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Abstract

We present a systematic construction of environment-based abstract machines
from context-sensitive calculi of explicit substitutions, and we illustrate it with ten
calculi and machines for applicative order with an abort operation, normal order with
generalized reduction and call/cc, the lambda-mu-calculus, delimited continuations,
stack inspection, proper tail-recursion, and lazy evaluation. Most of the machines
already exist but have been obtained independently and are only indirectly related
to the corresponding calculi. All of the calculi are new and they make it possible to
directly reason about the execution of the corresponding machines.

In connection with the functional correspondence between evaluation functions
and abstract machines initiated by Reynolds, the present syntactic correspondence
makes it possible to construct reduction-free normalization functions out of reduction-
based ones, which was an open problem in the area of normalization by evaluation.
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1 Introduction
How does one construct a new semantic artifact?

1.1 Calculi and machines

Sixty-five years ago, the A-calculus was introduced [15]. Forty-five years ago, its expressive
power was observed to be relevant for computing [67,81]. Forty years ago, a first abstract
machine for the A-calculus was introduced [61]. Thirty years ago, calculi and abstract
machines were formally connected [70]. Twenty years ago, a calculus format—reduction
semantics—with an explicit representation of reduction contexts was introduced [40]. To-
day calculi and abstract machines are standard tools to study programming languages.
Given a calculus, it is by now a standard activity to design a corresponding abstract
machine and to prove its correctness [42].

From calculus to machine by refocusing and transition compression: Recently,
Danvy and Nielsen have pointed out that the reduction strategy for a calculus actually de-
termines the structure of the corresponding machine [36]. They present a method for
constructing an abstract machine out of a reduction semantics satisfying the unique-
decomposition property. In such a reduction semantics, a non-value term is reduced by

1. decomposing it (uniquely) into a redex and its context,
2. contracting the redex, and
3. plugging the contractum into the reduction context,

yielding a new term. A reduction-based evaluation function is defined using the reflexive
and transitive closure of the one—step reduction function:

o)
\%ilpose / \%*npose y/ \%npose

o ——
contract contract contract

Danvy and Nielsen have observed that the intermediate terms, in the composition of plug
and decompose, could be avoided by fusing the composition into a ‘refocus’ function:

\%ilpose / \%npose / \%npose

—_ = = > O ______________
contract refocus contract refocus contract

The resulting ‘refocused’ evaluation function is defined as the reflexive and transitive
closure of refocusing and contraction.

The refocus function takes the form of a state-transition function, i.e., an abstract
machine. The refocused evaluation function therefore also takes the form of an abstract
machine. Compressing its intermediate transitions (i.e., short-circuiting them) yields ab-
stract machines that are often independently known: for example, for the pure A-calculus
with normal order, the resulting abstract machine is a substitution-based version of the
Krivine machine (i.e., a push/enter machine); for the pure A-calculus with applicative or-
der, the resulting abstract machine is Felleisen et al.’s CK machine (i.e., an eval/apply
machine). Refocusing has also been applied to the term language of the free monoid,
yielding a reduction-free normalization function [26], and to context-based CPS transfor-
mations, improving them from quadratic time to operating in one pass [36].



1.2 Calculi of explicit substitutions and environment-based ma-
chines

Twenty years ago, Curien observed that while most calculi use actual substitutions, most
implementations use closures and environments [22]. He then developed a calculus of
closures, Ap [23], thereby launching the study of explicit substitutions [1,24, 51,65, 75].

From calculus to machine by refocusing, transition compression, and closure
unfolding: Recently, we have applied the refocusing method to Ap, a minimal extension
of A\p where one can express single-step computations; we added an unfolding step to
make the machine operate not on a closure, but on a term and its environment [8]. We
have shown how A\p with left-to-right applicative order directly corresponds to the CEK
machine [43], how A\p with normal order directly corresponds to the Krivine machine [20,
23], how Ap with generalized reduction directly corresponds to the original version of
Krivine’s machine [59], and how A\p with right-to-left applicative order directly corresponds
to the ZINC abstract machine [64]. All of these machines are environment-based and use
closures.

1.3 Calculi of explicit substitutions for computational effects and
environment-based machines

Twenty years ago, Felleisen introduced reduction semantics—a version of small-step opera-
tional semantics with an explicit representation of reduction contexts—in order to provide
calculi for control and state [40,43]. In these calculi, reduction rules are not oblivious to
their reduction context; on the contrary, they are context sensitive in that the context
takes part in some reduction steps, e.g., for call/cc. Reduction semantics are in wide use
today, e.g., to study the security technique of stack inspection [16,47,71].

From calculus to machine by refocusing, transition compression, and closure
unfolding: In this article, we apply the refocusing method to context-sensitive exten-
sions of \p accounting for a variety of computational effects. We present ten calculi of
closures and the corresponding environment-based machines. What is significant here is
that each machine is mechanically derived from the corresponding calculus (instead of
designed and then proved correct) and also that each machine directly corresponds to this
calculus (instead of indirectly via an ‘unload’ function at the end of each run [70] or via a
compilation / decompilation scheme in the course of execution [51]).

1.4 Overview

We successively consider call by name: Krivine’s machine with call/cc (Section 4) and
the Ap-calculus (Section 5); call by value: static and dynamic delimited continuations
(Section 6), stack inspection (Section 7), and proper tail-recursion (Section 8); and call
by need (Section 9). Towards this end, we first present the Ap-calculus and the notion
of context-sensitive reduction (Section 2) and then a detailed walkthrough for the Ap-
calculus with an abort operation (Section 3). The subsequent repetitiveness of Sections 4
to 9 (language, notion of context-sensitive reduction, abstract machine, and formal corre-
spondence) is a deliberate feature, not an inadvertent presentational bug: we apply the
same simple method to many situations that have been separately studied so far. Each of
these sections can therefore be read independently of the others.



2 Preliminaries

2.1 Reduction semantics

A reduction semantics [40,42] consists of a grammar of terms from a source language,
syntactic notions of value and redex, a collection of contraction rules, and a reduction
strategy. This reduction strategy is embodied in a grammar of reduction contexts (terms
with a hole as induced by the compatibility rules) and a plug function mapping a term
and a context into a new term. One-step reduction of a non-value term consists in

1. decomposing the term into a redex and a reduction context,
2. contracting the redex, and

3. plugging the contractum in the reduction context.

In some reduction semantics, non-value terms are uniquely decomposed into a redex
and a context. Decomposition can then be implemented as a function mapping a non-value
term to a redex and a reduction context. Danvy and Nielsen have shown that together
with the unique decomposition property, the following property of a reduction seman-
tics is sufficient to define a decomposition function by induction on terms and reduction
contexts [36, Figure 2, page 8]:

Property 1. For each syntactic construct building a term out of n subterms, there is a
number 0 < i < n and a fized traversal order of subterms encoded in the grammar of the
reduction contexts for this construct such that the holes of these contexts are precisely the
positions of the i subterms. Furthermore, a term with all the chosen i subterms reduced to
values is either a value or a potential redex (i.e., an actual redex or a “stuck term”) but
not both.

If the redexes do not overlap, the contraction rules can be implemented as a function.

2.2 Context-sensitive reduction

Traditional specifications of one-step reduction as the compatible closure of a notion of
reduction provide a local characterization of a computation step in the form of a redex.!
This local characterization is not fit for non-local reductions such as one involving a control
operator capturing all its surrounding context in one step, or a global state. For these,
one needs a notion of context-sensitive reduction, i.e., a binary relation defined both on
redexes and on their reduction context instead of only on redexes [40].

This relation is given by context-sensitive contraction rules of the form (r, C) —
(¢, C"), where (r, C') denotes the decomposition of a program into a potential redex r
and its context C.

A one-step reduction relation for a given notion of context-sensitive reduction is defined
as follows: A program p reduces in one step to p’ if decomposing p yields (r, C), reducing
(r, C) yields (¢/, C’), and plugging ¢’ into C’ yields p’.

A context-sensitive reduction implicitly assumes a decomposition of the entire program,
and therefore it cannot be used locally. One way to recover compatibility in the context-
sensitive setting is to add explicit local control delimiters to the language (see Section 6
for an illustration). For a language without explicit control delimiters (as the Ap-calculus
with call/cc), there is an implicit global control delimiter around the program [41].

1For example, a potential redex in the A-calculus is the application of a value to a term. If the value is
a A-abstraction, the potential redex is an actual one and it can be [3-reduced. If no reduction rule applies,
the potential redex is not an actual one and the program is stuck [70].



2.3 Our base calculus of closures: \p

Since Landin [61], most abstract machines implementing variants and extensions of the
A-calculus use closures and environments, and the substitution of terms for free variables
is thus delayed until a variable is reached in the evaluation process. This implementation
technique has motivated the study of calculi of explicit substitutions [1,23,75] to mediate
between the traditional abstract specifications of the A-calculus and its traditional concrete
implementations [51].

To derive an abstract machine for evaluating A-terms, a weak calculus of explicit sub-
stitutions suffices. The first (and simplest) of such calculi was Curien’s calculus of closures
Ap [23]. Although this calculus is not expressive enough to model full normalization, it
is suitable for evaluating a A-term, i.e., to produce the corresponding weak head normal
form. Its operational semantics is specified using multi-step reductions, but its syntax
is too restrictive to allow single-step computations, which is what we need to apply the
refocusing method. For this reason, in our earlier work [8], we have proposed a minimal
extension of Ap with one-step reduction rules, the Ap-calculus.

