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1 Introduction

Programming and specification languages often include constructs to specify mode
switches (see, e.g., [8,11,23,24,26]). Indeed, some form of mode transfer in com-
putation appears in the time-honoured theory of operating systems in the guise of,
e.g., interrupts, in programming languages as exceptions, and in the behaviour of
control programs and embedded systems as discrete “mode switches” triggered by
changes in the state of their environment.

In light of the ubiquitous nature of mode changes in computation, it is not surpris-
ing that classic process description languages either include primitive operators to
describe mode changes—for example, LOTOS [15,23] offers the so-calleddisrup-
tion operator—or have been extended with variations on mode transfer operators.
For instance, examples of such operators that may be added to CCS are discussed
by Milner in [25, pp. 192–193], and the reference [17] offers some discussion of the
benefits of adding one of those, viz. thecheckpointing operator, to that language.

In the setting of Basic Process Algebra (BPA), as introduced by Bergstra and Klop
in [12], some of these extensions, and their relative expressiveness, have been dis-
cussed in the early paper [11]. That preprint of Bergstra’s has later been revised
and extended in [7]. There, Baeten and Bergstra study the equational theory and
expressiveness of BPAδ (the extension of BPA with a constantδ to describe “dead-
lock”) enriched with two mode transfer operators, viz. thedisrupt and interrupt
operators. In particular, they offer an equational axiomatization of bisimulation
equivalence [25,29] over the resulting extension of the language BPAδ. This ax-
iomatization is finite, if so is the underlying set of actions—a state of affairs that is
most pleasing for process algebraists.

However, the axiomatization of bisimulation equivalence offered by Baeten and
Bergstra in [7] relies on the use of four auxiliary operators—two per mode transfer
operator. (Two of those auxiliary operators are, however, redundant since they are
derived BPA operators.) Although the use of auxiliary operators in the axiomatiza-
tion of behavioral equivalences over process description languages has been well
established since Bergstra and Klop’s axiomatization of parallel composition us-
ing the left and communication merge operators [13], to our mind, a result like the
aforementioned one always begs the question whether the use of auxiliary operators
is necessary to obtain a finite axiomatization of bisimulation equivalence.

For the case of parallel composition, Moller showed in [27,28] that strong bisim-
ulation equivalence is not finitely based over CCS [25] and PA [13] without the
left merge operator. (The process algebra PA [13] contains a parallel composition
operator based on pure interleaving without communication, and the left merge op-
erator.) Thus auxiliary operators are necessary to obtain a finite axiomatization of
parallel composition. But, is the use of auxiliary operators necessary to give a finite
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axiomatization of bisimulation equivalence over the language BPA enriched with
the mode transfer operators studied by Baeten and Bergstra in [7]?

We address the above natural question in this paper. In particular, we mostly fo-
cus on BPA enriched with the interrupt operator. Intuitively, “p interrupted byq”
describes a process that normally behaves likep. However, at each point of the
computation beforep terminates,q can interrupt it, and begin its execution. If this
happens,p resumes its computation upon termination ofq.

We show that, in the presence of a single action, bisimulation equivalence isnot
finitely based over BPA with the interrupt operator. Moreover, we prove that the
collection of closed equations over this language is also not finitely based. This re-
sult provides evidence that the use of auxiliary operators in the technical develop-
ments presented in [7] is indeed necessary in order to obtain a finite axiomatization
of bisimulation equivalence.

Our main result adds the interrupt operator to the list of operators whose addition
to a process algebra spoils finite axiomatizability modulo bisimulation equivalence;
see, e.g., [3,4,14,16,20,30,31] for other examples of non-finite axiomatizability re-
sults over process algebras, and some of their precursors in the setting of formal
language theory. Of special relevance for concurrency theory are the aforemen-
tioned results of Moller’s to the effect that the process algebras CCS and PA without
the auxiliary left merge operator from [12] do not have a finite equational axiom-
atization modulo bisimulation equivalence [27,28]. Recently, in collaboration with
Luttik, the first three authors have shown in [5] that the process algebra obtained by
adding Hennessy’s merge operator from [22] to CCS does not have a finite equa-
tional axiomatization modulo bisimulation equivalence. This result is in sharp con-
trast with a theorem established by Fokkink and Luttik in [18] to the effect that the
process algebra PA [13] affords anω-complete axiomatization that is finite if so is
the underlying set of actions. Aceto,Ésik and Ingolfsdottir proved in [2] that there
is no finite equational axiomatization that isω-complete for the max-plus algebra
of the natural numbers, a result whose process algebraic implications are discussed
in [1]. Fokkink and Nain have shown in [19] that no congruence over the language
BCCSP, a basic formalism to express finite process behaviour, that is included in
possible worlds equivalence, and includes ready trace equivalence, affords a finite
ω-complete equational axiomatization.

Having established that the addition of the interrupt operator to BPA spoils finite
axiomatizability modulo bisimulation equivalence, it is natural to ask ourselves
whether the same holds true for the disrupt operator from [7]. Intuitively, “p dis-
rupted byq” describes a process that normally behaves likep. However, at each
point of the computation beforep terminates,q can pre-empt it, and begin its exe-
cution. If this happens,p never resumes its computation.

We show that, perhaps surprisingly, in sharp contrast to the main result of the paper,
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the use of auxiliary operators isnot necessary in order to obtain a finite axiomati-
zation of bisimulation equivalence over closed terms in the language obtained by
enriching BPA with the disrupt operator. The key to this positive result is the dis-
tributivity of the disrupt operator with respect to the non-deterministic choice op-
erator of BPA in its first argument—a property that is not afforded by the interrupt
operator.

The paper is organized as follows. We begin by presenting the language BPA with
the interrupt operator, its operational semantics and preliminaries on equational
logic in Section 2. There we also show that the interrupt operator is not definable
in BPA modulo bisimilarity. The general structure of the proof of our main result,
to the effect that bisimilarity is not finitely based over the language BPA with the
interrupt operator, is presented in Section 3. In that section, we also show how to
reduce the proof of our main result to that of a technical statement describing a key
property of closed instantiations of sound equations that is preserved under equa-
tional derivations (Proposition 13). We offer a proof of Proposition 13 in Section 4.
We conclude the paper by presenting in Section 5 an axiomatization of bisimulation
equivalence over closed terms in the language obtained by enriching BPA with the
disrupt operator from [7]. Such an axiomatization is finite in the presence of a finite
set of actions, and does not employ auxiliary operators.

An extended abstract of this paper appeared as [6]. There we announced without
proof our main result (namely, Theorem 9) under the assumption that the set of
actions contains two distinct actions. The present version of the paper sharpens
Theorem 9 in that it now applies to any non-empty set of actions, and offers the full
proof of our main result (all of the material in Section 4). Moreover, Proposition 20
in the current paper is new.

2 Preliminaries

We begin by introducing the basic definitions and results on which the technical
developments to follow are based. The interested reader is referred to [7,12] for
more information.

2.1 The LanguageBPAint

We assume a non-empty alphabetA of atomic actions, with typical elementa. The
language for processes we shall consider in the main body of this paper, hence-
forth referred to as BPAint, is obtained by adding the interrupt operator from [7] to
Bergstra and Klop’s BPA [12]. This language is given by the following grammar:

t ::= x | a | t · t | t + t | t � t ,
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wherex is a variable drawn from a countably infinite setV anda is an action. In
the above grammar, we use the symbol� for theinterrupt operator.

Intuitively, a term of the formp � q describes a process that normally behaves like
p. However, at each point of the computation beforep terminates,q can interrupt it,
and begin its execution. If this happens,p resumes its computation upon termination
of q. An alternative compositionp+q nondeterministically behaves as eitherp or q.
A sequential compositionp·q first behaves asp, and upon termination ofp behaves
asq.

