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Abstract. Van Glabbeek (1990) presented the linear time-branching time spec-
trum of behavioral equivalences for finitely branching, concrete, sequential pro-
cesses. He studied these semantics in the setting of the basic process algebra
BCCSP, and tried to give finite complete amdcomplete axiomatizations for
them. (An axiomatizatio is w-complete when an equation can be derived from
Eif, and only if, all its closed instantiations can be derived fréh) Obtaining

such axiomatizations in concurrency theory often turns out to be difficult, even
in the setting of simple languages like BCCSP. This has raised a host of open
questions that have been the subject of intensive research in recent years. Most
of these questions have been settled over BCCSP, either positively by giving a
finite complete otw-complete axiomatization, or negatively by proving that such

an axiomatization does not exist. Still some open questions remain. This paper
reports on these results, and on the state-of-the-art on axiomatizations for richer
process algebras, containing constructs like sequential and parallel composition.

1 Introduction

One of Jan Willem Klop’s main contributions to the theory of concurrency is the devel-
opment of the ACP family of process algebras in collaboration with Jan Bergstra—see
the original papers [8-12], the textbooks [6, 18] and the historical paper [5]. Process
algebras in the ACP style are defined, following the tradition of the algebraic speci-
fication of abstract data types, relying on tools from universal algebra and equational
logic. More specifically, languages in the ACP family are defined by specifying their
signature—that is, the collection of algebraic operations that can be used to build new



descriptions of reactive systems in terms of ones that we have already constructed—
together with a collection of equational axioms that implicitly define the expected se-
mantic properties of processes. This is an application of the classic axiomatic method,
on which the development of modern algebra rests, to concurrency theory.

An example of a typical axiom that holds for all of the classic algebras in the ACP
family, and is familiar from the theory of regular languages [16, 34], is

(r+y)-z=(@-2)+(y-2) .

In the above equation, the operation symbeland- stand for “alternative composi-
tion” (or nondeterministic choice) and “sequencing”, respectively. Intuitively, this ax-
iom states that a process that can initially choose to behave either tikéke y, and
then proceeds to behave likeis “equivalent” to one that initially chooses to behave
either likez - z or like y - z.

On the other hand, the right-distributivity axiom of alternative composition over
sequencing familiar from formal language theory, namely

r-(y+2)~ (@ -y +(r-2),

is usuallynotconsidered part of the axiom systems for process algebras since the left-
and right-hand sides of the above equation may exhibit different deadlock potential, and
should not be equated as descriptions of reactive systems.

Axiom systems arise from the desire of isolating the features that are common to a
collection of algebraic structures—namely, theiodels Early examples of models of
the axiom systems for ACP style process algebras were the “projective limit” model—
as employed in, e.g., [8]—, and the “graph model” adopted in [11].

Given a language in the ACP family, one may define intuitively appealing models
of its axiom system as quotients of the collection of labelled transition systems modulo
some behavioural congruendeabelled transition system&TSs) [33] are a funda-
mental formalism for the description of concurrent computation, which is widely used
in light of its flexibility and applicability. In particular, they underlie Plotkin’s Struc-
tural Operational Semantics [42, 43] and, following Milner’s pioneering work on CCS
[37], are by now the standard formalism for describing the semantics of various process
description languages.

LTSs model processes by explicitly describing their states and their transitions
from state to state, together with the actions that produced them. Since this view of
process behaviours is very detailed, several notions of behavioural equivalence and
preorder have been proposed for LTSs. The aim of such behavioural semantics is to
identify those (states of) LTSs that afford the same “observations”, in some appropri-
ate technical sense. The lack of consensus on what constitutes an appropriate notion
of observable behaviour for reactive systems has led to a large number of proposals
for behavioural equivalences for concurrent processes. (See the study [24], where van
Glabbeek presents the linear time-branching time spectrum—a lattice of known be-
havioural equivalences and preorders over LTSs, ordered by inclusion.)