The language of Ap is as follows:

(terms) tu=1 | M| tt
(closures) cu=t[s] | ce
(substitutions) s:=e | ¢ s

(For comparison, A\p does not have the ¢ ¢ production.)

We use de Bruijn indices for variables in a term (i > 1). A closure is a term equipped
with a substitution, i.e., a list of closures to be substituted for free variables in the term.
Programs are closures of the form t[e] where ¢ does not contain free variables.

The notion of reduction in the Ap-calculus is given by the following rules:

(Var)  iler - ¢ 2 ci i<y
(Beta) ((At)[s]) ¢ —’} tlc - g
(Prop)  (tot1)[s] > (tols]) (t1]s])

We write s(7) for the ith element of the substitution s considered as a list. (So [e1 - - - ¢;](7)
= ifl<i<j)

Finally, the one-step reduction relation (i.e., the compatible closure of the notion of
reduction) extends the notion of reduction with the following rules:

P
(L-Comp) “ — %
cocr B ¢ 1
e 5o
(R~-Comp) _ 1
cocr 2 co ch
i B oc
(Sub) L fori<j
t[cl...ci...cj] ﬁ) t[Cl clcj]

Specific, deterministic reduction strategies can be obtained by restricting the compat-
ibility rules. In the following sections, we consider two such strategies:



1. the normal-order strategy obtained by discarding the (Sub) and (R-Comp) rules,
where the grammars of values, redexes and reduction contexts are specified as follows:

(values) v = (A)[s]
(redexes) ra=wvce | is] | (tot)[s]
(reduction contexts) C =[] | C[[]],

and

2. the left-to-right applicative-order strategy obtained in the usual way by discarding
the (Sub) rule and restricting the (Beta) and (R-Comp) rules, where the grammars
of values, redexes and reduction contexts are specified as follows:

(values) v = (At)[s]
(redexes) ra=ov | is] | (tot1)]s]
(reduction contexts) C ==1[] | C[[]¢] | Clv[]]

All of the calculi presented in this article extend the Ap-calculus. For each of them,
we define a suitable notion of reduction, denoted — x, where X is a subscript identifying
a particular calculus. For each of them, we then define a one-step reduction relation
as the composition of: decomposing a non-value closure into a redex and a reduction
context, contracting a (context-sensitive) redex, and then plugging the resulting closure
into the resulting context. Finally, we define the evaluation relation (denoted —%) using
the reflexive, transitive closure of one-step reduction, i.e., we say that ¢ evaluates to ¢’ if
¢ —% ¢ and ¢ is a value closure. We define the convertibility relation between closures as
the smallest equivalence relation containing —%. If two closures ¢ and ¢’ are convertible,
they behave similarly under evaluation (i.e., either they both evaluate to the same value,
or they both diverge).

3 The \pA-calculus

As an illustration, we present a detailed and systematic derivation of an abstract machine
for call-by-value evaluation in the A-calculus with an abort operation, starting from the
specification of the applicative-order reduction strategy in the Ap-calculus with an abort
operation. We follow the steps outlined by Biernacka, Danvy, and Nielsen [8, 36]:

Section 3.1: We specify the applicative-order reduction strategy in the form of a reduction
semantics, i.e., with a one-step reduction function specified as decomposing a non-
value term into a reduction context and a redex, contracting this redex, and plugging
the contractum into the context. As is traditional, we also specify evaluation as the
transitive closure of one-step reduction.

Section 3.2: We replace the combination of plugging and decomposition by a refocus
function that iteratively goes from redex site to redex site in the reduction sequence.
The resulting ‘refocused’ evaluation function is the transitive closure of the refocus
function and takes the form of a ‘pre-abstract machine.’

Section 3.3: We merge the definitions of the transitive closure and the refocus func-
tion into a ‘staged abstract machine’ that implements the reduction rules and the
compatibility rules of the Ap-calculus with two separate transition functions.



Section 3.4: We inline the transition function implementing the reduction rules. The
result is an eval/apply abstract machine consisting of an ‘eval’ transition function
dispatching on closures and an ‘apply’ transition function dispatching on contexts.

Section 3.5: Observing that in a reduction sequence, an (App) reduction step is always
followed by a decomposition step, we coalesce these two steps into one. Observing
that in a reduction sequence, an (Abort) reduction step is always followed by a
decomposition step, we coalesce these two steps into one. This shortcut makes the
resulting abstract machine dispatch on terms rather than on closures, and enables
the following step.

Section 3.6: We unfold the data type of closures, making the abstract machine operate
over two components—a term and a substitution—instead of over one—a closure.
The substitution component is the traditional environment of environment machines,
and the resulting machine is an environment machine. This machine coincides with
the CEK machine with an abort operator [42].

In Section 3.7, we state the correctness of the resulting CEK machine with respect to
evaluation in the Ap-calculus with an abort operation.

3.1 A reduction semantics for applicative order and abort

A reduction semantics for applicative-order reduction in the Ap.A-calculus builds on the
applicative-order strategy presented in Section 2.3. The grammar of terms and closures
contains additional productions for the abort operation:

(Term) t:
(Closure) ¢

o At
.| Ac

The reduction semantics is context-sensitive and its contraction rules contain the contrac-
tions of the Ap-calculus (here stated in the context-sensitive form):

(Var)  (ifc1---¢j], C) —a (¢, C) i<y
(Beta)  ((At)[s]) ¢, €) —a (tle-s], C)
(Prop)  ((to t1)[s], €) —.a ((to[s]) (tr[s]), C)

as well as two new contractions for the abort operation:

(Propa) ((AD)[s], C) —a (A(t[s]), C)
(Abort) (Av, CY =4 (v, [])

Finally, the grammar of reduction contexts reads as follows:
(Context) — Cu=[] [ CllIc] | Cl[l] | CLAT]]

This reduction semantics satisfies the conditions stated in Section 2.1. We can therefore
define the following three functions:

decompose : Closure — Value + (Redex x Context)
contract : Redex x Context — Closure x Context
plug : Closure x Context — Closure



3.1.1 Decomposition
We define decompose as a transition function over closures and reduction contexts:

decompose : Closure — Value + (Redex x Context)
decompose ¢ = decompose’ (¢, [])

decompose’ : Closure x Context — Value + (Redex x Context)
decompose’ (i[s], C') = (i[s], C)
decompose’ ((At)[s], C) = decompose’,, (C, (At)[s])
decompose’ ((to t1)[s), C) = ((to t1)[s], C)
decompose’ (co c1, C) = decompose’ (¢g, C[] c1])
decompose’ (A t)[s], C) = ((At)[s], C)
decompose’ (A ¢, C') = decompose’ (¢, C[A[]])

decompose’, ,, : Context x Value — Value + (Redex x Context)
decompose’,, ([], v) = v

decompose’, . (C [[] c], v) = decompose’ (¢, C[v[]])
decompose’, (C[v" []], v) = (v"v, )
decompose’, (CLA[]], v) = (Av, C)

The main decomposition function, decompose, uses two auxiliary transition functions that
work according to Property 1:

e decompose’ is passed a closure and a reduction context. It dispatches on the closure
and iteratively builds the reduction context:

— if the current closure is a value, then decompose’,  is called to inspect the

context;

aux

— if the current closure is a redex, then a decomposition is found; and

— otherwise, a subclosure of the current closure is chosen to be visited in a new
context.

e decompose’,,, is passed a reduction context and a value. It dispatches on the reduc-

tion context:

— if the current context is empty, then the value is the result of the function;

— if the top constructor of the context is that of a function application, the actual
parameter is decomposed in a new context; and

— otherwise, a redex has been found.

The decomposition function is total.

3.1.2 Context-sensitive contraction
We define contract by cases, as a straightforward implementation of the contraction rules:

contract : Redex x Context — Closure x Context
contract (i[vy -+ - U], C) = (v;, C)
contract ((to t1)[s], C) = ((to[s]) (t1s]), C)
contract (((At)[s]) v, C) = (t[v-s], C)
contract ((A t)[s], C) = (A (t[s]), C)
contract (A v, C) = (v, [])

In general, the contraction function is partial because of stuck terms.



3.1.3 Plugging

We define plug by structural induction over the reduction context. It iteratively peels off
the context and thus also takes the form of a transition function:

plug : Closure x Context — Closure

plug (c,[]) = ¢
plug (co, C[[] c1]) = plug (co c1, C)
plug (c1, Cleo [1]) = plug (co 1, O)
plug (¢, C[AT]]) = plug (Ac, O)

The plugging function is total.

3.1.4 One-step reduction

Given these three functions, we can define the following one-step reduction function that
tests whether a closure is a value or can be decomposed into a redex and a context,
that contracts this redex together with its context, and that plugs the contractum in the
resulting context:

reduce : Closure — Closure
reducec = case decompose ¢
of v = v
| (r, C) = plug(d,C’") where (¢, C") = contract (r, C)

In general, the one-step reduction function is partial because of the contraction function.
The following proposition is a consequence of the unique-decomposition property.

Proposition 1. For any non-value closure ¢ and for any closure ¢, ¢ — 4 ¢’ < reducec =

c.

3.1.5 Reduction-based evaluation

Finally, we can define evaluation as the reflexive, transitive closure of one-step reduction.
For simplicity, we use decompose to test whether a value has been reached:

iterate : Value 4+ (Redex x Context) — Value
iteratev = v
iterate (r, C') = iterate (decompose (plug (¢/, C')))
where (¢/, C') = contract (r, C)

evaluate : Term — Value
evaluate t = iterate (decompose (t[e]))

This evaluation function is partial because of the one-step reduction function and also
because a reduction sequence might not terminate.

