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Abstract
In the trust-structure model of trust management, principals

specify their trusting relationships with other principals in terms
of trust policies. In their paper on trust structures, Carbone et al.
present a language for such policies, and provide a suitable denota-
tional semantics. The semantics ensures that for any collection of
trust policies, there is always a unique global trust-state, compat-
ible with all the policies, specifying everyone’s degree of trust in
everyone else. However, as the authors themselves point out, the
language lacks an operational model: the global trust-state is a
well-defined mathematical object, but it is not clear how principals
can actually compute it. This becomes even more apparent when
one considers the intended application environment: vast num-
bers of autonomous principals, distributed and possibly mobile.
We provide a compositional operational semantics for a language
of trust policies. The operational semantics is given in terms of
a composition of I/O automata. We prove that this semantics is
faithful to its corresponding denotational semantics, in the sense
that any run of the I/O automaton “converges to” the denota-
tional semantics of the policies. Furthermore, as I/O automata
are a natural model of asynchronous distributed computation, the
semantics leads to an algorithm for distributedly computing the
trust-state, which is suitable in the application environment.
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†BRICS, University of Aarhus.
BRICS: Basic Research in Computer Science (www.brics.dk),
funded by the Danish National Research Foundation.
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1 Introduction

The trust-structure framework was introduced by Carbone, Nielsen and
Sassone as a formal model for trust management in global computing
environments [2]. In the framework, principals use “trust” as a means
for decision-making about other principals. Trust is defined formally
in terms of a trust structure T , of which a sub-component is a set D
of so-called trust values. These trust values, specify the set of possible
degrees of trust (or dis-trust) that a principal may have in another. As
a simple example D = {high, mid, low, unknown} could be a set of trust
values, but certainly trust values may have a much richer structure. A
principal’s trust in other principals is given by its trust policy. In a very
simple setting, a trust policy could be a function of type P → D where P
is the set of principal identities, i.e., mapping each principal identity to a
trust value. However, in the intended global scenario, principals will often
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want to specify their trust contingent on the knowledge of some third-
party (often having more detailed information about the subject). This
feature is known as delegation in traditional trust management systems,
and in the trust structure framework, it is called policy referencing. The
idea is simple: principals may specify trust policies that refer to other
principal’s trust policies. Semantically, this means that trust policies are
now functions mapping global trust-states gts : P → P → D to local
trust-states lts : P → D.

Trust policies are used for making decisions regarding interaction with
other principals. At a high level, the intended mechanism is the following.
When principal p needs to make a decision about whether and how to in-
teract with another principal q, principal p will make this decision based
on its trust value for q. Hence p must somehow obtain its trust value for
q, e.g., by computing this value, or by looking it up in a precomputed
store. Note that, because of policy references, principals generally need
trust information from other principals to perform such a computation.
Since principals are distributed, a computation of trust values becomes
a distributed problem. The contribution of this paper is a solution to
the problem of distributed trust-value computation. At first sight, this
might seem trivial: when p needs to know about q’s value for some prin-
cipal, this value is simply sent. However, q’s value may itself depend
on other principal’s trust policies, including p, which potentially gives
cyclic dependencies. Semantically, this problem is elegantly solved by
using domain theory, known from programming language semantics [11].
Essentially, the theory ensures that mutually recursive trust policies have
a unique “least” solution. However, the theory gives no clue as to how
principals can actually compute the trust values.

In the following, we present in more detail the trust-structure frame-
work, explaining how the problem of cyclic trust policies is solved. Before
presenting our actual contribution, we motivate further why computing
the trust values is a non-trivial problem, especially in a global computing
environment.

1.1 The trust-structure framework

In the framework of trust structures [2], trust is something which ex-
ists between pairs of principals; it is quantified and asymmetric in that
we care of “how much” or “to what degree” principal p trusts principal q,
which may not be to the same degree that q trusts p. Each application in-
stance of the framework defines a so-called trust structure, T = (D,�,v),
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which consists of a set D of trust values, together with two partial or-
derings of D, the trust ordering (�) and the information ordering (v).
The elements c, d ∈ D express the levels of trust that are relevant for the
particular instance, and c � d means that d denotes at-least as high a
trust degree as c. The information ordering introduces a notion of preci-
sion or refinement: c v d is intended to mean that c may be refined into
d (given more information). As a simple example of a trust structure,
consider the so-called “MN” trust-structure TMN [5]. In this structure,
trust values are pairs (m, n) of natural numbers, representing m + n in-
teractions with a principal; each interaction classified as either “good”
or “bad”. In a trust value (m, n), the first component, m, denotes the
number of “good”interactions, and the second, the number of “bad”ones.
The information-ordering is given by: (m, n) v (m′, n′) only if one can
refine (m, n) into (m′, n′) by adding zero-or-more good interactions, and,
zero-or-more bad interactions, i.e., iff m ≤ m′ and n ≤ n′. In contrast,
the trust ordering is given by: (m, n) � (m′, n′) only if m ≤ m′ and
n ≥ n′. For more examples of trust structures, see Carbone et al. [2],
and Nielsen and Krukow [5, 9].

Global trust-states. Given a fixed trust structure T = (D,�,v),
and a set P of principal identities; a global trust-state of the system is a
function gts : P → P → D. The interpretation is that gts represents the
trust state where p’s trust in q (formalized as an element of D) is given
by gts(p)(q). A good way of thinking about gts is to consider it a large
matrix, indexed by pairs of principal identities, in which the row indexed
by principal p (denoted gts(p)) contains principal p’s trust in any other
principal. For example, in the row gts(p), column q represents p’s trust
in q, given as an element in the set D; this entry is denoted gts(p)(q)
(“row vectors” like gts(p) are also called local trust-states). Thus, the
matrix gts gives a complete (system global) description of how everyone
trusts everyone else. We shall write GTS for the set of global trust-states
P → P → D. Similarly we write LTS for the set P → D of local trust-
states (corresponding to rows of gts matrices).

Trust policies. The goal of the trust-structure framework is to define,
at any time, a global trust state gts, thus giving a precise meaning to
“p’s trust in q” as the trust value gts(p)(q). In order to uniquely define
the global trust state gts, an approach similar to that of Weeks [10] is
adopted. Each principal p ∈ P defines a trust policy which is a func-
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tion πp of type GTS → LTS, i.e. taking a global matrix as input, and
providing a local row-vector as output. This function then determines
p’s trust-row within the unique global trust-matrix, i.e. determines row
gts(p), as follows. In the simplest case, πp could be a constant func-
tion, ignoring its first argument gts : P → P → D. As an example,
πp(gts) = λq.t0 (for some t0 ∈ D) defines p’s trust in any q ∈ P as
the constant t0. In general we allow a form of delegation called pol-
icy reference: policy πp may refer to other policies (πz, z ∈ P), e.g., p
might trust q to download if A or B trusts q to download. The gen-
eral interpretation of πp is the following. Given that all principals assign
trust-values as specified in the global trust-state gts, then p assigns trust
values as specified in vector πp(gts) : P → D. For example, function
πp(gts)(q) = (gts(A)(q) ∨� gts(B)(q)) ∧� download, represents a policy
saying “for any q ∈ P, the trust in q is the least upper-bound of what A
and B say, but no more than the constant download.”1

Unique trust-state. The collection of all trust policies, Π = (πp|p ∈ P),
thus “spins a global web-of-trust” in which the trust policies mutually
refer to each other. Since trust policies Π may give rise to cyclic policy-
references, it is not a priori clear how to define the unique global trust-
state gts for a given collection of trust policies Π. One may consider the
unique function Πλ = 〈πp|p ∈ P〉, of type GTS → GTS with the property
that Projp ◦ Πλ = πp for all p ∈ P, where Projp is the p’th projection.2

Intuitively, the function Πλ is easy to understand: each πp maps a ma-
trix gts ∈ GTS to a “row-vector” πp(gts) in LTS; on input gts, function
Πλ builds the output matrix from all these rows by taking the p’th row
of the output matrix to be πp(gts). We can now state a minimal re-
quirement that the unique trust state, gts, should satisfy: gts should be
consistent with all policies πp. This amounts to requiring that it should
satisfy the following fixed-point equation: gts(p) = πp(gts) for all p ∈ P;
or equivalently:

Πλ(gts) = gts

Any matrix gts : GTS satisfying this equation is consistent with the poli-
cies (πp|p ∈ P), i.e. row p of gts is consistent with πp in that, if all
principals trust as specified in gts, then p trusts as specified in πp(gts)

1Assuming some appropriate trust structure with download ∈ D, and where least
upper-bounds and greatest-lower bounds exist with respect to �.

2Projp is given by: for all gts : P → P → D. Projp(gts) = gts(p).
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which (by the fixed-point equation) can be read-off as the pth row of gts.
This means that any fixed point of Πλ is consistent with all policies πp.
But arbitrary functions Πλ, may have multiple or even no fixed points.

Here we appeal to the power of the mathematical theory of complete
partial orders and continuous functions, used e.g. in formal programming
language semantics [11]. A crucial requirement in the trust-structure
framework is that the information ordering v makes (D,v) a complete
partial order (cpo) with a least element (this element is denoted ⊥v, and
can be thought of as a value representing “unknown”). We require also
that all policies πp : GTS → LTS are information continuous, i.e. contin-
uous with respect to v.3 Since this implies that Πλ is also information-
continuous, and since (GTS,v) is a cpo with bottom, standard theory [11]
tells us that Πλ has a (unique) least fixed-point which we denote lfpv Πλ

(or simply lfp Πλ):

lfpv Πλ =
⊔

v
{Πi

λ(λp.λq.⊥v) | i ∈ N}

This global trust-state has the property that it is a fixed-point (i.e.,
Πλ(lfpv Πλ) = lfpv Πλ) and that is is the (information-) least among fixed-
points (i.e., for any other fixed point gts, lfpv Πλ v gts). Hence, for any
collection Π of trust policies, we can define the global trust-state induced
by that collection, as gts = lfpΠλ, which is well-defined by uniqueness.