Having defined a model of an axiom system for a process algebra in terms of LTSs,
it is natural to study the connection between the equations that are valid in the chosen
model, and those that are derivable from the axioms using the rules of equational logic.
The key questions here are:



— Is the axiom system complete? That is, can all of the equations that hold in the
LTS model modulo the chosen notion of behavioural equivalence be derived from
the axiom system using the rules of equational logic? (A complete axiom system
is also referred to as basisfor the algebra it axiomatizes.) Researchers in concur-
rency theory often restrict themselves to studying axiom systems that are complete
with respect to the collection of valid equations that do not contain occurrences of
variables.

— Does the algebra of LTSs modulo the chosen notion of behavioural equivalence
afford a finite equational axiomatization?

A complete axiomatization of a behavioural congruence yields a purely syntactic char-
acterization, independent of LTSs and of the actual details of the definition of the chosen
behavioural equivalence, of the semantics of the process algebra. This bridge between
syntax and semantics plays an important role in both the practice and the theory of pro-
cess algebras. From the point of view of practice, these proof systems can be used to
perform system verifications in a purely syntactic way using general purpose theorem
provers or proof checkers, and form the basis of purpose built axiomatic verification
tools like, e.g., PAM [35]. A positive answer to the first basic question raised above is
therefore not just theoretically pleasing, but has potential practical applications. From
the theoretical point of view, complete axiomatizations of behavioural equivalences cap-
ture the essence of different notions of semantics for processes in terms of a basic col-
lection of identities, and this often allows one to compare semantics which may have
been defined in very different styles and frameworks. A review of existing complete
equational axiomatizations for many of the behavioural semantics in van Glabbeek’s
spectrum is offered in [24]. The equational axiomatizations offé&bmare over the
languageBCCSP, a common fragment of Milner's CCS [37] and Hoare’s CSP [32]
suitable for describing finite synchronization trees, and characterize the differences be-
tween behavioural semantics in terms of a few revealing axioms.

Negative answers to the second basic question mentioned above have instead served
as a motivation for the development of auxiliary operations, whose addition to the origi-
nal signature of the language under investigation yields an algebra with a finite basis. A
classic example of this line of research, which can again be traced back to Jan Willem
Klop’s work in concurrency theory, is offered by the paper [10]. There Bergstra and
Klop showed how to give a finite axiomatization of the language ACP using the auxil-
iary left and communication merge operators to characterize parallel composition. As
shown by Moller [39, 40], auxiliary operators are needed to obtain a finite basis for that
language because the process algebras CCS and ACP without the auxiliary left merge
operator from [8] do not have a finite equational axiomatization modulo bisimulation
equivalence.

An axiom systemFE' is w-completewhen an equation can be derived fraiif,
and only if, all of its closed instantiations can be derived frBmn theorem proving
applications, it is often convenient to work with axiomatizations thatacemplete. In
fact, using anv-complete axiomatization one can avoid proofs by (structural) induction
in favour of purely equational reasoning. Moreover, as argued by Heering in427],
completeness of an axiom system is desirable in the partial evaluation of programs.



A classic example of an axiom system thanist w-complete is that for the lambda-
calculus—see [41].

Many of the existing axiomatizations of behavioural equivalences over expressive
process description languages studied in concurrency theory are powerful enough to
prove all of the valid equalities between terms that contain no occurrences of variables,
but arenotw-complete. In fact, obtaining-complete axiomatizations in concurrency
theory often turns out to be a difficult question, even in the setting of simple languages
like BCCSP. This has raised a host of open questions that have been the subject of
intensive investigation by process algebraists in recent years. Most of these questions
have been settled over BCCSP and other simple process algebras, either positively by
giving a finite w-complete axiomatization, or negatively by proving that such an ax-
iomatization does not exist. Still some open questions remain—especially for expres-
sive process description languages and behavioural equivalences that, like observation
equivalence [30, 37] and branching bisimilarity [25], abstract, in some formal sense,
from events in process behaviours that are deemed to be directly unobservable.