We shall use the meta-variablest, u, v, w to range over process terms, and write
var(t) for the collection of variables occurring in the termt. Thesizeof a term is
the number of symbols in it. Formally,

• the size of variables and actions is1, and
• that oft · u, t + u andt � u is one plus the sum of the sizes oft andu.

A process term isclosedif it does not contain any variables. Closed terms will be
typically denoted byp, q, r, s. As usual, we shall often writetu in lieu of t · u, and
we assume that· binds stronger than+ and�.

A (closed) substitution is a mapping from process variables to (closed) BPAint

terms. For every termt and substitutionσ, the term obtained by replacing every
occurrence of a variablex in t with the termσ(x) will be written σ(t). Note that
σ(t) is closed, if so isσ. In what follows, we shall use the notationσ[x 7→ p], where
σ is a closed substitution andp is a closed BPAint term, to stand for the substitution
mappingx to p, and acting likeσ on all of the other variables inV .

In the remainder of this paper, we leta1 denotea, andam+1 denotea(am). More-
over, we consider terms modulo associativity and commutativity of+. In other
words, we do not distinguisht + u andu + t, nor(t + u) + v andt + (u + v). This
is justified because+ is associative and commutative with respect to the notion
of equivalence we shall consider over BPAint. (See axioms A1, A2 in Table 3 on
page 12.) In what follows, the symbol= will denote equality modulo associativity
and commutativity of+.

We say that a termt has+ as head operatorif t = t1 + t2 for some termst1 andt2.
For example,a + b has+ as head operator, but(a + b)a does not.

For k ≥ 1, we use asummation
∑

i∈{1,...,k} ti to denotet1 + · · · + tk. It is easy to
see that every BPAint termt has the form

∑
i∈I ti, for some finite, non-empty index

setI, and termsti (i ∈ I) that do not have+ as head operator. The termsti (i ∈ I)
will be referred to as the(syntactic) summandsof t. For example, the term(a+ b)a
has only itself as (syntactic) summand.

The operational semantics for the language BPAint is given by the labelled transition
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a
a→X

t
a→X

t + u
a→X

u
a→X

t + u
a→X

t
a→ t′

t + u
a→ t′

u
a→ u′

t + u
a→ u′

t
a→X

t · u a→ u

t
a→ t′

t · u a→ t′ · u

t
a→X

t � u
a→X

t
a→ t′

t � u
a→ t′ � u

u
a→X

t � u
a→ t

u
a→ u′

t � u
a→ u′ · t

Table 1
Transition Rules for BPAint

system (
BPAint,

{
a→| a ∈ A

}
,
{

a→X | a ∈ A
})

,

where the transition relationsa→ and the unary predicatesa→X are, respectively, the
least subsets of BPAint×BPAint and BPAint satisfying the rules in Table 1. Intuitively,
a transitiont a→ u means that the system represented by the termt can perform the
actiona, thereby evolving intou. The special symbolX stands for (successful)
termination; therefore the interpretation of the statementt

a→X is that the process
term t can terminate by performinga. Note that, for every closed termp, there is
some actiona for which eitherp a→ p′ holds for somep′, or p

a→X does.

For termst, u, and actiona, we say thatu is ana-derivativeof t if t
a→ u.

The transition relationsa→ naturally compose to determine the possible effects that
performing a sequence of actions may have on a BPAint term.

Definition 1 For a sequence of actionsa1 · · ·ak (k ≥ 0), andBPAint termst, t′, we
write t

a1···ak→ t′ iff there exists a sequence of transitions

t = t0
a1→ t1

a2→ · · · ak→ tk = t′ .

Similarly, we say thata1 · · ·ak (k ≥ 1) is a termination trace of aBPAint termt iff
there exists a termt′ such that

t
a1···ak−1−→ t′ ak→X .

If t
a1···ak−→ t′ holds for someBPAint term t′, or a1 · · ·ak is a termination trace oft,

thena1 · · ·ak is a traceof t.

Thedepthof a termt, writtendepth(t), is the length of the longest trace it affords.
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Thenormof a termt, denoted bynorm(t), is the length of its shortest termination
trace; this notion stems from [9].

The depth and the norm of closed terms can also be characterized inductively thus:

depth(a) = 1

depth(p + q) = max{depth(p), depth(q)}
depth(pq) = depth(p) + depth(q)

depth(p � q) = depth(p) + depth(q)

norm(a) = 1

norm(p + q) = min{norm(p), norm(q)}
norm(pq) = norm(p) + norm(q)

norm(p � q) = norm(p) .

Note that the depth and the norm of each closed BPAint term are positive, and there-
fore that the norm of each closed term of the formpq is at least 2. This simple, but
useful, observation will be used repeatedly in the remainder of this study.

In what follows, we shall sometimes need to consider the possible origins of a tran-
sition of the formσ(t)

a→ p, for some actiona, closed substitutionσ, BPAint term
t and closed termp. Naturally enough, we expect thatσ(t) affords that transition
if t

a→ t′, for somet′ such thatp = σ(t′). However, the above transition may also
derive from the initial behaviour of some closed termσ(x), provided that the col-
lection of initial moves ofσ(t) depends, in some formal sense, on that of the closed
term substituted for the variablex. Similarly, we shall sometimes need to consider
the possible origins of a transition of the formσ(t)

a→X, for some actiona, closed
substitutionσ and BPAint termt.

To fully describe these situations, we introduce the auxiliary notion of configuration
of a BPAint term. To this end, we assume a set of symbols

Vd = {xd | x ∈ V }

disjoint fromV . Intuitively, the symbolxd (read “duringx”) will be used to denote
that the closed term substituted for variablex has begun executing, but has not yet
terminated.

Definition 2 The collection ofBPAint configurationsis given by the grammar:

c ::= t | xd | c · t | c � t ,

wheret is a BPAint term, andxd ∈ Vd.
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x
xs→ xd x

x→X

t
x→ t′

t + u
x→ t′

t
xs→ c

t + u
xs→ c

t
x→X

t + u
x→X

u
x→ u′

t + u
x→ u′

u
xs→ c

t + u
xs→ c

u
x→X

t + u
x→X

t
x→ t′

tu
x→ t′u

t
xs→ c

tu
xs→ cu

t
x→X

tu
x→ u

t
x→ t′

t � u
x→ t′ � u

t
xs→ c

t � u
xs→ c � u

t
x→X

t � u
x→X

u
x→ u′

t � u
x→ u′t

u
xs→ c

t � u
xs→ ct

u
x→X

t � u
x→ t

Table 2
SOS Rules for the Auxiliary Transitions

x→,
xs→ and

x→X (x ∈ V )

For example, the configurationxd · (a � x) is meant to describe a state of the
computation of some term in which the (closed term substituted for the) occurrence
of variablex on the left-hand side of the· operator has begun its execution (and
has not terminated), but the one on the right-hand side has not. Note that each
configuration contains at most one occurrence of anxd ∈ Vd.

We shall consider the symbolsxd as variables, and use the notationσ[xd 7→ p],
whereσ is a closed substitution andp is a closed BPAint term, to stand for the
substitution mappingxd to p, and acting likeσ on all of the other variables.

The way in which the initial behaviour of a term may depend on that of the variables
that occur in it is formally described by three auxiliary transition relations whose
elements have the following forms:

• t
xs→ c (read “t can start executingx and becomec in doing so”), wheret is a

term,x is a variable, andc is a configuration,
• t

x→ t′, wheret andt′ are terms andx is a variable, or
• t

x→X, wheret is a term.

