
BRICS
Basic Research in Computer Science

A Calculus for Context-Awareness

Pascal Zimmer

BRICS Report Series RS-05-27

ISSN 0909-0878 August 2005

B
R

IC
S

R
S

-05-27
P.Z

im
m

er:
A

C
alculus

for
C

ontext-A
w

areness

Copyright c© 2005, Pascal Zimmer.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/05/27/

A Calculus for Context-Awareness

Pascal Zimmer

BRICS∗

Department of Computer Science, University of Aarhus
IT-parken, Aabogade 34, DK-8200 Aarhus N, Denmark

Pascal.Zimmer@gmail.com

Abstract

In order to answer the challenge of pervasive computing, we
propose a new process calculus, whose aim is to describe dynamic
systems composed of agents able to move and react differently
depending on their location. This Context-Aware Calculus fea-
tures a hierarchical structure similar to mobile ambients, and a
generic multi-agent synchronization mechanism, inspired from the
join-calculus. After general ideas and introduction, we review the
full calculus’ syntax and semantics, as well as some motivating
examples, study its expressiveness, and show how the notion of
computation itself can be made context-dependent.

1 Introduction

The current world of desk personal workstations and laptops is rapidly
evolving towards a more ubiquitous and pervasive one, in which com-
putation is performed in multiple, embedded, mobile and often invisible
small devices, all interconnected through a wireless network. Those de-
vices can be very different in nature, use very different technologies and
notions of computation, but should also be able to interact in a uniform
way.

∗Basic Research in Computer Science (www.brics.dk),
funded by the Danish National Research Foundation.

1

In order to formally describe such systems, we propose a new pro-
cess calculus based on context-awareness [MD01, SAW94]. This concept
denotes the ability for agents to react differently depending on their cur-
rent environment, which is a broad term to include all of their enclosing,
surrounding and inner environments. For example, when attending a per-
formance in a concert hall, it would be more appropriate for a cell phone
to vibrate instead of beeping; in order to achieve such a behaviour, the
cell phone should be aware both of its location and of the concert going
on (example borrowed from the introduction of [MD01]).

While many works tried to describe the concept of context-awareness
and related issues, only recently did computer scientists attempt to for-
malize this notion into a well-founded process calculus [RJP04, Hen04].
Our Context-Aware Calculus (CAC in short) is one of those proposals
and relies on two essential features:

a notion of location: Each location, or agent, represents either a phys-
ical or logical unit of computation and can run many processes. To
be more generic, we will retain the hierarchical structure of loca-
tions already used in mobile ambients [CG98]. In this model, agents
can also contain subagents, and some specific commands that allow
them to move around the structure, either inside a sibling agent or
outside the enclosing one.

a multi-agent synchronization: This is the most essential point for
context-awareness in CAC. Agents will not be directly aware of
their environment, but will instead inform their environment of
their current capabilities through the sending of asynchronous atoms.
It is then the duty of the enclosing environment to provide rules to
capture those atoms, possibly from different sources, and perform
a global synchronization.

The join-calculus [FG96, FGL+96] already proposes such a mech-
anism, but only on a local level, so that synchronization can only
occur between different processes in a single location (in the case
of the distributed join-calculus). Instead, we plan to achieve syn-
chronization across agent boundaries.

Outline In the next Section, we start with a general presentation of
the ideas behind this calculus based on a few simple examples. In Sec-
tion 3, we review the full calculus by giving its syntax and semantics.

2

Then, in Section 4, we show how to use this model to encode more com-
plicate systems of agents requiring context-awareness. In Section 5, the
expressive power of CAC is demonstrated by encoding π- and λ-calculi
into it; moreover, we give an encoding of λ-calculus for which the com-
putation itself is made dependent on the context. Finally, in Section 6,
we make a few remarks, about the way CAC might be implemented and
the detection of absence.

2 General Presentation and First Exam-

ples

In this Section, we will focus on the communication mechanism used in
CAC, based on a few examples. Its other capabilities, namely movement
and restriction of names, will be reviewed only in the next Section, as
they are more conventional.

Single-Agent Synchronization

Let us consider an agent, willing to print some document:

P = app()[print〈letter〉]

Such an agent is represented with a bounded place named app, which
contains a single process or “atom” print〈letter〉, representing an asyn-
chronous (and possibly polyadic) output of some value letter on a channel
print. People familiar with the literature on process calculi can think of
app[. . .] as an ambient [CG98], while print〈letter〉 has the same meaning
as in the join-calculus [FG96]. The empty parentheses in P indicate that
this agent has no local definitions.

Now, let us consider agent P running on the following computer a:

a(print〈x〉 . send〈x, laser printer〉)[. . . | P | . . .]

