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1 Introduction

Programming and specification languages often include constructs to specify mode
switches (see, e.g., [8,11,23,24,26]). Indeed, some form of mode transfer in com-
putation appears in the time-honoured theory of operating systems in the guise of,
e.g., interrupts, in programming languages as exceptions, and in the behaviour of
control programs and embedded systems as discrete “mode switches” triggered by
changes in the state of their environment.

In light of the ubiquitous nature of mode changes in computation, it is not surpris-
ing that classic process description languages either include primitive operators to
describe mode changes—for example, LOTOS [15,23] offers the so-chsleg-

tion operator—or have been extended with variations on mode transfer operators.
For instance, examples of such operators that may be added to CCS are discussed
by Milner in [25, pp. 192-193], and the reference [17] offers some discussion of the
benefits of adding one of those, viz. tbleeckpointing operatoto that language.

In the setting of Basic Process Algebra (BPA), as introduced by Bergstra and Klop
in [12], some of these extensions, and their relative expressiveness, have been dis-
cussed in the early paper [11]. That preprint of Bergstra’s has later been revised
and extended in [7]. There, Baeten and Bergstra study the equational theory and
expressiveness of BRAthe extension of BPA with a constanto describe “dead-

lock™) enriched with two mode transfer operators, viz. tfisruptand interrupt
operators. In particular, they offer an equational axiomatization of bisimulation
equivalence [25,29] over the resulting extension of the language.BRAs ax-
iomatization is finite, if so is the underlying set of actions—a state of affairs that is
most pleasing for process algebraists.

However, the axiomatization of bisimulation equivalence offered by Baeten and
Bergstra in [7] relies on the use of four auxiliary operators—two per mode transfer
operator. (Two of those auxiliary operators are, however, redundant since they are
derived BPA operators.) Although the use of auxiliary operators in the axiomatiza-
tion of behavioral equivalences over process description languages has been well
established since Bergstra and Klop’s axiomatization of parallel composition us-
ing the left and communication merge operators [13], to our mind, a result like the
aforementioned one always begs the question whether the use of auxiliary operators
IS necessary to obtain a finite axiomatization of bisimulation equivalence.

For the case of parallel composition, Moller showed in [27,28] that strong bisim-
ulation equivalence is not finitely based over CCS [25] and PA [13] without the
left merge operator. (The process algebra PA [13] contains a parallel composition
operator based on pure interleaving without communication, and the left merge op-
erator.) Thus auxiliary operators are necessary to obtain a finite axiomatization of
parallel composition. But, is the use of auxiliary operators necessary to give a finite



axiomatization of bisimulation equivalence over the language BPA enriched with
the mode transfer operators studied by Baeten and Bergstra in [7]?

We address the above natural question in this paper. In particular, we mostly fo-
cus on BPA enriched with the interrupt operator. Intuitively,ifiterrupted byg”
describes a process that normally behaves jikelowever, at each point of the
computation before terminatesg can interrupt it, and begin its execution. If this
happensp resumes its computation upon terminatiory of

We show that, in the presence of a single action, bisimulation equivalemne# is
finitely based over BPA with the interrupt operator. Moreover, we prove that the
collection of closed equations over this language is also not finitely based. This re-
sult provides evidence that the use of auxiliary operators in the technical develop-
ments presented in [7] is indeed necessary in order to obtain a finite axiomatization
of bisimulation equivalence.

Our main result adds the interrupt operator to the list of operators whose addition
to a process algebra spoils finite axiomatizability modulo bisimulation equivalence;
see, e.g., [3,4,14,16,20,30,31] for other examples of non-finite axiomatizability re-
sults over process algebras, and some of their precursors in the setting of formal
language theory. Of special relevance for concurrency theory are the aforemen-
tioned results of Moller’s to the effect that the process algebras CCS and PA without
the auxiliary left merge operator from [12] do not have a finite equational axiom-
atization modulo bisimulation equivalence [27,28]. Recently, in collaboration with
Luttik, the first three authors have shown in [5] that the process algebra obtained by
adding Hennessy’s merge operator from [22] to CCS does not have a finite equa-
tional axiomatization modulo bisimulation equivalence. This result is in sharp con-
trast with a theorem established by Fokkink and Luttik in [18] to the effect that the
process algebra PA [13] affords ancomplete axiomatization that is finite if so is

the underlying set of actions. Acetisik and Ingolfsdottir proved in [2] that there

is no finite equational axiomatization thatuiscomplete for the max-plus algebra

of the natural numbers, a result whose process algebraic implications are discussed
in [1]. Fokkink and Nain have shown in [19] that no congruence over the language
BCCSP, a basic formalism to express finite process behaviour, that is included in
possible worlds equivalence, and includes ready trace equivalence, affords a finite
w-complete equational axiomatization.

Having established that the addition of the interrupt operator to BPA spoils finite
axiomatizability modulo bisimulation equivalence, it is natural to ask ourselves
whether the same holds true for the disrupt operator from [7]. Intuitivelylis-
rupted byq” describes a process that normally behaves jikelowever, at each
point of the computation befoneterminatesg can pre-empt it, and begin its exe-
cution. If this happeng; never resumes its computation.

We show that, perhaps surprisingly, in sharp contrast to the main result of the paper,



the use of auxiliary operators iotnecessary in order to obtain a finite axiomati-
zation of bisimulation equivalence over closed terms in the language obtained by
enriching BPA with the disrupt operator. The key to this positive result is the dis-
tributivity of the disrupt operator with respect to the non-deterministic choice op-
erator of BPA in its first argument—a property that is not afforded by the interrupt
operator.

The paper is organized as follows. We begin by presenting the language BPA with
the interrupt operator, its operational semantics and preliminaries on equational
logic in Section 2. There we also show that the interrupt operator is not definable
in BPA modulo bisimilarity. The general structure of the proof of our main result,
to the effect that bisimilarity is not finitely based over the language BPA with the
interrupt operator, is presented in Section 3. In that section, we also show how to
reduce the proof of our main result to that of a technical statement describing a key
property of closed instantiations of sound equations that is preserved under equa-
tional derivations (Proposition 13). We offer a proof of Proposition 13 in Section 4.
We conclude the paper by presenting in Section 5 an axiomatization of bisimulation
equivalence over closed terms in the language obtained by enriching BPA with the
disrupt operator from [7]. Such an axiomatization is finite in the presence of a finite
set of actions, and does not employ auxiliary operators.

An extended abstract of this paper appeared as [6]. There we announced without
proof our main result (namely, Theorem 9) under the assumption that the set of
actions contains two distinct actions. The present version of the paper sharpens
Theorem 9 in that it now applies to any non-empty set of actions, and offers the full
proof of our main result (all of the material in Section 4). Moreover, Proposition 20

in the current paper is new.

2 Preliminaries

We begin by introducing the basic definitions and results on which the technical
developments to follow are based. The interested reader is referred to [7,12] for
more information.