In this paper, we report on positive and negative results pertaining to the existence
of (finite) w-complete axiomatizations for BCCSP and richer process algebras, contain-
ing constructs like sequential composition and interleaving. We hope that this survey of
results will contribute to their dissemination in our research community, and will stimu-
late further investigations leading to the solution of the challenging open problems that
are left.

The paper is organized as follows. We begin by presenting in Section 2 some basic
background on universal algebra and equational logic that will be useful for the remain-
der of this study. In this general setting, we describe a collection of proof techniques
that can be used to establish positive and negative results pertaining to the existence
of finite, complete ow-complete axiomatizations for algebras of processes. Section 3
reports on results and open problems on axiomatizations of behavioural equivalences
over the languagBCCSP studied by van Glabbeek in [24]. The paper concludes with
a survey of the state-of-the-art on the equational theory of extensions of that language
with more complex operators such as parallel composition and sequential composition
(Sections 4 and 5).

2 General Techniques

Our aim in this section is to present some general techniques that can be used to estab-
lish results pertaining to the existence or non-existence of finite equational axiomatiza-
tions for behavioural equivalences and preorders over process description languages. A
suitable general framework within which these techniques can be described is given by
the classic fields ofiniversal algebrand equational logic\We therefore begin by in-
troducing the basic notions from these areas of mathematical research that will be used
throughout this paper. We state at the outset that we shall not need very deep results or
constructions from universal algebra in what follows, and that much more on it may be
foundin, e.g., the classic reference [15]. A self-contained presentation from a computer
science perspective of the topics we now proceed to introduce may be found in [28].



2.1 Preliminaries

X’-Algebras We start from a countably infinite st of variableswith typical elements
x,y,w, z. A signatureX’ consists of a set obperation symbolsdisjoint fromV/, to-
gether with a functiorarity that assigns a natural number to each operation symbol.
The set oftermsover X is the least set such that

— Eachz € Vis aterm.
— If fis an operation symbol of arity, andty, ..., t, are terms, therf(¢1,...,t,)
is also a term.

An operation symbof of arity 0 will be often called aconstansymbol, and the term
f() will be abbreviated ag.

We writeT(X") for the set of all terms oveX' and use, u, v, possibly subscripted
and/or superscripted, to range over terms. A termlased(or ground if it contains
no occurrences of variables. We denote )T the set ofclosedterms overX. A
substitution is a mapping from variables to terms. A substitution is closed if it maps
variables to closed terms. For every tetrand substitutiorr, the term obtained by
replacing every occurrence of a variabkle ¢ with the termo (z) will be written o ().
Note thato(t) is closed, if so isr. Throughout this paper, we use the symbel’‘to
stand for (syntactic) equality.

Example 1.A signature for the natural numbers with the operatiosx yielding the
maximum between two numbers could contain a con$tantinary successor operation
S and the binary operation symbeol We shall use this signature as our running example
throughout this section, and usén its customary infix notation for the sake of clarity.

Example 2.A process algebra that will be discussed extensively in Section 3 is BCCSP.
Its signature consists of the const@nthe binary operatart-_ calledalternative compo-
sition, and unaryprefixoperators:_, wherea ranges over a nonempty sétof actions.

The collection of terms over a signatufeyields a language. The semantics of this
language can be defined canonically once we equip the set of intended denotations with
the structure of &'-algebra. AY'-algebras a structure

A=A {4 rex}),
whereA is a non-empty set (often called tbarrierof the algebra), and
fATAT S A

for each operation symbgl € X' of arity n. Note that if f is a constant symbol, then
f# can be viewed as an elementaf

In order to interpret terms iff(L) in a X-algebrad = (A, {fA| fe X}) we
need the notion of an environment. Anvironments a functionp mapping variables
to elements oAA. The mapping can be extended homomorphicallylt@¥') in a unique
way by stipulating that

P(f(tl, o atn)) = fA(p(t1)7 T 7p(tn))



for each operation symbgl of arity n and termg, . . ., ¢,,. Note thatp(¢) is indepen-
dent of p whenevett is closed. For each closed tetmwe writet for the element of
A that is the interpretation afin the algebrad. An element of the carrier set of is
denotabléf it is the interpretation of some closed term.