Proposition 2. For any closed term t and any value v, t[e] — 4* v < evaluatet = v.

3.2 A pre-abstract machine

The reduction sequence implemented by evaluation can be depicted as follows:

w\mpose FV w\mpose FV w\mpose

contract contract contract



At each step, an intermediate term is constructed by the function plug; it is then imme-
diately decomposed by the subsequent call to decompose. In earlier work [36], Danvy and
Nielsen pointed out that the composition of plug and decompose (which are total) could
be replaced by a more efficient function, refocus (which is also total), that would directly
go from redex site to redex site in the reduction sequence:

wmpose [V wmpose [V %impose

contract refocus contract refocus contract

The essence of refocusing for a reduction semantics satisfying the unique decomposition
property is captured in the following proposition:

Proposition 3 (Danvy and Nielsen [26,36]). For any closure ¢ and reduction context
¢,
decompose (plug (¢, C')) = decompose’ (¢, C)

In words: refocusing amounts to continuing the decomposition of the given contractum in
the given context.

The definition of the refocus function is therefore a clone of that of decompose’. In
particular, it involves an auxiliary function refocus,,, and takes the form of two state-
transition functions, i.e., of an abstract machine:

refocus : Closure X Context — Value + (Redex x Context)
refocus (i[s], C) = (i[s], C)
refocus ((At)[s], C) = refocus,ux (C, (At)[s])
refocus ((to t1)[s], C) = ((to t1)[s], C)
refocus (¢ ¢1, C) = refocus (co, C[[] c1])
refocus ((At)[s], C) = ((At)[s], C)
refocus (A ¢, C) = refocus (¢, C[A[]])

refocus,,x : Context x Value — Value + (Redex x Context)
refocusaux ([], v) = v
refocusaux (C[[] ¢], v) = refocus (¢, Clv []])
refocusaux (C[V' []], v) = (V' v, C)
refocusaux (C[A[]], v) = (Awv, O)

In this abstract machine, the configurations are pairs containing a closure and a context;
the final transitions are specified by the first, third, and fifth clauses of refocus and by the
first, third, and fourth clauses of refocus,.x; and the initial transition is specified by two
clauses of the corresponding ‘refocused’ evaluation function, which reads as follows:

iterate : Value 4+ (Redex x Context) — Value
iteratev = v
iterate (r, C) = iterate (refocus (¢/, C))
where (¢/, C") = contract (r, C)

evaluate : Term — Value
evaluate t = iterate (refocus (t[e], []))



(For the initial call to iterate, we have exploited the double equality decompose (t[e]) =
decompose (plug (t[e],[])) = refocus (¢[e], [])-)

This evaluation function computes the transitive closure of refocus using the auxiliary
function iterate as a trampoline [48]. Due to the non-tail call to refocus in iterate, we refer
to this evaluation function as a ‘pre-abstract machine.’

3.3 A staged abstract machine

To transform the pre-abstract machine into an abstract machine, we distribute the calls
to iterate from the definitions of evaluate and of iterate to the definitions of refocus and
refocus,ux:

evaluate : Term — Value
evaluatet = refocus (t[e], [])

iterate : Value 4+ (Redex x Context) — Value
iteratev = v
iterate (r, C) = refocus (¢, C")
where (¢/, C") = contract (r, C)

refocus : Closure x Context — Value
refocus (i[s], C) = iterate (i[s], C)
refocus ((At)[s], C') = refocusaux (C, (Af)]
refocus ((tg t1)[s], C) = iterate ((to t1)[s], C
refocus (co ¢1, C) = refocus (co, C[[] c1]
refocus ((A t)[s], C') = iterate ((At)[s], C)
) = CLATI

refocus (A ¢, C refocus (c,

V)

)
]a
]

~ —

)

[

refocus,ux : Context x Value — Value
refocusaux ([ ], v) = iterate v

refocusaux (C' [[] c], v) = refocus (¢, Clv []])
refocusaux (C[v" ], ) iterate (v' v, C)
refocusaux (C[A[]], v) = iterate (A v, C)

The resulting definitions of evaluate, iterate, refocus, and refocus,,x are that of four mutually
recursive transition functions that form an abstract machine. In this abstract machine,
the configurations are pairs of a closure and a context, the initial transition is specified by
evaluate, and the final transition in the first clause of iterate. The compatibility rules are
implemented by refocus and refocus,u, and the reduction rules by the call to contract in
the second clause of iterate. We can make this last point even more manifest by inlining
contract in the definition of iterate:

iterate : Value + (Redex x Context) — Value
Iteratev = v
iterate (i[v1 - - - o], C) = refocus (v;, C)
iterate ((to t1)[s], C) = refocus ((to[s]) (t1[s]), C)
iterate (((At)[s]) v, C) = refocus (t[v - |, C)
iterate ((A t)[s], C) = refocus (A (t[s]), C)
iterate (A v, C) = refocus (v, [])

By construction, the machine therefore separately implements the reduction rules (with
iterate) and the compatibility rules (with refocus and refocus,yy); for this reason, we refer
to it as a ‘staged abstract machine’ [51].
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3.4 An eval/apply abstract machine

As already observed by Danvy and Nielsen in their work on refocusing, inlining iterate
yields an eval/apply abstract machine [66]. Inlining the calls to iterate in the staged
abstract machine yields the following eval/apply machine, where refocus (the ‘eval’ tran-
sition function) dispatches on closures and refocus,,x (the ‘apply’ function) dispatches on

contexts:
evaluate : Term — Value

evaluatet = refocus (t[e], [])

refocus : Closure x Context — Value
refocus (i[vy - - - vp], C) = refocus (v;, C)
refocus(( )[ ], C) = refocusaux (C, (At)[
refocus ((to t1)[s], C) = refocus ((to[s]) (t1[s
refocus (¢ ¢1, C) = refocus (co, C[[] 1]
refocus ((At)[s], C) = refocus (A (¢[s]), C
refocus (A ¢, C) = refocus (¢, C[A[]])

V)

1)
), €)

=

refocus,,y : Context x Value — Value
refocusaux ([], v) = v
refocusaux (C[[] ¢], v) = refocus (¢, Clv []])
refocusaux (C[((AE)[s]) []], v) = refocus (t[v - 5], C)
refocusaux (C[A[]], v) = refocus (v, [])

3.5 Transition compression

In three cases, the eval/apply machine of Section 3.4 yields a configuration that uniquely
determines the next one. Let us shortcut these “corridor transitions:”

e The machine only produces an application of closures through an (App) reduction
step (third clause of refocus). We observe that in a reduction sequence, an (App)
reduction step is always followed by a decomposition step (fourth clause of refocus).
As a shortcut, we coalesce the two consecutive transitions into one, replacing the
third and fourth clauses of refocus with the following one:

refocus ((to t1)[s], C') = refocus (to[s], C[[] (t1[s])])

e The machine only produces an application of A through an (Abort) reduction step
(second-to-last clause of refocus). We observe that in a reduction sequence, an
(Abort) reduction step is always followed by a decomposition step (last clause of
refocus). As a shortcut, we coalesce the two consecutive transitions into one, replac-
ing the last two clauses of refocus with the following one:

refocus (A (t[s]), C) = refocus (t[s], C[A[]])

e The configuration refocus (v, [|) always yields the configuration refocusaux ([], v),
which triggers a final transition. As a shortcut, we coalesce these three consecutive
transitions into one final transition, replacing the last clause of refocus,x with the
following one:

refocusaux (C[A[]], v) = v

11



3.6 An environment machine

Because of the two first compressions of Section 3.5, refocus is now defined by structural
induction over terms instead of by structural induction over closures. Its type can therefore
be refined to (Term x Substitution) x Context — Value+ (Redex x Context), in effect unfolding
closures into a term and a substitution. We thus replace each closure in the compressed
definition of evaluate and refocus by its unfolding. Flattening (Term x Substitution) x Context
into Term x Substitution x Context yields the following abstract machine:

(Value) v = (M, )
(Context) Ca=[11CllEs)] | Cll] | CIAT]
evaluate : Term — Value
evaluatet = refocus (¢, e, [])

refocus : Term x Substitution x Context — Value
refocus (i, v1 -+ -V, C) = refocus (v;, C)
refocus (A, s, C') = refocusaux (C, (A, ))
refocus (to t1, s, C') = refocus (to, s, C[[] (t1, 9)])
refocus (A t, s, C') = refocus (¢, s, C[A[]])

refocus,,y : Context x Value — Value
refocusaux ([], v) = v
refocusaux (C[] (¢, s)], v) = refocus (¢, s, Clv[]])
refocusaux (C[(AL, ) []], v) = refocus (¢, v - s, C)
refocus,ux (ClA[]], v) = v

We observe that this machine coincides with the CEK machine extended with an abort
operator—an extension that was designed as such [42]. In particular, the substitution
component assumes the role of the environment.

3.7 Correctness

We state the correctness of the final result—the CEK machine—with respect to evaluation
in the ApA-calculus.

Theorem 1. For any closed term t in ApA,
tlo] — 4" (At)[s'] if and only if evaluatet = (A, s').

Proof. The proof relies on the correctness of refocusing [36], and the (trivial) meaning
preservation of each of the subsequent transformations. O

The theorem states that the CEK machine is correct in the sense that it computes closed
weak head normal forms, and that it realizes the applicative-order strategy in the A\p.A-
calculus, which makes it a call-by-value machine [70]. Furthermore, each of the inter-
mediate abstract machines is also correct with respect to call-by-value evaluation in the
ApA-calculus.

