM Press.

[13] Olivier Danvy and Lasse R. Nielsen. Defunctionalization at work. In Har-
ald Søndergaard, editor, Proceedings of the Third International ACM SIG-
PLAN Conference on Principles and Practice of Declarative Programming
(PPDP’01), pages 162–174, Firenze, Italy, September 2001. ACM Press.
Extended version available as the technical report BRICS RS-01-23.

[14] Olivier Danvy and Zhe Yang. An operational investigation of the CPS
hierarchy. In S. Doaitse Swierstra, editor, Proceedings of the Eighth Euro-
pean Symposium on Programming, number 1576 in Lecture Notes in Com-
puter Science, pages 224–242, Amsterdam, The Netherlands, March 1999.
Springer-Verlag.

[15] Matthias Felleisen. The Calculi of λ-v-CS Conversion: A Syntactic Theory
of Control and State in Imperative Higher-Order Programming Languages.
PhD thesis, Computer Science Department, Indiana University, Blooming-
ton, Indiana, August 1987.

[16] Matthias Felleisen. Reflections on Landin’s J operator: a partly historical
note. Computer Languages, 12(3/4):197–207, 1987.

[17] Andrzej Filinski. Representing monads. In Hans-J. Boehm, editor, Pro-
ceedings of the Twenty-First Annual ACM Symposium on Principles of
Programming Languages, pages 446–457, Portland, Oregon, January 1994.
ACM Press.

24

[18] Daniel P. Friedman and Christopher T. Haynes. Constraining control. In
Mary S. Van Deusen and Zvi Galil, editors, Proceedings of the Twelfth
Annual ACM Symposium on Principles of Programming Languages, pages
245–254, New Orleans, Louisiana, January 1985. ACM Press.

[19] Daniel P. Friedman, Mitchell Wand, and Christopher T. Haynes. Essentials
of Programming Languages, second edition. The MIT Press, 2001.

[20] Yoshihiko Futamura. Partial evaluation of computation process – an ap-
proach to a compiler-compiler. Systems · Computers · Controls, 2(5):45–50,
1971. Reprinted in Higher-Order and Symbolic Computation 12(4):381–
391, 1999, with an interview [21].

[21] Yoshihiko Futamura. Partial evaluation of computation process, revisited.
Higher-Order and Symbolic Computation, 12(4):377–380, 1999.

[22] Timothy G. Griffin. A formulae-as-types notion of control. In Paul Hudak,
editor, Proceedings of the Seventeenth Annual ACM Symposium on Prin-
ciples of Programming Languages, pages 47–58, San Francisco, California,
January 1990. ACM Press.

[23] Yukiyoshi Kameyama. Axioms for delimited continuations in the CPS hi-
erarchy. In Jerzy Marcinkowski and Andrzej Tarlecki, editors, Computer
Science Logic, 18th International Workshop, CSL 2004, 13th Annual Con-
ference of the EACSL, Proceedings, volume 3210 of Lecture Notes in Com-
puter Science, pages 442–457, Karpacz, Poland, September 2004. Springer.

[24] Oleg Kiselyov. How to remove a dynamic prompt: Static and dynamic
delimited continuation operators are equally expressible. Technical Report
611, Computer Science Department, Indiana University, Bloomington, In-
diana, March 2005.

[25] Peter J. Landin. The mechanical evaluation of expressions. The Computer
Journal, 6(4):308–320, 1964.

[26] Peter J. Landin. A correspondence between Algol 60 and Church’s lambda
notation. Communications of the ACM, 8:89–101 and 158–165, 1965.

[27] Peter J. Landin. A generalization of jumps and labels. Research re-
port, UNIVAC Systems Programming Research, 1965. Reprinted in
Higher-Order and Symbolic Computation 11(2):125–143, 1998, with a fore-
word [39].

[28] Peter J. Landin. The next 700 programming languages. Communications
of the ACM, 9(3):157–166, 1966.

[29] Peter J. Landin. Histories of discoveries of continuations: Belles-lettres with
equivocal tenses. In Olivier Danvy, editor, Proceedings of the Second ACM
SIGPLAN Workshop on Continuations (CW’97), Technical report BRICS
NS-96-13, University of Aarhus, pages 1:1–9, Paris, France, January 1997.

25

[30] Peter J. Landin. My years with Strachey. Higher-Order and Symbolic
Computation, 13(1/2):75–76, 2000.

[31] F. Lockwood Morris. The next 700 formal language descriptions. Lisp and
Symbolic Computation, 6(3/4):249–258, 1993. Reprinted from a manuscript
dated 1970.