The first of these types of transitions will be used to account for those transitions
of the formσ(t)

a→ p that are due toa-labelled transitions of the closed termσ(x)
that do not lead to its termination. The second will describe the origin of transitions
of the formσ(t)

a→ σ(t′) that are due toa-labelled transitions of the closed term
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σ(x) that lead to its termination. Finally, transitions of the third kind will allow us
to describe the origin of termination transitions of the formσ(t)

a→X that are due
to a-labelled termination transitions of the closed termσ(x).

The SOS rules defining these transition relations are given in Table 2. In those
rules, the meta-variablest, u, t′ andu′ denote BPAint terms, andc ranges over the
collection of configurations that contain one occurrence of a symbol of the formxd.
The attentive reader might have already noticed that the left-hand sides of the rules
in Table 2 are always BPAint terms, and therefore that no transitions are possible
from configurations that contain one occurrence of a symbol of the formxd. This
is in line with our aim in defining the auxiliary transition relationsx→, xs→ and x→X
(x ∈ V ), viz. to describe the possible origins of theinitial transitions of a term of
the formσ(t), with t a BPAint term andσ a closed substitution.

Lemma 3 For eachBPAint term t, configurationc and variablex, if t
xs→ c, then

xd occurs inc. Moreover, ifc = xd thenx is a summand oft.

The precise connection between the transitions of a termσ(t) and those oft is
expressed by the following lemma.

Lemma 4 (Operational Correspondence)Assume thatt is a BPAint term,σ is a
closed substitution anda is an action. Then the following statements hold:

(1) If t
a→X, thenσ(t)

a→X.
(2) If t

a→ t′, thenσ(t)
a→ σ(t′).

(3) If t
x→X andσ(x)

a→X, thenσ(t)
a→X.

(4) If t
x→ t′ andσ(x)

a→X, thenσ(t)
a→ σ(t′).

(5) Assume thatt
xs→ c and σ(x)

a→ p, for some closed termp. Thenσ(t)
a→

σ[xd 7→ p](c).
(6) Assume thatσ(t)

a→X. Then eithert a→X or there is a variablex such that
t

x→X andσ(x)
a→X.

(7) Assume thatσ(t)
a→ p, for some closed termp. Then one of the following

possibilities applies:
• t

a→ t′ for some termt′ such thatp = σ(t′),
• t

x→ t′, σ(x)
a→X andp = σ(t′), for some termt′ and variablex, or

• t
xs→ c andσ(x)

a→ q, for some variablex, configurationc and closed term
q such thatσ[xd 7→ q](c) = p.

PROOF. Statements 1–5 are proven by induction on the proof of the relevant tran-
sitions. The proof of statement 4 uses statement 3. On the other hand, statements 6–
7 are proven by induction on the structure of the termt. The proof of statement 7
uses statement 6.

The details are lengthy, but straightforward, and we therefore omit them. �
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In this paper, we shall consider the language BPAint modulo bisimulation equiva-
lence [25,29].

Definition 5 Two closedBPAint termsp andq are bisimilar, denoted byp ↔ q, if
there exists a symmetric binary relationB over closedBPAint terms which relatesp
andq, such that:

- if r B s andr
a→ r′, then there is a transitions a→ s′ such thatr′ B s′;

- if r B s andr
a→X, thens

a→X.

Such a relationB will be called abisimulation. The relation↔ will be referred to
asbisimulation equivalenceor bisimilarity.

It is well known that↔ is an equivalence relation, and that it is the largest bisim-
ulation [25,29]. Moreover, the transition rules in Table 1 are in the ‘path’ format
of Baeten and Verhoef [10]. Hence, bisimulation equivalence is a congruence with
respect to all the operators in the signature of BPAint.

Note that bisimilar closed BPAint terms afford the same finite non-empty collection
of (termination) traces, and therefore have the same norm and the same depth.

Bisimulation equivalence is extended to arbitrary BPAint terms thus:

Definition 6 Let t, u beBPAint terms. Thent↔ u iff σ(t) ↔ σ(u) for every closed
substitutionσ.

For instance, we have that

x � y ↔ (x � y) + yx

because, as our readers can easily check, the termsp � q and(p � q) + qp have
the same set of initial “capabilities”, i.e.,

p � q
a→ r iff (p � q) + qp

a→ r , for eacha andr, and

p � q
a→X iff (p � q) + qp

a→X, for eacha .

On the other hand, neither of the equivalences

(x + y) � z ↔ (x � z) + (y � z) and
x � (y + z) ↔ (x � y) + (x � z)

holds. Indeed, as our readers can easily check,

(a + a2) � a ↔/ (a � a) + (a2 � a) and

a2 � (a + a2) ↔/ (a2 � a) + (a2 � a2) .
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It is natural to expect that the interrupt operator cannot be defined in the language
BPA modulo bisimulation equivalence. This expectation is confirmed by the fol-
lowing simple, but instructive, result:

Proposition 7 There is noBPAint term t such thatt does not contain occurrences
of the interrupt operator, andt↔ x � y.

PROOF. Assume, towards a contradiction, thatt is a BPAint term such thatt does
not contain occurrences of the interrupt operator, andt↔ x � y.

Consider the closed substitutionσa mapping each variable toa. Since

σa(t) ↔ a � a anda � a
a→X ,

we have thatσa(t)
a→X. Lemma 4(6) yields that eithert a→X or there is a variablez

such thatt z→X andσa(z)
a→X. We shall now argue that both of these possibilities

imply thatt↔/ x � y, contradicting our assumption.

Indeed, using the former possibility and Lemma 4(1), we may infer that

σa[x 7→ a2](t)
a→X .

This implies thatt ↔/ x � y, becausea2 � a does not have termination traces of
length 1.

Assume now that there is a variablez such thatt z→X andσa(z)
a→X. It is not hard

to see thatt ↔ z + u for some termu, sincet does not contain occurrences of the
interrupt operator andt z→X. We claim that

σa[x 7→ a2](t) ↔/ a2 � a .

If z 6= x, our claim follows, because, reasoning as above,

σa[x 7→ a2](t) ↔ a + σa[x 7→ a2](u)
a→X

whereasa2 � a does not have termination traces of length 1.

If t ↔ x + u, thenσa[x 7→ a2](t)
a→ p for somep ↔ a. On the other hand, the two

a-derivatives ofa2 � a, namelya � a anda2, have depth 2, and thus neither of
them is bisimilar toa. �

2.2 Equational Logic

An axiom systemis a collection of equationst ≈ u over the language BPAint. An
equationt ≈ u is derivable from an axiom systemE, notationE ` t ≈ u, if it can

11



A1 x + y ≈ y + x

A2 (x + y) + z ≈ x + (y + z)

A3 x + x ≈ x

A4 (x + y)z ≈ (xz) + (yz)

A5 (xy)z ≈ x(yz)

Table 3
Some Axioms for BPAint

be proven from the axioms inE using the rules of equational logic (viz. reflexivity,
symmetry, transitivity, substitution and closure under BPAint contexts):

t ≈ t
t ≈ u

u ≈ t

t ≈ u u ≈ v

t ≈ v

t ≈ u

σ(t) ≈ σ(u)

t ≈ u t′ ≈ u′

t + t′ ≈ u + u′
t ≈ u t′ ≈ u′

tt′ ≈ uu′
t ≈ u t′ ≈ u′

t � t′ ≈ u � u′ .

Without loss of generality one may assume that substitutions happen first in equa-
tional proofs, i.e., that the rule

t ≈ u

σ(t) ≈ σ(u)

may only be used when(t ≈ u) ∈ E. In this case, the equationσ(t) ≈ σ(u) is
called asubstitution instanceof an axiom inE.

Moreover, by postulating that for each axiom inE also its symmetric counterpart
is present inE, one may assume that applications of symmetry happen first in
equational proofs. In the remainder of this paper, we shall tacitly assume that our
equational axiom systems are closed with respect to symmetry.