Such a computer is again modelled by a bounded place a, containing P
among its processes. This computer also provides a local definition in
the form of a rewriting rule or pattern:

print〈x〉 . send〈x, laser printer〉

3

In such a situation, the request of P to print can be accepted, and
the document sent to the local laser printer. This is modelled by the
following reduction:

a(print〈x〉 . send〈x, laser printer〉)[app()[print〈letter〉]]

→ a(print〈x〉 . send〈x, laser printer〉)[app()[send〈letter, laser printer〉]]

Note that the command send has replaced command print in the re-
questing agent; this will be a general rule. Moreover, note that the
command print was visible not only in app, but also in its enclosing agent
a. This is where we depart from the distributed join-calculus [FGL+96],
where rewriting can only occur in one single location. This mechanism
will also allow us to perform a synchronization between different agents
in different sub-locations, as we shall see below.

Suppose now that our agent P has first moved to the following site b:

b(print〈x〉 . send〈x, color printer〉)[. . . | P | . . .]

Here the printing will be done on another printer; in other words we have
modelled a form of context-dependency for the access to some resources.

If our agent moves to site c:

c()[. . . | P | . . .]

no printing will ever occur because agent c does not propose this capa-
bility. We have modelled some form of availability of resources.

We can even define some site d, where it is forbidden to print, and
any agent attempting to do so will be reported to the administrator:

d(print〈x〉 . mail〈root, “Access violation′′〉)[. . . | P | . . .]

Multi-agent Synchronization

Now that we have reviewed the basic structure of terms, let us consider a
more complicate example where two different agents a and b synchronize
on names x and y:

c(x〈〉 || y〈〉 . P || Q) [a()[x〈〉] | b()[y〈〉]]

→ c(x〈〉 || y〈〉 . P || Q) [a()[P] | b()[Q]]

Note that each atom x〈〉 and y〈〉 is replaced by the corresponding process
in the matching rule (in other words, the order of atoms and processes
in a rule is significant). Intuitively, the meaning of such a rule

x〈〉 || y〈〉 . P || Q

4

is that, whenever we have atoms on x and y active in subagents, the
pattern might be triggered, and atoms replaced by P and Q respectively.

In this way, we have designed a form of context-awareness, since
agents a and b receive the information that there is a corresponding
atom somewhere around willing to interact (their atoms would never be
consumed if they were alone), while they actually never have to get in
touch directly. On the other hand, agent c defines the scope where such
a pattern can be activated, provides a local logical unit of computation,
and takes care of the synchronization.

In the previous example, no actual value was transmitted along the
channels for simplicity. Of course, we may want to output some value as
before; the pattern rule should now look like:

x〈z〉 || y〈t〉 . P || Q

where z and t are variables that are bound in both P and Q. The corre-
sponding reduction step will now look like:

c(x〈z〉 || y〈t〉 . P || Q) [a()[x〈u〉] | b()[y〈v〉]]

→ c(x〈z〉 || y〈t〉 . P || Q) [a()[Pσ] | b()[Qσ]]

where σ = {u/z , v/t}. Note that agents a and b can now exchange the
information represented by u and/or v if z appears free in Q and/or t
appears free in P .

When multiple reductions are possible, there is a notion of priority.
Intuitively, the deepest rule that matches is activated first. For example,
in the following process:

c(x〈〉 || y〈〉 . P || Q) [a(x〈〉 . R)[x〈〉] | b()[y〈〉]]

the rule on x and y cannot be activated, because the pattern on x in
a matches first1. Of course, when multiple equivalent reductions are
possible, as in:

a(x〈z〉 . R)[x〈u〉 | x〈v〉]

they all have the same priority and fair indeterminism should be used,
as in many process calculi.

1Without this notion of priority, the semantics of Section 3 would be much easier to
write. However, it would also lead to grave interferences in communications between
agents, to a less efficient implementation, and to less control on concurrency and the
scope of patterns.

5

P ::= 0 nil process
| P | P ′ parallel composition
| (νx)P restriction of name
| x〈ṽ〉 atom
| a(D)[P] agent
| def D in P new definitions
| go(∗, P) movement

J ::= x1〈ỹ1〉 || . . . || xn〈ỹn〉 .z̃ P1 || . . . || Pn pattern

∗ ::= ↑ move out
| a move in a

D ::= J1, . . . , Jk definitions

Figure 1: Full syntax of CAC

3 A Review of CAC

3.1 Syntax

We assume an infinite set of names a, b, . . . , x, y, z, We write x̃ for
sequences of names, and |x̃| for the arity of such a sequence.