2.1 The LanguagBPA

We assume a non-empty alphabledf atomic actions, with typical element The
language for processes we shall consider in the main body of this paper, hence-
forth referred to as BPA, is obtained by adding the interrupt operator from [7] to
Bergstra and Klop’s BPA [12]. This language is given by the following grammar:

to=xlalt-t|t+t|t>t,



wherezx is a variable drawn from a countably infinite 3étanda is an action. In
the above grammar, we use the symbseolfor the interrupt operator

Intuitively, a term of the fornp > ¢ describes a process that normally behaves like
p. However, at each point of the computation befeterminatesg can interrupt it,
and begin its execution. If this happepsesumes its computation upon termination
of ¢. An alternative compositiop+ ¢ nondeterministically behaves as either q.

A sequential compositiop ¢ first behaves ag, and upon termination gf behaves
asq.

We shall use the meta-variables:, v, w to range over process terms, and write
var(t) for the collection of variables occurring in the ternirhe sizeof a term is
the number of symbols in it. Formally,

¢ the size of variables and actionslisand
e that oft - u, t + u andt > w is one plus the sum of the sizestadndw.

A process term iglosedif it does not contain any variables. Closed terms will be
typically denoted by, ¢, r, s. As usual, we shall often write: in lieu of ¢ - u, and
we assume thatbinds stronger than andr>.

A (closed) substitution is a mapping from process variables to (closed),BPA
terms. For every termh and substitutionr, the term obtained by replacing every
occurrence of a variable in ¢ with the termo(z) will be written o(¢). Note that
o(t) is closed, if so izr. In what follows, we shall use the notatiefi — p|, where

o is a closed substitution ands a closed BPA; term, to stand for the substitution
mappingz to p, and acting liker on all of the other variables iW.

In the remainder of this paper, we l€t denotea, anda™"! denotea(a™). More-
over, we consider terms modulo associativity and commutativity-ofn other
words, we do not distinguisti- v andw + ¢, nor (t + u) + v andt + (u + v). This

is justified because- is associative and commutative with respect to the notion
of equivalence we shall consider over BRA(See axioms Al, A2 in Table 3 on
page 12.) In what follows, the symbel will denote equality modulo associativity
and commutativity oft.

We say that a termhas+ as head operatdrt = t; + t, for some termg; andt,.
For exampleq + b has+ as head operator, b(i + b)a does not.

Fork > 1, we use asummation_;c; .y t; to denotel; + --- + ;. It is easy to
see that every BRA term¢ has the formd_,; ¢;, for some finite, non-empty index
setl, and termg; (i € I) that do not have- as head operator. The termg: € I)
will be referred to as thésyntactic) summands t. For example, the terrfu + b)a
has only itself as (syntactic) summand.

The operational semantics for the language BR&\given by the labelled transition



t Sy U SV 5 u -
t+u Sy t+u Sy t+u -3t t+u S
t Ly t ¢
touSu tou->t-u
t v tS U -5V Ty
t > u v t>u—t'>u t>u-—t t>u—>u -t

Table 1
Transition Rules for BP#x

system
(BPAW, { % ac A} {5V |ac A}) ,

where the transition relation% and the unary predicatesy are, respectively, the
least subsets of BRAx BPA;,; and BPA\; satisfying the rules in Table 1. Intuitively,
a transitiont % « means that the system represented by the texam perform the
actiona, thereby evolving inta:. The special symbol” stands for (successful)
termination; therefore the interpretation of the statemeft/ is that the process
termt can terminate by performing. Note that, for every closed term there is
some actiom for which eitherp % p’ holds for some’, orp %v" does.

For terms, v, and actioru, we say that, is ana-derivativeof t if ¢t % w.

The transition relations’ naturally compose to determine the possible effects that
performing a sequence of actions may have on a;BR&m.

Definition 1 For a sequence of actions - - - a;, (k > 0), andBPA;; termst, t’, we
ai--ag

writet —" ¢’ iff there exists a sequence of transitions
t=to St 3 ... K. =t .

Similarly, we say that, - - - a; (K > 1) is a termination trace of 8PA; termt iff
there exists a ternf such that

ai--Gg—1
—

t t Ry

ai---ag

If ¢ —" ¢’ holds for somdBPA;; termt’, or a; - - - a; IS a termination trace of,
thena, - - - a; IS atraceof t.

Thedepthof a termt, written depth(t), is the length of the longest trace it affords.



Thenormof a term¢, denoted byiorm(t), is the length of its shortest termination
trace; this notion stems from [9].

The depth and the norm of closed terms can also be characterized inductively thus:

depth(a) =
depth(p + q) = max{depth(p), depth(q)}
) =
) =

depth(pq) = depth(p) + depth(q)
depth(p > q) = depth(p) + depth(q)

norm(a

norm(p + q) = min{norm(p), norm(q)}

) =
) =

norm(pq) = norm(p) + norm(q)
) =

norm(p > q) = norm(p) .

Note that the depth and the norm of each closed;BR&m are positive, and there-
fore that the norm of each closed term of the fgrms at least 2. This simple, but
useful, observation will be used repeatedly in the remainder of this study.

In what follows, we shall sometimes need to consider the possible origins of a tran-
sition of the formo(t) % p, for some action, closed substitution, BPA;,; term

t and closed termp. Naturally enough, we expect thatt) affords that transition

if ¢ % ¢, for somet’ such thap = o('). However, the above transition may also
derive from the initial behaviour of some closed terifx), provided that the col-
lection of initial moves ot (¢) depends, in some formal sense, on that of the closed
term substituted for the variabte Similarly, we shall sometimes need to consider
the possible origins of a transition of the fornit) v/, for some actiom, closed
substitutiono and BPA,; termt.

To fully describe these situations, we introduce the auxiliary notion of configuration
of a BPA,,; term. To this end, we assume a set of symbols

={z4 |z €V}

disjoint fromV'. Intuitively, the symbol:,; (read “duringz”) will be used to denote
that the closed term substituted for variablbas begun executing, but has not yet
terminated.

Definition 2 The collection 0BPA,,; configurationss given by the grammar:
cu=tlxgle-t|le>t,

wheret is aBPA,; term, andz,; € V.



t >t t=c t =V
t+u=t t+use t+u v
u— u uc u 5V
t4+u > t+uSe t4u SV
t5 ¢ t 5 e t 5y
tu = t'u tu 3 cu tu = u
t 5t t 5 e t 5y
t>u—t>u tbuZe>u D> U =y
u S u’sc u 5V
t>u—u't t>uset t>u->t

Table 2
SOS Rules for the Auxiliary Transition&, =3 and->v (z € V)

For example, the configuratiary - (e > x) is meant to describe a state of the
computation of some term in which the (closed term substituted for the) occurrence
of variablex on the left-hand side of theoperator has begun its execution (and
has not terminated), but the one on the right-hand side has not. Note that each
configuration contains at most one occurrence afag V.

