
BRICS
Basic Research in Computer Science

A Concrete Framework for
Environment Machines

Małgorzata Biernacka
Olivier Danvy

BRICS Report Series RS-06-3

ISSN 0909-0878 February 2006

B
R

IC
S

R
S

-06-3
B

iernacka
&

D
anvy:

A
C

oncrete
F

ram
ew

ork
for

E
nvironm

entM
achines

Copyright c© 2006, Małgorzata Biernacka & Olivier Danvy.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
IT-parken, Aabogade 34
DK–8200 Aarhus N
Denmark
Telephone: +45 8942 9300
Telefax: +45 8942 5601
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/06/3/

A Concrete Framework for Environment Machines∗

Ma lgorzata Biernacka and Olivier Danvy

BRICS†

Department of Computer Science
University of Aarhus‡

February 3, 2006

Abstract

We materialize the common understanding that calculi with explicit substitu-
tions provide an intermediate step between an abstract specification of substi-
tution in the lambda-calculus and its concrete implementations. To this end,
we go back to Curien’s original calculus of closures (an early calculus with
explicit substitutions), we extend it minimally so that it can also express one-
step reduction strategies, and we methodically derive a series of environment
machines from the specification of two one-step reduction strategies for the
lambda-calculus: normal order and applicative order. The derivation extends
Danvy and Nielsen’s refocusing-based construction of abstract machines with
two new steps: one for coalescing two successive transitions into one, and the
other for unfolding a closure into a term and an environment in the resulting
abstract machine. The resulting environment machines include both the Kriv-
ine machine and the original version of Krivine’s machine, Felleisen et al.’s CEK
machine, and Leroy’s Zinc abstract machine.

∗To appear in the ACM Transactions on Computational Logic.
†Basic Research in Computer Science (www.brics.dk),
funded by the Danish National Research Foundation.

‡IT-parken, Aabogade 34, DK-8200 Aarhus N, Denmark.
Email: {mbiernac,danvy}@brics.dk

i

Contents

1 Introduction 1

2 One-step reduction in a calculus of closures 3
2.1 Curien’s calculus of closures . 3
2.2 A minimal extension to Curien’s calculus of closures 4
2.3 Specification of the normal-order reduction strategy 7
2.4 Specification of the applicative-order reduction strategy 7
2.5 Correspondence with the λ-calculus . 8

3 From normal-order reduction to call-by-name environment machine 8
3.1 A reduction semantics for normal order 9

3.1.1 Reduction semantics . 9
3.1.2 A normal-order reduction semantics for the λρ̂-calculus 10
3.1.3 Decomposition . 10
3.1.4 Contraction . 11
3.1.5 Plugging . 11
3.1.6 One-step reduction . 11
3.1.7 Reduction-based evaluation . 11

3.2 A pre-abstract machine . 12
3.3 A staged abstract machine . 13
3.4 An eval/apply abstract machine . 14
3.5 A push/enter abstract machine . 14
3.6 A push/enter abstract machine for the λρ-calculus 14
3.7 An environment machine for the λ-calculus 15
3.8 Correctness . 15
3.9 Correspondence with the λ-calculus . 16

4 From applicative-order reduction to call-by-value environment ma-
chine 16
4.1 The reduction semantics for left-to-right applicative order 16
4.2 From evaluation function to environment machine 17
4.3 Correctness and correspondence with the λ-calculus 18

5 A notion of context-sensitive reduction 18
5.1 Normal order: variants of Krivine’s machine 19

5.1.1 The Krivine machine . 19
5.1.2 The original version of Krivine’s machine 20
5.1.3 An adjusted version of Krivine’s machine 20

5.2 Right-to-left applicative order: variants of the Zinc machine 20

6 A space optimization for call-by-name evaluation 22

7 Actual substitutions, explicit substitutions, and environments 22
7.1 A derivational taxonomy of abstract machines 22
7.2 Reversibility of the derivation steps . 25

8 Conclusion 25

ii

1 Introduction

The Krivine machine and the CEK machine are probably the simplest examples of
abstract machines—i.e., first-order state-transition functions [37]—implementing an
evaluation function of the λ-calculus [16, 24, 30]. Like many other abstract machines
for languages with binding constructs, they are environment-based, i.e., roughly, one
component of each machine configuration stores terms that are substituted for free
variables during the process of evaluation. The transitions of each machine provide
an explicit way of handling substitution. In contrast, the traditional presentations of
the λ-calculus [9, page 9] [6, page 51] implicitly specify the β-rule using a meta-level
notion of substitution:

(λx.t0) t1 → t0{t1/x}
On the right-hand side of this rule, all the free occurrences of x in t0 are simulta-
neously replaced by t1 (which may require auxiliary α-conversions to avoid variable
capture). Most implementations, however, do not realize the β-rule using actual sub-
stitutions. Instead, they keep an explicit representation of what should have been
substituted and leave the term untouched. This environment technique is due to
Hasenjaeger in logic [43, § 54] and to Landin in computer science [32]. In logic, it
makes it possible to reason by structural induction over λ-terms (since they do not
change across β-reduction), and in computer science, it makes it possible to compile
λ-terms (since they do not change at run time).

To bridge the two worlds of actual substitutions and explicit representations of
what should have been substituted, various calculi of ‘explicit substitutions’ have
been proposed [1, 12, 13, 29, 34, 41, 42]. The idea behind explicit substitutions is to
incorporate the notion of substitution into the syntax of the language and then specify
suitable rewrite rules that realize it.

In these calculi, the syntax is extended with a ‘closure’ (the word is due to Landin
[32]), i.e., a term together with its lexical environment. Such an environment is hereby
referred to as ‘substitution’ to follow tradition [1, 12]. Moreover, variables are often
represented with de Bruijn indices [21] (i.e., lexical offsets in compiler parlance [38])
rather than explicit names; this way, substitutions can be conveniently regarded as
lists and the position of a closure in such a list indicates for which variable this closure
is to be substituted.

Thus, in a calculus of explicit substitutions, β-reduction is specified using one rule
for extending the substitution with a closure to be substituted, such as

((λt)[s]) c → t[c · s],

where c is prepended to the list s, and another rule that replaces a variable with the
corresponding closure taken from the substitution, such as

i[s] → c,

where c is the ith element of the list s.
Calculi of explicit substitutions come in two flavors: weak calculi, typically used

to express weak normalization (evaluation); and strong calculi, that are expressive
enough to allow strong normalization. The greater power of strong calculi comes from
a richer set of syntactic constructs forming substitutions (for instance, substitutions
can be composed, and indices can be lifted). In this article, we consider weak calculi.

1

This work: We present a simple method for deriving an environment machine from
the specification of a one-step reduction strategy in a weak calculus of closures. The
method consists in ‘refocusing’ the evaluation function [20], coalescing two steps into
one, and unfolding the data type of closures.

We first consider Curien’s original calculus of closures λρ [12]. Curien argues that
his calculus mediates between the standard λ-calculus and its implementations via
abstract machines. He illustrates his argument by constructing the Krivine machine
from a multi-step normal-order reduction strategy.

We observe, however, that one-step reductions cannot be expressed in λρ and
therefore in Section 2, we propose a minimal extension—the λρ̂-calculus—to make
it capable of expressing such computations. In Section 3, we present a detailed
derivation of the Krivine machine [10, 12, 27] from the specification of the normal-
order one-step strategy in λρ̂. In Section 4, we outline the derivation of its applicative-
order analog, the CEK machine [24]. In Section 5, we outline the derivation of the
original version of Krivine’s machine [31] and of its applicative-order analog, which
we identify as Leroy’s Zinc abstract machine [33]. In Section 6, we consider a space
optimization for call by name that originates in Algol 60, and we characterize it as
the machine counterpart of an extra contraction rule in the λρ̂-calculus. In Section 7,
we draw a bigger picture before concluding in Section 8.

Prerequisites and notation: We assume a basic familiarity with the λ-calculus,
explicit substitutions, and abstract machines [12]. We also follow standard usage and
overload the word “closure” (as in: a term together with a substitution, a reflexive
and transitive closure, a compatible closure, and also a closed term) and the word
“step” (as in: a derivation step, a decomposition step, and one-step reduction).

Reduction in the λ-calculus: As a reference point, let us specify the one-step
and multi-step reduction relations in the standard λ-calculus.

We first recall the formulation of the λ-calculus with de Bruijn indices. Terms
are built according to the following grammar:

t ::= i | t t | λt,

where i ranges over natural numbers (greater than 0).
In the λ-calculus, one-step reduction is defined as the compatible closure of the

notion of reduction given by the β-rule [6, Section 3.1]:

(β) (λt0) t1 → t0{t1/1}

where t0{t1/1} is a meta-level substitution operation (with suitable reindexing of
variables). As for the compatible closure, it is built according to the following com-
patibility rules:

(ν)
t0 → t′0

t0 t1 → t′0 t1
(µ)

t1 → t′1
t0 t1 → t0 t′1

(ξ)
t → t′

λt → λt′

Weak (nondeterministic) subsystems are obtained by discarding the ξ-rule. The
usual deterministic strategies are obtained as follows:

2

• The normal-order strategy is obtained by a further restriction, disallowing also
the right-compatibility rule (µ). In effect, one obtains the following normal-
order one-step reduction strategy for the λ-calculus, producing weak head nor-
mal forms:

(β) (λt0) t1 →n t0{t1/1}

(ν)
t0 →n t′0

t0 t1 →n t′0 t1

Alternatively, the normal-order strategy can be expressed by the following rule:

t0 →∗
n λt′0

t0 t1 →n t′0{t1/1}
A rule of this form specifies a multi-step reduction strategy (witness the reflex-
ive, transitive closure used in the premise).