3.8 Conclusion

We have presented a detailed and systematic derivation of an abstract machine for call-by-
value evaluation in the A-calculus with an abort operation. We started from the specifica-
tion of the applicative-order reduction strategy in the Ap-calculus with an abort operation
and we finished with a formal correspondence between the calculus and tbe abstract ma-
chine.

12



In the next six sections, we apply the same method in a variety of computational
situations, each of which has been separately studied and reported in the literature. Our
presentation is structured around four elements: language, notion of context-sensitive
reduction, abstract machine, and formal correspondence. The rest is mechanical and
therefore omitted.

4 The \pK-calculus

The Krivine machine is probably the best-known abstract machine implementing the
normal-order reduction strategy in the A-calculus [30]. In our previous work [8], we have
pointed out that Krivine’s original machine [59] does not coincide with the Krivine Machine
As We Know It [21,23] in that it implements generalized instead of ordinary S-reduction:
indeed Krivine’s machine reduces the term (AAt) ¢ t2 in one step whereas the Krivine ma-
chine reduces it in two steps. Furthermore, an extension of the archival version of Krivine’s
machine [60, Section 3] also caters for call/cc (noted K below).

In our previous work [8], we have presented the calculus corresponding to the orig-
inal version of Krivine’s machine. This machine uses closures and an environment and
correspondingly, the calculus is one of explicit substitutions, Ap.

Here, we present the calculus corresponding to the archival version of Krivine’s machine
with K. This machine also uses closures and an environment. Correspondingly, the calculus
is one of explicit substitutions, ApK. We build on top of Krivine’s language of terms by
specifying syntactic categories of closures and substitutions as shown below. The calculus
is tied to a particular reduction strategy. Here, like Krivine, we consider the normal-order
reduction strategy and therefore call by name [70].

4.1 The language of \pK

The abstract syntax of the language is as follows:

(terms) to=d | A" | tt | Kt
(closures) cu=tls] | cc | Ke | TCT
(values) v = (A"t)[s] | TC”
(substitutions) su=e | c-s

(reduction contexts) C == 1[] | C[[]¢ | CIK[]]

A nested A-abstraction of the form A"t is to be understood as a syntactic abbreviation for
AA... At, where t is not a A-abstraction.
=

n
In ApKC, a value is either a closure with a A-abstraction in the term part, or the represen-
tation of a reduction context captured by K.

4.2 Notion of context-sensitive reduction

The notion of reduction is specified by the set of rules shown below. The rules (Var) and
(Prop) are as in the A\p-calculus, and (Beta™) supersedes the (Beta) rule by performing a
generalized [-reduction in one step:

(Var) (ifer--- ¢, €)
(Beta™) ((A"t)[s], C[[...[[]en] --]])
(Betac) (rcn, O[] <)

—k (tler---en - 8], C)
K <Ca C/>



(Prop)  ((to t1)[s], €) —x ((to[s]) (ta[s]), C)
(Propx) — ((K1)[s], C) =i (K ([s]), C)
(Kr)  (K(A[s]), C) =k (#C 5], C)
(Ke) (£rem, €) —x ([emren, C)

The three last rules account for call/cc: the first is an ordinary propagation rule, and the
two others describe a continuation capture. In the first case, the current continuation is
captured and passed to a function, and in the second, it is captured and passed to an
already captured continuation.

4.3 Krivine’s machine

Refocusing, compressing the intermediate transitions, and unfolding the data type of clo-
sures mechanically yields the following environment-based machine:

(i, 8, C) = (', ¢, C) if s(i) = (¥, ¢')
(i, 8, C) =k (C,TCT) if s(z) ="C"
(A"t, s, C) =x (C, (\", s))
(tot1, s, C) =k (to, s, C[[] (t1, 9)])
(Kt,s, C) =k (t, s, C[ [
([}, v) =x v
(Cll---[[Ten] - Jearl, (W', 8)) =k (te1--ens, C)
(CllT @ 8)),TCT) =k (s, >
(C[[]7C™], TCMYy =k (C', 7O
(CIK[1], v) =« (C[[]7CT, v)

This machine coincides with the extension of Krivine’s machine with K—an extension
which was designed as such and not connected to any calculus [60, Section 3].

4.4 Formal correspondence
Proposition 4. For any term t in the A\pK-calculus,
tle] =k v if and only if (t, e, []) =k v.

The ApK-calculus therefore directly corresponds to the archival version of Krivine’s ma-
chine with call/cc.

5 The Apu-calculus

In this section we present a calculus of closures that extends Parigot’s Au-calculus [69] and
the corresponding call-by-name abstract machine obtained by refocusing.

We want to compare our derived abstract machine with an existing one designed by
de Groote [38] and therefore we adapt his syntax, which differs from Parigot’s in that
arbitrary terms can be abstracted by p (not only named ones). In addition, de Groote
presents a calculus of explicit substitutions built on top of the Au-calculus, and uses it
to prove the correctness of his machine. We show that a Ap-like calculus of closures is
enough to model evaluation in the Ap-calculus and to derive the same abstract machine
as de Groote.
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The Ap-calculus is typed, and suitable typing rules can be given to the calculus of clo-
sures we present below. The reduction rules we show satisfy the subject reduction property,
and in consequence, the machine we derive operates on typed terms. To remain concise,
we omit all the typing considerations and concentrate on the syntactic correspondence
between the calculus and the machine.

5.1 The language of \pu

We use de Bruijn indices for both the A-bound variables and the p-bound variables. The
two kinds of variables are represented using the same set of indices, which leads one to
an abstract machine with one environment [38]. Alternatively, we could use two separate
sets of indices, which would then yield two environments in the resulting machine (one for
each kind of variable).

The abstract syntax of the language is specified as follows:

(terms) to=d | A | tt | pt | [i]¢
(closures) cu=1tls] | cc

(values) v = (A)[s]

(substitutions) su=e | C-s|c-s
(reduction contexts) C =[] | C[[]¢]

We consider only closed A-terms, and ¢ > 0. Bound variables are indexed starting with
1, and a (free) occurrence of a variable 0 indicates a distinguished toplevel continuation
(similar to tp in Ariola et al.’s setting [6]). A substitution is a non-empty sequence of either
closures—to be substituted for A-bound variables, or captured reduction contexts—to be
used when accessing p-bound variables.

Programs are closures of the form ¢[[] - o], where the empty context is to be substituted
for the toplevel continuation variable 0.

5.2 Notion of context-sensitive reduction

The notion of reduction extends that of the Ap with two rules: (Mu), which captures the
entire reduction context and stores it in the substitution, and (Rho), which reinstates a
captured context when a continuation variable is applied:

(Beta) ((A)[sl, CllTel) —u (tle-s], C)

(Var) (i[s], C) = (e, C) ifs(i) =c
(Prop) ((to t1)[sl, C) —u ((tols]) (ta[s]), C)
(Mu) ((ut)[sl, C) =y ([C -], [)

(Rho) (([AD)s], [1) —u (sl €) ifs()) = C

5.3 An eval/apply abstract machine

Refocusing, compressing the intermediate transitions, and unfolding the data type of clo-
sures mechanically yields the following environment-based machine:

(At, s, C) =, (C, (X, s))
(i, 8, C) =, (t', s, C) ifs(i)=(t, ¢)
(tots, s, C) =y (to, s, Cl[] (t1, 9)])
(ut, 5, C) =
([ilt, s, [1) =u (



([, 0) =u v
(CllTd, (M, ) =u (s, C)

This machine coincides with de Groote’s final abstract machine [38, p. 24|, except that
instead of traversing the environment as a list, it directly fetches the right substitutee for
a given index 1.

5.4 Formal correspondence
Proposition 5. For any term t in the Apu-calculus,
tl[]-o] =i v if and only if (t,[]-e, []) =} v

The App-calculus therefore directly corresponds to de Groote’s abstract machine for the
Ap-calculus.

6 Delimited continuations

Continuations have been discovered multiple times [73], but they acquired their name for
describing jumps [82], using what is now known as continuation-passing style (CPS) [80].
A full-fledged control operator, J [62,84], however, existed before CPS, providing first-class
continuations in direct style. Continuations therefore existed before CPS, and so one could
say that it was really CPS that was discovered multiple times.

Conversely, delimited continuations, in the form of the traditional success and failure
continuations [76], have been regularly used in artificial-intelligence programming [14, 54,
83] for generators and backtracking. They also occur in the study of reflective towers [79],
where the notions of meta-continuation [89] and of “jumpy” vs. “pushy” continuations [34]
arose. A full-fledged delimited control operator, # (pronounced “prompt”), however,
was introduced independently of CPS and of reflective towers, to support operational
equivalence in A-calculi with first-class control [41,44]. Only subsequently were control
delimiters connected to success and failure continuations [32].

The goal of this section is to provide a uniform account of delimited continuations.
Three data points are in presence—a calculus and an abstract machine, both invented by
Felleisen [41], and an extension of CPS, as discovered by Danvy and Filinski [32]:

Calculus: As we show below, an explicit-substitutions version of Felleisen’s calculus of
dynamic delimited continuations can be refocused into his extension of the CEK
machine, which uses closures and an environment.

Abstract machine: As we have shown elsewhere [11], Felleisen’s extension of the CEK
machine is not in defunctionalized form (at least for the usual notion of defunction-
alization [35,72]); it needs some adjustment to be so, which leads one to a dynamic
form of CPS that threads a state-like trail of delimited contexts.

CPS: Defunctionalizing Danvy and Filinski’s continuation-based evaluator yields an envi-
ronment-based machine [7], and we present below the corresponding calculus of static
delimited continuations.