We shall consider the symbols as variables, and use the notatiojx, — p),
whereo is a closed substitution andis a closed BPA; term, to stand for the
substitution mapping, to p, and acting liker on all of the other variables.

The way in which the initial behaviour of a term may depend on that of the variables
that occur in it is formally described by three auxiliary transition relations whose
elements have the following forms:

o t X% ¢ (read ‘¢ can start executing and become in doing so”), wheret is a
term,x is a variable, and is a configuration,

e t = ¢/, wheret andt’ are terms and is a variable, or

e t %y, Wheret is a term.

The first of these types of transitions will be used to account for those transitions
of the formo(t) = p that are due ta-labelled transitions of the closed terr)

that do not lead to its termination. The second will describe the origin of transitions
of the formo(t) = o(t') that are due ta-labelled transitions of the closed term



o(x) that lead to its termination. Finally, transitions of the third kind will allow us
to describe the origin of termination transitions of the forn) v that are due
to a-labelled termination transitions of the closed ter(n).

The SOS rules defining these transition relations are given in Table 2. In those
rules, the meta-variablesu, ¢ andu’ denote BPAy terms, and: ranges over the
collection of configurations that contain one occurrence of a symbol of thedfgrm

The attentive reader might have already noticed that the left-hand sides of the rules
in Table 2 are always BRA terms, and therefore that no transitions are possible
from configurations that contain one occurrence of a symbol of the fgtrithis

is in line with our aim in defining the auxiliary transition relatiofis % and-%v’

(r € V), viz. to describe the possible origins of tgtial transitions of a term of

the formo (t), with ¢ a BPA, term ands a closed substitution.

Lemma 3 For eachBPA;,; term¢, configurationc and variablez, if ¢ % ¢, then
x4 Occurs inc. Moreover, ifc = z, thenz is a summand of.

The precise connection between the transitions of a tefth and those ot is
expressed by the following lemma.

Lemma 4 (Operational Correspondence)Assume that is a BPA,; term,o is a
closed substitution andis an action. Then the following statements hold:

(1) If¢ iM theno(t) v .
(2) Ift % ¢, theno(t) = o(t').
() Ift v ando(x )H\/ theno(t) 5v'.
(4) Ift 5t ando(z) v/, theno(t) = o(t).
(5) Assume that =5 c ando(x) % p, for some closed term. Theno(t) =
olzq — p](c).
(6) Assume that(t) v . Then eithett v or there is a variabler such that
t 5v ando(z) 5v'.
(7) Assume that(t) = p, for some closed term. Then one of the following
possibilities applies:
e t % t' for some ternt’ such thap = o(t'),
ot 5t o(x) v andp = o(t'), for some ternt’ and variabler, or
e t =% cando(z) = ¢, for some variable, configurationc and closed term
g such thar|z, — ¢|(c) = p.

PROOF. Statements 1-5 are proven by induction on the proof of the relevant tran-
sitions. The proof of statement 4 uses statement 3. On the other hand, statements 6—
7 are proven by induction on the structure of the térmhe proof of statement 7

uses statement 6.

The details are lengthy, but straightforward, and we therefore omit them. [



In this paper, we shall consider the language BRAodulo bisimulation equiva-
lence [25,29].

Definition 5 Two closeBPA;,; termsp and q are bisimilar, denoted by « ¢, if
there exists a symmetric binary relatihover closedBPA;; terms which relatep
andg, such that:

- if r Bsandr = ¢/, then there is a transitios - s’ such that”’ B s';
- if r Bsandr %v/, thens 5v.

Such a relatiorB will be called abisimulation The relation < will be referred to
as bisimulation equivalencer bisimilarity.

It is well known that— is an equivalence relation, and that it is the largest bisim-
ulation [25,29]. Moreover, the transition rules in Table 1 are in the ‘path’ format
of Baeten and Verhoef [10]. Hence, bisimulation equivalence is a congruence with
respect to all the operators in the signature of RPA

Note that bisimilar closed BRAterms afford the same finite non-empty collection
of (termination) traces, and therefore have the same norm and the same depth.

Bisimulation equivalence is extended to arbitrary BPferms thus:

Definition 6 Lett, u be BPAy terms. Thert < w iff o(t) <= o(u) for every closed
substitutioro.

For instance, we have that
x>y (x>y)+yx

because, as our readers can easily check, the temng and(p > ¢) + ¢gp have
the same set of initial “capabilities”, i.e.,

p>q-Sriff (p>q)+qp > r , foreache andr, and
p>q—v iff (pr>q)+qp >V, foreacha .
On the other hand, neither of the equivalences
(z+y)>zeo (z>2)+(y>2) and
x> (y+z2) < (z>y) + (x> 2)
holds. Indeed, as our readers can easily check,

(a+a®)>a < (a>a)+ (a®>a) and
a’> > (a+a®) & (a®> > a)+ (a* > a®) .

10



It is natural to expect that the interrupt operator cannot be defined in the language
BPA modulo bisimulation equivalence. This expectation is confirmed by the fol-
lowing simple, but instructive, result:

Proposition 7 There is ndBPA,; termt such thatt does not contain occurrences
of the interrupt operator, and < = > y.

PROOF. Assume, towards a contradiction, thias a BPA,; term such that does
not contain occurrences of the interrupt operator,andx > y.

Consider the closed substitutiop mapping each variable to Since
o.(t) = a>aanda > a5y

we have that, (t) -%v'. Lemma 4(6) yields that eitheérv" or there is a variable
such that =v" ando,(z) -%v'. We shall now argue that both of these possibilities
imply thatt <4 z > y, contradicting our assumption.

Indeed, using the former possibility and Lemma 4(1), we may infer that
oar = a®)(t) BV .

This implies that <4 = > y, because? > a does not have termination traces of
length 1.

Assume now that there is a variablsuch that v ando,(2) v . Itis not hard
to see that — 2 + « for some termu, sincet does not contain occurrences of the
interrupt operator ant-=v". We claim that

ooz = a®|(t) £ a* > a .
If = # z, our claim follows, because, reasoning as above,
Oalr = @®)(t) = a+ o[z — a®)(u) SV
whereas:? > a does not have termination traces of length 1.

If t = 2+ u, theno, [z — a?](t) = p for somep < a. On the other hand, the two
a-derivatives ofa®> > a, namelya > a anda?, have depth 2, and thus neither of
them is bisimilar taz. OJ

2.2 Equational Logic

An axiom systens a collection of equations~ u over the language BRA An
equationt ~ u is derivable from an axiom system, notationE + ¢ ~ u, if it can

11



Al rT+Yy=y+x

A2 (z+y)+zma+(y+2)
A3 T+r R

A4 (x+y)z = (z2) + (y2)
A (zy)z = x(yz)

Table 3
Some Axioms for BPA

be proven from the axioms if using the rules of equational logic (viz. reflexivity,
symmetry, transitivity, substitution and closure under BRéontexts):

t~u t~uu=v t~u

t=t
urt t~wv o(t) =~ o(u)
t~u t'~u trut~u txut ~u
t+t ~u+u = u t>t~u>u
Without loss of generality one may assume that substitutions happen first in equa-
tional proofs, i.e., that the rule

t~u
o(t) =~ o(u)

may only be used wheft ~ u) € E. In this case, the equation(t) ~ o(u) is
called asubstitution instancef an axiom ink.