The complete syntax of CAC is given in Fig. 1.
The nil process 0, parallel composition and restriction operator (νx)

have the same meaning as in π-calculus 2 [MPW92]. In (νx)P , the name
x is bound in P and may be α-converted if needed. The definition of the
set of free names fn(P) of a process P is straightforward and left to the
reader. We also write (νx̃) for a sequence of restrictions on many names.

2One may remark here that we use the same set for names of agents and names
of channels (and also for variables). This is an arbitrary choice, as those two sets are
unrelated and can in no way interact. Our motivation was to simplify the grammar,
since otherwise we should have distinguished different constructs for restrictions on
agent/output names, for variables, etc... The only strange consequence is that in:

(νa)(a(a〈x〉 . P)[a〈v〉 | go(a, Q)])

all four occurrences of a are bound. Such a case will never occur in our examples.

6

As in join-calculus, there is no need for replication, since pattern rules
may be used to encode replicated servers.

The atom x〈ṽ〉 was already presented extensively in the previous Sec-
tion, and is an asynchronous output on channel x of a tuple of values
ṽ.

The construction a(D)[P] represents an agent, with contents process
P and active definitions D. The construction def D in P is a process
whose definitions D are not yet activated, but will be added to the set
of active definitions of the enclosing agent at some point.

Definitions are unordered sets of rules J1, . . . , Jk, and each rule has
the following shape:

J ::= x1〈ỹ1〉 || . . . || xn〈ỹn〉 .z̃ P1 || . . . || Pn

where the names ỹ1, . . . , ỹn, z̃ are all distinct, bound in P1, . . . , Pn, and
can be α-converted when needed. The meaning of this rule is to create
some join-calculus style pattern-matching rewriting relation: whenever
all atoms xi〈ṽi〉 are present in the process, variables ỹi will be bound to ṽi,
fresh names z̃ will be created (this is required for some examples where
we need to create fresh nonces for every activation of a pattern rule),
and process Pi will replace atom xi〈ṽi〉. Note that there must be the
same number n of components on both sides of the rewriting rule. Note
also that the order of processes is important (i.e. || is not commutative),
because they correspond one-by-one to atoms, and the names x1, . . . , xn

need not to be pairwise distinct.
The primitive go(∗, P) represents a command allowing the enclosing

agent to perform a move. It can either move outside the parent agent
(go(↑, P)), or inside a sibling agent with name a (go(a, P)). In both
cases, the process P is the continuation to be executed after the move
has been performed. In order to simplify notations in the examples, we
extend the syntax with paths, which are sequences of directions to follow:

M ::= ε | ∗ .M

Then, the primitive go is extended as follows:

go(ε, P) = P
go(∗.M, P) = go(∗, go(M, P))

The two forms of go correspond respectively to the in and out primi-
tives in mobile ambients. However, as in boxed ambients [BCC01], there

7

is no way to open an agent and reveal its contents. We argue that in
our setting this would be an unsafe feature, both for the opened agent
and for the opening one. Agents can come from anywhere so we cannot
fully trust their contents; it is not difficult to construct a malicious agent
that would be able to entrap any agent with open behind a restriction.
Moreover, we want agents to keep a safe inner computation place, and
opening an agent is not required to send messages to the upper level as
in mobile ambients, as the communication mechanism of CAC provides
a much more general framework to handle such a case. Also, even if no
opening of agent can take place, we believe the following relation should
be true for any sensible notion of equivalence:

(νa)a(D)[0] ' 0

such that useless empty agents whose name does not appear anywhere
else can be garbage-collected.

3.2 Semantics

The semantics of CAC is defined in chemical style through a reduction
relation →. All its rules are given in Fig. 2, and we will detail them in
this Section.

The first two axioms (Mv Out) and (Mv In) define the semantics of
the go primitive. They are very similar to the primitives out and in
of mobile ambients. In the first case, an agent named b enclosed in a
and with an active process go(↑, P) moves out of a (note that we depart
from mobile ambients where we need to provide the name of the parent
ambient when going out). In the second case, an agent a moves into its
sibling agent b by consuming its active process go(b, P).

The axiom (Def) handles the case when new definitions need to be
activated; they are simply added to the set of local definitions of the
enclosing agent.

The last axiom (React) defines the main communication mechanism
of CAC. Its definition requires some care in order to ensure the priority
between patterns that we have seen before is respected. First of all, we
need to define in which places active atoms can appear in subterms; this
is captured by the notion of contexts with holes [], whose definition
is given in Fig. 3. Basically, a context C is a process term with some
number of holes that can appear only in active positions (i.e. not in the
continuation of go and def primitives).