• The applicative-order strategy imposes a restriction on the β-rule:

(βv) (λt0) t1 →v t0{t1/1} if t1 is a value

Values are variables (de Bruijn indices) and λ-abstractions.

The following restriction on the right-compatibility rule (µ) makes the reduction
strategy deterministically proceed from left to right:

(ν)
t0 →v t′0

t0 t1 →v t′0 t1

(µ)
t1 →v t′1

t0 t1 →v t0 t′1
if t0 is a value

The following restriction on the left-compatibility rule (ν) makes the reduction
strategy deterministically proceed from right to left:

(ν)
t0 →v t′0

t0 t1 →v t′0 t1
if t1 is a value

(µ)
t1 →v t′1

t0 t1 →v t0 t′1

2 One-step reduction in a calculus of closures

In this section we first briefly review Curien’s original calculus of closures λρ [12], and
then present an extension of λρ that facilitates the specification of one-step reduc-
tion strategies. We illustrate the power of the extended calculus with the standard
definitions of normal-order and applicative-order strategies.

2.1 Curien’s calculus of closures

The language of λρ [12] has three syntactic categories: terms, closures and substitu-
tions:

(Term) t ::= i | t t | λt
(Closure) c ::= t[s]

(Substitution) s ::= • | c · s

3

Terms are defined as in the λ-calculus with de Bruijn indices. A λρ-closure is a pair
consisting of a λ-term and a λρ-substitution, which itself is a finite list of λρ-closures
to be substituted for free variables in the λ-term. We abbreviate c1 · (c2 · (c3 · . . . (cm ·
•) . . .)) as c1 · · · cm.

The weak reduction relation
ρ→ is specified by the following rules:

(Eval)
t0[s]

ρ→∗ (λt′0)[s′]

(t0 t1)[s]
ρ→ t′0[(t1[s]) · s′]

(Var) i[c1 · · · cm]
ρ→ ci if i ≤ m

(Env)
c1

ρ→∗ c′1 . . . cm
ρ→∗ c′m

t[c1 · · · cm]
ρ→ t[c′1 · · · c′m]

where
ρ→ ∗ is the reflexive, transitive closure of

ρ→. Reductions are performed on
closures, and not on individual terms. The grammar of weak head normal forms is
as follows:

cnf ::= (λt)[s] | (i t1 . . . tm)[s],

where i is greater than the length of s. If we restrict ourselves to considering only
closures with no free variables (i.e., closures t[s] whose term t is closed by the substi-
tution s), then weak head normal forms are closures whose term is an abstraction.

The rules of the calculus are nondeterministic and can be restricted to define
a specific deterministic reduction strategy. For instance, the normal-order strategy
(denoted

ρ→n) is obtained by restricting the rules to (Eval) and (Var). This restriction
specifies a multi-step reduction strategy because of the transitive closure used in the
(Eval) rule.

2.2 A minimal extension to Curien’s calculus of closures

The λρ-calculus is not expressive enough to specify one-step reduction because the
specification of one-step reduction requires a way to “combine” intermediate results
of computation—here, closures—to form a new closure that can be reduced further.
In λρ, there is no such possibility. A simple solution is to extend the syntax of closures
with a construct denoting closure application. We denote it simply by juxtaposition:

(Term) t ::= i | t t | λt
(Closure) c ::= t[s] | c c

(Substitution) s ::= • | c · s
With the extended syntax we are now in position to define the one-step reduction

relation as the compatible closure of the notion of (a closure-based variant of) β-
reduction:

(β) ((λt)[s]) c
bρ→ t[c · s]

(ν)
c0

bρ→ c′0

c0 c1
bρ→ c′0 c1

(µ)
c1

bρ→ c′1

c0 c1
bρ→ c0 c′1

(Var) i[c1 · · · cm]
bρ→ ci if i ≤ m

(App) (t0 t1)[s]
bρ→ (t0[s]) (t1[s])

(Sub)
ci

bρ→ c′i

t[c1 · · · ci · · · cm]
bρ→ t[c1 · · · c′i · · · cm]

for i ≤ m

4

The λρ̂-calculus is nondeterministic and confluent. The following proposition formal-
izes the simulation of λρ reductions in λρ̂ and vice versa.

Proposition 1 (Simulation). Let c0 and c1 be λρ-closures. Then the following
properties hold:

a. If c0
ρ→ c1, then c0

bρ→∗ c1.

b. If c0
bρ→∗ c1, then c0

ρ→∗ c1.

Proof. The proofs are done by induction:

Property a: We define the complexity of derivations c0
ρ→ ∗ c1 in λρ as follows:

the complexity of a multiple-step derivation is the sum of the complexities of
all its steps. (In particular, 0-step derivations have complexity 0.) For one-
step derivations, the complexity of a derivation starting with (Eval) or (Env)
is defined as the maximum of the complexities of its immediate subderivations
augmented by 1, and the complexity of an instance of (Var) is 1.

By induction on the complexity of derivations, we prove that if c0
ρ→∗ c1, then

c0
bρ→∗ c1. From this, Property a. follows.

For n = 0, it is trivial. For the inductive step n+1, we note that the derivation
c0

ρ→∗ c1 has at least one step: c0
ρ→ c′0

ρ→∗ c1, and the complexity of c0
ρ→ c′0 is

at most n+1. We prove that c0
bρ→∗ c′0 by distinguishing three cases, depending

on the rule applied in the first step:

Case (Eval). Then c0 is (t0 t1)[s] and c′0 is t′0[(t1[s]) ·s′], with t0[s]
ρ→∗ (λt′0)[s′].

We then know that the derivation t0[s]
ρ→∗ (λt′0)[s′] has complexity ≤ n.

Then by induction hypothesis, t0[s]
bρ→ ∗ (λt′0)[s′]. Hence we obtain the

following reduction sequence in λρ̂, where the first step is an application
of (App), and the last one is an application of (β):

(t0 t1)[s]
bρ→ (t0[s]) (t1[s])

bρ→∗ ((λt′0)[s′]) (t1[s])
bρ→ t′0[(t1[s]) · s′].

Case (Var). This step is directly simulated by (Var) in λρ̂.

Case (Env). Then c0 is t[c1 · · · cm] and c′0 is t[c′1 · · · c′m], with ci
ρ→∗ c′i for all

1 ≤ i ≤ m. By the definition of complexity, each of the subderivations
ci

ρ→ ∗ c′i is of complexity not greater than n. Hence, by the induction

hypothesis, ci
bρ→∗ c′i for all i, and successively applying (Sub) in λρ̂ yields

t[c1 · · · cm]
bρ→∗ t[c′1 · · · cm]

bρ→∗ · · · bρ→∗ t[c′1 · · · c′m].

Now we can apply the induction hypothesis to the remaining reduction sequence
c′0

ρ→∗ c1, whose complexity is at most n, and we obtain a complete simulation
of c0

ρ→ c′0
ρ→∗ c1 in λρ̂.

Property b: For the proof of this property we need the following three lemmas.

5

Lemma 1. If c0 is a λρ-closure and c0
bρ→∗ t[s], then there exists a λρ-closure t[s0]

such that c0
bρ→ ∗

no t[s0] and t[s0]
bρ→ ∗

Sub t[s], where
bρ→ ∗

no denotes the normal order
reduction strategy in λρ̂ obtained by dropping the reduction rules (Sub) and (µ), and
bρ→∗

Sub denotes a reduction sequence consisting only of (Sub) steps.

Proof. The proof proceeds by induction on the complexity of the derivation c0
bρ→∗ t[s]

along the lines of an analogous property for Curien’s λρ-calculus [12, Lemma 2.2]. To
this end, we use an intermediate calculus λρ̃ obtained from λρ̂ by replacing the (Sub)
rule by an analog of the (Env) rule of the λρ-calculus (i.e., we can collect in one step
a number of (Sub)-reductions). We immediately see that any reduction sequence in
λρ̂ can be simulated in λρ̃ and vice versa. We then prove the above lemma for λρ̃,
using the measure of complexity of (Env) derivations as in the λρ-calculus.

In the proofs of Lemmas 1 and 2 we make use of the following observation: in a
reduction sequence of the form

(t0[s]) (t1[s])
bρ→∗ t′[s′]

the rule (β) must be applied at some point, because (β) is the only rule that trans-
forms a composition of closures into a single closure. Hence, within such a derivation,
t0[s] must reduce to a value, and there must be a (β) reduction applied to t1[s] (pos-
sibly also reduced).

Lemma 2. If c0 and c1 are λρ-closures, and c0
bρ→∗

no c1, then c0
ρ→∗ c1.

Proof. By induction on the length of the derivation c0
bρ→∗

no c1. For the inductive case,

assume c0
bρ→no c′0

bρ→∗
no c1 of length n + 1. In the first step, two rules can be applied:

(Var) and (App). The former case follows immediately from the induction hypothesis.
In the latter case: according to (App), c0 = (t0t1)[s] and c′0 = (t0[s])(t1[s]). Analyzing
the reduction rules, we observe that in the subsequent reduction sequence the rule
(β) must be applied. Hence, we have t0[s]

bρ→∗
no (λt′0)[s0] of length k1, and

c′0
bρ→∗

no ((λt′0)[s0]) (t1[s])
bρ→ t′0[(t1[s]) · s0]

bρ→∗
no c1,

where the length of t′0[(t1[s]) · s0]
bρ→∗

no c1 is k2 and k1 + 1 + k2 = n. It is easy to see
that if we start with a λρ-closure, then using the normal order reduction strategy,
(λt′0)[s0] must also be a λρ-closure. By induction hypothesis then t0[s]

ρ→∗ (λt′0)[s0],
hence c0 = (t0 t1)[s]

ρ→ t′0[(t1[s]) · s0] by (Eval), and t′0[(t1[s]) · s0]
ρ→∗ c1 again by

induction hypothesis.