Moreover, by postulating that for each axiomihalso its symmetric counterpart

is present inE, one may assume that applications of symmetry happen first in
equational proofs. In the remainder of this paper, we shall tacitly assume that our
equational axiom systems are closed with respect to symmetry.

It is well-known (see, e.g., Sect. 2 in [21]) that if an equation relating two closed
terms can be proven from an axiom systéithen there is a closed proof for it.

Definition 8 An equationt ~ u over the languag8PA.; is sounadwith respect to
<« Iff t < u. An axiom system is sound with respect4e iff so is each of its
equations.

A collection of equations over the language BPA that is sound and complete with
respect tg— is given in Table 3. Those equations stem from [12].

In [7], Baeten and Bergstra gave a sound and complete axiomatization of bisimi-
larity over BPA; (the extension of BPA with a constamto describe “deadlock”)
enriched with the interrupt operator, using an auxiliary binary operator, which we

12



denote byH. Intuitively, p H ¢ behaves ag > ¢, with the restriction that it must
take its first action fromp. The axioms from [7] for the interrupt operator and its
help operator are given below (except for one axiom that invaiyes

e>y~ (v Hy)+ (yz)

aHz=~a (a € A)
(ax) Hy =~ a(z > y) (a € A)
(x+y)Hz~(tHz2)+(yHz) .

Observe that, in the presence of a finite set of actions, this collection of equations
is finite. Note, furthermore, that, unlike the interrupt operator, the auxiliary op-
erator H is distributive with respect te- in its first argument. As we shall also
remark in Section 5, this property is very useful for achieving a finite equational
axiomatization of bisimilarity. Indeed, the absence of distributivity with respect to
+ casts doubts as to the possibility that a finite axiom system be powerful enough
to “expand” the initial behaviour of terms of the formr> ¢ when the number

of non-bisimilar summands ip grows sufficiently large. This observation lies at
the heart of the proof of our main result in this study (Theorem 9). This we now
proceed to present.

3 Bisimilarity is not Finitely Based over BPA;

Our main order of business in the remainder of this paper will be to show the
following theorem:

Theorem 9 Bisimilarity is not finitely based over the languag®A,.—that is,
there is no finite axiom system that is sound with respeett@nd proves all of
the equations ~ u such that < u. Moreover, the same holds true if we restrict
ourselves to the collection of closed equations @A, that hold modulg—.

The above theorem is an immediate corollary of the following result:

Theorem 10 Let E be a finite collection of equations over the langu8d®\,; that
hold modulo—. Letn > 3 be larger than the size of each term in the equations in
E. ThenFE / e, where the family of equatiorg (n > 1) is defined thus:
en: Oy >ar~a+ ) a((@ +d®+a)>a)+ad, . (1)
=2

In the above family®,, = >, p; wherep; = a andp; = a(a" ' + a® + a) for
1> 1.
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Note that the term-"_, a((a"~! + a® + a) > a) is only present on the right-hand
side of equation,, if n > 1. Observe, furthermore, that, for each> 1, the closed
equatiore,, is sound modulo bisimilarity. Indeed, the left-hand and right-hand sides
of the equation have isomorphic labelled transitions systems. Therefore, as claimed
above, Theorem 9 is an immediate consequence of Theorem 10.

The following simple properties of the closed ternsfor n > 1 andp; for 1 <
1 < n will find repeated application in what follows.

Lemma 11

(1) The norm op; is1if i = 1, and2 otherwise. The depth pf is1if i = 1, and
max{i, 4} otherwise.

(2) The norm ofb,, > ais 1. ltsdepthi2if n = 1,5ifn =2o0rn = 3, and
n+1ifn> 3.

(3) Eacha-derivative of®,, or ®,, > a has norml.

(4) Assume that < ¢ < j. Thenp, < p; if, and only if,i = 2 andj = 4.
Therefored,, hasn — 1 non-bisimilar summands if > 3.

PROOF. We limit ourselves to presenting the proof of the former claim in state-
ment (4). The latter claim in that statement is an immediate consequence of the
former.

If ©: = 2 andj = 4, thenp; < p; follows immediately from the definition of the
termsp, (¢ > 1). Conversely, assume that < p; and1 < i < j. Observe that
i > 1 by statement (1) of the lemma. Singe< p;, the termgp; andp; have the

same set of terminating traces, namely

{a',a",a’} = {d’,a",a’} .

Since: < j by the proviso of the statement, it follows thay € {2,4}. Again
usingi < j, we derive that = 2 andj = 4, which was to be shown. O

In the remainder of this study, we shall offer a proof of Theorem 10. In order to
prove this theorem, it will be sufficient to establish the following technical result:

Proposition 12 Let £ be a finite axiom system over the langud&feA; that is
sound modulo bisimilarity. Let > 3 be larger than the size of each term in the
equations inE'. Assume, furthermore, that

e FFp=y,
e p— &, >a,and
e p has a summand bisimilar td,, > «.

Theng has a summand bisimilar ,, > a.
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Indeed, assuming Proposition 12, we can prove Theorem 10, and therefore Theo-
rem 9, as follows.

Proof of Theorem 10: Assume that is a finite axiom system over the language
BPA;; that is sound modulo bisimilarity. Piek > 3 and larger than the size of the
terms in the equations ifi. Assume that, for some closed tegm

Erd®,>argq .

By Proposition 12, we have thgthas a summand bisimilar t,, > a. Using
Lemma 11(2) it is easy to see that the summands of the right-hand side of equation
€n, ViZ.

a+d a((@t+a*+a)>a)+ad, ,
=2

are not bisimilar tab,, > a, and thus that
g#a+y a((@+a*+a)>a)+ad, .
1=2

We may therefore conclude that does not prove equatias,, which was to be
shown. O

Our order of business will now be to provide a proof of Proposition 12. Our proof
of that result will be proof-theoretic in nature, and will proceed by induction on the
depth of equational derivations from a finite axiom syst&nThe crux in such an
induction proof is given by the following proposition, to the effect that the statement
of Proposition 12 holds for closed instantiations of axiom&in

Proposition 13 Let ¢ ~ u be an equation over the languad®A;, that holds
modulo bisimilarity. Let be a closed substitutiop,= o(¢) andg = o(u). Assume
that

e 1 > 3 and the size of is smaller tham,
e p— &, >a,and
e p has a summand bisimilar t®,, > «.

Theng has a summand bisimilar ,, > a.