Consider now two mutually referring functions πp and πq, given by
πp(gts) = Projq(gts), and πq(gts) = Projp(gts). Intuitively, there is no
information present in these functions; p delegates all trust-questions to
q, and similarly q delegates to p. In this case, we would like the global
trust-state gts induced by the functions to take the value ⊥v on any
entry z ∈ P for both p and q, i.e., for both x = p and x = q and for all
z ∈ P we should have gts(x)(z) = ⊥v. This is exactly what is obtained
by choosing the information-least fixed-point of Πλ.

1.2 The operational problem

Many interesting systems are instances of the trust-structure framework
[2, 5, 9], but one could argue against its usefulness as a basis for the
actual construction of trust-management systems. In order to make se-
curity decisions, each principal p will need to reason about its trust in

3We overload v (respectively �) to denote also the pointwise extension of v (�)
to the function space LTS = P → D as well as to GTS = P → P → D. Saying that a
policy is information-continuous means that the function is continuous w.r.t. v.
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others, that is, the values of gts(p). While the framework does ensure
the existence of a unique (theoretically well-founded) global trust-state,
it is not “operational” in the sense of providing a way for principals to
actually compute the trust values. Furthermore, as we shall argue in the
following, the standard way of computing least fixed-points is inadequate
in our scenario.

When the cpo (D,v) is of finite height h, the cpo (P → P → D,v)
has height |P|2 · h (the height of a cpo is the size of its longest chain).
In this case, the least fixed-point of Πλ can, in principle, be computed
by finding the first identity in the chain of approximants (λp.λq.⊥v) v
Πλ(λp.λq.⊥v) v Π2

λ(λp.λq.⊥v) v · · · v Π
|P|2·h
λ (λp.λq.⊥v) [11]. How-

ever, in the environment envisioned, such a computation is infeasible.
The functions (πp : p ∈ P) defining Πλ are distributed throughout the
network, and, more importantly, even if the height h is finite, the number
of principals |P|, though finite, will be very large. Furthermore, even if
resources were available to make this computation, we can not assume
that any central authority is present to perform it. Finally, since each
principal p defines its trust policy πp autonomously, an inherent problem
with trying to compute the fixed point is the fact that p might decide to
change its policy πp to π′p at any time. Such a policy update would be
likely to invalidate data obtained from a fixed-point computation done
with global function Πλ, i.e., one might not have time to compute lfpΠλ

before the policies have changed to Π′.
While the above discussion indicates that exact computation of the

fixed point is infeasible (and hence that the framework is not suitable
as an operational model), in many applications, it is often sufficient to
merely approximate the fixed-point value. Krukow and Twigg present
a collection of techniques for approximating the idealized fixed-point
lfpΠλ [6]. Among these techniques is an asynchronous algorithm which
distributedly computes the least fixed-point of a collection of policies,
assuming that these policies remain fixed throughout the computation.
While Krukow and Twigg argue that the algorithm is correct at an ab-
stract level, there is a logical gap between the algorithm-description and
the abstract model of reasoning; and the algorithm itself is described with
an informal “pseudo-notation” which doesn’t have a formal semantics.

Contribution and Structure. The purpose of this report is to make
precise the mentioned distributed algorithm, and to “fill the logical gap.”
More precisely, we describe a general language for specifying trust poli-
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cies, and provide it with a compositional operational semantics. The
semantics of a collection of policies will be defined by translation into
an I/O automaton [7, 8], formalizing the asynchronous distributed algo-
rithm of Krukow and Twigg [6] in a semantic model. Our main theorem
(Theorem 5.1) proves in this formal model, that even in infinite height
cpos the I/O automata will converge towards the least fixed-point, as
intended.

As mentioned, the semantics of policies is given in terms of I/O au-
tomata, and there are two main reasons for this. First, I/O automata are
a natural model of asynchronous distributed algorithms which results in
relatively simple automata for describing the fixed-point algorithm. Sec-
ondly, the model is operational and relatively low-level, which means
that there is a short distance between the semantic model and an ac-
tual implementation that can run in real distributed systems. However,
the relatively complex reasoning about the algorithm is best done at a
more abstract level, and hence we introduce the more abstract model
of Bertsekas Abstract Asynchronous Systems (BAASs), together with a
“simulation-like” relation from the concrete I/O automata to the BAAS.
Although the main theorem does not mention the abstract model, its
proof uses this model together with the “simulation,” to prove its state-
ment about the actual operational semantics.

2 A Basic Language for Trust Policies

In this section we present a simple language for writing trust policies. The
language is similar to that of Carbone et al. [2], but simplified slightly.
We provide a denotational semantics for the language which is similar
to the denotational semantics of Carbone et al. Throughout this paper
we let P be a finite set of principal identities, and (D,v,�) be a trust
structure.

2.1 Syntax

We assume a countable collection of n’ary function symbols opi
n for each

n > 0. These are meant to denote functions Jopi
nKden : Dn → D, con-

tinuous with respect to v. The syntax of our simple language is given
in Figure 1. A policy π is essentially a list of pairs p : τ , where p is
a principal identity, and τ is an expression defining the policy’s trust-
specification for p. Since we cannot assume that the writer of the policy
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π ::= ? : τ (default policy, ? 6∈ P)

| p : τ, π (specific policies, p ∈ P)

τ ::= d (constant, d ∈ D)

| p?q (policy reference, p, q ∈ P ∪ {?})
| opi

n(τ1, τ2, . . . , τn) (n’ary continuous operator)

Figure 1: A basic policy language.

knows all principals, we include a generic construct ? : τ , which intu-
itively means “for everyone not mentioned explicitly in this policy, the
trust specification is τ .” Note this could easily be extended to more prac-
tical constructs, say G : τ meaning that τ is the trust-specification for
any member of the group G.

The syntactic category τ represents trust specifications. In this lan-
guage, the category is very general and simple. We have constants d ∈ D,
which are meant to be interpreted as themselves, e.g., p : d means “the
trust in p is d.” Construct p?q is the policy reference; it is meant to refer
to “principal p’s trust in principal q”, e.g., r : p?q says that “the trust in
r is what-ever p’s trust in q is.” Finally opi

n(τ1, . . . , τn) is the application
of operator Jopi

nKden to the trust specifications (τ1, . . . , τn). For example,
if (D,�) is a lattice, this could be the n’ary least upper bound (provided
this is continuous with respect to v).

We say that a policy is well-formed if there are no double occurrences
of a principal identity, say, p : τ and p : τ ′. We assume that all policies
are well-formed throughout this paper.

2.2 Denotational semantics

The denotational semantics of the basic policy language is given in fig-
ures 2, 3 and 4. We assume that for each of the function symbols opi

n,
Jopi

nKden is a v-continuous function of type Dn → D. The semantics
follows the ideas of Carbone et al., presented in the introduction. For a
collection Π = (πp | p ∈ P), the semantics of each πp is an information-
continuous function JπpK

den of type GTS→ LTS. As expected, the denota-
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J? : τKden gts q = JτKden ([? 7→ q]/idP) gts

Jp : τ, πKden gts q = if (q = p) then JτKden ([? 7→ p]/idP) gts

else JπKden gts q

Figure 2: Denotational semantics of the policy language. For syntactic
category π, JπKden is a continuous function of type (P → P → D) →
P → D. The term idP denotes the identity function on P.

JdKden env = λgts. d

Jp?qKden env = λgts. gts (env p) (env q)

Jopi
n(τ1, . . . , τn)Kden env = Jopi

nKden ◦ 〈
Jτ1K

den env , . . . , JτnKden env
〉

Figure 3: Denotational semantics of the policy language. For syntactic
category τ , when env is an environment, i.e., a function of type P∪{?} →
P then JτKden env is a continuous function of type (P → P → D) → D.

tional semantics of the collection Π is the least fixed-point of the function
Πλ =

〈
JπpK

den | p ∈ P〉
.

3 Two Models of Distributed Computation

In this section, we describe two models of distributed computation. The
models will be used in the next sections, where we provide an operational
semantics for the basic policy language of Section 2. The operational
semantics is given by two translations into the respective structures of
each of these models. More specifically, in the operational semantics, a
principal-indexed collection of policies Π is translated into an I/O Au-
tomaton, denoted JΠKop. I/O Automata are a form of labeled transition-
system, suitable for modelling and reasoning about distributed discrete

J(πp | p ∈ P)Kden = lfpv
〈
JπpK

den | p ∈ P〉

Figure 4: Denotational semantics of the policy language.
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event systems [7,8]. We shall define also another translation JΠKop-abs into
what we call a Bertsekas Abstract Asynchronous System (BAAS). There
will be a tight correspondence between the “abstract”operational seman-
tics JΠKop-abs and the actual operational semantics JΠKop. The reason for
introducing J·Kop-abs is to make reasoning about the actual operational
semantics easier. More specifically, we will make use of a general con-
vergence result of Bertsekas for BAAS’s. By virtue of the connection
between the semantics, this result translates into a result about the runs
of the concrete I/O automaton JΠKop.

We now present the I/O automaton model, and the Bertsekas abstract
systems.

3.1 The I/O automata model

We review the basic definitions of I/O automata. For a more in-depth
treatment, we refer to Lynch’s book [7]. An I/O automaton is a (possibly
infinite) state automaton, where transitions are labeled with so-called
actions. There are three types of actions: input, output and internal.
An important feature of I/O automata is that input-actions are always
enabled. This property means that while the automaton can put re-
strictions on when output and internal actions are performed, it cannot
control when input actions are performed. Instead, this is controlled by
the environment.

An action signature S is given by a set acts(S) of actions, and a
partition of this set into three sets in(S), out(S) and int(S) of input,
output and internal actions, respectively. We denote by local(S) =
out(S) ∪ int(S) the set of locally controlled actions.