Using these two lemmas, we can show that the reduction sequence in λρ̂ using
only (Sub) steps can be simulated in λρ as well.

Lemma 3. If c and c′ are λρ-closures, and c
bρ→∗

Sub c′, then c
ρ→∗ c′.

Proof. By induction on the structure of c′, using Lemmas 1 and 2.

6

Putting the three lemmas together, we can show that for any λρ-closures c0 and c1

such that c0
bρ→∗ c1, the reduction sequence can be reordered so that we first follow the

normal order strategy and then apply the necessary (Sub)-reductions (by Lemma 1).
By Lemmas 2 and 3, each of the two reduction sequences can then be simulated in
the λρ-calculus.

2.3 Specification of the normal-order reduction strategy

The normal-order strategy is obtained by restricting λρ̂ to the following rules:

(β) ((λt)[s]) c
bρ→n t[c · s]

(ν)
c0

bρ→n c′0

c0 c1
bρ→n c′0 c1

(Var) i[c1 · · · cm]
bρ→n ci if i ≤ m

(App) (t0 t1)[s]
bρ→n (t0[s]) (t1[s])

We consider only closed terms, and hence the side condition on i can be omitted.
(We omit it in Sections 3 and 5.1.)

Let
bρ→n

∗ (the call-by-name evaluation relation) denote the reflexive, transitive

closure of
bρ→n. The grammar of values and substitutions for call-by-name evaluation

reads as follows:
(Value) v ::= (λt)[s]

(Substitution) s ::= • | c · s

2.4 Specification of the applicative-order reduction strategy

Similarly, the left-to-right applicative-order strategy is obtained by restricting λρ̂ to
the following rules:

(β) ((λt)[s]) c
bρ→v t[c · s] if c is a value

(ν)
c0

bρ→v c′0

c0 c1
bρ→v c′0 c1

(µ)
c1

bρ→v c′1

c0 c1
bρ→v c0 c′1

if c0 is a value

(Var) i[c1 · · · cm]
bρ→v ci if i ≤ m

(App) (t0 t1)[s]
bρ→v (t0[s]) (t1[s])

We consider only closed terms, and hence the side condition on i can be omitted.
(We omit it in Sections 4 and 5.2.)

Let
bρ→v

∗ (the call-by-value evaluation relation) denote the reflexive, transitive

closure of
bρ→v. The grammar of values and substitutions for call-by-value evaluation

reads as follows:
(Value) v ::= (λt)[s]

(Substitution) s ::= • | v · s
Under call by value, both sub-components of any application c0 c1 (i.e., both c0 and
c1) are evaluated. We consider left-to-right evaluation (i.e., c0 is evaluated, and then
c1) in Section 4 and right-to-left evaluation in Section 5.2.

7

2.5 Correspondence with the λ-calculus

In order to relate values in the λ-calculus with values in the language of closures,
we define a function σ that forces all the delayed substitutions in a λρ̂-closure. The
function takes a closure and a number k indicating the current depth of the processed
term (with respect to the number of surrounding λ-abstractions), and returns a λ-
term:

σ(i[s], k) =




i if i ≤ k
σ(ci−k, k) if k < i ≤ m + k and s = c1 · · · cm

i−m if i > m + k and s = c1 · · · cm

σ((t0 t1)[s], k) = (σ(t0[s], k)) (σ(t1[s], k))
σ((λt)[s], k) = λ(σ(t[s], k + 1))

σ(c0 c1, k) = σ(c0, k) σ(c1, k)

3 From normal-order reduction
to call-by-name environment machine

We present a detailed and systematic derivation of an abstract machine for call-by-
name evaluation in the λ-calculus, starting from the specification of the normal-order
reduction strategy in the λρ̂-calculus. We first follow the steps outlined by Danvy
and Nielsen in their work on refocusing [20]:

Section 3.1: We specify the normal-order reduction strategy in the form of a reduc-
tion semantics, i.e., with a one-step reduction function specified as decomposing
a non-value term into a reduction context and a redex, contracting this redex,
and plugging the contractum into the context. As is traditional, we also specify
evaluation as the transitive closure of one-step reduction.

Section 3.2: We replace the combination of plugging and decomposition by a refocus
function that iteratively goes from redex site to redex site in the reduction
sequence. The resulting ‘refocused’ evaluation function is the transitive closure
of the refocus function and takes the form of a ‘pre-abstract machine.’

Section 3.3: We merge the definitions of the transitive closure and the refocus func-
tion into a ‘staged abstract machine’ that implements the reduction rules and
the compatibility rules of the λρ̂-calculus with two separate transition functions.

Section 3.4: We inline the transition function implementing the reduction rules.
The result is an eval/apply abstract machine consisting of an ‘eval’ transition
function dispatching on closures and an ‘apply’ transition function dispatching
on contexts.

Section 3.5: We inline the apply transition function. The result is a ‘push/enter’
abstract machine.

We then simplify and transform the push/enter abstract machine:

Section 3.6: Observing that in a reduction sequence, an (App) reduction step is
always followed by a decomposition step, we coalesce these two steps into one.

8

This shortcut makes the machine operate in the λρ-calculus instead of the λρ̂-
calculus.

Section 3.7: We unfold the data type of closures, making the λρ machine oper-
ate over two components—a term and a substitution—instead of over one—a
closure. The substitution component is the traditional environment of environ-
ment machines, and the resulting machine is an environment machine operating
in the λ-calculus. This machine coincides with the Krivine machine [10,12,27].
(The original version of Krivine’s machine [30, 31] is a bit more complicated,
and we treat it in Section 5.)

In Section 3.8, we state the correctness of the Krivine machine with respect to eval-
uation in the λρ̂-calculus, and in Section 3.9 we get back to the λ-calculus.

3.1 A reduction semantics for normal order

3.1.1 Reduction semantics

A reduction semantics [22,23] consists of a grammar of terms from a source language,
syntactic notions of value and redex, a collection of contraction rules, and a reduction
strategy. This reduction strategy is embodied in a grammar of reduction contexts
(terms with a hole as induced by the compatibility rules) and a plug function mapping
a term and a context into a new term. One-step reduction of a non-value term consists
in

1. decomposing the term into a redex and a reduction context,

2. contracting the redex, and

3. plugging the contractum in the reduction context.

In some reduction semantics, non-value terms are uniquely decomposed into a
redex and a context. Decomposition can then be implemented as a function mapping
a non-value term to a redex and a reduction context. Danvy and Nielsen have shown
that together with the unique decomposition property, the following property of a
reduction semantics is sufficient to define a decomposition function by induction on
terms and reduction contexts [20, Figure 2, page 8]:

Property 1. For each syntactic construct building a term out of n subterms, there is
a number 0 ≤ i ≤ n and a fixed traversal order of subterms encoded in the grammar
of the reduction contexts for this construct such that the holes of these contexts are
precisely the positions of the i subterms. Furthermore, a term with all the chosen i
subterms reduced to values is either a value or a redex,1 but not both.

Furthermore, if the redexes do not overlap, then the contraction rules can be
implemented as a function. This contraction function maps a redex into the corre-
sponding contractum.

1More precisely, such a term can be a potential redex, i.e., a proper redex or a “stuck term.” For
simplicity, we omit this issue here, since the reduction strategies we consider do not contain stuck
terms.

9

3.1.2 A normal-order reduction semantics for the λρ̂-calculus

A normal-order reduction semantics for the λρ̂-calculus can be obtained from the
specification of Section 2.3 as follows: the syntactic notion of value and the collection
of reduction rules are already specified in Section 2.3, the grammar of redexes reads

(Redex) r ::= v c | i[s] | (t0 t1)[s],

and the compatibility rule (ν) induces the following grammar of reduction contexts
(written inside out):

C ::= [] | C [[] c]

For clarity of presentation, in the rest of this article we use the following abstract-
syntax notation, where a context C [[] c] is represented by a tagged pair ARG(c, C):

(Context) C ::= [] | ARG(c, C)

In the present case, all the conditions mentioned in Section 3.1.1 are satisfied; in
particular, the traversal order of subterms is leftmost innermost. We can therefore
define the following three functions:

decompose : Closure → Value + (Redex× Context)
contract : Redex → Closure

plug : Closure× Context → Closure

3.1.3 Decomposition

We define decompose as a transition function mapping a non-value closure to a redex
and a context. For simplicity, we generalize this function to arbitrary closures by
making it map value closures to themselves:

decompose : Closure → Value + (Redex× Context)
decompose c = decompose′ (c, [])

decompose′ : Closure× Context → Value + (Redex× Context)
decompose′ (i[s], C) = (i[s], C)

decompose′ ((λt)[s], C) = decompose′aux (C , (λt)[s])
decompose′ ((t0 t1)[s], C) = ((t0 t1)[s], C)

decompose′ (c0 c1, C) = decompose′ (c0, ARG(c1, C))

decompose′aux : Context× Value → Value + (Redex× Context)
decompose′aux ([], v) = v

decompose′aux (ARG(c, C), v) = (v c, C)

The main decomposition function, decompose, uses two auxiliary transition functions
that work according to Property 1:

• decompose′ is passed a closure and a reduction context. It dispatches on the
closure and iteratively builds the reduction context:

– if the current closure is a value, then decompose′aux is called to inspect the
context;

– if the current closure is a redex, then a decomposition is found; and

10

– otherwise, a subclosure of the current closure is chosen to be visited in a
new context.