8

a(D)[b(D′)[go(↑, P) | Q] | R] → a(D)[R] | b(D′)[P | Q]
(Mv Out)

a(D)[go(b, P) | Q] | b(D′)[R] → b(D′)[a(D)[P | Q] | R]
(Mv In)

a(D)[def D′ in P | Q] → a(D, D′)[P | Q]
(Def)

Q = C[x1〈ṽ1〉, . . . , xn〈ṽn〉]
J = x1〈ỹ1〉|| . . . ||xn〈ỹn〉 .z̃ P1|| . . . ||Pn

σ = {ṽi/ỹi
}1≤i≤n

Q reduction-free for {x1, . . . , xn}
|ṽi| = |ỹi| for 1 ≤ i ≤ n
z̃ ∩ fn(C) = ∅

a(J, J1, . . . , Jk)[Q] → a(J, J1, . . . , Jk)[(νz̃) C[P1σ, . . . , Pnσ]]
(React)

P ≡ Q Q → Q′ Q′ ≡ P ′

P → P ′ (Struct)

P → Q

E[P] → E[Q]
(Ev Cont)

Figure 2: Semantics of CAC

9

Contexts Evaluation contexts

C ::= [] E ::= []
| 0 | E | P
| C | C′ | (νx) E
| (νx) C | a(D)[E]
| x〈ṽ〉
| a(D)[C]
| def D in P
| go(∗, P)

Figure 3: Contexts and Evaluation Contexts

We define free and bound names for contexts as for processes. In
particular, bn(C) denotes the set of bound names of C (e.g. x is bound
in (νx) C), and those names can be α-converted.

Note that a context C can have any number of holes. If C has exactly
n holes, and if the holes have been ordered and numbered from 1 to n
(not necessarily in the order in which they appear in C !), then we write
C[P1, . . . , Pn] for the context C where the n holes have been respectively
replaced by processes Pi, provided that fn(Pi) ∩ bn(C) = ∅ for any i,
i.e. provided that C does not capture free names in Pi (this condition
can always be satisfied by renaming bound names in C first). It is not
difficult to check that the result is a valid process.

We can now detail the main reaction rule:

a(J, J1, . . . , Jk)[Q] → a(J, J1, . . . , Jk)[(νz̃) C[P1σ, . . . , Pnσ]]

where Q = C[x1〈ṽ1〉, . . . , xn〈ṽn〉], σ is the substitution {ṽi/ỹi
}1≤i≤n, and

J = x1〈ỹ1〉 || . . . || xn〈ỹn〉 .z̃ P1 || . . . || Pn

In other words, if atoms xi〈ṽi〉 appear in subprocesses while their names
xi are not bound, and if they match a rewriting rule J , then fresh names
z̃ are created, and each atom xi〈ṽi〉 is replaced by process Pi, where
variable substitution has occurred (we remind that all names ỹi must be

10

distinct in J) 3.
We have not detailed yet what “reduction-free” means for Q. Intu-

itively, it is quite simple: there should not be a possible reduction in Q
that would involve only a subset of the atoms x1〈ṽi〉, . . . , xn〈ṽn〉. The pre-
cise definition is a bit more tricky, and will require some further technical
definitions.

We define msg(P) as the multiset of names for which P has some
active atoms. In other words, msg(x〈ṽ〉) = {x}, and the other cases are
defined inductively as for free names (erasing restricted names). More-
over, for a pattern J = x1〈ỹ1〉|| . . . ||xn〈ỹn〉 .z̃ P1|| . . . ||Pn, we define the
multiset of pattern names as pn(J) = {x1, . . . , xn}.

Finally, we can define the reduction-freedom of some process Q for
some multiset S as follows. The base case is when Q = a(J1, . . . , Jk)[P].
We say that Q is reduction-free for S if the following two conditions are
satisfied:

• P is reduction-free for S

• (pn(Ji) ⊆ msg(P)) ⇒ (pn(Ji) ∩ S = ∅) for 1 ≤ i ≤ k (i.e. if
some pattern Ji can be triggered at this point, it is completely
independent of any pattern on S)

The other cases are trivially defined by induction on Q.

Structural congruence ≡ is defined as usual for the reordering of sub-
terms, and for scope-extrusion. Its complete definition is omitted. It
is the least congruence on processes that is a commutative monoid for
(0, |), that can commute patterns in definitions, and that respects the
two following scope-extrusion rules:

P | (νx)Q ≡ (νx)(P | Q) if x /∈ fn(P)
a(D)[(νx)P] ≡ (νx)a(D)[P] if x 6= a and x /∈ fn(D)

The reduction rule (Struct) captures the fact that such a reordering of
terms can take place at any time.

Finally, we define evaluation contexts E in Fig. 3, together with the
corresponding reduction rule (Ev Cont). In other words, reduction can
take place anywhere in the term, except in the continuations of go and
def.

3If arities do not match for any of the atom xi, no reduction can take place. This
might be statically checked using a type system with sorts like in π-calculus.