Definition 3.1 (I/O Automaton). An input/output automaton A,
consists of five components:

A = (sig(A), states(A), start(A), steps(A), part(A))

The components are: an action signature sig(A), a set of states states(A),
a non-empty set of start states start(A) ⊆ states(A), a transition relation
steps(A) ⊆ states(A)×acts(sig(A))×states(A), satisfying that for every
s ∈ states(A) and every input action a ∈ in(sig(A)) there exists s′ ∈
states(A) so that (s, a, s′) ∈ steps(A). Finally, part(A) is an equivalence
relation, partitioning the set local(sig(A)) into at most countably many
classes.
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A run r of an I/O automaton A is a sequence r = s0a1s1a2s2 · · ·ansn

or an infinite sequence r = s0a1s1a2s2 · · · , so that s0 ∈ start(A) and for
all i, (si, ai+1, si+1) ∈ steps(A). For a finite run r = s0a1s1a2s2 · · ·ansn,
the length of r, is the number of state occurrences, i.e., |r| = n + 1. For
infinite runs r, we write |r| = ∞.

A finite run r of A is fair if for every class C of part(A), we have that
no action of C is enabled in the final state of r. An infinite run r is fair if
for every class C of part(A) then either r contains infinitely many events
from C, or r contains infinitely many occurrences of states in which no
action of C is enabled.

Composition. Compatible I/O automata can be composed to form
larger I/O automata. Composition of I/O automata is defined for count-
able sets of automata, so let C = (Si)i∈I be a countable collection of
action signatures. Say that C is compatible if for all i, j ∈ I with i 6= j
we have

1. out(Si) ∩ out(Sj) = ∅, and

2. int(Si) ∩ acts(Sj) = ∅
Let (Ai | i ∈ I) be a countable collection of I/O automata with (sig(Ai) |
i ∈ I) being compatible. Writing Si for sig(Ai), the composition signature
S =

∏
i∈I Si is the action signature with

1. in(S) =
(⋃

i∈I in(Si)
) \⋃

i∈I out(Si)

2. out(S) =
⋃

i∈I out(Si)

3. int(S) =
⋃

i∈I int(Si)

For a countable collection (Ai | i ∈ I) of automata with compatible
signatures Si = sig(Ai), their composition, A, is denoted A =

∏
i∈I Ai.

The composition is the I/O automaton defined as follows.

1. sig(A) =
∏

i∈I sig(Ai), i.e., sig(A) is the composition signature of
(Si | i ∈ I).

2. states(A) =
∏

i∈I states(Ai). We use s̄ to denotes elements of the
Cartesian product. If s̄ ∈ states(A) then s̄i refers to the ith com-
ponent of s̄.

3. start(A) =
∏

i∈I start(Ai)

12



send(p,q,v) : v in V recv(q,p,v) : v  in V

Channel(p,q)

Figure 5: The Channel(p, q) I/O automaton interface.

4. steps(A) is the set of triples (s̄, a, s̄′) so that, for all i ∈ I, if a ∈
acts(Si) then (s̄i, a, s̄′i) ∈ steps(Ai), and if a 6∈ acts(Si) then s̄i = s̄′i.

5. part(A) =
⋃

i∈I part(Ai)

If A and B are compatible automata, we use also A×B to denote their
composition.

We give a brief example of I/O automata and composition. The
following Channel automaton is a simplified version of an automaton
that we shall use in the actual semantics.

Example 3.1 (Channel). The Channel automaton is meant to model
a reliable asynchronous communication channel in a network. Suppose
P is a set of principal identities, and V is a countable set of values.
The channel is a one-way communication channel between two identities,
transmitting values from V . The automaton is parametric in two prin-
cipal identities, meaning that for any p, q ∈ P, Channel(p, q) is an I/O
automaton (intend to model a FIFO communication channel that can p
can use to send V -values to q). Fix any two p, q ∈ P, and consider the
following data.

• The action signature sig(Channel(p, q)) = S is given by the follow-
ing. We have int(S) = ∅, and acts(S) = in(S)∪out(S). The input
actions are in(S) = {send(p, q, v) | v ∈ V } and the output actions
are out(S) = {recv(q, p, v) | v ∈ V }. The signature is illustrated
graphically in Figure 5.

• states(Channel(p, q)) = V ∗, the set of finite sequences of elements
from V . A state s = v1 · v2 · · · vn represents n messages in transit
from p to q (sent in that particular order).

• start(Channel(p, q)) = ε (the empty sequence).
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• steps(Channel(p, q)) is given by the following. For any state s ∈ V ∗

and any v ∈ V , we have (s, send(p, q, v), s·v) ∈ steps(Channel(p, q)).
For any v0 ∈ V and any non-empty sequence s = v0 · s′ ∈ V +, we
have (s, recv(q, p, v0), s

′) ∈ steps(Channel(p, q)).

• part(Channel(p, q)) is the trivial partition where all recv(q, p, v)
actions are in the same equivalence class.

We will often use a pseudo-language for specifying I/O automata. The
language is similar to IOA [3, 4], and its semantics should be clear. In
the language, an automaton is given by specifying its signature, state,
actions, transitions and partition. The state is given in terms of a col-
lection of variables, for example, buffer : Seq[V ] := {} declares a vari-
able “buffer” of type “sequences of values from the set V ,” and initial-
izes this variable to the empty sequence. The transitions are given in
a precondition/effect-style, where the precondition represents the set of
states in which the action is enabled. The effect is an imperative program,
executed atomically, manipulating the state variables.

The syntactic representation of the Channel(p, q) automaton is the
following.

automaton Channel(p, q : P)
signature

input send(const p, const q, v : V)
output recv(const q, const p, v : V)

state
buffer: Seq[V] := {}

transitions
input send(p, q, v)

eff buffer := buffer |- v
output recv(q, p, v)

pre buffer != {} /\ v = head(buffer)
eff buffer := tail(buffer)

partition {recv(q, p, v) where v : D}

Example 3.2 (Composition). Continuing from the previous example,
consider now an automaton A which will represent principal p. Suppose A
has the following signature sig(A): acts(A) = {send(p, q, v) | v ∈ V }∪I,
in(A) = ∅, int(A) = I, and out(A) = {send(p, q, v) | v ∈ V }, where I is
some set of internal actions (disjoint from any other set of actions in this
example). Then A and Channel(p, q) are compatible automata, and their
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recv(q,p,v) : v  in V

Channel(p,q)A

internal I

send(p,q,v) : v in V

Figure 6: The interface of A× Channel(p, q).

composition A× Channel(p, q) is illustrated in Figure 6. Notice that the
composition has no input actions, but output actions {send(p, q, v) | v ∈
V } ∪ {recv(q, p, v) | v ∈ V }.

3.2 Bertsekas abstract asynchronous systems

A Bertsekas abstract asynchronous system (BAAS) is a general model
of distributed asynchronous fixed-point algorithms. Many algorithms
in concrete systems like message-passing or shared-memory systems are
instances of the general model. Bertsekas has a convergence theorem
that supplies sufficient conditions for a BAAS to compute certain fixed
points. We describe the model and the theorem in this section.

BAAS. A Bertsekas Abstract Asynchronous System (BAAS) is a pair
B = ((Xi)

n
i=1, (fi)

n
i=1) consisting of n sets X1, X2, . . . , Xn, and n functions

f1, f2, . . . , fn, where for each i, fi :
∏n

j=1 Xj → Xi. Let X =
∏n

i=1 Xi.
We assume that there is a (partial) notion of convergence on X, so that
some sequences (xi)∞i=1, x

i ∈ X have a unique limit point, limi xi ∈ X.
We let f denote the product function f = 〈f1, f2, . . . , fn〉 : X → X. The
objective of a BAAS is to find a fixed point x∗ of f .

We can think each i ∈ [n] as a node in a network, and function fi is
then associated with that node. Each node i has a current best value xi

(which is supposed to be an approximation of x∗i ), and an estimate xi =
(xi

1, x
i
2, . . . , x

i
n) for the current best values of all other nodes. Occasionally

node i recomputes its current best value, using the current best estimates,
by executing the assignment

xi := fi(x
i)

Once a node has updated its current value, this value is transmitted
(by some means) to the other nodes, that (upon reception) update their
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estimates (e.g., xj
i is updated at node j when receiving an update from

node i).
Examples of BAAS’s include many distributed optimization-, numerical-

and dynamic programming algorithms [1].

BAAS runs. Let B = ((Xi)
n
i=1, (fi)

n
i=1) be a BAAS, and let x̂ ∈ X =∏n

i=1 Xi. A run of B, with initial solution estimate x̂, is given by the
following.

1. A collection of (update-time) sets (T i)i∈[n]. For each i, the set T i is
a subset of N, and represents the set of times where node i updates
its current value.

2. A collection of (value) functions (xi)i∈[n], each of type xi : N →
Xi. For t ∈ N, xi(t) represents the value of node i, at time t.
Function xi satisfies xi(0) = x̂i, and we use x(t) to denote the
vector (x1(t), x2(t), . . . , xn(t)).

3. For each i ∈ [n], a collection of (estimate) functions (τ i
j)j∈[n], each

of type τ i
j : N → N, and each satisfying: for all t ∈ N,

0 ≤ τ i
j(t) ≤ t

We let xi(t) denote i’s estimate (of the values of all nodes) at time t.
The estimates xi(t) are given by the estimate and value functions,
as follows.

xi(t) = (x1(τ
i
1(t)), x2(τ

i
2(t)), . . . , xn(τ i

n(t)))

Hence t− τ i
j(t) can be seen as a form of transmission delay, as the

current value of j at time t is xj(t), but node i only knows the older
value xi(t)j = xj(τ

i
j(t)).