• decompose′aux is passed a reduction context and a value. It dispatches on the
reduction context: if the current context is empty, then the value is the result
of the function; otherwise, the top constructor of the context is analyzed. In
the present case, there is only one such constructor and no more subclosures
need to be visited since a redex has been found.

3.1.4 Contraction

We define contract by cases, as a straightforward implementation of the contraction
rules:

contract : Redex → Closure
contract (((λt)[s]) c) = t[c · s]
contract (i[c1 · · · cm]) = ci

contract ((t0 t1)[s]) = (t0[s]) (t1[s])

3.1.5 Plugging

We define plug by structural induction over the reduction context. It iteratively peels
off the context and thus also takes the form of a transition function:

plug : Closure× Context → Closure
plug (c, []) = c

plug (c0, ARG(c1, C)) = plug (c0 c1,C)

3.1.6 One-step reduction

Given these three functions, we can define a one-step reduction function that decom-
poses a non-value closure into a redex and a context, contracts this redex, and plugs
the contractum in the context. For simplicity, we generalize this function to arbitrary
closures by making it map value closures to themselves:

reduce : Closure → Closure
reduce c = case decompose c

of v ⇒ v
| (r, C) ⇒ plug (c,C) where c = contract r

The following proposition is a consequence of the unique-decomposition property.

Proposition 2. For any non-value closure c and for any closure c′, c
bρ→n c′ ⇔

reduce c = c′.

3.1.7 Reduction-based evaluation

Finally, we can define evaluation using the reflexive, transitive closure of one-step
reduction. For simplicity, we use decompose to test whether a value has been reached:

iterate : Value + (Redex× Context) → Value
iterate v = v

iterate (r, C) = iterate (decompose (plug (c,C))) where c = contract r

11

evaluate : Term → Value
evaluate t = iterate (decompose (t[•]))

This evaluation function is partial because a reduction sequence might not terminate.

Proposition 3. For any closed term t and any value v, t[•] bρ→n
∗ v ⇔ evaluate t = v.

3.2 A pre-abstract machine

The reduction sequence implemented by evaluation can be depicted as follows:

◦
decompose

""DD
DD

DD
DD

D ◦
decompose

""DD
DD

DD
DD

D ◦
decompose

""DD
DD

DD
DD

D

◦
contract

// ◦

plug
<<zzzzzzzzz ◦

contract
// ◦

plug
<<zzzzzzzzz ◦

contract
// ◦

At each step, an intermediate term is constructed by the function plug; it is then
immediately decomposed by the subsequent call to decompose. In earlier work [20],
Danvy and Nielsen pointed out that the composition of plug and decompose could be
replaced by a more efficient function, refocus, that would directly go from redex site
to redex site in the reduction sequence:

◦
decompose

""DD
DD

DD
DD

D ◦
decompose

""DD
DD

DD
DD

D ◦
decompose

""DD
DD

DD
DD

D

//____ ◦
contract

// ◦

plug
<<zzzzzzzzz

refocus
//________ ◦

contract
// ◦

plug
<<zzzzzzzzz

refocus
//________ ◦

contract
// ◦

The essence of refocusing for a reduction semantics satisfying the unique decomposi-
tion property is captured in the following proposition:

Proposition 4 (Danvy and Nielsen [15, 20]). For any closure c and reduction
context C ,

decompose (plug (c,C)) = decompose′ (c, C)

The definition of the refocus function is therefore a clone of that of decompose′.
In particular, it involves an auxiliary function refocusaux and takes the form of two
state-transition functions, i.e., of an abstract machine:

refocus : Closure× Context → Value + (Redex× Context)
refocus (i[s], C) = (i[s], C)

refocus ((λt)[s], C) = refocusaux (C , (λt)[s])
refocus ((t0 t1)[s], C) = ((t0 t1)[s], C)

refocus (c0 c1, C) = refocus (c0, ARG(c1, C))

refocusaux : Context× Value → Value + (Redex× Context)
refocusaux ([], v) = v

refocusaux (ARG(c, C), v) = (v c, C)

In this abstract machine, the configurations are pairs of a closure and a context; the
final transitions are specified by refocusaux and by the first and third clauses of refocus;

12

and the initial transition is specified by two clauses of the corresponding ‘refocused’
evaluation function, which reads as follows:

iterate : Value + (Redex× Context) → Value
iterate v = v

iterate (r, C) = iterate (refocus (c, C)) where c = contract r

evaluate : Term → Value
evaluate t = iterate (refocus (t[•], []))

(For the initial call to iterate, we have exploited the double equality decompose(t[•]) =
decompose (plug (t[•], [])) = refocus (t[•], []).)

This evaluation function computes the transitive closure of refocus using the aux-
iliary function iterate as a trampoline [26]. Due to the non-tail call to refocus in
iterate, we refer to this evaluation function as a ‘pre-abstract machine.’

3.3 A staged abstract machine

To transform the pre-abstract machine (i.e., the transitive closure of a state-transition
function) into an abstract machine (i.e., a state-transition function), we distribute
the calls to iterate from the definitions of evaluate and of iterate to the definitions of
refocus and refocusaux:

evaluate : Term → Value
evaluate t = refocus (t[•], [])

iterate : Value + (Redex× Context) → Value
iterate v = v

iterate (r, C) = refocus (c, C) where c = contract r

refocus : Closure× Context → Value + (Redex× Context)
refocus (i[s], C) = iterate (i[s], C)

refocus ((λt)[s], C) = refocusaux (C , (λt)[s])
refocus ((t0 t1)[s], C) = iterate ((t0 t1)[s], C)

refocus (c0 c1, C) = refocus (c0, ARG(c1, C))

refocusaux : Context× Value → Value + (Redex× Context)
refocusaux ([], v) = iterate v

refocusaux (ARG(c, C), v) = iterate (v c, C)

The resulting definitions of evaluate, iterate, refocus, and refocusaux are that of four
mutually recursive transition functions that form an abstract machine. In this ab-
stract machine, the configurations are pairs of a closure and a context, the initial
transition is specified by evaluate, and the final transition in the first clause of iterate.
The compatibility rules are implemented by refocus and refocusaux, and the reduction
rules by the call to contract in the second clause of iterate. We can make this last
point even more manifest by inlining contract in the definition of iterate:

iterate v = v
iterate (i[c1 · · · cm], C) = refocus (ci, C)

iterate ((t0 t1)[s], C) = refocus ((t0[s]) (t1[s]), C)
iterate (((λt)[s]) c, C) = refocus (t[c · s], C)

13

By construction, the machine therefore separately implements the reduction rules
(with iterate) and the compatibility rules (with refocus and refocusaux); for this reason,
we refer to it as a ‘staged abstract machine.’

3.4 An eval/apply abstract machine

As already observed by Danvy and Nielsen in their work on refocusing, inlining
iterate yields an eval/apply abstract machine [35]. Inlining the calls to iterate in the
staged abstract machine yields the following eval/apply machine, where refocus (the
‘eval’ transition function) dispatches on closures and refocusaux (the ‘apply’ function)
dispatches on contexts:

evaluate t = refocus (t[•], [])

refocus (i[c1 · · · cm], C) = refocus (ci, C)
refocus ((λt)[s], C) = refocusaux (C , (λt)[s])

refocus ((t0 t1)[s], C) = refocus ((t0[s]) (t1[s]), C)
refocus (c0 c1, C) = refocus (c0, ARG(c1, C))

refocusaux ([], (λt)[s]) = (λt)[s]
refocusaux (ARG(c, C), (λt)[s]) = refocus (t[c · s], C)

3.5 A push/enter abstract machine

As already observed by Ager et al. [3], inlining the apply transition function in a call-
by-name eval/apply abstract machine yields a push/enter machine: when a function
is entered, its arguments are immediately available on the stack [35]. Inlining the
calls to refocusaux in the eval/apply abstract machine yields the following machine:

evaluate t = refocus (t[•], [])

refocus (i[c1 · · · cm], C) = refocus (ci, C)
refocus ((λt)[s], []) = (λt)[s]

refocus ((λt)[s], ARG(c, C)) = refocus (t[c · s], C)
refocus ((t0 t1)[s], C) = refocus ((t0[s]) (t1[s]), C)

refocus (c0 c1, C) = refocus (c0, ARG(c1, C))

3.6 A push/enter abstract machine for the λρ-calculus

The abstract machine of Section 3.5 only produces an application of closures through
an (App) reduction step (second-to-last clause of refocus). We observe that in a
reduction sequence, an (App) reduction step is always followed by a decomposition
step (last clause of refocus). As a shortcut, we coalesce the two consecutive transitions
into one, replacing the last two clauses of refocus with the following one:

refocus ((t0 t1)[s], C) = refocus (t0[s], ARG(t1[s], C))

The resulting machine never produces any application of closures and therefore works
for the λρ-calculus as well as for the λρ̂-calculus with the grammar of closures re-
stricted to that of λρ.

14

3.7 An environment machine for the λ-calculus

Finally, we unfold the data type of closures. If we read each syntactic category in λρ
as a type, then the type of closures is recursive:

Closure
def= µX.Term× List(X)

and furthermore
Substitution

def= List(Closure).