Indeed, let us assume for the moment that the above result holds. Using it, we can
prove Proposition 12 thus:

Proof of Proposition 12: Assume thatE is a finite axiom system over the lan-
guage BPA\ that is sound with respect to bisimulation equivalence, and that the
following hold, for some closed termsandq and positive integen > 3 that is
larger than the size of each term in the equations:in

(1) EFp=yq,
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(2) p = P, > a,and
(3) p has a summand bisimilar tb, > a.

We prove that; also has a summand bisimilar®g, > a by induction on the depth

of the closed proof of the equatign~ ¢ from E. Recall that, without loss of
generality, we may assume that applications of symmetry happen first in equational
proofs (that isF is closed with respect to symmetry).

We proceed by a case analysis on the last rule used in the prpokfaf from E.
The case of reflexivity is trivial, and that of transitivity follows immediately by us-
ing the inductive hypothesis twice. Below we only consider the other possibilities.

e CASE F F p = ¢, BECAUSE 0(t) = p AND o(u) = q FOR SOME EQUATION
(t =~ u) € E AND CLOSED SUBSTITUTIONo. Sincen > 3 is larger than the size
of each term mentioned in equationsAhthe claim follows by Proposition 13.

e CASEFE - p~ ¢q,BECAUSEp = p'+p” AND ¢ = ¢'+¢” FOR SOMEY', ¢, p", ¢"
SUCH THAT E + p' =~ ¢’ AND E' p” = ¢". Sincep has a summand bisimilar to
®,, > a, we have that so does eith@ror p”. Assume, without loss of generality,
thatp’ has a summand bisimilar 6, > a. Sincep is bisimilar to®,, > a, so
is p’. The inductive hypothesis now yields thathas a summand bisimilar to
®,, > a. Henceg has a summand bisimilar tb, > a, which was to be shown.

e CASE '+ p ~ ¢, BECAUSE p = p'p” AND ¢ = ¢'¢" FOR SOMEY', ¢, p",q"
SUCH THAT E + p' = ¢ AND E + p” ~ ¢”. This case is vacuous. In fact,
norm(p) = 1 by our assumption that— &,, > a, whereas the norm of a closed
term of the formy’p” is at least 2.

e CASEE F p = ¢, BECAUSEp = p' > p”" AND ¢ = ¢ > ¢” FOR SOME
p.q¢,p",¢" SUCHTHAT E + p' =~ ¢ AND E + p” =~ ¢". The claim is immediate
because andgq are their only summands, atidis sound modulo bisimilarity.

This completes the proof. O
In light of our previous discussion, all that we are left to do to complete our proof of

Theorem 9 is to show Proposition 13. The next section of this paper will be entirely
devoted to a proof of that result.

4  Proof of Proposition 13

We begin our proof of Proposition 13 by stating a few auxiliary results that will
find application in the technical developments to follow.

Lemmal4 Forn > 1,2 < j < n and closedBPA;, termg, the term®, > a is

not bisimilar to closed terms that have a summé(niaf*1 +a®+a) > a) > q.
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PROOF. Observe tha((aj*1 +a®+a) > a) > q — (a2 > a) > ¢. The claim
now follows immediately by Lemma 11(3). O

Lemma 15 Letn > 1. Assume thap > ¢ < P, > a, for closedBPA;,; termsp
andgq. Thenp « &, andq < a.

PROOF. Sincep > ¢ < ®, > a and®, > a % ®,,, there is a closed termsuch
thatp > ¢ % r andr < ,,.

We proceed by examining the possible origins of the transjtiong = r. There
are three possibilities to consider, viz.

(1) ¢ % ¢ andr = ¢p, for somey/,
(2) ¢ 5v andr = p, or
(3) p = p'andr = p' > ¢, for somey’.

The first case is impossible because the norm of ¢'p is at least 2, whereas the
norm of ®,, is 1. This contradicts < ®,,.

In the second case, we have that: ®,,. Therefore, as— is a congruence,
prqe®,>qeod,>a .

We claim thaty < a, which was to be shown. In fact, observe that the depth of
is 1. Moreoverg can only perform action, or else the term&,, > ¢ and®, > «a
would not afford the same traces. It follows that-> a as claimed.

Finally, assume that the third case applies. Observe, first of all, that, since
Peqged,,

a is the only actiony can perform. We claim that < a. To see that this claim
holds, assume that-% ¢’ for someg’. Then

p > q = ¢p andnorm(qp’) > 2 .

On the other hand, eachderivative of the termb,, has norm 1 (Lemma 11(3)).
This contradicts
pP>qe9, .

Thusg < a and, using congruence ef and the assumption of the statement of
the lemma,

p>a—=d,>a . (2)
If n = 1, then we can immediately conclude that> « = p;, and we are done.
Assume therefore that > 2. Sincep > a % p, we may infer from (2) that

e eitherp « o,
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e Orp«— (aj*1 +a3+a) > a forsomej € {2,...,n}.

In the former case, we are done. To complete our argument, we now show that the
latter case leads to a contradiction. To this end, assume that

pe (aj*1+a3+a) >a .
Using congruence gf and (2), we may derive that
((aj’1+a3+a) Da) >a—®,>a .
This contradicts Lemma 14.

The proof of the lemma is now complete. OJ

The following observation will find a key application in the subsequent technical
developments.

Lemma 16 Lett be aBPA, term that does not have as head operator. Assume
thato is a closed substitution, and that

U(t)ﬁp’u + +pzm )

forsomen > 2andl1 <4, < ... <14, Thent = z, for some variable:.

PROOF. Assume, towards a contradiction, thias not a variable. We proceed by
a case analysis on the possible form this term may have.

(1) CAsSEt = a. This case is vacuous because, since 2 and1 < i; < i,,, the
depth ofp;, + - -+ p;,, is greater than.
(2) Caset = t't" FOR SOME TERMS!, t”. Then

ot)=c(t)o(t") =pi, + - +pi, -

Observe, first of all, that; > 1 ando(t') « a, for otherwise eithep;, +- - - +
pi,, would have norm or o(t')o (") would have an-derivative whose norm
is at leas®, contradicting the above equivalence.

Using congruence cf,

ag(t,/) ﬁp’tl + U +p'lm ‘

It follows thatp,, < p;, . AS2 < iy < iy < iy, (for m > 2 by the assumption
of the lemma), this contradicts Lemma 11(4).
(3) Caset =t' > t" FOR SOME TERMS!',t”. Then

ot)=ct)>ot") =pi + - +pi, -
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Observe, first of all, that (") < a, for otherwises (t') > o(¢”) would have
ana-derivative whose norm is at leastcontradicting the above equivalence.
Using congruence cf,

ot >asp, +- 4+,
It follows that, for somej € {1,...,m},
ot') = (@ P4+ a®+a) .
Again using congruence ef, we may now infer that
(aif*l +a3+a) >aep,+-+pi, -
This is a contradiction because
(a"fl +a’ + a) >a % a® > aandnorm(a® > a) =2,
whereas each-derivative ofp;, + - - - + p;,, has norml.