4. The value functions must satisfy the following requirements. If
t ∈ T i then at time t, node i updates its value by applying fi to its
current estimates. That is,

if t ∈ T i then xi(t + 1) = fi(x
i(t))

If t 6∈ T i then no updates are performed (on xi). That is,

if t 6∈ T i then xi(t + 1) = xi(t)
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Note that the property of the τ -functions implies that, at time 0, all
nodes agree on their estimates, xi(0) = xj(0) = x̂ for all i, j ∈ [n].

Definition 3.2 (Fairness). We say that a run is finite if all the sets T i

are finite. If a run is not finite, it is infinite. An infinite run r of a BAAS
is fair if for each i ∈ [n]:

• the set T i is infinite; and

• whenever {tk}∞k=0 is a sequence of elements all in T i, tending to
infinity, then also limk→∞ τ i

j (tk) = ∞ for every j ∈ [n].

A finite run r of a BAAS is fair if the following holds. Let t∗i = max T i,
and let t∗ = maxi∈[n] t∗i + 1. Then r satisfies:

• xi(t∗i )j = xj(t
∗) for all i, j ∈ [n].

When an infinite run is fair, each node is guaranteed to recompute
infinitely often. Moreover, all old estimate values are always eventually
updated. For finite runs, the fairness assumption means that for each i,
at the last update of i, its estimate for each node j is equal to the final
value computed by j.

Lemma 3.1. If r is a finite fair run of a BAAS B, then x(t∗) is a fixed
point of the product function of B.

Proof. Let i ∈ [n] be arbitrary but fixed. We show that fi(x(t∗)) = x(t∗)i.
Since r is finite fair, we have: xj(τ

i
j(t

∗
i )) = xj(t

∗) for all j ∈ [n]. Hence
fi(x

i(t∗i )) = fi(x(t∗)). Since t∗i ∈ T i we get xi(t
∗
i + 1) = fi(x

i(t∗i )). Now
t∗ ≥ t∗i + 1 and by the definition of t∗i , for every t′ with t∗i + 1 ≤ t′ ≤ t∗

we have t′ 6∈ T i. Hence xi(t
∗) = xi(t

∗
i +1). Putting it all together, we get

fi(x(t∗)) = fi(x
i(t∗i )) = xi(t

∗
i + 1) = xi(t

∗) = x(t∗)i

3.2.1 The asynchronous convergence theorem

The Bertsekas abstract asynchronous systems are a model of asynchronous
distributed algorithms. The Asynchronous Convergence Theorem (ACT)
(Proposition 6.2.1 of Bertsekas’ book [1]) is a general theorem which gives
sufficient conditions for BAAS runs to converge to a fixed point of the
product function f . The ACT applies in any scenario in which the so-
called “Synchronous Convergence Condition” and the “Box Condition”
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are satisfied. Intuitively, the synchronous convergence condition states
that if the algorithm is executed synchronously, then one obtains the de-
sired result. In our case, this amounts to requiring that the“synchronous”
sequence ⊥n

v v f(⊥n
v) v · · · converges to the least fixed-point, which

is true for continuous f . Intuitively, the box condition requires that one
can split the set of possible values appearing during synchronous compu-
tation into a product (“box”) of sets of values that appear locally at each
node in the asynchronous computation.

We now recall the definition of the Synchronous Convergence Con-
dition (SCC) and the Box Condition (BC) (Section 6.2 [1]). Consider
a BAAS with X =

∏n
i=1 Xi, and f : X → X any function with f =

〈f1, f2, . . . , fn〉.
Definition 3.3 (SCC and BC). Let {X(k)}∞k=0 be a sequence of subsets
X(k) ⊆ X satisfying X(k + 1) ⊆ X(k) for all k ≥ 0.

SCC The sequence {X(k)}∞k=0 satisfies the Synchronous Convergence
Condition if for all k ≥ 0 we have

x ∈ X(k) ⇒ f(x) ∈ X(k + 1)

and furthermore, if {yk}k∈N is a sequence which has a limit point
limk yk, and which satisfies yk ∈ X(k) for all k, then limk yk is a
fixed-point of f .

BC The sequence {X(k)}∞k=0 satisfies the Box Condition if for every
k ≥ 0, there exist sets Xi(k) ⊆ Xi such that

X(k) =

n∏
i=1

Xi(k)

The following Asynchronous Convergence Theorem gives sufficient
conditions for a BAAS run to converge to the fixed point of its product
function.

Theorem 3.1 (ACT, Bertsekas). Let B = ((Xi)
n
i=1, (fi)

n
i=1) be a

BAAS, X =
∏n

i=1 Xi, and f = 〈fi : i ∈ [n]〉. Let {X(k)}∞k=0 be a se-
quence of sets with X(k) ⊆ X and X(k + 1) ⊆ X(k) for all k ≥ 0.
Assume that {X(k)}∞k=0 satisfies the SCC and the BC. Let r be any infi-
nite fair run of B, with initial solution estimate x(0) ∈ X(0). Then, if
{x(t)}t∈N has a limit point, this limit point is a fixed point of f .
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4 An Operational Semantics

In this section we present the operational semantics of the basic policy
language. This will be given by a semantic function J·Kop mapping a
collection Π of policies of the basic language to an I/O automaton JΠKop.
We introduce also an “abstract” operational semantics, which is given by
another semantic function J·Kob-abs mapping Π to a BAAS. The systems
JΠKop and JΠKop-abs will correspond in a “simulation-like” manner: runs
of JΠKop can be faithfully matched by corresponding runs of JΠKop-abs (in
a formal sense, described later in this section).

4.1 J·Kop translation, an operational semantics

We first provide the concrete operational semantics. Function J·Kop maps
a collection of trust policies from the basic language to an I/O automaton.
The semantics uses two parameterized I/O automata: Channel(p, q, r)
and IOTemplate(p, q, f), where p, q, r ∈ P and f : (P → P → D) → D
is a continuous function. The semantic function J·Kop is given in Figure
7 and Figure 8. The parameterized automata are described syntactically
in Figure 9 and Figure 10.

A principal p is represented as the automaton JπpK
op
p,∅ which is the

composition of a collection of automata IOTemplate(p, q, fpq) for q ∈ P
and where fpq(gts) = JπpK

den gts q, i.e, policy πp’s entry for q. The
component IOTemplate(p, q, fpq), which we denote simply as “pq”, is re-
sponsible for computing (or approximating) principal p’s trust value for
principal q, i.e., the value gts(p)(q).

The I/O automaton JΠKop is a composition, A×B, of two automata
where A =

∏
p∈PJπpK

op
p,∅ represents the composition-automaton of each

of the principals policies, and B =
∏

p,r,q∈P Channel(p, r, q) is a com-
position of channel automata. For p, r, q ∈ P, the channel automaton
Channel(p, r, q) represent a reliable FIFO communication channel, and
will be used by the automaton pq = IOTemplate(p, q, fpq), to communi-
cate trust-values of p about principal q to principal r.

The IOTemplate-automata from Figure 10 are designed to implement
the following algorithm, described previously by Krukow and Twigg [6].

An asynchronous algorithm. The asynchronous algorithm is exe-
cuted in a network of nodes pq for p, q ∈ P. Each node pq allocates
variables pq.tcur and pq.told of type D, which will later record the “cur-
rent” value and the last computed value. Each node pq has also a matrix,
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J(πp | p ∈ P)Kop = (
∏
p∈P

JπpK
op
p,∅)×

∏
p,r,q∈P

Channel(p, r, q)

Figure 7: Operational semantics of the policy language. For a principal-
indexed collection of policies Π = (πp | p ∈ P), the semantics JΠKop is an
I/O automaton.

Jq : τ, πKop
p,F = JτKop

p,q × JπKop
p,F∪{q}

J? : τKop
p,F =

∏
q∈P\F

JτKop
p,q

JτKop
p,q = IOTemplate(p, q, JτKden([? 7→ q]/idP))

Figure 8: Operational semantics of the policy language. Function J·Kop
F,p

maps a policy to an I/O automaton when F ⊆ P and p ∈ P. IOTemplate
is a parameterized I/O automaton, taking three arguments, p, q ∈ P and
fpq : (P → P → D) → D.

automaton Channel(p, r, q : P)
signature

input send(const p, const r, const q, d : D)
output recv(const r, const p, const q, d : D)

state
buffer: Seq[D] := {}

transitions
input send(p, r, q, d)

eff buffer := buffer |- d
output recv(r, p, q, d)

pre buffer != {} /\ d = head(buffer)
eff buffer := tail(buffer)

partition {recv(r, p, q, d) where d : D}

Figure 9: The Channel(p : P, r : P, q : P) parameterized automaton.
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automaton IOTemplate (p : P, q : P, f_pq : (P -> P -> D) -> D)
signature
input recv(const p, r : P, s : P, d : D)
output send(const p, r : P, const q, d : D)
internal eval(const p, const q)

state
gts : P -> P -> D,
t_old : D := bot,
t_cur : D := bot,
wake : Bool := true,
send : P -> Bool
initially

\forall r,s : P (gts(r)(s) = bot)
\forall r : P (send(r) = false)

transitions
input recv(p, r, s, d)

eff wake := true;
if ((r,s) != (p,q)) then gts(r)(s) := d fi

output send(p, r, q, d)
pre send(r) = true /\ d = t_cur
eff send(r) := false

internal eval(p,q)
pre wake /\ \forall r : P (send(r) = false) %all scheduled

%messages sent.
eff

t_old := t_cur;
t_cur := f_pq(gts); % evaluate policy on gts
if (t_old != t_cur)
then

gts(p)(q) := t_cur;
for each r : P do send(r) := true od

else
wake := false

fi

partition {eval(p,q)};
{send(p, r, q, d) where d : D} for each r : P

Figure 10: The IOTemplate(p : P, q : P, fpq : (P → P → D) → D)
parameterized automaton.
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denoted by pq.gts, of type P → P → D. Initially, pq.tcur = pq.told = ⊥v,
and the matrix is also initialized with ⊥v. For any nodes pq and rs,
when rs receives a message from pq (which is always a value in D), it
stores this message in rs.gts(p)(q) (except the special case where rs = pq
where this is unnecessary).