11

4 Further Examples

Different implementations in different places

In Section 2, we have seen an agent willing to print a document whose
final behaviour would depend on the local printing capabilities and au-
thorizations.

In the same way, we can express in CAC that a same “function call”
can be implemented differently, depending on what resources/computa-
tional power are locally available. It is a trivial observation that nei-
ther all machines have the same computing power, nor do they run the
same operating system, nor do they have the same libraries available. In
such a diverse world, we would however like to be able to access those
resources in a uniform way, while keeping the actual implementation
context-dependent. This is easy in CAC: for example, the two following
locations provide a test function for prime numbers, but the latter uses
a precomputed table while the former implements a simpler but slower
sieve algorithm:

a(prime〈n〉 . do sieve〈n〉)[. . .]
b(prime〈n〉 . lookup prime table〈n〉)[. . .]

Remote Procedure Call (RPC)

Sometimes, it happens that the requested function cannot be computed
locally. Instead an agent is sent somewhere else where the actual com-
putation takes place, and the result is forwarded.

We first define the requesting agent. Since the result will not be
available immediately, and since we do not know the exact location of
the calling agent, we use a general mechanism of continuation which will
be called with the result when available:

B = b()[(νk) def k〈result〉 . P in prime〈n, k〉]

Using continuation-passing style to get the result of a computation is
a quite frequent requirement when dealing with more complex systems,
and it is quite standard when programming in π-calculus or join-calculus.

A = a(prime〈n, k〉 || local〈〉 .k′ k′〈〉 || (Q | local〈〉)) [local〈〉 | B]

In the enclosing agent, the request on prime is matched with a local
atom; a fresh name k′ is created which acts as a dummy continuation

12

in the requesting agent (i.e. we keep some way to be called later from
inside that agent). Locally, process Q is triggered, which will perform
the remote procedure call (and another atom local is released so that
another computation can take place concurrently):

Q = (νk′′) def k′〈〉 || k′′〈x〉 . k〈x〉 || 0 in R

We create a fresh name k′′ on which we intend to receive the result of
that RPC call. When it is available, we match it against our remote
dummy continuation k′ waiting in b, which is then replaced by the “real”
continuation k〈x〉 that contains the final result.

The remote call is implemented with a new agent named p, which
goes out of a into some server, where the computation will take place.

R = (νp) p()[go(↑ .server, S)]

There, we call prime〈n, k′′′〉 with a fresh continuation k′′′ to get the
result. When we receive it, we go out of the sever back inside a, and
trigger the continuation k′′ with the actual result.

S = (νk′′′) def k′′′〈x〉 . go(↑ .a, k′′〈x〉) in prime〈n, k′′′〉

The reader can check that the full system:

A | server(prime〈n, k〉 . k〈...〉)[0]

where ... denotes the result of the computation on n, will effectively
trigger process P in agent b (we do not detail this process as it now
contains useless pattern rules for continuations in a and b; those rules
can however be safely garbage-collected).

Packet routing

Let us consider two sites a and b. Site a contains data from an application
that need to be sent to b. For some reason, they are not allowed to travel
directly, but should be enclosed into an IP packet first. The following
system provides an encoding for such a situation: data first goes into
a packet, tells it its destination, packet moves along the network and
releases the data agent when arrived (this protocol is quite close to the
taxi protocol for ambient presented in [TZH02]).

13

P = (νpacket) packet(J) [packet ready〈packet〉 | wait dest〈〉]

J = move to〈y〉 || wait dest〈〉 .

0 || go(↑ .y, def has arrived〈k〉 . go(↑, k〈〉) in 0)

Q = data()[data ready〈〉 | move to〈b〉 | has arrived〈k〉]

S = a(packet ready〈x〉 || data ready〈〉 . 0 || go(x, 0))[P | Q]

| b(. . .)[. . .]

First of all, data and packet agents synchronize by sending atoms
data ready〈〉 and packet ready〈packet〉 (the pattern rule in agent a is
triggered). The packet agent sends its name (which is private), and it is
given to the data agent which use it to go inside the packet with a go.

Then, the two agents synchronize again (but this time inside the
packet) with atoms move to〈b〉 and wait dest〈〉 (pattern rule J). The
destination name b is communicated to the packet, and it uses it by
going first out of a, then into b.

Afterwards, the new definition def . . . in . . . gets activated. This
means now that the atom has arrived〈k〉 in the data agent is consumed
and replaced with go(↑, k〈〉), consequently the data agent will first go
out of the packet agent, and then the continuation k will be called for
further computation.

We invite the reader to check that:

S →∗ a(. . .)[0] | b(. . .)[(νpacket)packet(J)[0] | data()[k〈〉] | . . .]