Hence one unfolding of the type Closure yields Term×Substitution. Therefore, for any
closure t[s] of type Closure, its unfolding gives a pair (t, s) of type Term×Substitution.
We replace each closure in the definition of evaluate and refocus, in Section 3.6, by its
unfolding. Flattening (Term×Substitution)×Context into Term×Substitution×Context
yields the following abstract machine:

v ::= (λt, s)
C ::= [] | ARG((t, s), C)

evaluate : Term → Value
evaluate t = refocus (t, •, [])

refocus : Term× Substitution× Context → Value
refocus (i, (t1, s1) · · · (tm, sm), C) = refocus (ti, si, C)

refocus (λt, s, []) = (λt, s)
refocus (λt, s, ARG((t′, s′), C)) = refocus (t, (t′, s′) · s, C)

refocus (t0 t1, s, C) = refocus (t0, s, ARG((t1, s), C))

We observe that this machine coincides with the Krivine machine [10,12,27], in which
evaluation contexts are treated as last-in, first-out lists (i.e., stacks) of closures. In
particular, the substitution component assumes the role of the environment.

Therefore, unfolding the data type of closures crystallizes the connection between
explicit substitutions in calculi and environments in abstract machines.

3.8 Correctness

We state the correctness of the final result—the Krivine machine—with respect to
evaluation in the λρ̂-calculus.

Theorem 1. For any closed term t in λρ̂,

t[•] bρ→n
∗ (λt′)[s] if and only if evaluate t = (λt′, s).

Proof. The proof relies on the correctness of refocusing [20], and the (trivial) meaning
preservation of each of the subsequent transformations.

The theorem states that the Krivine machine is correct in the sense that it computes
closed weak head normal forms and that it realizes the normal-order strategy in the
λρ̂-calculus, which makes it a call-by-name machine [36]. Furthermore, each of the
intermediate abstract machines is also correct with respect to call-by-name evaluation
in the λρ̂-calculus. Since the reductions according to the normal-order strategy in λρ
can be simulated in λρ̂ (see Proposition 1), as a byproduct we obtain the correctness
of the Krivine machine also with respect to Curien’s original calculus of closures:

15

Corollary 1. For any term t in λρ,

t[•] ρ→n
∗ (λt′)[s] if and only if evaluate t = (λt′, s).

3.9 Correspondence with the λ-calculus

The Krivine machine is generally presented as an environment machine for call-by-
name evaluation in the λ-calculus. The following theorem formalizes this correspon-
dence using the substitution function σ defined in Section 2.5.

Theorem 2 (Correspondence). For any λ-term t, t →∗
n λt′ if and only if

evaluate t = (λt′′, s) and σ((λt′′)[s], 0) = λt′.

Proof. Both implications rely on Corollary 1. The left-to-right implication relies on
the following property, proved by structural induction on t:

If t →n t′, then t[•] bρ→n
∗ c and σ(c, 0) = t′.

In order to prove the converse implication, we observe that if c
bρ→n c′, then either

σ(c, 0) →n σ(c′, 0), if the (β) rule is applied or σ(c, 0) = σ(c′, 0) otherwise. The proof
is done by structural induction on c, using the fact that σ(t[s], j +1){σ(c, 0)/j +1} =
σ(t[c · s], j).

Curien, Hardin and Lévy consider several weak calculi of explicit substitutions
capable of simulating call-by-name evaluation [13]. They relate these calculi to the
λ-calculus with de Bruijn indices in much the same way as we do above. In fact, our
substitution function σ performs exactly σ-normalization in their strong calculus λσ
for the restricted grammar of closures and substitutions of the λρ-calculus, and the
structure of the proof of Theorem 2 is similar to that of their Theorem 3.6 [13]. More
recently, Wand has used a translation U from closures to λ-terms with names that is
an analog of σ, and presented a similar simple proof of the correctness of the Krivine
machine for the λ-calculus with names [44].

4 From applicative-order reduction

to call-by-value environment machine

Starting with the applicative-order reduction strategy specified in Section 2.4, we
follow the same procedure as in Section 3.

4.1 The reduction semantics for left-to-right applicative order

We first specify a reduction semantics for applicative-order reduction. The grammar
of the source language is specified in Section 2.2, the syntactic notion of value and
the collection of reduction rules are specified in Section 2.4, and the compatibility
rules (ν) and (µ) induce the following grammar of reduction contexts:

C ::= [] | C [[] c] | C [v []]

16

Again, for clarity we use an abstract-syntax notation for reduction contexts, extend-
ing the one of Section 3.1 with FUN(v, C) for C [v []]:

(Context) C ::= [] | ARG(c, C) | FUN(v, C)

The redexes do not overlap and the source language satisfies a unique-decomposition
property with respect to the applicative-order reduction strategy. Therefore, as in
Section 3.1 we can define a contraction function, a decomposition function, a plug
function, a one-step reduction function, and an evaluation function.

4.2 From evaluation function to environment machine

We now take the same steps as in Section 3. The reduction semantics of Section 4.1
satisfies Property 1 and the corresponding refocus function is therefore defined as
follows:

refocus : Closure× Context → Value + (Redex× Context)
refocus (i[s], C) = (i[s], C)

refocus ((λt)[s], C) = refocusaux (C , (λt)[s])
refocus ((t0 t1)[s], C) = ((t0 t1)[s], C)

refocus (c0 c1, C) = refocus (c0, ARG(c1, C))

refocusaux : Context× Value → Value + (Redex× Context)
refocusaux ([], v) = v

refocusaux (ARG(c, C), v) = refocus (c, FUN(v, C))
refocusaux (FUN(v′, C), v) = (v′ v, C)

We successively transform the resulting pre-abstract machine into a staged abstract
machine and an eval/apply abstract machine.

The eval/apply abstract machine reads as follows:

evaluate t = refocus (t[•], [])

refocus (i[v1 · · · vm], C) = refocusaux (C , vi)
refocus ((λt)[s], C) = refocusaux (C , (λt)[s])

refocus ((t0 t1)[s], C) = refocus ((t0[s]) (t1[s]), C)
refocus (c0 c1, C) = refocus (c0, ARG(c1, C))

refocusaux ([], v) = v
refocusaux (ARG(c, C), (λt)[s]) = refocus (c, FUN((λt)[s], C))
refocusaux (FUN((λt)[s], C), v) = refocus (t[v · s], C)

As in Section 3.6, we observe that we can shortcut the third and the fourth clauses
of refocus (they are the only producer and consumer of an application of closures,
respectively). We can then unfold the data type of closures, as in Section 3.7, and
obtain an eval/apply environment machine. This environment machine coincides
with Felleisen et al.’s CEK machine [23].

Unlike in Section 3.5, inlining refocusaux does not yield a push/enter architecture
because when a function is entered, its arguments are not immediately available on
the stack but still have to be evaluated. In addition, the resulting transition function
dispatches on all its arguments, like the SECD machine [17, 32].

17

4.3 Correctness and correspondence with the λ-calculus

As in Section 3.8, we state the correctness of the eval/apply machine with respect to
the λρ̂-calculus.

Theorem 3. For any term t in λρ̂,

t[•] bρ→v
∗ (λt′)[s′] if and only if evaluate t = (λt′, s′).

The theorem states that the eval/apply machine is correct in the sense that it com-
putes closed weak head normal forms, and it realizes the applicative-order strategy
in the λρ̂-calculus, which makes it a call-by-value machine [36]. Furthermore, each
of the intermediate abstract machines is also correct with respect to call-by-value
evaluation in the λρ̂-calculus.

The CEK machine is generally presented as an environment machine for call-by-
value evaluation in the λ-calculus. The following theorem formalizes this correspon-
dence, using the substitution function σ defined in Section 2.5.

Theorem 4 (Correspondence). For any λ-term t, t →∗
v λt′ if and only if

evaluate t = (λt′′, s) and σ((λt′′)[s], 0) = λt′.

5 A notion of context-sensitive reduction

The Krivine machine, as usually presented in the literature [1,3,10–12,20,25,27–29,
34, 42, 44], contracts one β-redex at a time. The original version [30, 31], however,
grammatically distinguishes nested λ-abstractions and contracts nested β-redexes in
one step. Similarly, Leroy’s Zinc machine [33] optimizes curried applications.

Krivine’s language of λ-terms reads as follows:

(terms) t ::= i | t t | λnt

for n ≥ 1, and where a nested λ-abstraction λnt corresponds to

n︷ ︸︸ ︷
λλ. . . λ t, i.e., to n

nested λ-abstractions, where t is not a λ-abstraction.
In Krivine’s machine, and using the same notation as in Section 3, (nested) β-

reduction is implemented by the following transition:

refocus (λnt, s, ARG((t1, s1), . . . ARG((tn, sn), C) . . .))
= refocus (t, (tn, sn) · · · (t1, s1) · s, C)

This transition implements a nested β-reduction not just for the pair of terms forming
a β-redex, or even for a tuple of terms forming a nested β-redex, but for a nested
λ-abstraction and the context of its application. The contraction function is therefore
not solely defined over the redex to contract, but over a term and its context: it is
context-sensitive.

In this section, we adjust the definition of a reduction semantics with a contract
function that maps a redex and its context to a contractum and its context. Nothing
else changes in the definition, and therefore the refocusing method still applies. We
first consider normal order, and we show how the Krivine machine arises, how the
original version of Krivine’s machine also arises, and how one can derive a slightly
more perspicuous version of this original version, based on an observation due to
Wand. We then consider applicative order, and we show how the Zinc machine
arises.

18

5.1 Normal order: variants of Krivine’s machine

Let us consider the language of the λρ̂-calculus based on Krivine’s modified grammar
of terms. Together with the language comes the following grammar of reduction
contexts, which is induced by the compatibility rule (ν), just as in Section 3.1:

C ::= [] | ARG(c, C)

Let us adapt the notion of reduction of Section 2.3 for context-sensitive reduction
in λρ̂:

(β+) ((λnt)[s], ARG(c1, . . . ARG(cn, C) . . .))
bρ→n (t[cn · · · c1 · s], C)

(Var) (i[c1 · · · cm], C)
bρ→n (ci, C)

(App) ((t0 t1)[s], C)
bρ→n ((t0[s]) (t1[s]), C)

The new (β+) rule is the only reduction rule that actually depends on the context
(i.e., the context remains unchanged in the other two rules).