It is well-known (see, e.g., Sect. 2 in [21]) that if an equation relating two closed
terms can be proven from an axiom systemE, then there is a closed proof for it.

Definition 8 An equationt ≈ u over the languageBPAint is soundwith respect to
↔ iff t ↔ u. An axiom system is sound with respect to↔ iff so is each of its
equations.

A collection of equations over the language BPA that is sound and complete with
respect to↔ is given in Table 3. Those equations stem from [12].

In [7], Baeten and Bergstra gave a sound and complete axiomatization of bisimi-
larity over BPAδ (the extension of BPA with a constantδ to describe “deadlock”)
enriched with the interrupt operator, using an auxiliary binary operator, which we
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denote byH . Intuitively, p H q behaves asp � q, with the restriction that it must
take its first action fromp. The axioms from [7] for the interrupt operator and its
help operator are given below (except for one axiom that involvesδ).

x � y ≈ (x H y) + (yx)

a H x ≈ a (a ∈ A)

(ax) H y ≈ a(x � y) (a ∈ A)

(x + y) H z ≈ (x H z) + (y H z) .

Observe that, in the presence of a finite set of actions, this collection of equations
is finite. Note, furthermore, that, unlike the interrupt operator, the auxiliary op-
eratorH is distributive with respect to+ in its first argument. As we shall also
remark in Section 5, this property is very useful for achieving a finite equational
axiomatization of bisimilarity. Indeed, the absence of distributivity with respect to
+ casts doubts as to the possibility that a finite axiom system be powerful enough
to “expand” the initial behaviour of terms of the formp � q when the number
of non-bisimilar summands inp grows sufficiently large. This observation lies at
the heart of the proof of our main result in this study (Theorem 9). This we now
proceed to present.

3 Bisimilarity is not Finitely Based over BPAint

Our main order of business in the remainder of this paper will be to show the
following theorem:

Theorem 9 Bisimilarity is not finitely based over the languageBPAint—that is,
there is no finite axiom system that is sound with respect to↔, and proves all of
the equationst ≈ u such thatt ↔ u. Moreover, the same holds true if we restrict
ourselves to the collection of closed equations overBPAint that hold modulo↔.

The above theorem is an immediate corollary of the following result:

Theorem 10 LetE be a finite collection of equations over the languageBPAint that
hold modulo↔. Letn > 3 be larger than the size of each term in the equations in
E. ThenE 6` en, where the family of equationsen (n ≥ 1) is defined thus:

en : Φn � a ≈ a +
n∑

i=2

a((ai−1 + a3 + a) � a) + aΦn . (1)

In the above family,Φn =
∑n

i=1 pi wherep1 = a andpi = a(ai−1 + a3 + a) for
i > 1.
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Note that the term
∑n

i=2 a((ai−1 + a3 + a) � a) is only present on the right-hand
side of equationen if n > 1. Observe, furthermore, that, for eachn ≥ 1, the closed
equationen is sound modulo bisimilarity. Indeed, the left-hand and right-hand sides
of the equation have isomorphic labelled transitions systems. Therefore, as claimed
above, Theorem 9 is an immediate consequence of Theorem 10.

The following simple properties of the closed termsΦn for n ≥ 1 andpi for 1 ≤
i ≤ n will find repeated application in what follows.

Lemma 11

(1) The norm ofpi is 1 if i = 1, and2 otherwise. The depth ofpi is 1 if i = 1, and
max{i, 4} otherwise.

(2) The norm ofΦn � a is 1. Its depth is2 if n = 1, 5 if n = 2 or n = 3, and
n + 1 if n > 3.

(3) Eacha-derivative ofΦn or Φn � a has norm1.
(4) Assume that1 ≤ i < j. Thenpi ↔ pj if, and only if, i = 2 and j = 4.

ThereforeΦn hasn− 1 non-bisimilar summands ifn > 3.

PROOF. We limit ourselves to presenting the proof of the former claim in state-
ment (4). The latter claim in that statement is an immediate consequence of the
former.

If i = 2 andj = 4, thenpi ↔ pj follows immediately from the definition of the
termsp` (` ≥ 1). Conversely, assume thatpi ↔ pj and1 ≤ i < j. Observe that
i > 1 by statement (1) of the lemma. Sincepi ↔ pj , the termspi andpj have the
same set of terminating traces, namely

{ai, a4, a2} = {aj, a4, a2} .

Sincei < j by the proviso of the statement, it follows thati, j ∈ {2, 4}. Again
usingi < j, we derive thati = 2 andj = 4, which was to be shown. �

In the remainder of this study, we shall offer a proof of Theorem 10. In order to
prove this theorem, it will be sufficient to establish the following technical result:

Proposition 12 Let E be a finite axiom system over the languageBPAint that is
sound modulo bisimilarity. Letn > 3 be larger than the size of each term in the
equations inE. Assume, furthermore, that

• E ` p ≈ q,
• p ↔ Φn � a, and
• p has a summand bisimilar toΦn � a.

Thenq has a summand bisimilar toΦn � a.

14



Indeed, assuming Proposition 12, we can prove Theorem 10, and therefore Theo-
rem 9, as follows.

Proof of Theorem 10: Assume thatE is a finite axiom system over the language
BPAint that is sound modulo bisimilarity. Pickn > 3 and larger than the size of the
terms in the equations inE. Assume that, for some closed termq,

E ` Φn � a ≈ q .

By Proposition 12, we have thatq has a summand bisimilar toΦn � a. Using
Lemma 11(2) it is easy to see that the summands of the right-hand side of equation
en, viz.

a +
n∑

i=2

a((ai−1 + a3 + a) � a) + aΦn ,

are not bisimilar toΦn � a, and thus that

q 6= a +
n∑

i=2

a((ai−1 + a3 + a) � a) + aΦn .

We may therefore conclude thatE does not prove equationen, which was to be
shown. 2

Our order of business will now be to provide a proof of Proposition 12. Our proof
of that result will be proof-theoretic in nature, and will proceed by induction on the
depth of equational derivations from a finite axiom systemE. The crux in such an
induction proof is given by the following proposition, to the effect that the statement
of Proposition 12 holds for closed instantiations of axioms inE.

Proposition 13 Let t ≈ u be an equation over the languageBPAint that holds
modulo bisimilarity. Letσ be a closed substitution,p = σ(t) andq = σ(u). Assume
that

• n > 3 and the size oft is smaller thann,
• p ↔ Φn � a, and
• p has a summand bisimilar toΦn � a.

Thenq has a summand bisimilar toΦn � a.

Indeed, let us assume for the moment that the above result holds. Using it, we can
prove Proposition 12 thus:

Proof of Proposition 12: Assume thatE is a finite axiom system over the lan-
guage BPAint that is sound with respect to bisimulation equivalence, and that the
following hold, for some closed termsp andq and positive integern > 3 that is
larger than the size of each term in the equations inE:

(1) E ` p ≈ q,
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(2) p ↔ Φn � a, and
(3) p has a summand bisimilar toΦn � a.

We prove thatq also has a summand bisimilar toΦn � a by induction on the depth
of the closed proof of the equationp ≈ q from E. Recall that, without loss of
generality, we may assume that applications of symmetry happen first in equational
proofs (that is,E is closed with respect to symmetry).

We proceed by a case analysis on the last rule used in the proof ofp ≈ q from E.
The case of reflexivity is trivial, and that of transitivity follows immediately by us-
ing the inductive hypothesis twice. Below we only consider the other possibilities.

• CASE E ` p ≈ q, BECAUSE σ(t) = p AND σ(u) = q FOR SOME EQUATION

(t ≈ u) ∈ E AND CLOSED SUBSTITUTIONσ. Sincen > 3 is larger than the size
of each term mentioned in equations inE, the claim follows by Proposition 13.