5 Expressiveness of CAC

Encoding π-calculus

In order to show that CAC is fully expressive, we will first give an en-
coding of the π-calculus [MPW92]. To be more precise, and for a matter
of convenience, we will encode only a subfragment of the full calculus,
namely its monadic version with asynchronous output, replicated input
and no matching. It is widely known that this does not affect its expres-
sive power [HT91, Bou92].

The full grammar of this fragment is given in Fig. 4, as well as a simple
encoding into CAC. Outputs in π and atoms in CAC are in fact the same
object, so their encoding is direct. Replicated inputs !x(v).P actually

14

Grammar for the monadic asynchronous π-calculus with replicated
input:

P ::= 0 | P |P ′ | (νx)P | x̄〈v〉 | x(v).P | !x(v).P

Encoding into CAC:

[[0]]π = 0
[[P | P ′]]π = [[P]]π | [[P ′]]π
[[(νx) P]]π = (νx) [[P]]π
[[x̄〈v〉]]π = x〈v〉
[[!x(v).P]]π = def x〈v〉 . [[P]]π in 0
[[x(v).P]]π = (νk) (def x〈v〉 || k〈〉 . [[P]]π || 0 in k〈〉)

with k 6= x and k /∈ fn(P)

Figure 4: The π-calculus and its encoding in CAC

behave as servers that trigger a copy of P each time they are called.
This can be easily emulated with a unary pattern rule J = x〈v〉 . P , so
that replicated inputs are simply encoded via the corresponding process
def J in 0. Non-replicated inputs require some care, as we do not want
the corresponding pattern rule to be triggered more than once. The
workaround is quite simple: we create a unique atom with a fresh name
k, that can be consumed only once together with the atom on x. In other
words, the encoding of x(v).P is:

(νk) (def x〈v〉 || k〈〉 . [[P]]π || 0 in k〈〉)

The encoding is trivial for all other constructs. Finally, a π-calculus
process P is simulated by the following CAC process: world()[[[P]]π], as
we need at least one enclosing agent to store the definitions created by
inputs. Note that we actually need only one agent for the encoding, and
that the hierarchical structure of CAC is not useful.

Encoding λ-calculus

Milner [Mil92] gave encodings for the λ-calculus into the π-calculus. For
reasons that will be made clear, we choose a slight reformulation of the

15

Grammar for the λ-calculus:

M ::= x | λxM | M N

Encoding of functions and variables:
[[λxM]]p = (νv) (p̄〈v〉 | !v(x, r). [[M]]r)
[[x]]p = x̄〈p〉

Encoding of application for call-by-value λ-calculus:
[[MN]]cbvp = (νq) ([[M]]q | q(v). (νr) ([[N]]r |

r(w). (νx) (v̄〈x, p〉 | !x(r′). r̄′〈w〉)))

Encoding of application for call-by-name λ-calculus:
[[MN]]cbnp = (νq) ([[M]]q | q(v). (νx) (v̄〈x, p〉 | !x(r). [[N]]r))

Figure 5: Encoding of λ-calculus into π-calculus

general encodings given by Sangiorgi [San98] for both the call-by-value
and call-by-name λ-calculi. Those encodings are detailed in Fig. 5 and
take a return channel p in parameter (we refer to [San98] for details).
They provide a uniform encoding for functions and variables, while only
the encoding of applications depends on the chosen reduction strategy
(for call-by-value there exists a direct and simpler encoding).

Note that the encoding of a λ-calculus term is a process from the
subfragment of π that we have introduced in the previous Section. As a
consequence, we obtain an encoding of a λ-calculus term M into CAC by
composing the two encodings: [[[[M]]p]]π for any fresh name p (choosing
either call-by-name or call-by-value).

Context-sensitive computation

The last result is not that impressive and surprising. What is more inter-
esting is that it allows us to turn the notion of computation dependent
on local rules. What we would like to achieve is a uniform encoding
of λ-calculus into CAC, such that the reduction strategy is chosen by
the current environment. For this purpose, we turn the main reduction
rule of λ-calculus (namely β-reduction) into a pattern rule, in such a

16

way that different locations may provide different forms of β-reductions.
More precisely, an application will be encoded as:

[[MN]]p = (νm, n) (def m〈q〉 . [[M]]q , n〈q〉 . [[N]]q in appl〈m, n, p〉)
In other words, the local agent requesting such an application MN pro-
vides two servers on fresh channels m and n, waiting to receive a return
name q to compute M and N on q, and waits for an enclosing agent
to trigger the actual β-reduction by calling appl〈m, n, p〉 (the name appl
must not be used for any other purpose than application, and m and n
must not appear in M , N or p). Other λ-terms are encoded as before,
that is via π-calculus (we give the direct encoding into CAC here):