We notice that with the context-sensitive notion of reduction we are in position
to express the one-step normal-order strategy already in the λρ-calculus, if we bypass
the construction of closure application in (App) and directly construct the reduction
context obtained in Section 3.6:

(App′) ((t0 t1)[s], C)
bρ→n (t0[s], ARG(t1[s], C)).

In the context-sensitive reduction semantics corresponding to this normal-order
context-sensitive reduction strategy, contract has type Redex× Context → Closure×
Context and the one-step reduction function (see Section 3.1) reads as follows:

reduce c = case decompose c
of v ⇒ v
| (r, C) ⇒ plug (c′,C ′) where (c′, C ′) = contract (r, C)

We then take the same steps as in Section 3. We consider three variants, each of
which depends on the specification of n in each instance of (β+).

5.1.1 The Krivine machine

Here, for each application we choose n to be 1. We then take the same steps as in
Section 3, and obtain the same machine as in Section 3.7, i.e., the Krivine machine.

Therefore, the Krivine machine can be obtained in three ways:

1. using a context-insensitive reduction semantics in λρ̂ (as in Section 3),

2. using a context-sensitive reduction semantics in λρ̂, as in the present section,
and

3. using a context-sensitive reduction semantics in λρ, as in the present section.

Similarly, there are three ways of obtaining an abstract machine for right-to-left
applicative order.

19

5.1.2 The original version of Krivine’s machine

Here, for each application we choose n to be the “arity” of each nested λ-abstraction,
i.e., the number of nested λ’s surrounding a term (the body of the innermost λ-
abstraction) which is not a λ-abstraction.

We then take the same steps as in Section 3, and obtain the same machine as
Krivine [30,31]. As pointed out by Wand [44], however, since the number of arguments
is required to match the number of nested λ-abstractions, the machine becomes stuck
if there are not enough arguments in the context, even though a weak head normal
form exists. We handle this case by adapting the β+-rule as described next.

5.1.3 An adjusted version of Krivine’s machine

Here, for each application we choose n to be the smallest number between the arity of
each nested λ-abstraction and the number of nested applications.2 (So, for example,
n = 1 for (λλt, ARG(c1, [])).)

We then take the same steps as in Section 3, and obtain a version of Krivine’s
machine that directly computes weak head normal forms.

5.2 Right-to-left applicative order: variants of the Zinc ma-
chine

From Landin [32] to Leroy [33], implementors of call-by-value functional languages
have looked fondly upon right-to-left evaluation (i.e., evaluating the actual parameter
before the function part of an application) because of its fit with a stack implemen-
tation: when the function part of a (curried) application yields a functional value,
its parameter(s) is (are) available on top of the stack, as in the call-by-name case. In
this section, we consider right-to-left applicative order and call by value, which as in
the normal order and call-by-name case, give rise to a push/enter abstract machine.

We first adapt the rules of Section 2.4 for context-sensitive reduction in λρ̂. First
of all, the compatibility rules (ν) and (µ), for right-to-left applicative order, induce
the following grammar of contexts:

C ::= [] | C [[] v] | C [c []]

As in Sections 3.1 and 4.1, we introduce a more convenient abstract-syntax notation
for reduction contexts:

(Context) C ::= [] | ARG(v, C) | FUN(c, C)

This grammar differs from the one of Section 4.1 because it is for right-to-left instead
of for left-to-right applicative order; C [[]v] is written ARG(v, C) and C [c[]] is written
FUN(c, C).

2Alternatively, we can handle this case by stating the β+-rule as follows:

(β+) ((λnt)[s], ARG(c1, . . .ARG(cn′ , C)))
bρ→n ((λn′′

t)[cn′′ · · · c1 · s], ARG(cn′′+1, . . . ARG(cn′ , C)))

where n′′ = min(n, n′).

20

The notion of reduction is defined through the following rules:

(β+) ((λnt)[s], ARG(v1, . . . ARG(vn, C) . . .))
bρ→v (t[vn · · · v1 · s], C)

(Var) (i[v1 · · · vm], C)
bρ→v (vi, C)

(App) ((t0 t1)[s], C)
bρ→v ((t0[s]) (t1[s]), C)

Similarly to the call-by-name case, the only context-sensitive reduction rule is
(β+) (we specify n as in Section 5.1.3).

As in Section 5.1.1, we notice that with the context-sensitive notion of reduction
we are in position to express the one-step applicative-order strategy in the λρ-calculus
if we replace (App) with a context-sensitive rule as follows:

(App′) ((t0 t1)[s], C)
bρ→v (t1[s], FUN(t0[s], C)).

We now take the same steps as in Section 4. The reduction semantics of Sec-
tion 4.1, adapted to the grammar of contexts and to the reduction rules above,
satisfies Property 1 and the corresponding refocus function is defined as follows:

refocus : Closure× Context → Value + (Redex× Context)
refocus (i[s], C) = (i[s], C)

refocus ((λnt)[s], C) = refocusaux (C , (λnt)[s])
refocus ((t0 t1)[s], C) = refocus (t1[s], FUN(t0[s], C))

refocusaux : Context× Value → Value + (Redex× Context)
refocusaux ([], v) = v

refocusaux (FUN(c, C), v) = refocus (c, ARG(v, C))
refocusaux (ARG(v′, C), v) = (v, ARG(v′, C))

We then successively transform the resulting pre-abstract machine into a staged ab-
stract machine, an eval/apply abstract machine, a push/enter abstract machine, and
a push/enter abstract machine with unfolded closures.

The resulting environment machine reads as follows:

evaluate t = refocus (t, •, [])

refocus (i, (t1, s1) · · · (tm, sm), C) = refocus (ti, si, C)
refocus (λnt, s, []) = (λnt, s)

refocus (λnt, s, FUN((t′, s′), C)) = refocus (t′, s′, ARG((λnt, s), C))
refocus (λnt, s, ARG(v1, . . . ARG(vn, C) . . .)) = refocus (t, vn · . . . · v1 · s, C)

refocus (t0 t1, s, C) = refocus (t1, s, FUN((t0, s), C))

This machine corresponds to an instance of Leroy’s Zinc machine for the pure λ-
calculus [33, Chapter 3], with the proviso that it operates directly on λ-terms instead
of over an instruction set (which has been said to be the difference between an abstract
machine and a virtual machine [2]). Moreover, in the Zinc machine the sequence of
values on the stack (denoted here by ARG(v1, . . . ARG(vn, C) . . .)) is delimited by a
stack mark that separates already evaluated terms from unevaluated ones. The Zinc
machine was developed independently of Krivine’s machine and to the best of our
knowledge the reconstruction outlined here is new.

21

6 A space optimization for call-by-name evaluation

In the compilation model of ALGOL 60, which is a call-by-name programming lan-
guage, identifiers occurring as actual parameters are compiled by (1) looking up their
value in the current environment, and (2) passing this value to the callee [38, Sec-
tion 2.5.4.10, pages 109-110]. The rationale is that under call by name, an identifier
denotes a thunk, so there is no need to create another thunk for it. This compilation
rule avoids a space leak at run time and it is commonly used in implementations of
lazy functional programming languages.

To circumvent the space leak, one extends the Krivine machine with the following
clause for the case where the actual parameter is a variable:

refocus (t0 i, (t1, s1) · · · (tm, sm), C)
= refocus (t0, (t1, s1) · · · (tm, sm), ARG((ti, si), C))

We observe that circumventing the space leak has an analogue in the normal-order
reduction semantics: it corresponds to adding the following contraction rule to the
λρ̂-calculus:

(App′′) (t0 i)[c1 · · · cm]
bρ→n (t0[c1 · · · cm]) ci

This addition shortens the reduction sequence of a given λ-term towards its weak
head normal form.

The context-insensitive reduction semantics: Taking the same steps as in
Section 3 mechanically leads one to the Krivine machine with the space optimization.
Crégut has considered this space-optimized version [10] and Friedman, Ghuloum,
Siek, and Winebarger have measured the impact of this optimization for a lazy version
of the Krivine machine [25].

The context-sensitive reduction semantics: Taking the same steps as in Sec-
tion 3 mechanically leads one to an adjusted version of Krivine’s machine with the
space optimization.

7 Actual substitutions, explicit substitutions, and
environments

The derivations in Sections 3, 4, 5, and 6 hint at a bigger picture that we draw
in Figure 1 and describe in Section 7.1. We then address the reversibility of the
derivation steps in Section 7.2.

7.1 A derivational taxonomy of abstract machines

Let us analyze Figure 1.
The left-most column concerns the reduction and evaluation of terms with actual

substitutions (λ). The second column concerns the reduction and evaluation of terms
with explicit substitutions (λρ̂). The third column concerns the evaluation of terms
with explicit substitutions (λρ). The right-most column concerns the evaluation of
terms using an environment.