The syntactic correspondence makes it possible to directly compare (1) the calculi
of dynamic and of static delimited continuations, (2) the extended CEK machine and
the machine corresponding to the calculus of static delimited continuations and to the
continuation-based evaluator, and (3) the evaluator corresponding to the extended CEK
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machine and the continuation-based evaluator. In other words, rather than having to
relate heterogeneous semantic artifacts such as a calculus with actual substitutions, an
environment-based machine, and a continuation-based evaluator, we are now in position
to directly compare two calculi, two abstract machines, and two continuation-based eval-
uators.

We address static delimited continuations in Section 6.1 and dynamic delimited con-
tinuations in Section 6.2. In both cases, we consider the left-to-right applicative-order
reduction strategy and therefore left-to-right call by value.

6.1 The \pS-calculus
The standard A-calculus is extended with the control operator shift (written S) that cap-

tures the current delimited continuation and with the control delimiter reset (written (-))
that initializes the current delimited continuation.

6.1.1 The language of \pS

The abstract syntax of the language is as follows:

(terms) to=d | A | tt ] St| )
(closures) cu=tls] | cc| Sc| {c) | TCT
(values) v = (At)[s] | TC”

(substitutions) su=e|c-s

(contexts)  Cra=[] | Gilo[]) | Gill]d | GuIS[]
(meta-contexts) Ch = | Cy - Cy

For readability, we write C - Cy rather than Ca[{Ci[])].

The control operator S captures the current delimited context and replaces it with the
empty context. The control delimiter (-) initializes the current delimited context, saving
the then-current one onto the meta-context. When a captured delimited context is re-
sumed, the current delimited context is saved onto the meta-context. When the current
delimited context completes, the previously saved one, if there is any, is resumed; otherwise,
the computation terminates. This informal description paraphrases the definitional inter-
preter for shift and reset, which has two layers of control—a current delimited continuation
(akin to a success continuation) and a meta-continuation (akin to a failure continuation),
as arises naturally when one CPS-transforms a direct-style evaluator twice [32]. Else-
where [7], we have defunctionalized this interpreter into an environment-based machine,
which we present next.

6.1.2 The eval/apply/meta-apply abstract machine

The environment-based machine is in “eval/apply/meta-apply” form (to build on Peyton
Jones’s terminology [66]) because the continuation is defunctionalized into a context and
the corresponding apply transition function, and the meta-continuation is defunctionalized
into a meta-context (here a list of contexts) and the corresponding meta-apply transition
function:
<i, S, Cl, 02> =S (tl, s’ Cl, CQ> if S(Z) = (tl, 5’)
<>‘t7 S, Cl; 2> =s <C (At S) C2>
(tot1, s, C1, Ca) =s (to, s, C1[[] (t1, 5)], Ca)

(St, s, C1, Go) =5 (t, s, Ci[S []] Ca)

<<t>7 s, (1, CQ> =s < [] 02>
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<[]7 U, 02> =s <02a >
(Gl] (& 9)], v, Co) =s (L, s, Cilv[]], C)
(C1 (M, ) []], v, C) =5 (t,v-s, C1, Ca)
(GG ]], v, Go) =s (C1, 0, Cr - Ca)
(CL[ST] (AL, 5), Co) =s (t, rCl s, [1, C)
(CL[ST]], TCT, Co) =s (Cf, TCYT, []- Cr)
(o, V) =s v

<Cl : 02; U> =S <Cla v, 02>

We have observed that this machine is in the range of refocusing, transition compression,
and closure unfolding for the following calculus ApS.

6.1.3 Notion of context-sensitive reduction

The ApS-calculus uses two layers of contexts: C; and Ci. A non-value closure is decom-
posed into a redex, a context (7, and a meta-context Cs, and the notion of reduction is
specified by the following rules:

(Var) (ifer -+ -¢j], Ch, Co) —s (¢, Ch, C) i<y
(Beta) (((A)[s]) v, C1, Ca) —s (t[v-s], C1, Ca)
(Betac) ("CTw, C1, Co) —s ((Cf[v]), C1, Ca)
(Prop) (o t1)[sl, C1, C2) —s ((tols]) (ta[s]), C, C2)
(Props) ((St)ls], Cr, Co) —s (S(ts]), Ch, Ca)
(Propg,) (()s], C1, Co) —s ((tls]), C1, Co)

(Sx) (S ((A)[s]), Cr, Co) —s (H"Cr7- 5], [], C2)
(Sc) (STCT, G, Gy) —=s (TCT'TCT, [, Go)
(Reset) ({(v), C1, Co) —s (v, C1, Ca)

Since none of the contractions depends on the meta-context, it is evident that the notion
of reduction — g is compatible with meta-contexts, but it is not compatible with contexts,
due to Sy and S¢. The (-) construct therefore delimits the parts of non-value closures in
which context-sensitive reductions may occur, and partially restores the compatibility of
reductions. In particular, ((t[s]), C1, Ca2) is decomposed into (¢[s], [], C1 - C2) in the course
of decomposition towards a context-sensitive redex.

6.1.4 Formal correspondence
Proposition 6. For any term t in the A\pS-calculus,
tol—5v fandonly if (t e, [}, o) =% o

The ApS-calculus therefore directly corresponds to the abstract machine for shift and reset.

6.1.5 The CPS hierarchy

Iterating the CPS transformation on a direct-style evaluator for the A-calculus gives rise to
a family of CPS evaluators. At each iteration, one can add shift and reset to the new inner
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layer. The result forms a CPS hierarchy of static delimited continuations [32,37] which
Filinski has shown to be able to represent layered monads [46]. Recently, Kameyama has
proposed an axiomatization of the CPS hierarchy [56]. Elsewhere [7], we have studied its
defunctionalized counterpart and the corresponding hierarchy of calculi.

6.2 The \pF-calculus

The standard A-calculus is extended with the control operator F that captures a segment
of the current context and with the control delimiter prompt (noted #) that initializes a
new segment in the current context.

6.2.1 The language of \pF

The abstract syntax of the language is as follows:

(terms) to=i | M| tt| Ft| 4t

(closures) cu=tls] | ce | Fe | #c | TC”

(values) v = (At)[s] | TCT

(substitutions) su=e ] c-s

(reduction contexts) C =[] | C[[]c] | Clv[]] | CIF[]] | Cl#[]]

6.2.2 Notion of context-sensitive reduction

The control operator F captures a segment of the current context up to a mark. The
control delimiter # sets a mark on the current context. When a captured segment is
resumed, it is composed with the current context. For the rest, the notion of reduction is
as usual:?

(Var) (tler---¢), C) =5 (e, C) ifi <3y
(Beta) (((At)[s]) v, C) =5 (tlv-s], C)
(Betac) ("C"w, CY -5 (C'], C)
(Prop) ((tot1)[s], C) —= ((to[s]) (ta[s]), C)
(Propr) (FH)lsl, C) —# (F (t[s]), C)
(Propy) ((#)[s], C) —F (#(t[s]), O)
(Fx) (F((A)[s]), C[# C']) =7 ([7CT - 5], C)

if C’ contains no mark
(Fe) (Frem, Cl# ') —F (FC7Ch, C)

if C' contains no mark
(Prompt) (#0, C) —7 (v, C)

Alternatively, we could specify the reduction rules using two layers of contexts, similarly
to the ApS-calculus [7,10,11]. The difference between the two calculi would then be only
in the rule (Betac):

(Betag) ("C{w, Ci, C3) —x (C{[v], C1, C3)

where there is no delimiter around C’[v]. As in the previous case of the ApS-calculus, such
two-layered decomposition makes it evident that the contraction rules are compatible with
the meta-context, since it is isolated by the use of a control delimiter.

2The original version of F does not reduce its argument first, but its followers do. The present version
of F does likewise here, for a more direct comparison with S.
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6.2.3 The eval/apply abstract machine

Refocusing, compressing the intermediate transitions, and unfolding the data type of clo-
sures mechanically yields the following environment-based machine:

G, s, C) =x (¢, s, C) ifs(i)=(t, s
(At, s, C) =5 (C, (M, s))
(to t1, s, C) =F (to, s, C[[] (t1, 5)])
(Ft,s, C) =5 (t, s, CIF]
<#ta S, C> =F <ta S, C[#[H>
(ClT @ s)l,v) =7 (&, s, Clo[l])
(Cl(At, s) []], v) =7 (t,v-s, C)
(CIFC ], v) = (C'o C, v)
(CIHCFIN (AL, ) =7 (£, 7CT -5, C)

where C' contains no mark
(CI#CF], ") =7 (C"o C,7CT)

where C' contains no mark
(CH#L, v) =7 (C,v)

This machine coincides with Felleisen’s extension of the CEK machine—an extension which
was designed as such [41, Section 3].

6.2.4 Formal correspondence
Proposition 7. For any term t in the A\pF-calculus,
tlo] =% v if and only if (t, e, []) =% v.

This proposition parallels Felleisen’s second correspondence theorem [41, p. 186]. The
ApF-calculus therefore directly corresponds to Felleisen’s extension of the CEK machine.

6.2.5 A hierarchy of control delimiters

As described by Sitaram and Felleisen [78], one could have not one but several marks in
the context and have control operators capture segments of the current context up to a
particular mark. For these marks not to interfere in programming practice, they need
to be organized hierarchically, forming a hierarchy of control delimiters [78, Section 5].
Alternatively, one could iterate Biernacki et al.’s dynamic CPS transformation [11] to give
rise to a hierarchy of dynamic delimited continuations with a functional (CPS) counterpart.
Except for the work of Guuter et al. [50] and more recently of Dybvig et al. [39], this area
is little explored.