We may therefore conclude thiamust be a variable, which was to be shown.]

Remark 17 The proviso thatn be larger than 2 in the statement of the above result
is necessary. In fact, i = 2, i; = 2 andi, = 4 then

P2+ ps = ala® +a) .
It follows thato (az) < ps + py if o(z) = a® + a.
The following observations will be used repeatedly in the proof of Proposition 13.

Lemma 18 Lett¢ be aBPA,; term,z be a variable, andr be a closed substitution.
Assume that € var(t). Then the following statements hold:

(1) depth(o(t)) > depth(o(x)), and
(2) if depth(o(t)) = depth(o(x)), then eithett < x or t < x +u for someBPA,
termw that does not contain occurrencesaof

PROOF. Both statements are shown by induction on the structure dere we
limit ourselves to presenting a proof for statement 2. The tase is trivial, and
those wherg = t,t, ort = t; > t,, for some terms,, ¢, are vacuous, because
depth(o(t)) is larger thandepth(o(x)) for termst of those forms. We are thus left
to examine the case= t, + t, for some terms,, t,.

Sincex € var(t), eitherx € var(t;) N var(ty) or z occurs in exactly one af and
t,. We examine these two possibilities in turn.
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Assume that: € var(t,) Nwar(tz). We claim that, for € {1, 2},
depth(o(x)) = depth(a(t;)) .

Indeed, by statement 1 of the lemma, we have dhpth(o(x)) < depth(o(t;)) for
i € {1,2}. Moreover, fori € {1, 2},

depth(o(t;)) < max{depth(c(ty)), depth(o(t2))}
= depth(o(t; +t2)) = depth(o(z)) .

Therefore, by the induction hypothesis, for {1,2}, we may infer that either
t; & x ort; « x + u,; for some BPA: termu; that does not contain occurrences of
xZ.

If both ¢, <« 2 andt, < z, thent; + ¢5 < x. Otherwisef = t; + t3 < = + u for
some BPA, termu that does not contain occurrencescof

Assume now, without loss of generality, thatc var(t;) andz & var(ts). Rea-
soning as above, we may apply the inductive hypothesis to obtain that either
t, < x ort; — x + u, for some BPA, termu; that does not contain occurrences
of x. In both cases, it follows that= ¢, + t, < = + u for some BPAy termu that
does not contain occurrenceszof O

Lemma 19 Lett ~ u be an equation over the languag&A;.; that is sound with
respect to bisimulation equivalence. Assume that some variadteurs as a sum-
mand int. Thenz also occurs as a summandain

PROOF. Recall that, for some finite index s&twe can write

t=> ti,

icl

where none of the; (i € I) has+ as head operator. Assume that variableccurs
as a summand if—i.e., there is an € [ with ¢; = x. We shall argue that also
occurs as a summand in

Consider the substitutiom, mapping each variable t@ Ast¢ ~ u is sound with
respect to bisimulation equivalence,

04(t) = o4(u) .

Pick an integern larger than the depth af,(¢) and ofo,(u). Let o be the substi-
tution mappinge to the terme™*! and agreeing witlr, on all the other variables.
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Ast =~ u is sound with respect to bisimulation equivalence, we have that

o(t) = o(u) .
Moreover, the termv(¢) affords the transitionr(t) = o™, becausd; = = and
o(z) = a™t % a™. Hence, for some closed tenm

ou) = pe=a

By Lemma 4(7) and the definition of, one of the following holds:

e ut, o(y) %v andp = o(u'), for some termi’ and variabley # z,
e u = u' for someu’ such thap = o(u'), or
e u =5 ¢ for some configuration such that[x, — a™](c) = p.

In the first two cases, we can conclude that eitherth(p) > m+1if x € var(u'),
or depth(p) < m otherwise. This contradicts— a™. In the third case, we claim
thatc = x4 and thatr is a summand of:. In fact, z; occurs inc (Lemma 3).
Moreover, ifc # x4 then it is easy to see thdepth(o[zy — ¢|(c)) > m, again
contradictingy < a™. Hencec = z, as claimed. Since, = ¢ = z, it follows that
x is a summand of, (Lemma 3), which was to be shown. O

We are finally in a position to conclude our technical developments by offering a
proof of Proposition 13.

Proof of Proposition 13: Recall that, by the proviso of the proposition,

(1) t = uis an equation over the language BR#hat holds modulo bisimilarity,
(2) n > 3 and the size of is smaller tham,

(3) o is aclosed substitutiom,= o(t) andq = o(u),

4) p= P, > a,and

(5) p has a summand bisimilar tb, > a.

We shall prove thag also has a summand bisimilardg, > a.

We can assume that, for some finite non-empty indexisets

t=>"t;, and 3
el

U= Z uj o, (4)
jeJ

where none of the, (i € I) andu; (5 € J) has+ as its head operator.

Sincep = o(t) has a summand bisimilar ®,, > a, so doess(t;) for some index
i € 1. Our aim is now to show that there is an indgx J such thatr(u;) has
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a summand bisimilar t@,, > a. This we proceed to do by a case analysis on the
form t; may have.

(1) CASE t; = x FOR SOME VARIABLE z. In this caseg(z) has a summand
bisimilar to ®,, > «a, andt hasxz as a summand. As ~ wu is sound with
respect to bisimulation equivalence, it follows thadlso hast as a summand
(Lemma 19). Thus there is an indgxe J such that:; = x, and, modulo
bisimulation,c(u) has®,, > a as a summand, which was to be shown.

(2) Caset; = t't” FOR SOME TERMSt, t”. This case is vacuous. Indeed, note,
first of all, thato (¢;) = o(t')o(¢”) is its only summand. Therefore,

oty))=ct)o(t") =P, >a .
This is a contradiction because
norm(®, > a) =1 < 2 < norm(a(t')o(t")) = norm(o(t;)) .

(3) Caset; = t' > t” FOR SOME TERMSt',t”. The analysis of this case is the
crux of the proof, and we present the argument in considerable detail.
Sinceo(t;) = o(t') > o(t") is its only summand, we have that

ot))=c)>o(t") =2, >a .
By Lemma 15, this yields that

a(t)

®, and )
ot") < a

(6)

it

Now, ¢ can be written thus:
t'=w 4+ +w, (E>1),

where none of the summandg has+ as head operator. Observe that, since
n is larger than the size of we have tha2k < n — 1. Indeed, the size of

ti=t >t =(w + - +wy) >t"

is at leastk + 1 andn is larger than the size of and therefore of;.
Hence, sinc&,, hasn — 1 inequivalent summands (Lemma 11(4)) and

ot =@, ,
there must be somee {1, ..., k} such that
o(wp) = piy + -+ i,
for somem > 2 andl < i, < ... <14, < n.ByLemma 16, it follows that

wy, can only be a variable and thus that

22



o(x) < pi + -+ i - (7)

Note that, ag; is a summand of,

"

' =x+t" | for some ternt

Moreover, we have that ¢ var(t"), or elses(t") <4 a, contradicting (6).