[[λxM]]p = (νv) (def v〈x, r〉 . [[M]]r in p〈v〉)
[[x]]p = x〈p〉

It is now the duty of the enclosing agent to take care of β-reduction
through an appropriate pattern rule for appl. We can express such two
possibilities very simply by reusing encodings for π-calculus:

Jcbv = appl〈m, n, p〉 . [[[[m n]]cbvp]]π
Jcbn = appl〈m, n, p〉 . [[[[m n]]cbnp]]π

As a consequence, the process

world(Jcbv)[a()[[[M]]p]]

will reduce M following a call-by-value strategy, while its counterpart

world(Jcbn)[a()[[[M]]p]]

would follow call-by-name.
We can even go further and enrich the λ-calculus with the movement

primitives of CAC, allowing agent a to move around in the network. As
a consequence, it may happen that the reduction strategy would change
in the middle of the computation, depending on the β-pattern provided
by the environment where a finds itself. We argue that this provides us
with a basic model of agents able to move between physical locations
that may use very different notions of computation.

6 Remarks

In this Section, we make a few remarks concerning implementation issues
of CAC, and the detection of absence.

17

Implementation

What about the efficiency of the semantics ? Since atoms have to be sent
to all enclosing agents, it might be quite inefficient if they lie on differ-
ent physical locations. Moreover, due to latency of communication, we
may have interference problems between possible concurrent reductions
and/or we may have to synchronize all the network, in particular when
we try to enforce the priority between concurrent reductions.

For those reasons, we need some assumptions about the real layout
of agents. The intended layout is to have at toplevel all the wide-area
physical locations, while their subagents are all local to the same machine
or at least the same local network:

sitea(. . .)[. . .] | siteb(. . .)[. . .] | . . .
To be consistent, we can also enclose this process in a world agent with
no definition and no atom:

world()[sitea(. . .)[. . .] | siteb(. . .)[. . .] | . . .]
With such a layout, we are sure that every atom can be sent only locally,
and there is no communication on the wide-area network, except for agent
movement. This still means we need a synchronizing scheduler on every
local physical location, taking care of all local agents.

We can also define a more general model, where it is not necessary
that physical locations appear at toplevel. All we need to do is to syn-
tactically distinguish those locations with a specific notation such as:
a(D)[|P |].

The semantics needs little changes: atoms are only sent locally, i.e.
they cannot cross double-bracketed barriers. This is quite easy, by saying
that a(D)[|C|] is not a valid context, while a(D)[|E|] is a valid evaluation
context. Moreover, we define msg(a(D)[|P |]) = ∅. For what concerns
movement, it is not yet clear if allowing those physical locations to move
is relevant or not.

Detecting Absence

With the current communication mechanism of CAC, it is easy to detect
the presence of a subagent, but it is much more difficult to detect an
absence. One possible way to achieve such a feature might be to add
terms ¬x in pattern rules, with the meaning that there should not be
any atom on x available for the rule to match.

18

For example, in the following process:

a(x〈〉 || ¬y . P , x〈〉 || ¬z . Q) [x〈〉 | y〈〉]

the former pattern cannot be activated, while the latter can be.

7 Conclusion and Future Work

This paper is a foundational work, whose aim is to trigger interest among
the community for a process calculus modelling context-awareness. We
have proposed a first step in the form of CAC, and shown how it can be
used as a generic framework to model such different things as context-
awareness for the access and availability of resources or libraries, for RPC
or packet routing, for co-located multi-agent synchronization, and even
context-awareness of computation itself.

The expressiveness of CAC still remains to be fully explored. Also,
the specific and context-dependent multi-agent synchronization mecha-
nism used in CAC raises new specific and challenging issues about its
behavioural theory, as an equational theory for CAC would probably
have to consider not only processes but also contexts. Finally, we also
need ways for agents to trust and control the information provided by
their inner agents.

Acknowledgements I would like to thank Mogens Nielsen for provid-
ing insightful suggestions and the opportunity to work on this subject.

References

[BCC01] Michele Bugliesi, Giuseppe Castagna, and Silvia Crafa. Boxed
ambients. In 4th International Symposium on Theoretical As-
pects of Computer Software (TACS), volume 2215 of LNCS,
pages 38–63. Springer-Verlag, 2001.

[Bou92] Gerard Boudol. Asynchrony and the pi-calculus. Technical
Report RR-1702, Rapport de Recherche INRIA Sophia An-
tipolis, 1992.

[CG98] Luca Cardelli and Andrew D. Gordon. Mobile Ambients. In
Proceedings FoSSaCS’98, volume 1378 of LNCS, pages 140–
155. Springer Verlag, 1998.