6.3 Conclusion

The syntactic correspondence has made it possible to exhibit the calculus correspond-
ing to static delimited continuations as embodied in the functional idiom of success and
failure continuations and more generally in the CPS hierarchy, and to show that (the
explicit-substitutions version of) Felleisen’s calculus of dynamic delimited continuations
corresponds to his extension of the CEK machine [41]. Elsewhere, we present the abstract
machine [7] and the evaluator [32] corresponding to static delimited continuations and an
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evaluator [11] corresponding to dynamic delimited continuations. We are now in position
to compare them pointwise:

e From a calculus point of view, it seems to us that one is better off with layered
contexts because it is immediately obvious whether a notion of reduction is compat-
ible with them (see Section 6.1.3); a context containing marks is less easy to treat.
Otherwise, the difference between static and dynamic delimited continuations is tiny
(see Section 6.2.2), and located in the rule (Betac).

e From a machine point of view, separating between the current delimited context and
the other ones is also simpler, as it avoids linear searches, copies, and concatenations
(in this respect, efficient implementations, e.g., with an Algol-style display, in effect
separate between the current delimited context and the other ones).

e From the point of view of CPS, the abstract machine for dynamic delimited con-
tinuations is not in defunctionalized form whereas the abstract machine for static
delimited continuations is (and corresponds to a evaluator in CPS). Conversely, de-
functionalizing a CPS evaluator provides design guidelines, whereas without CPS,
one is on one’s own, and locally plausible choices may have unforeseen global conse-
quences which are then taken as the norm. Two cases in point:

1. in Lisp, it was locally plausible to push both formal and actual parameters at
function-call time, and to pop them at return time, but this led to dynamic
scope since variable lookup then follows the dynamic link; and

2. here, it was locally plausible to concatenate a control-stack segment to the
current control stack (“From this, we learn that an empty context adds no
information.” [45, p. 58]), but this led to dynamic delimited continuations since
capturing a segment of a concatenated context then gives access to beyond the
concatenation point.

Granted, a degree of dynamism makes it possible to write compact programs (e.g., a
compositional breadth-first traversal without a data-queue accumulator and in direct
style [12]), but it is very difficult to reason about them and they are not necessarily
more efficient.

e From the point of view of expressiveness, for example, in Lisp, one can simulate
the static scope of Scheme by making each lambda-abstraction a “funarg” and in
Scheme, one can simulate the dynamic scope of Lisp by threading an environment
of fluid variables in a state-monad fashion. Similarly, static delimited continuations
can be simulated using dynamic ones by delimiting the extent of each captured
continuation [10], and dynamic delimited continuations can be simulated using static
ones by threading a trail of contexts in a state-monad fashion [11,39,58,77]. As to
which should be used by default, the question then reduces to which behavior is the
norm and which should be simulated if it is needed.

In summary, the calculi, the abstract machines, and the evaluators all differ. In
one approach, continuations are dynamically composed by concatenating their repre-
sentations [45] and in the other, continuations are statically composed through a meta-
continuation. These differences result from distinct designs: Felleisen and his colleagues
started from a calculus and wanted to go “beyond continuations” [44], and therefore be-
yond CPS, whereas Danvy and Filinski were aiming at a CPS account of delimited control,
one that has turned out to be not without practical, semantical, and logical content.
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7 Stack inspection

This section addresses Fournet and Gordon’s Agec-calculus, which formalizes security en-
forcement by stack inspection [47]. We first present a calculus of closures built on top of the
Asec-calculus, and we construct the corresponding environment-based machine. This ma-
chine is a storeless version of the fg machine presented by Clements and Felleisen [16, Fig-
ure 1]. (We consider the issue of store-based machines in Section 8.) This machine is not
properly tail-recursive, and so Clements and Felleisen presented another machine—the cm
machine—which does implement stack inspection in a properly tail-recursive manner [16,
Figure 2]. The cm machine builds on Clinger’s formalization of proper tail-recursion (see
Section 8) and it is therefore store-based; we considered its storeless version here, and we
present the corresponding calculus of closures. We show how the tail-optimization of the
cm machine is reflected in the calculus. Finally, we turn to the unzipped version of the
cm machine [4] and we present the corresponding state-based calculus of closures.

7.1 The A\p,.-calculus
7.1.1 The language of \psec

(terms) to=4 | A | tt| grant Rint | test Rthentelset | R[t] | fail
(closures) cu:=1t[s] | cc | grant Rinc | test Rthencelsec | R|c]

(values) v = (A)[s] | fail

(substitutions) su=e | c-s

(reduction contexts) C == [] | C[[]c] | Clv[]] | Clgrant Rin[]] | C[R[[]]]
(permissions) RCP

The set of terms consists of A-terms and four constructs for handling different levels of se-
curity specified in a set P: grant R int grants the permissions R to ¢; test Rthentgelset;
proceeds to evaluate to if permissions R are available, and otherwise t1; a frame R[t]
restricts the permissions of ¢ to R; and finally, fail aborts the computation.

7.1.2 Notion of context-sensitive reduction

Given the predicate OKgec(R, C) checking whether the permissions R are available within
the context C,

OKee(0, C) OKsec(R,[])
OKsec(R, O) OKsec(R, O)
OKgee(R, C[[] ¢]) OKsee(R, Clv []])

RCR O’Csec(Ra
OKsee(R, C[R[[]]]

C) OKsee(R\ R, C)
) OKsec(R, Clgrant R’ in[]])

the notion of reduction is given by the following set of rules:

(Var) (i1 -+ v5], C) —sec (5, C)  if 1<

(Beta) (((A)[s]) v, C) —see (t[v- 5], C)

(Prop) ((to t1)[s], €) —sec {(to[s]) (t1]s]), C)

(Propg) ((grant Rint)[s], C') —sec (grant Rint[s], C)
(Propr) ((R[ED[s], C) —sec (RIt]s]], C)
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Propr) ((test Rthentgelsety)[s], C
Frame) (R[v], C

( —sec (test Rthentg[s]elset[s], C)
(

(Grant) (grant Rinv, C

(

(

(
sec (v, C)
sec (v, C)
(
(

L |

Testq) (test Rthency else co, ec {(c1, C) if OKgee(R, C)

Tests) (test Rthencj else ca, sec (€2, C) otherwise

sec (fail, [])

The only context-sensitive rules are (Test;) and (Tests), which perform a reduction step
after inspecting the entire context C, and (Fail) which aborts the computation.

)
)
)
)
0) —
(Fail) (faills], C) —

7.1.3 An eval/apply abstract machine

Refocusing, compressing the intermediate transitions, and unfolding the data type of clo-
sures mechanically yields the following environment-based machine:

(C, s(i))

(C, (AL, s))
C) =sec (to, s, C[[] (t1, 5)])

(

(

(i, s, C
(M, s, C
<t0 tl; S,

= sec
=sec

(grant Rint, s, =sec (t S, [grantR1n[]]>

Q Q

(test Rthentgelsety, s, =sec (to, 8, C)  if OKsec(R, C)

(test Rthentgelsetr, s, C) =g (t1, s, C) otherwise

)
)
)
)
)
)
(fail, s, C) =rgec fail
)
)
)
)
)
)

(R[t], 5, O) =ec (t, 5, C[R[[]]])
([}, v) =sec v
(CI[1 (&, )], v) =sec (E, s, Clo[]])
(OO, ) [1] ) Ssee (6 05, C)
(Clgrant Rin|[]], v) =gec (C, v)
(CIR[[1)], v) =sec (C v)

This machine is a storeless version of Clements and Felleisen’s fg machine [16, Figure 1].

7.1.4 Formal correspondence
Proposition 8. For any term t in the \psec-calculus,
t[e] =i v if and only if (t, e, []) =% .

sec

The Apsec-calculus therefore directly corresponds to the storeless version of the fg machine.

7.2 Properly tail-recursive stack inspection

On the ground that the fg machine is not properly tail-recursive, Clements and Felleisen
presented a new, properly tail-recursive, machine—the cm machine [16, Figure 2]—thereby
debunking the folklore that stack inspection is incompatible with proper tail recursion.
Below, we consider the storeless version of the cm machine and we present the underlying
calculus of closures.
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7.2.1 The storeless cm machine

The cm machine operates on a Agec-term, an environment, and an evaluation context
enriched with updatable permission tables (written m below):

(stack frames) C == m[] | C[[](c,m)] | C[(v,m)[]]

A permission table is a partial function with a finite domain from a set of permissions P
to the set {_L = not granted, T = granted}. A permission table with the empty domain is
written €.

Given the predicate OKSL(R, C),

sec

Rnm=YL)=10
OKee(0,C)  OKE(R, m[])

sec

Rnm Y (L)=0 OKL(R\m YT),C) Rnm'(L)=0 OKZ(R\m (T),C)

sec

OKgee(R, Cl[](e, m))) OKgee(R, Cl(v, m)[ 1)

(grant Rint, s,

the transitions of the storeless cm machine read as follows:
sec
(At s, =0 (A, s))
<t0 tla S, :zég tO [[]((t17 ),E)D
sec
to C) it OKIL(R, C)

(i, s, C) =m (C, (i)
see (C,
{
=om <t, s, [R = T])
{to,
ce

:>Cm

sec

(test Rthentgelsety, s, C

soo (11, 8, C> otherwise

=M fail

<fall S, sec
o (t, s, C[R— 1])

(R[t], s, C

beC

cm
:>S8C v

éiéﬁ {t, s, Cl(v, e)[1])
D (t,v-s, C)

(m[], v
(CIII((E, s),m)]; v
(CI((AE, 5), m)[ ], v

where R = P\ R and C[R + v] is a modification of the permission table in the context
C' obtained by granting or restricting the permissions R, depending on v.