• CASE E ` p ≈ q, BECAUSEp = p′+p′′ AND q = q′+q′′ FOR SOMEp′, q′, p′′, q′′

SUCH THAT E ` p′ ≈ q′ AND E ` p′′ ≈ q′′. Sincep has a summand bisimilar to
Φn � a, we have that so does eitherp′ or p′′. Assume, without loss of generality,
thatp′ has a summand bisimilar toΦn � a. Sincep is bisimilar toΦn � a, so
is p′. The inductive hypothesis now yields thatq′ has a summand bisimilar to
Φn � a. Hence,q has a summand bisimilar toΦn � a, which was to be shown.

• CASE E ` p ≈ q, BECAUSE p = p′p′′ AND q = q′q′′ FOR SOMEp′, q′, p′′, q′′

SUCH THAT E ` p′ ≈ q′ AND E ` p′′ ≈ q′′. This case is vacuous. In fact,
norm(p) = 1 by our assumption thatp↔ Φn � a, whereas the norm of a closed
term of the formp′p′′ is at least 2.

• CASE E ` p ≈ q, BECAUSE p = p′ � p′′ AND q = q′ � q′′ FOR SOME

p′, q′, p′′, q′′ SUCH THAT E ` p′ ≈ q′ AND E ` p′′ ≈ q′′. The claim is immediate
becausep andq are their only summands, andE is sound modulo bisimilarity.

This completes the proof. 2

In light of our previous discussion, all that we are left to do to complete our proof of
Theorem 9 is to show Proposition 13. The next section of this paper will be entirely
devoted to a proof of that result.

4 Proof of Proposition 13

We begin our proof of Proposition 13 by stating a few auxiliary results that will
find application in the technical developments to follow.

Lemma 14 For n > 1, 2 ≤ j ≤ n and closedBPAint termq, the termΦn � a is
not bisimilar to closed terms that have a summand

(
(aj−1 + a3 + a) � a

)
� q.
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PROOF. Observe that
(
(aj−1 + a3 + a) � a

)
� q

a→
(
a2 � a

)
� q. The claim

now follows immediately by Lemma 11(3). �

Lemma 15 Let n ≥ 1. Assume thatp � q ↔ Φn � a, for closedBPAint termsp
andq. Thenp ↔ Φn andq ↔ a.

PROOF. Sincep � q ↔ Φn � a andΦn � a
a→ Φn, there is a closed termr such

thatp � q
a→ r andr ↔ Φn.

We proceed by examining the possible origins of the transitionp � q
a→ r. There

are three possibilities to consider, viz.

(1) q
a→ q′ andr = q′p, for someq′,

(2) q
a→X andr = p, or

(3) p
a→ p′ andr = p′ � q, for somep′.

The first case is impossible because the norm ofr = q′p is at least 2, whereas the
norm ofΦn is 1. This contradictsr ↔ Φn.

In the second case, we have thatp ↔ Φn. Therefore, as↔ is a congruence,

p � q ↔ Φn � q ↔ Φn � a .

We claim thatq ↔ a, which was to be shown. In fact, observe that the depth ofq
is 1. Moreover,q can only perform actiona, or else the termsΦn � q andΦn � a
would not afford the same traces. It follows thatq ↔ a as claimed.

Finally, assume that the third case applies. Observe, first of all, that, since

p′ � q ↔ Φn ,

a is the only actionq can perform. We claim thatq ↔ a. To see that this claim
holds, assume thatq a→ q′ for someq′. Then

p′ � q
a→ q′p′ andnorm(q′p′) ≥ 2 .

On the other hand, eacha-derivative of the termΦn has norm 1 (Lemma 11(3)).
This contradicts

p′ � q ↔ Φn .

Thusq ↔ a and, using congruence of↔ and the assumption of the statement of
the lemma,

p � a↔ Φn � a . (2)

If n = 1, then we can immediately conclude thatp ↔ a = p1, and we are done.
Assume therefore thatn ≥ 2. Sincep � a

a→ p, we may infer from (2) that

• eitherp ↔ Φn
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• or p↔
(
aj−1 + a3 + a

)
� a for somej ∈ {2, . . . , n}.

In the former case, we are done. To complete our argument, we now show that the
latter case leads to a contradiction. To this end, assume that

p↔
(
aj−1 + a3 + a

)
� a .

Using congruence of↔ and (2), we may derive that
((

aj−1 + a3 + a
)

� a
)

� a↔ Φn � a .

This contradicts Lemma 14.

The proof of the lemma is now complete. �

The following observation will find a key application in the subsequent technical
developments.

Lemma 16 Let t be aBPAint term that does not have+ as head operator. Assume
thatσ is a closed substitution, and that

σ(t) ↔ pi1 + · · ·+ pim ,

for somem > 2 and1 ≤ i1 < . . . < im. Thent = x, for some variablex.

PROOF. Assume, towards a contradiction, thatt is not a variable. We proceed by
a case analysis on the possible form this term may have.

(1) CASE t = a. This case is vacuous because, sincem > 2 and1 ≤ i1 < im, the
depth ofpi1 + · · ·+ pim is greater than1.

(2) CASE t = t′t′′ FOR SOME TERMSt′, t′′. Then

σ(t) = σ(t′)σ(t′′) ↔ pi1 + · · ·+ pim .

Observe, first of all, thati1 > 1 andσ(t′)↔ a, for otherwise eitherpi1 + · · ·+
pim would have norm1 or σ(t′)σ(t′′) would have ana-derivative whose norm
is at least2, contradicting the above equivalence.

Using congruence of↔,

aσ(t′′)↔ pi1 + · · ·+ pim .

It follows thatpi2 ↔ pim . As 2 ≤ i1 < i2 < im (for m > 2 by the assumption
of the lemma), this contradicts Lemma 11(4).

(3) CASE t = t′ � t′′ FOR SOME TERMSt′, t′′. Then

σ(t) = σ(t′) � σ(t′′) ↔ pi1 + · · ·+ pim .
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Observe, first of all, thatσ(t′′) ↔ a, for otherwiseσ(t′) � σ(t′′) would have
ana-derivative whose norm is at least2, contradicting the above equivalence.

Using congruence of↔,

σ(t′) � a↔ pi1 + · · ·+ pim .

It follows that, for somej ∈ {1, . . . , m},

σ(t′) ↔ (aij−1 + a3 + a) .

Again using congruence of↔, we may now infer that
(
aij−1 + a3 + a

)
� a↔ pi1 + · · ·+ pim .

This is a contradiction because
(
aij−1 + a3 + a

)
� a

a→ a2 � a andnorm(a2 � a) = 2 ,

whereas eacha-derivative ofpi1 + · · ·+ pim has norm1.

We may therefore conclude thatt must be a variable, which was to be shown.�

Remark 17 The proviso thatm be larger than 2 in the statement of the above result
is necessary. In fact, ifm = 2, i1 = 2 andi2 = 4 then

p2 + p4 ↔ a(a3 + a) .

It follows thatσ(ax) ↔ p2 + p4 if σ(x) = a3 + a.

The following observations will be used repeatedly in the proof of Proposition 13.

Lemma 18 Let t be aBPAint term,x be a variable, andσ be a closed substitution.
Assume thatx ∈ var(t). Then the following statements hold:

(1) depth(σ(t)) ≥ depth(σ(x)), and
(2) if depth(σ(t)) = depth(σ(x)), then eithert↔ x or t↔ x+u for someBPAint

termu that does not contain occurrences ofx.