19

[FG96] Cédric Fournet and Georges Gonthier. The reflexive CHAM
and the join-calculus. In Proceedings of the 23rd ACM Sym-
posium on Principles of Programming Languages, pages 372–
385. ACM Press, 1996.

[FGL+96] Cédric Fournet, Georges Gonthier, Jean-Jacques Lévy, Luc
Maranget, and Didier Rémy. A calculus of mobile agents. In
Proceedings of CONCUR’96, LNCS, pages 406–421. Springer-
Verlag, 1996.

[Hen04] Matthew Hennessy. Context-awareness: Models and analy-
sis, 2004. Course given at 2nd UK-UbiNet Workshop: Se-
curity, trust, privacy and theory for ubiquitous computing,
Cambridge UK, May 2004.

[HT91] Kohei Honda and Mario Tokoro. An object calculus for asyn-
chronous communication. In Proceedings of the European Con-
ference on Object-Oriented Programming (ECOOP), volume
512 of LNCS. Springer-Verlag, 1991.

[MD01] Thomas P. Moran and Paul Dourish. Context-aware comput-
ing. Special Issue of Human-Computer Interaction, 16, 2001.

[Mil92] Robin Milner. Functions as processes. Journal of Mathemati-
cal Structures in Computer Science, 2(2):119–141, 1992.

[MPW92] Robin Milner, Joachim Parrow, and David Walker. A cal-
culus of mobile processes (Parts I and II). Information and
Computation, 100:1–77, 1992.

[RJP04] Gruia-Catalin Roman, Christine Julien, and Jamie Payton. A
formal treatment of context-awareness (invited paper). In Pro-
ceedings of FASE’04, volume 2984 of LNCS. Springer-Verlag,
2004.

[San98] Davide Sangiorgi. Interpreting functions as pi-calculus pro-
cesses: a tutorial. Technical Report RR-3470, Rapport de
Recherche INRIA Sophia Antipolis, 1998.

[SAW94] Bill Schilit, Norman Adams, and Roy Want. Context-aware
computing applications. In IEEE Workshop on Mobile Com-
puting Systems and Applications, 1994.

20

[TZH02] David Teller, Pascal Zimmer, and Daniel Hirschkoff. Using
ambients to control resources. In Proceedings of CONCUR
2002, volume 2421 of LNCS, pages 288–303, 2002.

21

Recent BRICS Report Series Publications

RS-05-27 Pascal Zimmer. A Calculus for Context-Awareness. August
2005. 21 pp.

RS-05-26 Henning Korsholm Rohde.Measuring the Propagation of In-
formation in Partial Evaluation. August 2005. 39 pp.

RS-05-25 Dariusz Biernacki and Olivier Danvy.A Simple Proof of a Folk-
lore Theorem about Delimited Control. August 2005. ii+11 pp.
To appear in Journal of Functional Programming. This version
supersedes BRICS RS-05-10.

RS-05-24 Małgorzata Biernacka, Dariusz Biernacki, and Olivier Danvy.
An Operational Foundation for Delimited Continuations in the
CPS Hierarchy. August 2005. iv+43 pp. To appear in the jour-
nal Logical Methods in Computer Science. This version super-
sedes BRICS RS-05-11.

RS-05-23 Karl Krukow, Mogens Nielsen, and Vladimiro Sassone. A
Framework for Concrete Reputation-Systems. July 2005. 48 pp.
This is an extended version of a paper to be presented at ACM
CCS’05.

RS-05-22 Małgorzata Biernacka and Olivier Danvy. A Syntactic Corre-
spondence between Context-Sensitive Calculi and Abstract Ma-
chines. July 2005. iv+39 pp.

RS-05-21 Philipp Gerhardy and Ulrich Kohlenbach. General Logical
Metatheorems for Functional Analysis. July 2005. 65 pp.

RS-05-20 Ivan B. Damg̊ard, Serge Fehr, Louis Salvail, and Christian
Schaffner. Cryptography in the Bounded Quantum Storage
Model. July 2005.

RS-05-19 Luca Aceto, Willem Jan Fokkink, Anna Inǵolfsdóttir, and Bas
qLuttik. Finite Equational Bases in Process Algebra: Results
and Open Questions. June 2005. 28 pp.

RS-05-18 Peter Bogetoft, Ivan B. Damg̊ard, Thomas Jakobsen, Kurt
Nielsen, Jakob Pagter, and Tomas Toft. Secure Computing,
Economy, and Trust: A Generic Solution for Secure Auctions
with Real-World Applications. June 2005. 37 pp.

RS-05-17 Ivan B. Damg̊ard, Thomas B. Pedersen, and Louis Salvail.A
Quantum Cipher with Near Optimal Key-Recycling. May 2005.
29 pp.