22

λ

one-step
reduction
function

reflexive
transitive
closure

���
�
�
�
�

λρ̂

one-step
reduction
function

���
�
�
�
�

λρ environment
machines

evaluation
function

refocus

��

evaluation
function

��
pre-

abstract
machine

distribute

��

pre-
abstract
machine

shortcut //

��

σoo
pre-

abstract
machine

unfold //

��

pre-
abstract
machine

distribute

��

fold
oo

substitutenn

staged
abstract
machine

inline

��

staged
abstract
machine

//

��

oo
staged

abstract
machine

//

��

staged
abstract
machine

inline

��

oo
nn

eval/apply
abstract
machine

inline

��

eval/apply
abstract
machine

//

��

oo
eval/apply
abstract
machine

//

��

eval/apply
abstract
machine

inline

��

oo
nn

push/enter
abstract
machine

push/enter
abstract
machine

shortcut //
σoo

push/enter
abstract
machine

unfold // push/enter
abstract
machinefold

oo

substitutenn

Figure 1: A derivational taxonomy of abstract machines

Reading down each column follows Danvy and Nielsen’s work on refocusing [20].
They show how to go from a reduction-based evaluation function (obtained as the
reflexive-transitive closure of a one-step reduction function) to a pre-abstract ma-
chine, and then to a staged machine, an eval/apply machine, and, for call by name
and right-to-left call by value, a push/enter machine.

The connections between the columns in the 4 × 4-matrix are new. Given a
closure (i.e., a term and a substitution), carrying out the substitution in this term

23

yields a new term. Through this operation (depicted with the short dotted arrow
in the diagram and written σ in Section 2.5), we can go from each of the abstract
machines for λρ̂-closures to the corresponding abstract machine for λ-terms. To go
from each of the abstract machines for λρ̂-closures to the corresponding abstract
machine for λρ-closures, we coalesce the (App) reduction step with the subsequent
decomposition step. To go from each of the abstract machines for λρ-closures to
the corresponding environment machine, we unfold the data type of closures into a
pair of term and substitution (the unfolded substitution acts as the environment of
the machine). Finally, given a term and an environment, carrying out the delayed
substitutions represented by the environment in the term (using σ again) yields a new
term. Through this operation (depicted with the long dotted arrow in the diagram),
we can go from each of the environment machines to the corresponding abstract
machine for λ-terms.

In their original presentation of refocusing [20], Danvy and Nielsen considered
substitution-based machines and followed the first column in the diagram. In Sec-
tions 3 and 5, the derivations follow the second column all the way down to a
push/enter machine, and then across the columns to the right, to the corresponding
push/enter environment machine. In Section 4, we go down the second column to
an eval/apply abstract machine, and then across the columns to the right, to the
corresponding eval/apply environment machine.

In their original presentation of refocusing [20], Danvy and Nielsen observed that
the eval/apply machine with actual substitution corresponding to applicative-order
reduction coincides with Felleisen et al.’s CK machine [23]. In Section 3, we observed
that the push/enter environment machine corresponding to normal-order reduction
coincides with the Krivine machine [10, 12, 27]. In Section 4, we observed that the
eval/apply environment machine corresponding to applicative-order reduction coin-
cides with Felleisen’s et al.’s CEK machine [23]. In Section 5, we observed that
a context-sensitive reduction semantics gives rise to the original version of Kriv-
ine’s machine [31] and to the Zinc machine [33]. In Section 6, we observed that
the space optimization of two families of call-by-name machines corresponds to two
reduction semantics. Obtaining staged abstract machines was one of the goals of
Hardin, Maranget, and Pagano’s study of functional runtime systems using explicit
substitutions [29]; these machines arise mechanically here.

Each of the machines in Figure 1 is thus of independent value. Furthermore, and
as investigated by Danvy and his students in their study of the functional correspon-
dence between compositional evaluation functions and abstract machines [3–5,17], the
eval/apply machines are in defunctionalized form [19, 39] and they can be ‘refunc-
tionalized’ into a continuation-passing evaluation function which itself can be written
in direct style [14]. This direct-style evaluation function implements a big-step op-
erational semantics. Because of the closures, the result is again in defunctionalized
form and can be refunctionalized into an evaluation function. It turns out that the
resulting evaluation functions are compositional and therefore each of them imple-
ments the valuation function of a denotational semantics, where environments are
also used. Put together, the syntactic correspondence between calculi and abstract
machines presented here and the functional correspondence between intensional ab-
stract machines and extensional evaluation functions therefore pave the way from
reduction-based to reduction-free evaluation [15].

24

7.2 Reversibility of the derivation steps

Going from a push/enter machine to the corresponding eval/apply machine or from a
push/enter machine or an eval/apply machine to a staged machine requires a degree
of insight [29]. Going from a staged machine to a pre-abstract machine and from
a pre-abstract machine to a reduction semantics is mechanical. We are, however,
not aware of any systematic method to go from an arbitrary abstract machine to a
reduction semantics [7, 24].

Going from an environment machine where the environment is treated as a list
to a closure-based machine is done by folding the pair (term, environment) into a
closure. The resulting machine mediates between an environment-based specification
and an explicit-substitution-based specification. Obtaining an explicit-substitution-
based machine from this intermediate machine, however, requires a major architec-
tural overhaul.

8 Conclusion

Curien originally presented a simple calculus of closures, the λρ-calculus, as an ab-
stract framework for environment machines [12]. This approach gave rise to a general
study of explicit substitutions [1,13,29,34,41,42] where a number of abstract machines
have been obtained through a combination of skill and ingenuity.

We have presented a concrete framework for environment machines where abstract
machines are methodically derived from specifications of reduction strategies. The
correctness of the resulting machines is ensured by the correctness of the derivation
method. The derivation is based on Danvy and Nielsen’s refocusing technique, which
requires the one-step specification of a reduction strategy, i.e., a reduction seman-
tics. For this reason, we needed to extend Curien’s original λρ-calculus with closure
application, which results in the λρ̂-calculus.

We have illustrated the concrete framework by uniformly deriving several inde-
pendently known environment machines—the Krivine machine, the original version
of Krivine’s machine, Felleisen et al.’s CEK machine, and Leroy’s Zinc machine—
from the normal-order and the applicative-order reduction strategies expressed in
the λρ̂-calculus, both in context-insensitive and in context-sensitive form. The last
step of the derivation (closure unfolding) crystallizes the connection between calculi
of explicit substitutions and environment machines.

In a further work [8], we have used the concrete framework to study context-
sensitive calculi of explicit substitutions for a number of impure cases: first-class con-
tinuations, delimited continuations, i/o, stack inspection, proper tail-recursion, lazy
evaluation, and the λµ-calculus. We have found that the concrete framework scales
up seamlessly and provides a syntactic correspondence between context-sensitive cal-
culi of explicit substitutions and environment machines accounting for computational
effects.

Acknowledgments: Thanks are due to Mads Sig Ager, Dariusz Biernacki, Pierre-
Louis Curien, Mayer Goldberg, Julia Lawall, Jan Midtgaard, Kevin Millikin, Kristian
Støvring, David Van Horn, and the anonymous reviewers for comments; to Xavier
Leroy for a sanity check; and to Ulrich Kohlenbach for providing us with what appears
to be the original bibliographic reference of the logic counterpart of environments [43,
§ 54].

25

This work is partially supported by the ESPRIT Working Group APPSEM II
(http://www.appsem.org) and by the Danish Natural Science Research Council, Grant
no. 21-03-0545.

References

[1] Mart́ın Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques Lévy. Ex-
plicit substitutions. Journal of Functional Programming, 1(4):375–416, 1991.

[2] Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan Midtgaard. From
interpreter to compiler and virtual machine: a functional derivation. Research
Report BRICS RS-03-14, DAIMI, Department of Computer Science, University
of Aarhus, Aarhus, Denmark, March 2003.

[3] Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan Midtgaard. A func-
tional correspondence between evaluators and abstract machines. In Dale Miller,
editor, Proceedings of the Fifth ACM-SIGPLAN International Conference on
Principles and Practice of Declarative Programming (PPDP’03), pages 8–19.
ACM Press, August 2003.

[4] Mads Sig Ager, Olivier Danvy, and Jan Midtgaard. A functional correspondence
between call-by-need evaluators and lazy abstract machines. Information Pro-
cessing Letters, 90(5):223–232, 2004. Extended version available as the technical
report BRICS RS-04-3.

[5] Mads Sig Ager, Olivier Danvy, and Jan Midtgaard. A functional correspondence
between monadic evaluators and abstract machines for languages with compu-
tational effects. Theoretical Computer Science, 342(1):149–172, 2005. Extended
version available as the technical report BRICS RS-04-28.

[6] Henk Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume 103
of Studies in Logic and the Foundation of Mathematics. North-Holland, revised
edition, 1984.

[7] Ma lgorzata Biernacka, Dariusz Biernacki, and Olivier Danvy. An operational
foundation for delimited continuations in the CPS hierarchy. Logical Methods
in Computer Science, 1(2:5):1–39, November 2005. A preliminary version was
presented at the Fourth ACM SIGPLAN Workshop on Continuations (CW’04).

[8] Ma lgorzata Biernacka and Olivier Danvy. A syntactic correspondence between
context-sensitive calculi and abstract machines. Research Report BRICS RS-
05-38, DAIMI, Department of Computer Science, University of Aarhus, Aarhus,
Denmark, December 2005.

[9] Alonzo Church. The Calculi of Lambda-Conversion. Princeton University Press,
1941.

[10] Pierre Crégut. An abstract machine for lambda-terms normalization. In Mitchell
Wand, editor, Proceedings of the 1990 ACM Conference on Lisp and Functional
Programming, pages 333–340, Nice, France, June 1990. ACM Press.

26

[11] Pierre Crégut. Strongly reducing variants of the Krivine abstract machine. In
Danvy [18]. To appear. Journal version of [10].

[12] Pierre-Louis Curien. An abstract framework for environment machines. Theo-
retical Computer Science, 82:389–402, 1991.

[13] Pierre-Louis Curien, Thérèse Hardin, and Jean-Jacques Lévy. Confluence prop-
erties of weak and strong calculi of explicit substitutions. Journal of the ACM,
43(2):362–397, 1996.