Any node is always in one of two states: sleep or wake. All nodes start
in the wake state, and if a node is in the sleep state, the reception of a
message triggers a transition to the wake state. In the wake state any
node pq repeats the following: it starts by assigning to variable pq.tcur
the result of applying its function fpq to the values in pq.gts, i.e., node
pq executes assignment pq.tcur := fpq(pq.gts). If there is no change in the
resulting value (compared to the last value computed, which is stored in
pq.told), it will go to the sleep state (unless a new message was received
since fpq(pq.gts) was computed). Otherwise, if a new value resulted from
the computation (i.e., if pq.told 6= fpq(pq.gts)), this value is sent to all
nodes.

In the I/O automata version of this algorithm, the sending of a mes-
sage d from node pq to another node, say rs, is represented by the action
send(p, r, q, d) (note this is independent of s). The message d i stored
in the buffer of Channel(p, r, q), and eventually retrieved by node rs,
performing input-action recv(r, p, q, d) (note all nodes rs′ for s′ ∈ P per-
form this action simultaneously, reflecting that principal r is modelled by
the entire collection (IOTemplate(r, s′, frs′) | s′ ∈ P)). Action eval(p, q)
represents the node pq recomputing its current value. The fairness parti-
tion of IOTemplate(p, q, fpq) ensures that the eval(p, q) action is always
eventually executed once it is enabled. Similarly, send(p, r, q, pq.tcur) is
always eventually executed when variable pq.send(r) is true.

Lemma 4.1 (Composability). If all policies of Π are well-formed, then
all the automata occurring in the definition of JΠKop have compatible
signatures, and, hence, are composable.

Proof. Simple inspection shows disjointness of all (output and internal)
actions of the involved automata.

4.2 Cause and effect

In the following, we establish some structure on runs of the operational-
semantics automaton. For a run rc of JΠKop, we define a “causality”
function, causerc , mapping each index k > 0 to a smaller index k′. If
causer(k) = k′ > 0 we say that action ak′ causes action ak.
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For a (finite or infinite) run rc = s0a1s1a2s2 · · · of JΠKop, we write
ActIndex(rc) for the set {j ∈ N | 0 < j < |rc|} of action indexes of rc.
Define the function causerc : ActIndex (rc) → N inductively.

causerc(1) = 0

For any k ∈ N, define causerc(k + 1) by cases.

• Case ak+1 = eval(p, q) for some p, q ∈ P. As we are not interested
in “causes” of eval events, we simply define causerc(k + 1) = 0.

• Case ak+1 = send(p, r, q, d) for some p, q, r ∈ P, d ∈ D. Note that
since initially, pq.send(r) = false, there must exist some largest
index j < k so that sj .pq.send(r) = false and sj+1.pq.send(r) =
true (since this is a pre-condition of ak+1). Then causerc(k + 1) =
j + 1. Note that aj+1 must be an eval(p, q) event, and that we
must have sj.pq.tcur 6= sj+1.pq.tcur , and sj+1.pq.wake = true.

• Case ak+1 = recv(p, r, s, d) for some p, r, s ∈ P, d ∈ D. Let R0 =
{j | j < k+1, aj = recv(p, r, s, d)}, and let S0 = {j | j < k+1, aj =
send(r, p, s, d)}. S0 is a candidate set of indices for the result. Now
let

S
(def)
= S0 \ causerc(R0) = S0 \ {causerc(r0) | r0 ∈ R0}

(causerc is defined on r0 ∈ R0 since r0 < k + 1). Note that |S0| >
|R0|. This follows from the fact that for each recv(p, r, s, d) action,
there must be at least one previous occurrence of a send(r, p, s, d)
action, and ak+1 = recv(p, r, s, d). This, in turn, implies that S is
non-empty. Now, define

causerc(k + 1) = min S

Writing k′ = causerc(k + 1), note that ak′ = send(r, p, s, d). Note
also that sk′.rs.tcur = d, and sk′.rs.send(p) = false.

We define a “dual” function of causerc , called the “effect” function, and
denoted effectrc

. Function effectrc
: ActIndex(rc) → 2ActIndex(rc) is defined

as follows:

effectrc
(k) = cause−1

rc
({k}) = {k′ ∈ ActIndex (rc) | causerc(k

′) = k}
The following lemma establishes some simple properties of the causerc

function.
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Lemma 4.2 (Simple properties of cause). For any run rc, function
causerc satisfies the following.

• For every k ∈ ActIndex (rc), causerc(k) < k (which implies that
∀k′ ∈ effectrc

(k). k < k′).

• Each send(p, r, q, d) action in rc is caused by a unique eval(p, q)
action, and each recv(p, r, s, d) action in rc is caused by a unique
send(r, p, s, d) action.

• The causerc function is injective when restricted to recv actions.
That is, for any indices k, k′ with k 6= k′, if ak = recv(. . .) and
ak′ = recv(. . .), then also causerc(k) 6= causerc(k

′).

Proof. The first two items follow immediately from the definition. For the
last item, let k < k′ with ak = recv(p, r, s, d) and ak′ = recv(p′, r′, s′, d′).
Let j = causerc(k) and j′ = causerc(k

′), then by the above, aj =
send(r, p, s, d) and aj′ = send(r′, p′, s′, d′). Hence if (p, r, s, d) 6= (p′, r′, s′, d′)
then j 6= j′. So assume that (p, r, s, d) = (p′, r′, s′, d′). We want to prove
that causerc(k) 6= causerc(k

′). Let S0 = {j | j < k, aj = send(r, p, s, d)},
S ′

0 = {j | j < k′, aj = send(r, p, s, d)}, R0 = {j | j < k, aj =
recv(p, r, s, d)} and R′

0 = {j | j < k′, aj = recv(p, r, s, d)}. We have
S0 ⊆ S ′

0 and R0 ( R′
0, in particular, k ∈ R′

0 \R0.

causerc(k) = min(S0 \ causerc(R0))

causerc(k
′) = min(S ′

0 \ causerc(R
′
0))

Injectivity follows, as causerc(k) ∈ causerc(R
′
0).

The following lemma formalizes the fact that the channels are reliable,
and act in a FIFO manner.

Lemma 4.3 (FIFO). Let rc = s0a1s2 · · · be a finite or infinite fair run
of Channel(p, r, q) for p, r, q ∈ P. Suppose that ak = send(p, r, q, d) and
ak′ = send(p, r, q, d′) for some d, d′ ∈ D. If k ≤ k′ then there exists
unique j, j′ with k < j and k′ < j′, so that j ≤ j′, aj = recv(r, p, q, d),
aj′ = recv(r, p, q, d′), causerc(j) = k and causerc(j

′) = k′.

Proof. Since ak = send(p, r, q, d) then we have sk.buffer = u · d, for some
u ∈ D∗. Let N = |u| ≥ 0, then by fairness, there must be N + 1 unique
indices (ki)

N+1
i=1 , satisfying the following four points.

• k < ki < ki+1, for all 1 ≤ i ≤ N ,
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• aki
= recv(r, p, q, ui) for all 1 ≤ i ≤ N ,

• akN+1
= recv(r, p, q, d), and

• for all l ∈ N with k < l < kN+1 and l 6= ki for all 1 ≤ i ≤ N + 1,
action al is not a recv action, i.e., al 6= recv(p, r, q, d0) for all
d0 ∈ D.

We prove in the following that causerc(kN+1) = k. Define S0 = {m |
m < kN+1, am = send(p, r, q, d)} and R0 = {m | m < kN+1, am =
recv(r, p, q, d)}. Define also Sk

0 = {m | m < k, am = send(p, r, q, d)},
and Rk

0 = {m | m < k, am = recv(r, p, q, d)}, and note that k ∈ S0 but
k 6∈ Sk

0 . Since sk−1.buffer = u, we have |Sk
0 | = |Rk

0| + Nd, where Nd =
|{n | 1 ≤ n ≤ N, un = d}|. This implies that |R0| = |Rk

0| + Nd = |Sk
0 |.

Furthermore, for all r ∈ R0, we have causerc(r) < k, by the following
argument. Let r ∈ R0, and assume r ≥ k (if r < k then causerc(r) <
r < k). Define Sr

0 = {m | m < r, am = send(p, r, q, d)}, Rr
0 = {m | m <

r, am = recv(r, p, q, d)}, and note that Sk
0 ( Sr

0 , r ∈ R0 \Rr
0, and for all

m ∈ Sr
0 \ Sk

0 , m ≥ k. By definition, causerc(r) = min(Sr
0 \ causerc(R

r
0)).

Because k < r < kN+1, we have |Sr
0 | > |Sk

0 | = |Rk
0|+Nd > |Rr

0|, implying
that Sk

0 \ causerc(R
r
0) 6= ∅. Hence, because ∀m ∈ Sr

0 \ Sk
0 .m ≥ k, we

obtain, causerc(r) = min(Sr
0 \ causerc(R

r
0)) = min(Sk

0 \Rr
0) < k.

Now, we have an injective function causerc mapping the set R0 to the
set Sk

0 , so |Sk
0 | = |R0| implies that causerc(R0) = Sk

0 . Hence,

S0 \ causerc(R0) = S0 \ S ′
0

and since k = min(S0 \ S ′
0), we have causerc(kN+1) = k.

Similar reasoning applies to k′, so let j, j′ be so that aj = recv(r, p, q, d),
k = causerc(j), aj′ = recv(r, p, q, d′) and k′ = causerc(j

′). To show that
j ≤ j′, assume first that k′ > j, then because j′ > k′, clearly j < j′. So
assume instead for some i ≥ 0 we have ki < k′ < ki+1 (writing k = k0).
Note that then sk′.buffer = ui+1ui+2 · · ·uNds′d′ for some s′ ∈ D∗, and
hence, j′ = k′N ′+1 > kN+1 = j.