PROOF. Both statements are shown by induction on the structure oft. Here we
limit ourselves to presenting a proof for statement 2. The caset = x is trivial, and
those wheret = t1t2 or t = t1 � t2, for some termst1, t2 are vacuous, because
depth(σ(t)) is larger thandepth(σ(x)) for termst of those forms. We are thus left
to examine the caset = t1 + t2 for some termst1, t2.

Sincex ∈ var(t), eitherx ∈ var(t1) ∩ var(t2) or x occurs in exactly one oft1 and
t2. We examine these two possibilities in turn.
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Assume thatx ∈ var(t1) ∩ var(t2). We claim that, fori ∈ {1, 2},

depth(σ(x)) = depth(σ(ti)) .

Indeed, by statement 1 of the lemma, we have thatdepth(σ(x)) ≤ depth(σ(ti)) for
i ∈ {1, 2}. Moreover, fori ∈ {1, 2},

depth(σ(ti))≤max{depth(σ(t1)), depth(σ(t2))}
= depth(σ(t1 + t2)) = depth(σ(x)) .

Therefore, by the induction hypothesis, fori ∈ {1, 2}, we may infer that either
ti ↔ x or ti ↔ x + ui for some BPAint termui that does not contain occurrences of
x.

If both t1 ↔ x andt2 ↔ x, thent1 + t2 ↔ x. Otherwise,t = t1 + t2 ↔ x + u for
some BPAint termu that does not contain occurrences ofx.

Assume now, without loss of generality, thatx ∈ var(t1) andx 6∈ var(t2). Rea-
soning as above, we may apply the inductive hypothesis tot1 to obtain that either
t1 ↔ x or t1 ↔ x + u1 for some BPAint termu1 that does not contain occurrences
of x. In both cases, it follows thatt = t1 + t2 ↔ x + u for some BPAint termu that
does not contain occurrences ofx. �

Lemma 19 Let t ≈ u be an equation over the languageBPAint that is sound with
respect to bisimulation equivalence. Assume that some variablex occurs as a sum-
mand int. Thenx also occurs as a summand inu.

PROOF. Recall that, for some finite index setI, we can write

t =
∑
i∈I

ti ,

where none of theti (i ∈ I) has+ as head operator. Assume that variablex occurs
as a summand int—i.e., there is ani ∈ I with ti = x. We shall argue thatx also
occurs as a summand inu.

Consider the substitutionσa mapping each variable toa. As t ≈ u is sound with
respect to bisimulation equivalence,

σa(t) ↔ σa(u) .

Pick an integerm larger than the depth ofσa(t) and ofσa(u). Let σ be the substi-
tution mappingx to the termam+1 and agreeing withσa on all the other variables.
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As t ≈ u is sound with respect to bisimulation equivalence, we have that

σ(t) ↔ σ(u) .

Moreover, the termσ(t) affords the transitionσ(t)
a→ am, becauseti = x and

σ(x) = am+1 a→ am. Hence, for some closed termp,

σ(u)
a→ p ↔ am .

By Lemma 4(7) and the definition ofσ, one of the following holds:

• u
y→ u′, σ(y)

a→X andp = σ(u′), for some termu′ and variabley 6= x,
• u

a→ u′ for someu′ such thatp = σ(u′), or
• u

xs→ c for some configurationc such thatσ[xd 7→ am](c) = p.

In the first two cases, we can conclude that eitherdepth(p) ≥ m+1 if x ∈ var(u′),
or depth(p) < m otherwise. This contradictsp ↔ am. In the third case, we claim
that c = xd and thatx is a summand ofu. In fact, xd occurs inc (Lemma 3).
Moreover, ifc 6= xd then it is easy to see thatdepth(σ[xd 7→ q](c)) > m, again
contradictingp↔ am. Hencec = xd as claimed. Since,u xs→ c = xd, it follows that
x is a summand ofu (Lemma 3), which was to be shown. �

We are finally in a position to conclude our technical developments by offering a
proof of Proposition 13.

Proof of Proposition 13: Recall that, by the proviso of the proposition,

(1) t ≈ u is an equation over the language BPAint that holds modulo bisimilarity,
(2) n > 3 and the size oft is smaller thann,
(3) σ is a closed substitution,p = σ(t) andq = σ(u),
(4) p ↔ Φn � a, and
(5) p has a summand bisimilar toΦn � a.

We shall prove thatq also has a summand bisimilar toΦn � a.

We can assume that, for some finite non-empty index setsI, J ,

t =
∑
i∈I

ti and (3)

u =
∑
j∈J

uj , (4)

where none of theti (i ∈ I) anduj (j ∈ J) has+ as its head operator.

Sincep = σ(t) has a summand bisimilar toΦn � a, so doesσ(ti) for some index
i ∈ I. Our aim is now to show that there is an indexj ∈ J such thatσ(uj) has
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a summand bisimilar toΦn � a. This we proceed to do by a case analysis on the
form ti may have.

(1) CASE ti = x FOR SOME VARIABLE x. In this case,σ(x) has a summand
bisimilar to Φn � a, and t hasx as a summand. Ast ≈ u is sound with
respect to bisimulation equivalence, it follows thatu also hasx as a summand
(Lemma 19). Thus there is an indexj ∈ J such thatuj = x, and, modulo
bisimulation,σ(u) hasΦn � a as a summand, which was to be shown.

(2) CASE ti = t′t′′ FOR SOME TERMSt′, t′′. This case is vacuous. Indeed, note,
first of all, thatσ(ti) = σ(t′)σ(t′′) is its only summand. Therefore,

σ(ti) = σ(t′)σ(t′′) ↔ Φn � a .

This is a contradiction because

norm(Φn � a) = 1 < 2 ≤ norm(σ(t′)σ(t′′)) = norm(σ(ti)) .

(3) CASE ti = t′ � t′′ FOR SOME TERMSt′, t′′. The analysis of this case is the
crux of the proof, and we present the argument in considerable detail.

Sinceσ(ti) = σ(t′) � σ(t′′) is its only summand, we have that

σ(ti) = σ(t′) � σ(t′′) ↔ Φn � a .

By Lemma 15, this yields that

σ(t′) ↔ Φn and (5)
σ(t′′) ↔ a . (6)

Now, t′ can be written thus:

t′ = w1 + · · ·+ wk (k ≥ 1) ,

where none of the summandswh has+ as head operator. Observe that, since
n is larger than the size oft, we have that2k < n− 1. Indeed, the size of

ti = t′ � t′′ = (w1 + · · ·+ wk) � t′′

is at least2k + 1 andn is larger than the size oft, and therefore ofti.
Hence, sinceΦn hasn− 1 inequivalent summands (Lemma 11(4)) and

σ(t′) ↔ Φn ,

there must be someh ∈ {1, . . . , k} such that

σ(wh) ↔ pi1 + · · ·+ pim

for somem > 2 and1 ≤ i1 < . . . < im ≤ n. By Lemma 16, it follows that
wh can only be a variablex and thus that
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σ(x) ↔ pi1 + · · ·+ pim . (7)

Note that, asx is a summand oft′,

t′ = x + t′′′ , for some termt′′′ .

Moreover, we have thatx 6∈ var(t′′), or elseσ(t′′) ↔/ a, contradicting (6).
Our order of business will now be to use the information collected so far

in this case of the proof to argue that the termσ(u) has a summand that is
bisimilar toΦn � a. To this end, consider the substitution

σ′ = σ[x 7→ a(Φn � a)] .

We have that

σ′(ti) = σ′(t′) � σ′(t′′)
= (σ′(x) + σ′(t′′′)) � σ′(t′′) (As t′ = x + t′′′)
= (σ′(x) + σ′(t′′′)) � σ(t′′) (As x 6∈ var(t′′))
↔ (a(Φn � a) + σ′(t′′′)) � a (As σ(t′′) ↔ a) .