Our order of business will now be to use the information collected so far
in this case of the proof to argue that the terifa) has a summand that is
bisimilar to®,, > a. To this end, consider the substitution

o =olr— a(®, > a)] .

We have that

(t//

t///>> I> O_/(t//) (AS t/ =7 + t///)
") > o(t") (Asz & var(t"))
< (a(®,>a)+d ") >a (Aso(t")«a) .

t) > o
o(x)+o
() +o

(
(

Thus, for some/,
ot) Sp = (P, >a)>a .

By (3), o/(t) = p’ also holds. Sinceé ~ u is sound with respect tg— , it
follows thato'(t) < o'(u). Hence, by (4), there exist an ind¢xc J and ag’
such that

o'(uj)) > ¢ < (P, >a)>a . (8)
Recall that, by one of the assumptions of the proposition,

ou) =&, >a ,

and thuss(u) has dept + 1 because: > 3 (Lemma 11(2)). On the other
hand, by (8),
depth(o'(u;)) >n+3 .

Sinceos ando’ differ only in the closed term they map variahi¢o, it follows
that

x € var(u;) . 9
We shall now argue that(u;) < ®, > a by a further case analysis on the
form a termu; satisfying (8) and (9) may have.
(a) CAseu; = z. This case is vacuous because

o'(uj) =d'(z) =a(®,>a) > P, >a
is the only initial transition afforded by’(u;). Clearly this contradicts

8).
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(b) CASE u; = v'u” FOR SOME TERMSY/, u”. We show that this case also
leads to a contradiction.
Recall that

o'(u;) =o' (u)o' (") 5 ¢ = (P, >a)>a .

We proceed by a case analysis on the possible origin of this transition.
There are two possibilities, viz.
(i) o'(v') % randq = ro’(u"), for somer, or
(i) o'(v') >v andq = o' (u").
The former case is vacuous becausem(q') = 1 butnorm(ro’(u”)) >
2.
In the latter case, we claim thate var(u”). In fact, if z & var(u”),
then we obtain a contradiction thus:

n+ 2= depth(c'(u")) (By (8))
= depth(o(u")) (Asz & var(u"))
< depth(o(u;)) (Asu; =u'u")
< depth(o(u))

=n+1 (Aso(u) <= P, >aandn > 3) .
Thusz € var(u”), as claimed. Moreover,
depth(c’(u")) = depth(q') = n + 2 = depth(d'(x)) .

Observe now that” <+ x. Indeed, ifu” were bisimilar tox, then we
could infer that

¢ =0 =d(x)=a(®,>a) .

This contradicts (8) becauserm(q’) = 1, whereasworm(o'(z)) = 2.
Lemma 18(2) thus yields that

u”ﬁx_'_u”, ,

for someu” that does not contain. Hence,

q/ — O_/(u//)

O'/(x) + U/(u///)

a(®, > a)+ o) (Asz & var(u™))
= (Pp>a)>a (By(8) .

[k

Since the transition

(@nba)>a1><(a"’1+a3+a)>a) > a
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can only be matched by a transition of the form
o(u") S r e ((a”_1 +a®+a) > a) >a,

for somer (Lemma 14), anch > 3 by one of the assumptions of the
proposition, we may infer that

depth(o(u”)) >n+1 .
We can finally derive a contradiction as follows:

n + 1= depth(q)
= depth(o(u))
> depth(o(u;))
= depth(o(u')) + depth(o(u"))
(o)) + depth(o(z) + o (™))

This completes the proof for the case= u'u".

(c) CAsEu; = u' > u” FOR SOME TERMS/, u". This is the lengthiest sub-

case of case 3 of the proof, and its analysis will occupy us for the next
few pages.
Recall that, by (8),

o'(u;) =o' (W) > o' (u) S5 ¢ = (P, >a)>a .

We proceed by a case analysis on the possible origin of this transition.
There are three possibilities, namely

(i) o'(u") % ¢" andq’ = ¢"o'(u'), for somey”,
(i) o'(v') > ¢" andq’ = ¢" > o' (u"), for someg”, or
(iii)y o'(u") >v andq = o' (u').
We examine these sub-cases in turn.

e Case 3c.i. This case is vacuous because, since bydBy(q') = 1.

On the other hand, the norm gfo’(v’) is at least 2.
e Case 3c.ii. Note, first of all, that, since

¢=q¢">dW)=(P,>a)>a,

we have that: ¢ var(u”). In fact, if z € var(u”), then we would be
able to infer that

depth(q') = depth(q") + depth(o’(u"))
> depth(o’(u"))
>n+2 (ByLemma 18(1)),

contradicting the above equivalence. Since var(u”) andz €
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var(u;) by (9), we may infer that

x € var(u') . (10)
Recall that, by the assumptions for this sub-ca&e;,’) - ¢”. Using
Lemma 4(7), one of the following possibilities arises:
(i) v L w,o(y) %v andq” = o'(w), for some termw and
variabley,
(i) v % w for somew such thay” = o’'(w), or
(i) v % cando’(y) % r, for some variabley, configuratione
and closed term such that'[y, — r](c) = ¢".
We consider these possibilities in turn.
The first of these cases is vacuous. In fact, using the assumptions
for this case, we can derive a contradiction as follows. Note, first of

all, thaty # = because’(y) v . Therefore
o(y) =0o'(y) v .
Hence, by Lemma 4(4¥(v') % o(w). So
o(u;) =o(u) > o) = o(w) > o(u”) .
depth(o(u;)) < depth(o(u)) = n + 1, sodepth(c(w) > o(u”)) <

n. This implies thatr € var(w). For else, by assumptions of this
sub-case,

¢ =q¢">dW)=0dw) > W) =c(w)>ou”) .

Thenq' would have depth at most, contradicting (8). But, as €
var(w), Lemma 18(1) yields that

depth(q') > depth(c'(w)) > depth(c’(x)) =n+2 ,

again contradicting (8).
The second case is also vacuous because, exactly as in the first
case, we can show thdepth(q’) is no larger tham if = ¢ var(w),
and is larger tham + 2 otherwise. This contradicts (8).
We are therefore left to examine the third possibility. Note that
x & var(c), or else

depth(q") > depth(¢") >n+2 ,

contradicting (8). We claim that= x. To see that this does hold, as-
sume, towards a contradiction, tha x. Then, by the assumptions
for this sub-case,



Lemma 4(5) and/’ & ¢ now yield that

o(u) = olya > rl(c) = o'lyar— rl(c) = ¢

(The first equality holds because ¢ war(c).) Hence, sincer ¢
var(u"),

/

O'(Uj) i} q// D> O'(U//> — q// D> O'/(U”) — q )

As depth(o(u;)) < depth(o(u)) = n+1, this implies thatlepth(q’)
is no larger tham, contradicting (8). Hencg = z as claimed.