Notice that by the above lemma, if ak = send(p, r, q, d) then unique-
ness of j with causerc(j) = k implies that effectrc

(k) = {j}. By abuse of
notation, we write effectrc

(k) = j. Hence, causerc(effectrc
(k)) = k. This

implies also that if am = recv(r, p, q, d) then effectrc
(causerc(m)) = m.

Lemma 4.4 (Cause and Effect). Let Π = (πp | p ∈ P) be a collection
of policies, and let rc = s0a1s1a2 · · · be a finite or infinite fair run of
JΠKop. The following properties hold of rc:
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1. Assume that for some k ≥ 0, we have sk.pq.wake = true, then
there exists a k′ > k so that ak′ = eval(p, q).

2. Assume that ak0 = eval(p, q) and sk0−1.pq.tcur 6= sk0.pq.tcur = d.
Let k1 > k be least with ak1 = eval(p, q) (note, such an index must
exist by the above). Then, for every r ∈ P there exists a unique
kr with k0 < kr < k1 so that akr = send(p, r, q, ). Furthermore,
akr = send(p, r, q, d) and causerc(kr) = k0.

3. Assume that ak = send(p, r, q, d) and ak′ = send(p, r, q, d′). Then,
k < k′ implies causerc(k) < causerc(k

′).

4. Assume that ak = recv(r, p, q, d) and ak′ = recv(r, p, q, d′). Then,
k < k′ implies causerc(k) < causerc(k

′).

Proof. Let rc = s0a1s1a2 · · · be a finite or infinite fair run of JΠKop. We
prove each point separately.

1. Assume that sk.pq.wake = true. Assume first that for every r ∈ P
we have sk.pq.send(r) = false. Then action eval(p, q) is enabled.
Notice that this action stays enabled until a eval(p, q) event occurs.
Since {eval(p, q)} is an equivalence class, fairness of rc implies
that there exists some k′ > k so that ak′ = eval(p, q). Now,
suppose instead that for some r ∈ P we have sk.pq.send(r) =
true. Then action send(p, r, q, d) is enabled for d = sk.pq.tcur , and
notice that this action stays enabled until a send(p, r, q, d) event
occurs. Since {send(p, r, q, c) | c ∈ D} is an equivalence class,
and only send(p, r, q, d) is enabled in the class, fairness of rc means
that for some k′0 > k we have ak′0 = send(p, r, q, d), and hence
sk′0.pq.send(r) = false. Let k0 be the least such index, and note
that for all j with k ≤ j ≤ k0 we have sj .pq.wake = true (as no
eval(p, q) action can occur while pq.send(r) = true). Since this
holds for all r, there must exist a k′ > k so that sk′.pq.wake = true

and for all r ∈ P we have sk′.pq.send(r) = false, and we are done
by the initial comment.

2. Assume that ak0 = eval(p, q) and sk0−1.pq.tcur 6= sk0 .pq.tcur = d.
Notice that sk0.pq.wake = true, and let k1 > k0 be the (index
of the) first occurrence of an eval(p, q) event after time k0. No-
tice that since no eval(p, q) event occurs in the interval (k0, k1)
we have sl.pq.tcur = d for all l ∈ [k0, k1). Let r ∈ P be ar-
bitrary. Notice that send(p, r, q, d) is enabled at time k0, and
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stays enabled until a send(p, r, q, d) action occurs. By fairness such
an action must occur, so let kr > k0 be the least index so that
akr = send(p, r, q, d). Notice that after time k0, no eval(p, q) ac-
tion can occur before a send(p, r, q, d) action has occurred, hence
we have kr < k1. Uniqueness of kr follows from the fact that for k in
[k0, kr) we have sk.pq.send(r) = true and for k in [kr, k1) we have
sk.pq.send(r) = false. Hence, there can only be one occurrence of
a send(p, r, q, d) event in the time interval (k0, k1). Finally, since
for all k with k0 < k < kr we have ak 6= eval(p, q), it follows that
causerc(kr) = k0.

3. Assume that ak = send(p, r, q, d) and ak′ = send(p, r, q, d′). As-
sume also that k < k′. Notice first that

{j | j < k, sj.pq.send(r) = false, sj+1.pq.send(r) = true} ⊆
{j | j < k′, sj.pq.send(r) = false, sj+1.pq.send(r) = true}

Hence, causerc(k) ≤ causerc(k
′). Assume for the sake of contra-

diction that, causerc(k) = causerc(k
′) = k0. Let k1 be the first

occurrence of eval(p, q) after time k0. Then k1 > k because by
definition of causerc(k), there can be no eval(p, q) occurrences in
the interval (causerc(k), k] = (k0, k] (because pq.send(r) = true).
Since also causerc(k1) = k0, by the same argument we must have
k1 > k′. But now the uniqueness property in point (2) of this lemma
implies that there can only be one send(p, r, q, ) occurrence in the
interval [k0, k1], and hence k = k′, which contradicts k < k′. So, by
contradiction, we must have causerc(k) < causerc(k

′).

4. Assume that ak = recv(r, p, q, d) and ak′ = recv(r, p, q, d′). As-
sume also that k < k′. Then causerc(k) < causerc(k

′) follows be-
cause if we would have causerc(k

′) ≤ causerc(k) then by the FIFO
Lemma, k′ = effectrc

(causerc(k
′)) ≤ effectrc

(causerc(k)) = k.

4.3 J·Kop-abs translation, an abstract operational se-

mantics

We also map a collection Π = (πp | p ∈ P) to a BAAS, in a similar way.
The BAAS JΠKabs-op consists of the set D of trust values, a collection of
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n = |P|2 functions fpq : Dn → D (the functions are indexed by pairs pq
where p, q ∈ P). The functions fpq are given by the policies,

fpq(gts) = JπpK
den gts q

i.e., fpq is the q-projection of policy p. This function represents the I/O
automaton pq = IOTemplate(p, q, fpq) which is a component of JΠKop.

In the rest of this paper, we shall not distinguish between [n] =
{1, 2, . . . , n} and the set P × P, nor shall we distinguish between Dn

and P → P → D. Note that Πλ = 〈〈fpq | q ∈ P〉 | p ∈ P〉 = f (hence a

value d̂ ∈ Dn is a fixed point of f if-and-only-if it is a fixed point of Πλ).
The notion of convergence of sequences in Dn is the following. A

sequence (d̄k)∞k=0 has a limit iff the set {d̄k | k ∈ N} has a least upper
bound in (Dn,v), and in this case, limk d̄k =

⊔
k d̄k.

4.4 Correspondence of abstract and concrete oper-

ational semantics

The two translations J·Kop and J·Kop-abs are closely related: the latter can
be viewed as an abstract version of the former. In fact, in the following
we will map runs of JΠKop to “corresponding” runs of JΠKop-abs.

Correspondence of runs. Let us map a (finite or infinite, fair or not)
run rc = s0a1s1a2s2 · · · of the concrete I/O-automaton JΠKop to a run ra

of the BAAS JΠKop-abs, called the corresponding run (of rc), as follows.

1. For any p, q ∈ P, T pq is defined as {k− 1 | k ∈ N, ak = eval(p, q)}.
That is, the update-times of pq are the indexes of pre-states of
eval(p, q) actions in rc. Note that for (p, q) 6= (r, s) we have an
empty intersection, T pq ∩ T rs = ∅.

2. For each p, q ∈ P, the function τ pq
pq : N → N is given by the identity

τpq
pq (t) = t. This reflects the fact that node pq always has an exact

“estimate”of its own current value. This rule implies that xpq(t)pq =
xpq(τ

pq
pq (t)) = xpq(t).

3. For each p, q ∈ P and each r, s ∈ P with (r, s) 6= (p, q), the function
τ pq
rs : N → N is given by the following. Let t ∈ N be arbitrary but

fixed.
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(a) Let k ≤ t be the largest, with the property that ak = recv(p, r, s, d)
for some d ∈ D. If no such index exists, then τpq

rs (t) is defined
as the largest j ≤ t with the property that for all j′ with
0 ≤ j′ ≤ j we have sj′.rs.tcur = ⊥v. If such k exists, let
k′ = causerc(k). Note that ak′ = send(r, p, s, d).

(b) We then define k′′ = causerc(k
′). Note that ak′′ = eval(r, s),

and that we must have sk′′ .rs.tcur = d.

(c) Finally, define τpq
rs (t) to be the largest index j ≤ t with the

property that for all j′ with k′′ ≤ j′ ≤ j, also sj′.rs.tcur = d.
Note, in particular sj .rs.tcur = d.

Note that 0 ≤ τpq
rs (t) ≤ t is satisfied.

4. The value functions xpq : N → D are given inductively. We have
xpq(0) = ⊥v. For each t ∈ N, xpq(t + 1) is given by the recursive
equation

xpq(t + 1) =

{
xpq(t) if t 6∈ T pq

fpq(x
pq(t)) if t ∈ T pq

Note that this definition obviously satisfies the requirement for
value functions in the definition of runs of BAAS’s.

Lemma 4.5. For any p, q, r, s ∈ P, function τ pq
rs is monotonically in-

creasing.