Thus, for somep′,
σ′(ti)

a→ p′ ↔ (Φn � a) � a .

By (3), σ′(t) a→ p′ also holds. Sincet ≈ u is sound with respect to↔ , it
follows thatσ′(t) ↔ σ′(u). Hence, by (4), there exist an indexj ∈ J and aq′

such that
σ′(uj)

a→ q′ ↔ (Φn � a) � a . (8)

Recall that, by one of the assumptions of the proposition,

σ(u)↔ Φn � a ,

and thusσ(u) has depthn + 1 becausen > 3 (Lemma 11(2)). On the other
hand, by (8),

depth(σ′(uj)) ≥ n + 3 .

Sinceσ andσ′ differ only in the closed term they map variablex to, it follows
that

x ∈ var(uj) . (9)

We shall now argue thatσ(uj) ↔ Φn � a by a further case analysis on the
form a termuj satisfying (8) and (9) may have.
(a) CASE uj = x. This case is vacuous because

σ′(uj) = σ′(x) = a(Φn � a)
a→ Φn � a

is the only initial transition afforded byσ′(uj). Clearly this contradicts
(8).
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(b) CASE uj = u′u′′ FOR SOME TERMSu′, u′′. We show that this case also
leads to a contradiction.

Recall that

σ′(uj) = σ′(u′)σ′(u′′) a→ q′ ↔ (Φn � a) � a .

We proceed by a case analysis on the possible origin of this transition.
There are two possibilities, viz.

(i) σ′(u′) a→ r andq′ = rσ′(u′′), for somer, or
(ii) σ′(u′) a→X andq′ = σ′(u′′).

The former case is vacuous becausenorm(q′) = 1 butnorm(rσ′(u′′)) ≥
2.

In the latter case, we claim thatx ∈ var(u′′). In fact, if x 6∈ var(u′′),
then we obtain a contradiction thus:

n + 2 = depth(σ′(u′′)) (By (8))
= depth(σ(u′′)) (As x 6∈ var(u′′))
< depth(σ(uj)) (As uj = u′u′′)
≤ depth(σ(u))

= n + 1 (As σ(u) ↔ Φn � a andn > 3) .

Thusx ∈ var(u′′), as claimed. Moreover,

depth(σ′(u′′)) = depth(q′) = n + 2 = depth(σ′(x)) .

Observe now thatu′′ ↔/ x. Indeed, ifu′′ were bisimilar tox, then we
could infer that

q′ = σ′(u′′) ↔ σ′(x) = a(Φn � a) .

This contradicts (8) becausenorm(q′) = 1, whereasnorm(σ′(x)) = 2.
Lemma 18(2) thus yields that

u′′ ↔ x + u′′′ ,

for someu′′′ that does not containx. Hence,

q′ = σ′(u′′)
↔ σ′(x) + σ′(u′′′)
= a(Φn � a) + σ(u′′′) (As x 6∈ var(u′′′))
↔ (Φn � a) � a (By (8)) .

Since the transition

(Φn � a) � a
a→

(
(an−1 + a3 + a) � a

)
� a
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can only be matched by a transition of the form

σ(u′′′) a→ r ↔
(
(an−1 + a3 + a) � a

)
� a ,

for somer (Lemma 14), andn > 3 by one of the assumptions of the
proposition, we may infer that

depth(σ(u′′′)) > n + 1 .

We can finally derive a contradiction as follows:

n + 1 = depth(q)

= depth(σ(u))

≥ depth(σ(uj))

= depth(σ(u′)) + depth(σ(u′′))
= depth(σ(u′)) + depth(σ(x) + σ(u′′′))
> n + 1 .

This completes the proof for the caseuj = u′u′′.
(c) CASE uj = u′ � u′′ FOR SOME TERMSu′, u′′. This is the lengthiest sub-

case of case 3 of the proof, and its analysis will occupy us for the next
few pages.

Recall that, by (8),

σ′(uj) = σ′(u′) � σ′(u′′) a→ q′ ↔ (Φn � a) � a .

We proceed by a case analysis on the possible origin of this transition.
There are three possibilities, namely

(i) σ′(u′′) a→ q′′ andq′ = q′′σ′(u′), for someq′′,
(ii) σ′(u′) a→ q′′ andq′ = q′′ � σ′(u′′), for someq′′, or
(iii) σ′(u′′) a→X andq′ = σ′(u′).
We examine these sub-cases in turn.
• Case 3c.i. This case is vacuous because, since by (8),norm(q′) = 1.

On the other hand, the norm ofq′′σ′(u′) is at least 2.
• Case 3c.ii. Note, first of all, that, since

q′ = q′′ � σ′(u′′) ↔ (Φn � a) � a ,

we have thatx 6∈ var(u′′). In fact, if x ∈ var(u′′), then we would be
able to infer that

depth(q′) = depth(q′′) + depth(σ′(u′′))
> depth(σ′(u′′))
≥n + 2 (By Lemma 18(1)),

contradicting the above equivalence. Sincex 6∈ var(u′′) andx ∈
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var(uj) by (9), we may infer that

x ∈ var(u′) . (10)

Recall that, by the assumptions for this sub-case,σ′(u′) a→ q′′. Using
Lemma 4(7), one of the following possibilities arises:

(i) u′ y→ w, σ′(y)
a→X andq′′ = σ′(w), for some termw and

variabley,
(ii) u′ a→ w for somew such thatq′′ = σ′(w), or
(iii) u′ ys→ c andσ′(y)

a→ r, for some variabley, configurationc
and closed termr such thatσ′[yd 7→ r](c) = q′′.

We consider these possibilities in turn.
The first of these cases is vacuous. In fact, using the assumptions

for this case, we can derive a contradiction as follows. Note, first of
all, thaty 6= x becauseσ′(y)

a→X. Therefore

σ(y) = σ′(y)
a→X .

Hence, by Lemma 4(4),σ(u′) a→ σ(w). So

σ(uj) = σ(u′) � σ(u′′) a→ σ(w) � σ(u′′) .

depth(σ(uj)) ≤ depth(σ(u)) = n + 1, sodepth(σ(w) � σ(u′′)) ≤
n. This implies thatx ∈ var(w). For else, by assumptions of this
sub-case,

q′ = q′′ � σ′(u′′) = σ′(w) � σ′(u′′) = σ(w) � σ(u′′) .

Thenq′ would have depth at mostn, contradicting (8). But, asx ∈
var(w), Lemma 18(1) yields that

depth(q′) > depth(σ′(w)) ≥ depth(σ′(x)) = n + 2 ,

again contradicting (8).
The second case is also vacuous because, exactly as in the first

case, we can show thatdepth(q′) is no larger thann if x 6∈ var(w),
and is larger thann + 2 otherwise. This contradicts (8).

We are therefore left to examine the third possibility. Note that
x 6∈ var(c), or else

depth(q′) > depth(q′′) ≥ n + 2 ,

contradicting (8). We claim thaty = x. To see that this does hold, as-
sume, towards a contradiction, thaty 6= x. Then, by the assumptions
for this sub-case,

σ(y) = σ′(y)
a→ r .
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Lemma 4(5) andu′ ys→ c now yield that

σ(u′) a→ σ[yd 7→ r](c) = σ′[yd 7→ r](c) = q′′ .

(The first equality holds becausex 6∈ var(c).) Hence, sincex 6∈
var(u′′),

σ(uj)
a→ q′′ � σ(u′′) = q′′ � σ′(u′′) = q′ .

Asdepth(σ(uj)) ≤ depth(σ(u)) = n+1, this implies thatdepth(q′)
is no larger thann, contradicting (8). Hencey = x as claimed.