[32] Peter D. Mosses. A foreword to ‘Fundamental concepts in programming
languages’. Higher-Order and Symbolic Computation, 13(1/2):7–9, 2000.

[33] Chethan R. Murthy. Control operators, hierarchies, and pseudo-classical
type systems: A-translation at work. In Olivier Danvy and Carolyn L. Tal-
cott, editors, Proceedings of the First ACM SIGPLAN Workshop on Con-
tinuations (CW’92), Technical report STAN-CS-92-1426, Stanford Univer-
sity, pages 49–72, San Francisco, California, June 1992.

[34] John C. Reynolds. Definitional interpreters for higher-order programming
languages. In Proceedings of 25th ACM National Conference, pages 717–
740, Boston, Massachusetts, 1972. Reprinted in Higher-Order and Symbolic
Computation 11(4):363–397, 1998, with a foreword [36].

[35] John C. Reynolds. The discoveries of continuations. Lisp and Symbolic
Computation, 6(3/4):233–247, 1993.

[36] John C. Reynolds. Definitional interpreters revisited. Higher-Order and
Symbolic Computation, 11(4):355–361, 1998.

[37] Guy L. Steele Jr. Rabbit: A compiler for Scheme. Master’s thesis, Artificial
Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge,
Massachusetts, May 1978. Technical report AI-TR-474.

[38] Christopher Strachey. Fundamental concepts in programming languages.
International Summer School in Computer Programming, Copenhagen,
Denmark, August 1967. Reprinted in Higher-Order and Symbolic Com-
putation 13(1/2):11–49, 2000, with a foreword [32].

[39] Hayo Thielecke. An introduction to Landin’s “A generalization of jumps
and labels”. Higher-Order and Symbolic Computation, 11(2):117–124, 1998.

[40] Hayo Thielecke. Comparing control constructs by double-barrelled CPS.
Higher-Order and Symbolic Computation, 15(2/3):141–160, 2002.

26

Recent BRICS Report Series Publications

RS-06-4 Olivier Danvy and Kevin Millikin. A Rational Deconstruction
of Landin’s J Operator. February 2006. ii+26 pp. To appear in
the post-reviewed proceedings of the 17th International Work-
shop on theImplementation and Application of Functional Lan-
guages(IFL’05), Dublin, Ireland, September 2005.

RS-06-3 Małgorzata Biernacka and Olivier Danvy. A Concrete Frame-
work for Environment Machines. February 2006. ii+29 pp. To
appear in the ACM Transactions on Computational Logic. Su-
persedes BRICS RS-05-15.

RS-06-2 Mikkel Baun Kjærgaard and Jonathan Bunde-Pedersen. A
Formal Model for Context-Awareness. February 2006. 26 pp.

RS-06-1 Luca Aceto, Taolue Chen, Willem Jan Fokkink, and Anna
Ingólfsdóttir. On the Axiomatizability of Priority. January 2006.
25 pp.

RS-05-38 Małgorzata Biernacka and Olivier Danvy. A Syntactic Corre-
spondence between Context-Sensitive Calculi and Abstract Ma-
chines. December 2005. iii+39 pp. Revised version of BRICS
RS-05-22.

RS-05-37 Gerth Stølting Brodal, Kanela Kaligosi, Irit Katriel, and Mar-
tin Kutz. Faster Algorithms for Computing Longest Common
Increasing Subsequences. December 2005. 16 pp.

RS-05-36 Dariusz Biernacki, Olivier Danvy, and Chung-chieh Shan.On
the Static and Dynamic Extents of Delimited Continuations. De-
cember 2005. ii+33 pp. To appear in the journalScience of
Computer Programming. Supersedes BRICS RS-05-13.

RS-05-35 Kristian Støvring.Extending the Extensional Lambda Calculus
with Surjective Pairing is Conservative. November 2005. 19 pp.

RS-05-34 Henning Korsholm Rohde.Formal Aspects of Polyvariant Spe-
cialization. November 2005. 27 pp.

RS-05-33 Luca Aceto, Willem Jan Fokkink, Anna Inǵolfsdóttir, and
Sumit Nain. Bisimilarity is not Finitely Based over BPA with
Interrupt. October 2005. 33 pp. This paper supersedes BRICS
Report RS-04-24. An extended abstract of this paper appeared
in Algebra and Coalgebra in Computer Science, 1st Conference,
CALCO 2005, Swansea, Wales, 3–6 September 2005, Lecture
Notes in Computer Science 3629, pp. 54–68, Springer-Verlag,
2005.