The following proposition states the equivalence of the fg machine and the cm machine
with respect to the values they compute:

)
)
)
)
(test Rthentgelsets, s, C') =
)
)=
)
)
)=

sec

Proposition 9. For any term t in the \psec-calculus,
(t, 8, []) =%c v if and only if (¢, e, []) (=50)" v

Moreover, it can be shown that each step of the fg machine is simulated by at most one
step of the cm machine [16]. At the level of the calculus, this is reflected in the fact that
the reduction semantics implemented by the em machine has fewer reductions than Apgec.

7.2.2 The underlying calculus A\p<2

The calculus corresponding to the storeless cm machine is very close to the Apgec-calculus.
The grammar of terms, closures and substitutions is the same, but the reduction con-
texts (which correspond to the stack frames in the machine) contain permission tables.
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Consequently, the functions plug and decompose are defined in a non-standard way:

plug (¢, m[]) = build (m, ¢)
plug (co, C[[](cr, m)]) = plug (build (m, co c1), C)
plug (¢, C[(v,m)[]]) = plug (build (m, v c), C)

where the auxiliary function build conservatively constructs a closure based on the permis-
sion table of the reduction context:

_ e ifm Y (T)=10
buildg (m, c) = {grant m~(T)inc otherwise

_ c if m=1(L) =10
buildr (m,c) = {mT(L)[C] otherwise

build (m,c¢) = buildg (m,buildg (m,c))

Any closure that is not already a value or a potential redex, can be further decomposed
as follows:

decompose (co ¢1, C) = decompose (cg, C[[](c1,¢€)])
decompose (grant Rinc, C') = decompose (¢, C[R — T])
decompose (R]c], C) = decompose (¢, C[R +— 1))

decompose (v, C[[](¢,m)]) = decompose (¢, C[(v,e)[]])

The notion of reduction includes most rules of the Apgec-calculus, except for (Frame) and
(Grant).

From a calculus standpoint, Clements and Felleisen therefore obtained proper tail re-
cursion by changing the computational model (witness the change from OKgec to OKSn)
and by simplifying the reduction rules and modifying the compatibility rules.

7.3 State-based properly tail-recursive stack inspection

On the observation that the stack of the cm machine can be unzipped into the usual
control stack of the CEK machine and a state-like list of permission tables, Ager et al. have
presented an unzipped version of the cm machine (characterizing properly tail-recursive
stack inspection as a monad, in passing) [4]. We first present this machine, and then the
corresponding calculus of closures.

7.3.1 The unzipped storeless cm machine

The unzipped cm machine operates on a Agec-term, an environment, and an ordinary
evaluation context. In addition, the machine has a read-write security register m holding
the current permission table and a read-only security register ms holding a list of outer

permission tables. Given the predicate OK o (R, m, ms),

Rom Y (L)=0 RnmYL)=0 OKL*R\m (T),m, ms)
OKH (B, m,ms)  OKw (R, m,e) OKSH (R, m, m! - ms)

sec sec

the transitions of the unzipped storeless cm machine read as follows:

(i, 8, m,ms, C) =L (C, 5(i), ms)

sec

(At, s, m,ms, C) =™ (C, (A, s), ms)

sec

<t0 t1, s, m, ms, C> =sec <t07 S, €, M - MS, C[H (tla 5)]>

sec
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ucm
=

sec

(t, s, m[R—T], ms, C)
= (ty, s, m,ms, C) if O (R, m, ms)
(

(grant Rint, s, m, ms, C

(test Rthentgelsety, s, m,ms, C) =1 Soe

ucm
=

uem (ty, s, m, ms, C) otherwise

)

)

(test R thentgelsety, s, m, ms, C)

(R[t], s, m,ms, C) =™ (t s, m[R—L1],ms, C)
)
;@)
)

sec

=Uem f£541

(fail, s, m, ms, C) =5

ucm
=

sec

([, v,
(CIIT (& )], v, ms
(Cl(Mt, s) []], vy, m - ms) =2 (¢ v-s, m,ms, C)

sec

sec <t, s, &,ms, Clv[]])

sec

The following proposition states the equivalence of the cm machine and the unzipped
cm machine:

Proposition 10. For any term t in the \psec-calculus,
(t, o, []) (=) v if and only if (t, e, € 0, []) (=) v
Moreover, it can be shown that each step of the cm machine is simulated by one step of

the unzipped cm machine.

7.3.2 The language of \pio™

annotated closures) ¢:= ¢[m,ms] | ¢¢ | ¢c | fail

(terms) tu=1i| M | tt | grant Rint | test Rthentelset | R[t] | fail
(closures) ¢ == t[s]

(values) v = (At)[s] | fail

(substitutions) su=e|c-s

(reduction contexts) C =[] | C[[]¢ | Clv]]]

( c

( v

annotated values) v = v[m,ms| | fail

7.3.3 Notion of context-sensitive reduction

The notion of reduction is specified by the rules below. Compared to the rules of Sec-
tion 7.1.2, the current permission table and the list of outer permission tables are prop-
agated locally to each closure being evaluated. When a value is consumed, the current
permission table is discarded.

The (Prop) reduction rule illustrates the propagation to a subclosure to be evaluated:

((to t1)[s][m, ms], C) —gee™ ((tolslle, m - ms]) (ta[s]), €)

So do half of the other reduction rules:

(Var) Giler - ¢sllm, ms], C) i (e, ms], €)1 < j
(Test1) {(test Rthentgelsety)[s][m, ms], C) —4™ (ty[s][m, ms], C) if Oy (R, m, ms)
(Testz) ((test Rthentgelsety)[s][m, ms], C) =5 (t1[s][m, ms], C') otherwise

(Fail) (fail[s][m, ms], C) —52™ (fail, [])

A new reduction rule, however, is now necessary to go from one evaluated subclosure
to a subclosure to evaluate:

(Switch) ((v[m, ms]) ¢, C) =™ (v (c[e, ms]), C)
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The (Beta) rule doubles up with discarding the permission table of the actual param-
eter:
(Beta) ((At)[s]) (v[m, m" - ms]), C) —=&" (t[v - s|[m’, ms], C)
Finally, the (Frame) and (Grant) rules embody the state counterpart of Clements and

Felleisen’s design to enable proper tail recursion:

(Frame) (R[t][s][m, ms], C) =" (t[s][m[R—L1],ms], C)
(Grant) ((grant Rint)[s][m,ms], C) =™ (t[s|][m[R—T], ms], C)

sec

7.3.4 Formal correspondence

Proposition 11. For any term t in the Asec-calculus,
Hol(—=2™) s if and only if (L, », 2,0, []) (=257)" v,

sec sec

7.4 Conclusion

We have presented three corresponding calculi of closures and machines for stack inspec-
tion, showing first how the storeless fg machine reflects the A\pgec-calculus, second, how the
Ape-calculus reflects the storeless cm machine, and third, how the Api<™-calculus reflects
the unzipped storeless cm machine. In doing so, we have provided a calculus account of

machine design and optimization for stack inspection.

8 A calculus for proper tail-recursion

At PLDT’98 [19], Clinger presented a properly tail-recursive semantics for Scheme in the
form of a store-based abstract machine. This machine models the memory-allocation
behavior of function calls in Scheme, and Clinger used it to specify in which sense an
implementation should not run out of memory when processing a tail-recursive program
(such as a program in CPS).

We first present a similar machine for the A-calculus with left-to-right call-by-value
evaluation and assignments. This machine is in the range of refocusing, transition com-
pression, and closure unfolding, and so we next present the corresponding store-based
calculus, Appsr.

8.1 A simplified version of Clinger’s abstract machine

Our simplified version of Clinger’s abstract machine is an eval/apply machine with an
environment and a store:

(x, s, C, o) =pur (C, o(s(x)), o)
(Az.t, s, C, 0) =p (C, (A\x.t, s), 0)
(to t1, s, C, o) =pir (to, s, C[[] (t1, 9)], o)
(x:=t,s, C,0) =pu (t, s, Clupd(s(z),[])], o)
<Ha U, 0> = ptr (Uv U)
C[H (tv 5)]a v, U> = ptr <ta S5, C[U [Ha 0>
(Cl(Az-t, 8)[]], v, o) =pir (L, (z, 0) -5, C, o[l — v])

if £ does not occur within s, C,v, o
o) =ptr (C, 0(l), o[l — v])

—~
Q
=1

el
[N

—~

S

=

<
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Locations ¢ range over an unspecified set of locations. A store ¢ is a finite mapping from
locations to value closures. Denotable values are locations.

Clinger’s machine also has a garbage-collection rule [19, Figure 5 and Section 3|, but
for simplicity we ignore it here.

8.2 The language of A\p,

The abstract syntax of the language is as follows:

(terms) to=a | Azt | tt | z:i=t

(closures) cu=1t[s] | cc

(values) v = (Az.t)]s]

(substitutions) s:u=e | (z,¢)-s

(red. contexts) C =[] | C[[]c | Clv[]] | Clupd(¥,[])]
(store) ou=e| o[l —

(store closures) ¢ ::= ¢[o]

(store values) ? = v[o]

(store contexts) C = C|o]

8.3 Notion of context-sensitive reduction

In the rules below, (Var) dereferences the store; (Beta) allocates a fresh location, and
extends both the substitution and the store with it; (Prop) is context-insensitive and
therefore essentially as in the Ap-calculus; and (Upd) updates the store.