[14] Olivier Danvy. Back to direct style. Science of Computer Programming,
22(3):183–195, 1994.

[15] Olivier Danvy. From reduction-based to reduction-free normalization. In Sergio
Antoy and Yoshihito Toyama, editors, Proceedings of the Fourth International
Workshop on Reduction Strategies in Rewriting and Programming (WRS’04),
number 124 in Electronic Notes in Theoretical Computer Science, pages 79–100,
Aachen, Germany, May 2004. Elsevier Science. Invited talk.

[16] Olivier Danvy. On evaluation contexts, continuations, and the rest of the com-
putation. In Hayo Thielecke, editor, Proceedings of the Fourth ACM SIGPLAN
Workshop on Continuations (CW’04), Technical report CSR-04-1, Department
of Computer Science, Queen Mary’s College, pages 13–23, Venice, Italy, January
2004. Invited talk.

[17] Olivier Danvy. A rational deconstruction of Landin’s SECD machine. In Clemens
Grelck, Frank Huch, Greg J. Michaelson, and Phil Trinder, editors, Imple-
mentation and Application of Functional Languages, 16th International Work-
shop, IFL’04, number 3474 in Lecture Notes in Computer Science, pages 52–71,
Lübeck, Germany, September 2004. Springer-Verlag. Recipient of the 2004 Peter
Landin prize. Extended version available as the technical report BRICS RS-03-
33.

[18] Olivier Danvy, editor. Special Issue on the Krivine Abstract Machine, Higher-
Order and Symbolic Computation. Springer, 2006. In preparation.

[19] Olivier Danvy and Lasse R. Nielsen. Defunctionalization at work. In Harald
Søndergaard, editor, Proceedings of the Third International ACM SIGPLAN
Conference on Principles and Practice of Declarative Programming (PPDP’01),
pages 162–174, Firenze, Italy, September 2001. ACM Press. Extended version
available as the technical report BRICS RS-01-23.

[20] Olivier Danvy and Lasse R. Nielsen. Refocusing in reduction semantics. Research
Report BRICS RS-04-26, DAIMI, Department of Computer Science, University
of Aarhus, Aarhus, Denmark, November 2004. A preliminary version appears in
the informal proceedings of the Second International Workshop on Rule-Based
Programming (RULE 2001), Electronic Notes in Theoretical Computer Science,
Vol. 59.4.

[21] Nicholas G. de Bruijn. Lambda calculus notation with nameless dummies, a
tool for automatic formula manipulation, with application to the Church-Rosser
theorem. Indagationes Mathematicae, 34(5):381–392, 1972.

27

[22] Matthias Felleisen. The Calculi of λ-v-CS Conversion: A Syntactic Theory of
Control and State in Imperative Higher-Order Programming Languages. PhD
thesis, Computer Science Department, Indiana University, Bloomington, Indi-
ana, August 1987.

[23] Matthias Felleisen and Matthew Flatt. Programming languages and lambda
calculi. Unpublished lecture notes. http://www.ccs.neu.edu/home/matthias/

3810-w02/readings.html, 1989-2003.

[24] Matthias Felleisen and Daniel P. Friedman. Control operators, the SECD ma-
chine, and the λ-calculus. In Martin Wirsing, editor, Formal Description of Pro-
gramming Concepts III, pages 193–217. Elsevier Science Publishers B.V. (North-
Holland), Amsterdam, 1986.

[25] Daniel P. Friedman, Abdulaziz Ghuloum, Jeremy G. Siek, and Lynn Winebarger.
Improving the lazy Krivine machine. In Danvy [18]. In preparation.

[26] Steven E. Ganz, Daniel P. Friedman, and Mitchell Wand. Trampolined style.
In Peter Lee, editor, Proceedings of the 1999 ACM SIGPLAN International
Conference on Functional Programming, pages 18–27, Paris, France, September
1999. ACM Press.

[27] Chris Hankin. Lambda Calculi, a guide for computer scientists, volume 1 of
Graduate Texts in Computer Science. Oxford University Press, 1994.

[28] John Hannan and Dale Miller. From operational semantics to abstract machines.
Mathematical Structures in Computer Science, 2(4):415–459, 1992.

[29] Thérèse Hardin, Luc Maranget, and Bruno Pagano. Functional runtime sys-
tems within the lambda-sigma calculus. Journal of Functional Programming,
8(2):131–172, 1998.

[30] Jean-Louis Krivine. Un interprète du λ-calcul. Brouillon. Available online at
http://www.pps.jussieu.fr/~krivine/, 1985.

[31] Jean-Louis Krivine. A call-by-name lambda-calculus machine. In Danvy [18].
To appear. Available online at http://www.pps.jussieu.fr/~krivine/.

[32] Peter J. Landin. The mechanical evaluation of expressions. The Computer
Journal, 6(4):308–320, 1964.

[33] Xavier Leroy. The Zinc experiment: an economical implementation of the ML
language. Rapport Technique 117, INRIA Rocquencourt, Le Chesnay, France,
February 1990.

[34] Pierre Lescanne. From λσ to λv a journey through calculi of explicit substitu-
tions. In Hans-J. Boehm, editor, Proceedings of the Twenty-First Annual ACM
Symposium on Principles of Programming Languages, pages 60–69, Portland,
Oregon, January 1994. ACM Press.

[35] Simon Marlow and Simon L. Peyton Jones. Making a fast curry: push/enter
vs. eval/apply for higher-order languages. In Kathleen Fisher, editor, Proceedings

28

of the 2004 ACM SIGPLAN International Conference on Functional Program-
ming, SIGPLAN Notices, Vol. 39, No. 9, pages 4–15, Snowbird, Utah, September
2004. ACM Press.

[36] Gordon D. Plotkin. Call-by-name, call-by-value and the λ-calculus. Theoretical
Computer Science, 1:125–159, 1975.

[37] Gordon D. Plotkin. A structural approach to operational semantics. Technical
Report FN-19, DAIMI, Department of Computer Science, University of Aarhus,
Aarhus, Denmark, September 1981.

[38] Brian Randell and Lawford John Russell. ALGOL 60 Implementation. Academic
Press, London and New York, 1964.

[39] John C. Reynolds. Definitional interpreters for higher-order programming lan-
guages. In Proceedings of 25th ACM National Conference, pages 717–740,
Boston, Massachusetts, 1972. Reprinted in Higher-Order and Symbolic Com-
putation 11(4):363–397, 1998, with a foreword [40].

[40] John C. Reynolds. Definitional interpreters revisited. Higher-Order and Symbolic
Computation, 11(4):355–361, 1998.

[41] Kristoffer H. Rose. Explicit substitution – tutorial & survey. BRICS Lecture
Series LS-96-3, DAIMI, Department of Computer Science, University of Aarhus,
Aarhus, Denmark, September 1996.

[42] Kristoffer H. Rose. Operational Reduction Models for Functional Programming
Languages. PhD thesis, DIKU, Computer Science Department, University of
Copenhagen, Copenhagen, Denmark, 1996.

[43] Heinrich Scholz and Gisbert Hasenjaeger. Grundzüge der Mathematischen Logik.
Springer-Verlag, 1961.

[44] Mitchell Wand. On the correctness of the Krivine machine. In Danvy [18]. In
preparation.

29

Recent BRICS Report Series Publications

RS-06-3 Małgorzata Biernacka and Olivier Danvy. A Concrete Frame-
work for Environment Machines. February 2006. ii+29 pp. To
appear in the ACM Transactions on Computational Logic. Su-
persedes BRICS RS-05-15.

RS-06-2 Mikkel Baun Kjærgaard and Jonathan Bunde-Pedersen. A
Formal Model for Context-Awareness. February 2006. 26 pp.

RS-06-1 Luca Aceto, Taolue Chen, Willem Jan Fokkink, and Anna
Ingólfsdóttir. On the Axiomatizability of Priority. January 2006.
25 pp.

RS-05-38 Małgorzata Biernacka and Olivier Danvy. A Syntactic Corre-
spondence between Context-Sensitive Calculi and Abstract Ma-
chines. December 2005. iii+39 pp. Revised version of BRICS
RS-05-22.

RS-05-37 Gerth Stølting Brodal, Kanela Kaligosi, Irit Katriel, and Mar-
tin Kutz. Faster Algorithms for Computing Longest Common
Increasing Subsequences. December 2005. 16 pp.

RS-05-36 Dariusz Biernacki, Olivier Danvy, and Chung-chieh Shan.On
the Static and Dynamic Extents of Delimited Continuations. De-
cember 2005. ii+33 pp. To appear in the journalScience of
Computer Programming. Supersedes BRICS RS-05-13.

RS-05-35 Kristian Støvring.Extending the Extensional Lambda Calculus
with Surjective Pairing is Conservative. November 2005. 19 pp.
To appear in Logical Methods in Computer Science.

RS-05-34 Henning Korsholm Rohde.Formal Aspects of Polyvariant Spe-
cialization. November 2005. 27 pp.

RS-05-33 Luca Aceto, Willem Jan Fokkink, Anna Inǵolfsdóttir, and
Sumit Nain. Bisimilarity is not Finitely Based over BPA with
Interrupt. October 2005. 33 pp. This paper supersedes BRICS
Report RS-04-24. An extended abstract of this paper appeared
in Algebra and Coalgebra in Computer Science, 1st Conference,
CALCO 2005, Swansea, Wales, 3–6 September 2005, Lecture
Notes in Computer Science 3629, pp. 54–68, Springer-Verlag,
2005.

RS-05-32 Anders Møller, Mads Østerby Olesen, and Michael I.
Schwartzbach. Static Validation of XSL Transformations. Oc-
tober 2005. 50 pp.