Proof. We must show for all t, u if t ≤ u then τpq
rs (t) ≤ τ pq

rs (u). If no
recv(p, r, s, d) exists before u, or no recv(p, r, s, d) exists before t but
recv(p, r, s, d) exists before u, then it is simple to verify that τ pq

rs (t) ≤
τ pq
rs (u). Let t ≤ u, and let k, l denote the “k’s”, corresponding to t and

u respectively, in the definition of τ pq
rs , i.e., ak = recv(p, r, s, d), k ≤ t,

al = recv(p, r, s, d′), l ≤ u. Because t ≤ u, clearly k ≤ l. By Lemma
4.4 (4), k′ = causerc(k) ≤ causerc(l) = l′. Similarly, by Lemma 4.4 (3),
k′′ = causerc(k

′) ≤ causerc(l
′) = l′′. If d = d′ then k′′ ≤ l′′ and t ≤ u

implies that the largest index j ≤ t with the property that for all j′ with
k′′ ≤ j′ ≤ j, is less than the similar largest index j ≤ u with the property
that for all j′ with l′′ ≤ j′ ≤ j, hence τ pq

rs (t) ≤ τ pq
rs (u). If d 6= d′ then for

all j′ with k′′ ≤ j′ ≤ τ pq
rs (t), sk.rs.tcur = d, means that k′′ ≤ l′′ implies

τpq
rs (t) < l′′ ≤ τpq

rs (u).
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Abstract state. For a run ra of JΠKop-abs and a time t ∈ N, we let
stateabs(ra, t) be the following (estimate-value) pair: stateabs(ra, t) =
(Eabs, V abs), where

• Eabs is the function of type P → P → (P → P → D), given by
E(p)(q) = xpq(t).

• V abs is the function of type P → P → D, given by V (p)(q) = xpq(t).

Similarly, for a run rc = s0a1s1 · · · of JΠKop, and an index 0 ≤ k < |rc|,
we let stateop(rc, k) be the following pair: stateop(rc, k) = (Econ, V con),
where

• Econ is the function of type P → P → (P → P → D), given by
Econ(p)(q) = sk.pq.gts .

• V con is the function of type P → P → D, given by V (p)(q) =
sk.pq.tcur .

Let us call stateop and stateabs the “abstract state.” The following
lemma relates concrete and abstract runs via the abstract state.

Lemma 4.6 (Corresponding runs). Let Π = (πp | p ∈ P) be a collec-
tion of policies. Let rc be a run of JΠKop, and let ra be the corresponding
run. Then,

∀k.0 ≤ k < |rc| ⇒ stateop(rc, k) = stateabs(ra, k)

Proof. By induction in k. The base case k = 0 is immediate.

Inductive step. Assume that for all k′ ≤ k, stateop(rc, k
′) = stateabs(ra, k

′),
where k + 1 < |rc|. Show that stateop(rc, k + 1) = stateabs(ra, k + 1).

• Case ak+1 = eval(p, q) for some p, q ∈ P. Since stateop(rc, k) =
stateabs(ra, k), we get xpq(k) = sk.pq.gts . Hence, since k ∈ T pq, we
get xpq(k + 1) = fpq(x

pq(k)) = fpq(sk.pq.gts) = sk+1.pq.tcur . Fur-
ther, we have xpq(k+1)pq = xpq(k+1) = sk+1.pq.tcur = sk+1.pq.gts(p)(q).
For all rs 6= pq, xpq(k + 1)rs = xpq(k)rs = sk.pq.gts(r)(s) =
sk+1.pq.gts(r)(s).

• Case ak+1 = send(p, q, s, v). Notice that send-actions don’t affect
the abstract state: stateop(r, k+1) = stateop(r, k) = stateabs(r, k) =
stateabs(r, k + 1).
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• Case ak+1 = recv(p, r, s, v). Note first that for all u, v ∈ P, we have
xuv(k + 1) = xuv(k) = sk.uv.tcur = sk+1.uv.tcur . For the estimate-
part, let q ∈ P be arbitrary, and notice first that for all u, v, w ∈ P
if u 6= p or (v, w) 6= (r, s),

sk+1.uq.gts(v)(w) = sk.uq.gts(v)(w) = xuq(k)vw = xuq(k + 1)vw

Furthermore, if (p, q) = (r, s) then the abstract state is not affected,
and we are done. So assume that (p, q) 6= (r, s). We have

sk+1.pq.gts(r)(s) = v

We must show that xpq(k + 1)rs = v. We have xpq(k + 1)rs =
xrs(τ

pq
rs (k + 1)), and we simply recall that for any m, if m =

recv(p, r, s, d), then, as noted in the definition of τ pq
rs , sτpq

rs (m).pq.tcur =
d. Now, since τ pq

rs (k+1) ≤ k+1, there are two cases. If τ pq
rs (k+1) ≤

k then the i.h. implies

xpq(k + 1)rs = xrs(τ
pq
rs (k + 1))

(i.h.)
= sτpq

rs (k+1).rs.tcur = v

If τpq
rs (k+1) = k+1 then simply note that since ak+1 = recv(p, r, s, v)

clearly ak+1 6= eval(r, s), which implies k 6∈ T rs. Hence, we get
xrs(τ

pq
rs (k + 1)) = xrs(k + 1) = xrs(k), and we have

xrs(k)
(i.h.)
= sk.rs.tcur = sk+1.rs.tcur = sτpq

rs (k+1).rs.tcur = v

Lemma 4.7. For any fair run rc of JΠKop, let ra denote its corresponding
run. Then,

• If rc is infinite, then ra is an infinite fair run of JΠKop-abs.

• If rc is finite, then ra is a finite fair run of JΠKop-abs.

Proof. We prove each point separately. In the following “The Lemma”
refers to Lemma 4.4.

• Let rc = s0a1s1 · · · be an infinite fair run of JΠKop. We let p, q ∈ P
be arbitrary, and prove that there are infinitely many eval(p, q)
events in rc, which implies that T pq is infinite. Note that it suf-
fices to prove that there are infinitely many send-events in rc, by
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the following. Assume there are infinitely many send-events in
rc, and note that since P is finite, there must exist r, s, t ∈ P
so that send(r, t, s, ) events occur infinitely often (i.o.) in rc. By
The Lemma (2,3), causerc maps the indexes of these send(r, t, s, )
events, injectively, to indexes k with ak = eval(r, s) and sk−1.rs.tcur 6=
sk.rs.tcur , hence, such indexes occur i.o. in rc. By The Lemma
(2), also, send(r, p, s, ) events occur i.o. in rc, hence, by the FIFO
Lemma, recv(p, . . .) events occur i.o. in rc. But this implies that
pq.wake = true infinitely often, and hence by The Lemma (1), we
have eval(p, q) infinitely often.

So let us prove that there are infinitely many send-events. Assume
this is not the case, and let k be an arbitrary index so that there
are no send events after k. Note that by The Lemma (2) it suffices
to prove that there is some k′ > k so that ak′ = eval(u, v) and
sk′−1.uv.tcur 6= sk′.uv.tcur , for some u, v ∈ P. Now, because all
message buffers are finite at time k, and no send events occur later
than k, then there can be only finitely many recv-events after k.
So let K ≥ k be arbitrary so that there are no recv-events after K.
By construction there can only be eval-events after K, but since
rc is infinite there must also be some eval event with a change in
the tcur variable (otherwise all wake variables eventually become
false).

Now, let p, q, r, s ∈ P, and let (tj)∞j=0 be a sequence tending towards
infinity, and let K ∈ N be arbitrary but fixed. We show that there
exists j so that τpq

rs (tj) ≥ K. If (r, s) = (p, q) this is trivial as τ pq
pq is

the identity function. So assume this is not the case. We know that
there are infinitely many eval(r, s) events in rc. There are three
cases.

If there are no k with ak = eval(r, s) and sk.rs.tcur 6= sk+1.rs.tcur .
Then for all k ≥ 0 we have ak 6= recv(p, r, s, ) and sk.rs.tcur = ⊥v.
Hence τpq

rs is the identity function, and we are done.

If there are some but only finitely many k with ak = eval(r, s)
and sk−1.rs.tcur 6= sk.rs.tcur , let k0 be the largest such, and let
v = sk0.rs.tcur . Note that for all k′ ≥ k0 we have sk′.rs.tcur = v.
Then by The Lemma (2) and the FIFO Lemma, let l be so that
al = recv(p, r, s, v) and causerc(causerc(l)) = k0. Now we get,

τ pq
rs (t) = t for all t ≥ l
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In the final case, there are infinitely many k with ak = eval(r, s)
and sk.rs.tcur 6= sk+1.rs.tcur . Hence by The Lemma (2), there
are infinitely many send(r, p, s, ) events. By The Lemma (3), the
injectivity of causerc on these events implies that for some v ∈ D,
there exist a send(r, p, s, v) event with index k′ > K so that also
k = causerc(k

′) ≥ K. Hence by the FIFO Lemma, there exists a
recv(p, r, s, v) event with index k′′ > k′ so that cause(k′′) = k′.
Now let tj0 > k′′, then by monotonicity of τ pq

rs , we obtain τpq
rs (tj0) ≥

τpq
rs (k′′) ≥ k > K.

• Now assume that rc is finite fair. Clearly ra is finite. We must
show it is also fair. So let p, q, r, s ∈ P and consider xrs(τ

pq
rs (t∗pq)). If

(p, q) = (r, s) then τ pq
rs is the identity, and hence, by definition of t∗pq,

xpq(t
∗) = xpq(t

∗
pq) = xpq(τ

pq
rs (t∗pq)). So assume that (p, q) 6= (r, s).

Assume, for the sake of contradiction, that xrs(τ
pq
rs (t∗pq)) 6= xrs(t

∗).
By Lemma 4.6, this implies that there must exist an index k with
ak = eval(r, s) and sk−1.rs.tcur 6= sk.rs.tcur . Let K be the greatest
index with this property (such a greatest index must exist since
rc is finite), and note that for all j with K ≤ j ≤ t∗, sj.rs.tcur =

xrs(t
∗)

(def)
= d. By Lemma 4.4 (2) and the FIFO Lemma, there exists

jp > kp > K so that ajp = recv(p, r, s, d), akp = send(r, p, s, d),
causerc(kp) = K and causerc(jp) = kp.