Sinceσ′(x)
a→ r, it follows that r = Φn � a. By one of the

assumptions for this sub-case, and sincex 6∈ var(u′′),

q′ = σ′[xd 7→ r](c) � σ(u′′) .

Sincedepth(q′) = n + 2 by (8), xd occurs inc (Lemma 3), and
depth(r) = n + 1, this is only possible if

· c = xd and
· σ(u′′) ↔ a.

(Indeed, by Definition 2, the only other possible forms of a configu-
rationc containingxd arec1 · w andc1 � w for some configuration
c1 and BPAint termw. In both of these cases,

depth(σ′[xd 7→ r](c)) ≥ n + 2 = depth(q′) ,

contradictingq′ = σ′[xd 7→ r](c) � σ(u′′).) We shall now argue that

σ(uj) ↔ Φn � a , (11)

proving thatq = σ(u) has a summand bisimilar toΦn � a, which
was to be shown. In fact,

σ(uj) = σ(u′) � σ(u′′) ↔ σ(u′) � a .

We shall now prove thatσ(u′) ↔ Φn. Indeed, since

σ(uj)
a→ σ(u′)

it follows that
σ(u)

a→ σ(u′) .

Recall thatσ(u) ↔ Φn � a. Therefore, there is ana-derivative of
Φn � a that is bisimilar toσ(u′). This a-derivative ofΦn � a can
only beΦn. In fact, the othera-derivatives ofΦn � a have the form

(
aj−1 + a3 + a

)
� a (j ∈ {2, . . . , n}) .
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If one of those terms were bisimilar toσ(u′), then using our as-
sumption thatσ(u) ↔ Φn � a, we could infer that, for somej ∈
{2, . . . , n},

Φn � a ↔ Φn � a +
((

aj−1 + a3 + a
)

� a
)

� a .

This contradicts Lemma 14.
Therefore,σ(u′)↔ Φn, as claimed. We may finally conclude that

σ(uj) ↔ Φn � a.
The proof for case 3c.ii is now complete.

• Case 3c.iii. Sinceσ′(u′′) a→X, using Lemma 4(6) we may infer that
· u′′ a→X, or
· u′′ y→X andσ′(y)

a→X, for some variabley.
In the latter case, asσ′(x)

a→X does not hold,y 6= x, and soσ(y) =
σ′(y)

a→X. Using statements 1 and 3 of Lemma 4, we therefore in
either case have that

σ(u′′) a→X .

This yields thatσ(uj) = σ(u′) � σ(u′′) a→ σ(u′).
Now, reasoning exactly as in the previous case, we can argue that

σ(u′)↔ Φn. Therefore, using congruence of↔,

σ(uj) ↔ Φn � σ(u′′) .

This equivalence yields thatdepth(σ(uj)) = depth(σ(u)) = n + 1,
and that the depth ofσ(u′′) is 1. It follows thatσ(u′′) ↔ a. Hence,
σ(u) has a summand, namelyσ(uj), that is bisimilar toΦn � a.

This completes the proof of case 3c, and thus that of case 3.

Since we have examined all the possible forms thatti can take, the proof of the
proposition is now complete. 2

5 BPA with the Disrupt Operator

As mentioned in Section 1, in their paper [7], Baeten and Bergstra have given a
finite axiomatization of bisimilarity over BPAδ (the extension of BPA with a con-
stantδ to describe “deadlock”) enriched with two mode transfer operators, viz. the
disruptandinterruptoperators, using auxiliary operators. The main result in this
paper (Theorem 9) shows that the use of auxiliary operators is indeed necessary
in order to obtain a finite axiomatization of bisimulation equivalence over the lan-
guage BPAint, and that this holds true even if we restrict ourselves to axiomatizing
the collection of closed equations over this language.

A natural question to ask at this point is whether this negative result applies also
to the language BPAdis obtained by enriching BPA with the disrupt operator. Intu-
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itively, “p disrupted byq”—which we shall writep I q in what follows—describes
a process that normally behaves likep. However, at each point of the computation
beforep terminates,q can begin its execution. If this happens,q takes over, andp
never resumes its computation. This intuition is captured formally by the following
transition rules:

t
a→X

t I u
a→X

t
a→ t′

t I u
a→ t′ I u

u
a→X

t I u
a→X

u
a→ u′

t I u
a→ u′

As was the case for the interrupt operator (see Proposition 7), the disrupt operator
cannot be defined in the language BPA modulo bisimulation equivalence.

Proposition 20 There is noBPAdis termt such thatt does not contain occurrences
of the disrupt operator, andt↔ x I y.

PROOF. Assume, towards a contradiction, thatt is a BPAdis term such thatt does
not contain occurrences of the disrupt operator, andt↔ x I y.

Consider the closed substitutionσ mapping variablex to a and each other variable
to a2. Since

σ(t) ↔ a I a2 anda I a2 a→X ,

we have thatσ(t)
a→X. Sinceσ(t)

a→X andt does not contain occurrences of the
disrupt operator, it is not hard to see that, for some termu, eithert ↔ a + u or
t↔ x + u. Both of these possibilities lead to a contradiction.

Indeed, using the former possibility, we may infer that

σ[x 7→ a2](t)
a→X .

This implies thatt ↔/ x I y, becausea2 I a2 does not have termination traces of
length 1.

Assume now thatt↔ x + u. We claim that

σ[x 7→ a2, y 7→ a3](t) ↔/ a2 I a3 .

This follows becauseσ[x 7→ a2, y 7→ a3](t)
a→ p for somep↔ a, sincet↔ x + u.

On the other hand, the twoa-derivatives ofa2 I a3, namelya I a3 anda2, have
depth at least 2, and thus neither of them is bisimilar toa. �

It is not hard to see that the following equations are sound modulo bisimilarity over
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the language BPAdis:

(D1) a I x ≈ a + x

(D2) ax I y ≈ a(x I y) + y and

(D3) (x + y) I z ≈ (x I z) + (y I z) .

In the first two equations above, the symbola ranges over the set of actionsA.
Those two identities are therefore equation schemas. Note, however, that such
schemas have only finitely many instances ifA is finite.

The last of the equations above is particularly important, at least as far as obtaining
a finite equational axiomatization of bisimilarity over the collection of closed terms
in the language BPAdis is concerned. (The interested reader may have already no-
ticed that its soundness modulo bisimulation equivalence depends crucially on the
fact that transitions due to moves of the second argument of a disrupt discard the
first argument.) Indeed, its repeated use in conjunction with the first two laws allows
us to eliminate occurrences of the disrupt operator from closed terms. This effec-
tively reduces the problem of finitely axiomatizing bisimilarity over the collection
of closed terms in the language BPAdis to that of offering a finite axiomatization of
bisimilarity over closed BPA terms. As shown by Bergstra and Klop in [12], the
five equations in Table 3 suffice to axiomatize bisimilarity over the language BPA.

In sharp contrast to Theorem 9, we therefore have that:

Theorem 21 The collection of closed equations overBPAdis that hold modulo↔
is axiomatized by (A1)–(A5) in Table 3 together with (D1)–(D3), and is therefore
finitely based ifA is finite.

It follows that, in the presence of a finite action set, the use of auxiliary operators is
notnecessary in order to obtain a finite axiomatization of bisimulation equivalence
over closed terms in the language BPAdis.

The axiomatization of bisimilarity over closed terms in the language BPAdis offered
in the theorem above is notω-complete. For example, the reader can easily check
that the disrupt operator is associative modulo bisimilarity, i.e., that the equation

(x I y) I z≈x I (y I z)

holds modulo↔. This equation is not provable using the equations mentioned in
Theorem 21. However, we conjecture that, in the presence of a finite action set,
bisimilarity also affords a finiteω-complete axiomatization over BPAdis. Work on a
proof of this conjecture is in progress.
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