(Var) (zi[(z1, £1) - - (25, £5)], Clol) —pu (0(li), Clo]) it i <j

(Beta) ((Az.t)[s]) v, Clo]) —pu (t[(z, £) - 5], Clofl — v]])

if £ does not occur within s, C,v, o
(Prop) ((to t1)[s], Clol) —pr ((tols]) (t1]s]), Clo])
(Upd) (upd (£, v), Clo]) —pir (a(£), Clo[l — v]])

Refocusing, compressing the intermediate transitions, and unfolding the data type of clo-
sures mechanically yields the abstract machine of Section 8.1.

8.4 Formal correspondence
Proposition 12. For any term t in the Appr-calculus,
t[o][o] —pie v[o] if and only if (t, e, [], &) =1 (v, o).

The Appi-calculus therefore directly corresponds to the simplified version of Clinger’s
properly tail-recursive machine.

In Section 7, we showed storeless variants of two machines for stack inspection (the fg
and the cm machines). The original versions of these machines use a store in the Clinger
fashion [16], and we can exhibit their underlying calculi with an explicit representation of
the store, as straightforward extensions of the storeless calculi. For conciseness, we do not
include them here.
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9 A lazy calculus of closures

The store-based account of proper tail-recursion from Section 8 suggests the following lazy
calculus of closures, Ap.

9.1 The language of \p

The abstract syntax of the language is as follows:

(terms) tu=d | M| tt

(closures) cu=t[s] | ¢l | upd(¥,c)
(values) v u= (A)[s]

(substitutions) su=e | s

(reduction contexts) C =[] | C[[]14] | Clupd(¢,[])]
(store) ocu=e | o[l — ]

(store closures) ¢ = c[o]

(store values) v = vo]

(store contexts) C == Clo]

9.2 Notion of context-sensitive reduction

The notion of reduction is specified by the five rules shown below.

Variables denote locations, and have two reduction rules, depending on whether the store
holds a value or not at that location. In the former case—handled by (Var;)—the result
is this value, the current context, and the current store. In the latter case—handled by
(Vary)—a special closure upd(4, ¢) is created, indicating that ¢ is a shared computation.
When this computation completes and yields a value, the store at location ¢ should be
updated with this value, which is achieved by (Upd). Since every argument to an applica-
tion can potentially be shared, (App) conservatively allocates a new location in the store
for such shared closures. (Beta) extends the substitution with this location.

9.3 An eval/apply abstract machine

Refocusing, compressing the intermediate transitions, and unfolding the data type of clo-
sures mechanically yields the following store-based machine:3

to, s, C[[]4], o[t — (t1, s)]) where ¢ does not occur in s, C, o

(i, 8, C, o) =1 (C, (M, &), o) where s(i) = £ and o(¢) = (At')[¢']
(i, 8, C, o)y =1 (t', 8, Clupd(¢,[])], o) where s(7) = £ and o(¢) = t'[¢']
(A, s, C, 0) =1 (C, (M, s), o)
(

<t0 tla S, Ca U> =1

3When a shared closure is to be evaluated, the current context is extended with what is known as an
‘update marker’ in the Three Instruction Machine (denoted Clupd(¢,[])] here).
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<H7 v, U> =1 (U; 0')
(Cl[14, (A, 5), 0) =1 (t, €5, C, 0)
<C[upd(£, [])]7 v, U> =1 <C; v, (I[E = ’U]>

This lazy abstract machine coincides with the one derived by Ager et al. out of a call-by-
need interpreter for the A-calculus [3], thereby connecting the present syntactic correspon-
dence between calculi and abstract machines with the functional correspondence between
abstract machines and evaluators [2,4,7,28].

9.4 Formal correspondence
Proposition 13. For any term t in the \pi-calculus,
tolls] —f vlo] if and only if (t, e, ], ) = (v, o).

The Api-calculus therefore directly corresponds to call-by-need evaluation [85].

In Apy, sharing is made possible through a global heap where actual parameters are
stored. On the other hand, a number of other calculi modeling call by need extend the set
of terms with a local let-like construct, either by statically translating the source language
into an intermediate language with explicit indications of sharing (as in Launchbury’s
approach [63]), or by providing dynamic reduction rules to the same effect (as in Ariola et
al.’s calculus [5]). A sequence of let constructs binding variables to shared computations is
a local version of a global heap where shared computations are bound to locations; extra
reductions are then needed to propagate all the let constructs to the top level.

Another specificity of Ap; is that allocation occurs early, i.e., a new cell is allocated in
the store every time an application is evaluated. Allocation, however, occurs late in Ariola
et al.’s semantics, i.e., a new binding is created only when the operator of the application
is known to be a A-abstraction. Delaying allocation is useful in the presence of strict
functions, which we do not consider here.

We can construct a local version of our calculus with either of the store propagated
inside closures or of late allocation. From there, one can mechanically derive the corre-
sponding abstract machines.

10 Conclusion

We have presented a series of calculi and abstract machines accounting for a variety of
computational effects, making it possible to directly reason about a computation in the
calculus and in the corresponding abstract machine (horizontally in the diagram below)
and to directly account for actual and explicit substitutions both in the world of calculi
and in the world of abstract machines (vertically in the diagram below, where ¢ maps a
closure into the corresponding A-term and an environment-machine configuration into a
configuration in the corresponding machine with actual substitutions):

\caleulus syntactic machine with
A correspondence actual substitutions
f A
)\ﬁ—ca:lculus syntactic environment-based
correspondence machine
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The correspondence between each calculus and each abstract machine is simple and each
can be mechanically built from the other. All of the calculi are new. Many of the abstract
machines are known and have been independently designed and proved correct.

The work reported here leads us to drawing the following conclusions.

Curien’s calculus of closures: Once extended to account for one-step reduction,
Curien’s calculus of closures directly corresponds to the notions of evaluation (i.e., weak-
head normalization) accounted for by environment-based machines, even in the presence
of computational effects (state and control).

Refocusing: Despite its pragmatic origin—fusing a plug function and a decomposition
function in a reduction-based evaluation function to improve its efficiency [36], and in
combination with compressing intermediate transitions and unfolding closures, refocusing
proves consistently useful to construct reduction-free evaluation functions in the form of
abstract machines, even in the presence of computational effects.

Defunctionalization: Despite its practical origin—representing a higher-order function
as a data type and a dispatch function [72], defunctionalization proves consistently useful,
witness the next item and also the fact that except for the abstract machines for ApF and
the cm machine, all the abstract machines in this article are in defunctionalized form.

Reduction contexts and evaluation contexts: There are three objective reasons—
one extensional and two intensional—why contexts are useful as well as, in some sense,
unavoidable:

e reduction contexts are in one-to-one correspondence with the compatibility rules of
a calculus;

e reduction contexts are the data type of the defunctionalized continuation of a one-
step reduction function (as used in a reduction-based (weak-head) normalization
function); and

e evaluation contexts are the data type of the defunctionalized continuation of an
evaluation function (as used in a reduction-free (weak-head) normalization function).

If nothing else, each of these three reasons has practical value as a guideline for writing
the grammar of reduction / evaluation contexts (which can be tricky in practice). But
more significantly [27], reduction contexts and evaluation contexts coincide, which means
that as a data type, they mediate between one-step reduction and evaluation, given an
appropriate dispatch function:

, context
decompose’,
& plug refocus,ux
state-transition eval /apply
functions abstract machine
A A
| |
defunctionalization | | defunctionalization
| |
one-step reduction evaluation
function function
in CPS in CPS
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Indeed, as initiated by Reynolds [29,72], defunctionalizing a continuation-passing evaluator
yields an abstract machine [2—4,7], and as already pointed out above, a vast number of
abstract machines are in defunctionalized form [9,11,28].

Together, the syntactic correspondence between calculi and abstract machines and the
functional correspondence between abstract machines and evaluators therefore connect ap-
parently distinct approaches to the same computational situations. We already illustrated
this connection in Section 6 with delimited continuations; let us briefly illustrate it further
with the simpler example of call/cc:

Call/cc was introduced in Scheme [17] as a Church encoding of Reynolds’s es-
cape operator [72]. A typed version of it is available in Standard ML of New
Jersey [52] and Griffin has identified its logical content [49]. It is endowed with
a variety of specifications: a CPS transformation [33], a CPS interpreter [53,72],
a denotational semantics [57], a computational monad [86], a big-step opera-
tional semantics [52], the CEK machine [43], calculi in the form of reduction
semantics [42], and a number of implementation techniques [18, 25, 55]—not
to mention its call-by-name version that allegedly accounts for the axiom of
choice in the archival version of Krivine’s machine [60].

Question: How do we know that all the artifacts in this semantic jungle define
the same call/cc?

The elements of answer we contribute here are that the syntactic correspondence links
calculi and abstract machines, and the functional correspondence links abstract machines
and evaluators. So by construction, all these specifications are inter-derivable and therefore
they are consistent.

Normalization by evaluation: Finally, refocusing provides a guideline for constructing
reduction-free normalization functions out of reduction-based ones [26]. The reduction-
free normalization functions take the form of eval/apply abstract machines, which usually
are in defunctionalized form, which paves the way to writing normalization functions as
usually encountered in the area of normalization by evaluation [31]. We have illustrated
the method here with weak reduction and weak-head normalization (i.e., evaluation), but
it also works for strong reduction and normalization, thus linking one-step reduction,
abstract machines for strong reduction, and normalization functions.
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