Note, there cannot be a later index j′ > kp with aj′ = recv(p, r, s, ),
because then causerc(causerc(j

′)) > causerc(causerc(kp) = K, which
contradicts maximality of K. Hence, if kp ≤ t∗pq then st∗pq

.pq.tcur =
d, and by Lemma 4.6, xpq(τ

pq
rs (t∗pq)) = d = xrs(t

∗): a contradiction.
But, if kp > t∗pq then skp.pq.wake = true and by Lemma 4.4 there
must be a later eval(p, q) event, which contradicts maximality of
t∗pq.

5 Correspondence between the Denotational

and Operational Semantics

In this section, we present the main theorem of this paper: the opera-
tional semantics J·Kop and the denotational semantics J·Kden correspond,
in the sense that the I/O automaton JΠKop distributedly computes JΠKden

for any collection of policies Π.
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Because of the correspondence between the abstract operational se-
mantics and the concrete operational semantics, we can prove the main
theorem by first proving that the abstract operational semantics “com-
putes” the least fixed-point of the product function. To prove this, we
first establish the following invariance property of the abstract system.

Proposition 5.1 (Invariance property of J·Kop-abs). Let Π = (πp |
p ∈ P ) be a collection of policies. Let r be any run of JΠKop-abs. Then,
for every time t ∈ N and for every p, q ∈ P, we have

• approximation: xpq(t) v JΠKden,

• increasing: xpq(t) v fpq(x
pq(t)), and

• monotonic: ∀t′ ≤ t.xpq(t′) v xpq(t)

Proof. By induction in t.

Base. Since xpq(0) = (⊥v,⊥v, . . . ,⊥v), all three properties follow triv-
ially.

Inductive step.

1. Show that xpq(t + 1) v JΠKden = lfp Πλ. Let r, s ∈ P be arbitrary
but fixed. By definition, xpq(t + 1)rs = xrs(τ

pq
rs (t + 1)). Now there

are two cases.

(a) ∃t′ ≤ t.xrs(τ
pq
rs (t + 1)) = frs(x

rs(t′)). Since t′ ≤ t the in-
duction hypothesis (i.h.) implies that xrs(t′) v lfp Πλ, hence
frs(x

rs(t′)) v frs(lfp Πλ) = (lfp Πλ)rs.

(b) No such t′ exists. Then xrs(τ
pq
rs (t + 1)) = ⊥v.

2. Show that xpq(t + 1) v fpq(x
pq(t + 1)). Again there are two cases.

In both cases we will assume that xpq(t) v xpq(t + 1), which we
prove later (note that this is essentially the ‘monotonic’-property).

(a) If t 6∈ T pq then xpq(t + 1) = xpq(t). Now the i.h. implies that
xpq(t) v fpq(x

pq(t)). Now, monotonicity of fpq together with
xpq(t) v xpq(t + 1) implies fpq(x

pq(t)) v fpq(x
pq(t + 1)).

(b) If t ∈ T pq then xpq(t + 1) = fpq(x
pq(t)). Now since we assume

xpq(t) v xpq(t + 1), monotonicity of fpq implies fpq(x
pq(t)) v

fpq(x
pq(t + 1)).
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3. Show that ∀t′ ≤ t + 1. xpq(t′) v xpq(t + 1). Note that by the i.h.,
it suffices proving xpq(t) v xpq(t + 1). So let r, s ∈ P be arbitrary
but fixed. Show that xpq(t)rs v xpq(t + 1)rs. We have

xpq(t)rs = xrs(τ
pq
rs (t)) and xpq(t + 1)rs = xrs(τ

pq
rs (t + 1))

Note that since τ pq
rs is monotonically increasing, we have τ pq

rs (t) ≤
τ pq
rs (t + 1). Note also, that if τ pq

rs (t + 1) ≤ t we can just refer to the
i.h., and we are done. So assume, finally, that τ pq

rs (t + 1) = t + 1.
Again, there are two cases.

(a) If t 6∈ T rs then xrs(t + 1) = xrs(t), and we can simply refer to
the induction hypothesis.

(b) If t ∈ T rs then xrs(t+1) = frs(x
rs(t)). By the i.h., xrs(τ

pq
rs (t)) =

xrs(τ pq
rs (t))rs v xrs(t)rs = xrs(t) (the i.h. applies since τ pq

rs (t) ≤
t). Now we are done, because we have already proved that
xrs(t) v frs(x

rs(t)) = xrs(t + 1).

We are now able to prove that the abstract operational semantics of
Π converges to lfp Πλ. However, we prove instead a slightly more general
result. We use the following definition of an information approximation.

Definition 5.1 (Information Approximation). Let (X,v) be a CPO
with bottom ⊥v. Let f : X → X be any continuous function. An element
x ∈ X is an information approximation for f if

x v lfp f and x v f(x)

Lemma 5.1. Let (X,v) be a CPO with bottom ⊥v. Let f : X → X be
any continuous function and x̂ ∈ X an information approximation for f .
Then, {fk(x̂) | k ∈ N} is a chain and⊔

k
fk(x̂) = lfp f

Proof. A simple induction proof shows that for all k we have f k(x̂) v
fk+1(x̂) and fk(x̂) v lfp f . Hence {f k(x̂) | k ∈ N} is a chain, and⊔

k
fk(x̂) v lfp f

To see that
⊔

k fk(x̂) is a fixed point for f , note that by continuity,

f(
⊔

k
fk(x̂)) =

⊔
k
fk+1(x̂) =

⊔
k
fk(x̂)
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Proposition 5.2 (Convergence of J·Kop-abs). Let Π = (πp | p ∈ P )

be a collection of policies. Let d̂ : P → P → D be an information
approximation for Πλ. Let r be any fair run of JΠKop-abs with initial
solution estimate x(0) = d̂. Then the sequence {x(t)}t∈N has a limit
point, and limt x(t) = lfp Πλ.

Proof. First we must show that the sequence {x(t)}t actually has a limit.
We show that x(0) v x(1) v · · · v x(t) v · · · , i.e., {x(t)}t is an in-
creasing omega chain. This follows from Proposition 5.1 since x(t) =
(. . . , xpq(t), . . .) = (. . . , xpq(t)pq, . . .) and we have xpq(t) v xpq(t + 1) for
all t. Now to show that limt x(t) (which is actually

⊔
t x(t)) is a fixed

point of Πλ, we shall invoke the Asynchronous Convergence Theorem of
Bertsekas. Define a sequence of subsets of Xn, X(0) ⊇ X(1) ⊇ · · · ⊇
X(k) ⊇ X(k + 1) ⊇ · · · by

X(k) = {y ∈ Dn | Πk
λ(d̂) v y v lfp Πλ}

Note that X(k + 1) ⊆ X(k) follows from the fact that Πk
λ(d̂ ) v Πk+1

λ (d̂ )

for any k ∈ N, which, in turn, holds since d̂ is an information approxima-
tion. For the synchronous convergence condition, assume that y ∈ X(k)
for some k ∈ N. Since Πk

λ(d̂) v y v lfp Πλ, we get by monotonicity

Πk+1
λ (d̂ ) v Πλ(y) v Πλ(lfp Πλ) = lfp Πλ.

Now, let (yk)k∈N be a converging sequence so that yk ∈ X(k) for
every k. Then, for all k we have Πk

λ(d̂) v yk v lfp Πλ. This implies that

lfp Πλ =
⊔

k Πk
λ(d̂) v ⊔

k yk v lfp Πλ, and hence
⊔

k yk = lfp Πλ. This
means that limk yk is a fixed point of Πλ.

The box condition is easy:

X(k) =

n∏
i=1

{y(i) | y ∈ Dn and Πk
λ(d̂ ) v y v lfp Πλ }

However, this only proves that the system converges to some fixed
point x∗ = limt x(t) of Πλ. But note that the invariance property (Propo-
sition 5.1) implies that xpq(t) v lfp Πλ for all t. Hence, x∗ is a fixed point
of Πλ, and x∗ v lfp Πλ. So we must have x∗ = lfp Πλ.

We are now able to prove the main theorem of this paper: the oper-
ational semantics is correct in the sense that the I/O automaton JΠKop

“computes” the least fixed-point of the function Πλ, and, hence, the op-
erational and denotational semantics agree.
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Theorem 5.1 (Correspondence of semantics). Let Π be any col-
lection of policies, indexed by a finite set P of principal identities. Let
r = s0π1s1π2s2 · · · be any fair run of the operational semantics of Π,
JΠKop. Let stateop(r, k) = (Ek, V k), then we have

• {V k | k ∈ N} is a chain in (P → P → X,v).

• ⊔
k∈N

V k = JΠKden.

Proof. First, map rc to its corresponding run ra. This is a fair run of
JΠKop-abs by Lemma 4.7. By Lemma 4.6, {x(t)}t∈N = {V k}k∈N, and by
the Proposition 5.2 {x(t)}t∈N has a limit which is lfp Πλ = JΠKden.

Corollary 5.1. Let Π be any collection of policies over trust structure
(D,�,v), indexed by a finite set P of principal identities. If the CPO
(D,v) is of finite height, then any fair run r of JΠKop is finite, and if N
is the length of r, and stateop(r, N − 1) = (E, V ), then V = JΠKden.

Proof. Let r′ denote the corresponding run of r = s0a1s1 · · · . Proposition
5.1 implies that x(t) is an increasing chain. When (D,v) has finite height,
there exists some t0 so that for all t ≥ t0, we have x(t) = x(t0). But by
Lemma 4.6 then for all t with t0 ≤ t < |rc| we have st.pq.tcur = st+1.pq.tcur
for all p, q ∈ P. Hence there can only be finitely many send actions after
t0, and hence only finitely many recv actions after t0. But then there can
only be finitely many eval actions in r, and, hence r must be finite. Since⊔

x(t) = x(t0) the correspondence theorem implies that V = JΠKden.
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