Sinceo’(z) = r, it follows thatr = ®, > a. By one of the
assumptions for this sub-case, and since var(u”),

¢ =0d'[xg—r](c) > o(u") .
Since depth(q’) = n + 2 by (8), x4 occurs inc (Lemma 3), and
depth(r) = n + 1, this is only possible if
- ¢ = x4 and
- o(u") < a.
(Indeed, by Definition 2, the only other possible forms of a configu-

rationc containingz, arec; - w andc; > w for some configuration
c; and BPA,: termw. In both of these cases,

depth(o'[xg — 7](c)) > n+2 = depth(q) ,
contradicting;’ = o'[z4 — 7](c) > o(u”).) We shall now argue that
o(u;) & &, >a , (11)

proving thatg = o(u) has a summand bisimilar #®,, > a, which
was to be shown. In fact,

o(uj) = o) >oW") < ow)>a .
We shall now prove that(u’) < ®,,. Indeed, since
a(u;) = o(u)

it follows that
o(u) = o(u') .

Recall thato(u) < ®,, > a. Therefore, there is am-derivative of
®,, > a that is bisimilar too(u'). This a-derivative of®,, > a can
only be®,,. In fact, the other-derivatives of®,, > a have the form

(aj*1+a3+a) >a (j€{2,...,n}) .
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If one of those terms were bisimilar to(«'), then using our as-
sumption that (u) < ®,, > a, we could infer that, for somg <

{2,...,n},
P, >a — (I>n>a+((aj_1+a3+a) Da) >a .

This contradicts Lemma 14.
Thereforeg(v') < @, as claimed. We may finally conclude that
o(u;) = &, > a.
The proof for case 3c.ii is now complete.
e Case 3c.iii. Since’ (u") v/, using Lemma 4(6) we may infer that
w5y, or
- " %y ando’(y) %V, for some variable.
In the latter case, ag(z) v  does not holdy # , and s (y) =
o’(y) v . Using statements 1 and 3 of Lemma 4, we therefore in
either case have that
o(u") S .
This yields that (u;) = o(uv') > o(u") = o(u).
Now, reasoning exactly as in the previous case, we can argue that
o(u') < ®,,. Therefore, using congruence «f,

o(uj) & @, > o(u”) .

This equivalence yields thatepth(o(u;)) = depth(o(u)) =n +1,

and that the depth of(u”) is 1. It follows thato (u”) < a. Hence,

o(u) has a summand, namelyu;), that is bisimilar to®,, > a.
This completes the proof of case 3c, and thus that of case 3.

Since we have examined all the possible forms thaan take, the proof of the
proposition is now complete. O

5 BPA with the Disrupt Operator

As mentioned in Section 1, in their paper [7], Baeten and Bergstra have given a
finite axiomatization of bisimilarity over BPA(the extension of BPA with a con-
stantj to describe “deadlock”) enriched with two mode transfer operators, viz. the
disruptand interruptoperators, using auxiliary operators. The main result in this
paper (Theorem 9) shows that the use of auxiliary operators is indeed necessary
in order to obtain a finite axiomatization of bisimulation equivalence over the lan-
guage BPA\;, and that this holds true even if we restrict ourselves to axiomatizing
the collection of closed equations over this language.

A natural question to ask at this point is whether this negative result applies also
to the language BPA obtained by enriching BPA with the disrupt operator. Intu-
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itively, “p disrupted by,"—which we shall writep » ¢ in what follows—describes

a process that normally behaves ljkeHowever, at each point of the computation
beforep terminatesg can begin its execution. If this happeggakes over, ang
never resumes its computation. This intuition is captured formally by the following
transition rules:

t 5 tS ¢ U Sy u S

L u v teu>t»u Lty u-v teu>au

As was the case for the interrupt operator (see Proposition 7), the disrupt operator
cannot be defined in the language BPA modulo bisimulation equivalence.

Proposition 20 There is nBPA;s termt such that does not contain occurrences
of the disrupt operator, antd < = » y.

PROOF. Assume, towards a contradiction, thias a BPAys term such that does
not contain occurrences of the disrupt operator,iaadx » .

Consider the closed substitutiermapping variable: to « and each other variable
to a?. Since

o(t) & aw a® anda » a* Sv |
we have that(t) v . Sinces(t) —v" andt does not contain occurrences of the
disrupt operator, it is not hard to see that, for some terraithert < a + u or
t < = + u. Both of these possibilities lead to a contradiction.
Indeed, using the former possibility, we may infer that

olr — a®|(t) SV .

This implies that <4 = » y, because?® » a? does not have termination traces of
length 1.

Assume now that < x + u. We claim that
olz— a® y— a’|(t) & a® »a’ .
This follows because[z +— a?,y — a®](t) % p for somep « a, sincet < x + u.

On the other hand, the twederivatives ofa? » «?, namelya » a* anda?, have
depth at least 2, and thus neither of them is bisimilar.to O

It is not hard to see that the following equations are sound modulo bisimilarity over
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the language BP4\:

(D1) avrTa+x
(D2) arw»y~alxw»y)+y and
D3) (x+y)»z~(xrz)+(yw=2) .

In the first two equations above, the symlaotanges over the set of actions
Those two identities are therefore equation schemas. Note, however, that such
schemas have only finitely many instanced iis finite.

The last of the equations above is particularly important, at least as far as obtaining
a finite equational axiomatization of bisimilarity over the collection of closed terms
in the language BP4\ is concerned. (The interested reader may have already no-
ticed that its soundness modulo bisimulation equivalence depends crucially on the
fact that transitions due to moves of the second argument of a disrupt discard the
firstargument.) Indeed, its repeated use in conjunction with the first two laws allows
us to eliminate occurrences of the disrupt operator from closed terms. This effec-
tively reduces the problem of finitely axiomatizing bisimilarity over the collection

of closed terms in the language BRAo that of offering a finite axiomatization of
bisimilarity over closed BPA terms. As shown by Bergstra and Klop in [12], the
five equations in Table 3 suffice to axiomatize bisimilarity over the language BPA.

In sharp contrast to Theorem 9, we therefore have that:

Theorem 21 The collection of closed equations o\B¥PAy;s that hold modulo—
is axiomatized by (A1)—(A5) in Table 3 together with (D1)—(D3), and is therefore
finitely based if4 is finite.

It follows that, in the presence of a finite action set, the use of auxiliary operators is
notnecessary in order to obtain a finite axiomatization of bisimulation equivalence
over closed terms in the language BRA

The axiomatization of bisimilarity over closed terms in the language;BBHered
in the theorem above is natcomplete. For example, the reader can easily check
that the disrupt operator is associative modulo bisimilarity, i.e., that the equation

(xpy)pzmz e (yw»2)

holds modulo—. This equation is not provable using the equations mentioned in
Theorem 21. However, we conjecture that, in the presence of a finite action set,
bisimilarity also affords a finite--complete axiomatization over BRA Work on a

proof of this conjecture is in progress.
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