Example 3.A suitable algebraV in which to interpret the collection of terms over the
signature introduced in Example 1 has the set of natural numbers N as carrier set. The
constant symbal is interpreted as the natural numlggrthe unary function symbol
S is interpreted as the successor function—that is, the function mapping each natural
numbern to n + 1—and the binary function symbal is interpreted as the function
mapping each pair of natural numbers to the largest of the two.

It is easy to see that each elemeni\6fis denotable. Indeed, the natural numhber
is the interpretation of the term defined thus:

to =0 and
tpt1 = S(tn) .

The interpretation of the langua@éX’) in a X-algebrad = (A, { f* | f € ¥'}) natu-
rally induces a congruence relatiery overT(X'). This is defined thus:

t =4 u if,and only if, p(t) = p(u), for each environment .

Example 4.Examples of identities that hold with respect to the congruence relation
=, induced by the interpretation of the language of terms over the signature for the
natural numbers in our running example are

zV0=xnuz
OVz=nz and
S(x) v S(y) =~ S(zVy) .

The results reviewed in this paper all aim at using the classic logic of equality to offer
a syntactic characterization of the relatiery for algebras of processes. The study

of such axiomatic characterizations of semantic equivalences falls therefore within the
realm of equational logic, whose basics we now proceed to present.

Equational Logic An axiom systemnis a collectionE of equationst ~ wu over the
languagdl(Y)). (The equations it are often referred to axioms) An equation ~ u
is derivable from an axiom systef), notationF + ¢ = wu, if it can be proven from the
axioms inE using the rules of equational logic (viz. reflexivity, symmetry, transitivity,
substitution and closure und&rcontexts):

trRu t~uu~v t~u

t~

u~t t~wv o(t) = o(u)
ti~u; (1<i<n)
f(tl, .. .,tn) ~ f(ul, e ,un) '
(The first three rules above state thatis an equivalence relation, whereas the latter

two state thats is closed under substitutions, and is a congruence.) Formally, a proof
of an equationt ~ u from F is a sequence =~ u; (1 < i < n) of equations such that




- t, = t andu,, = u, and

— for eachl < i < n, the equation; = u; is obtained by applying one of the
aforementioned inference rules using equation8 or some of the equations that
precede it in the sequence as premises.

Without loss of generality one may assume that the substitution rule is only applied to
axioms, i.e., that the rule
t~u
o(t) = o(u)

may only be used wheft ~ «) € E. In this case, the equatier(t) ~ o(u) is called a
substitution instancef an axiom ink.

Moreover, by postulating that for each axiom#halso its symmetric counterpart
is present inF, one may assume that there are no applications of the symmetry rule in
equational proofs.

It is well-known (see, e.g., Sect. 2 in [26]) that if an equation relating two closed
terms can be proven from an axiom systéithen there is a closed proof for it.

Definition 1 (Soundness)Let A be a X'-algebra. An equation ~ w is soundwith
respect to=4 iff t =4 u. An axiom system is sound with respecttg iff so is each of
its equations.

In other words, an axiom system is sound with respect fpif it can only be used

to prove equations that are valid in the algeBtaThis is, of course, a most natural
requirement on an axiom system. However, ideally an axiom system should also allow
us to prove all of the equations that hold in a given algebra. This is captured by the
technical requirement afompleteness

Definition 2 (Completeness)Let A be a X-algebra. An axiom systerft is ground
completewith respect to= 4 iff £ + ¢ ~ u whenevet =4 u, for all closedtermst, u.
E'is completenith respect to=4 iff £+ ¢t =~ uwhenevet = 4 u, for all termst, w.

Definition 3 (Equational Bases and Finitely Based Algebras)An equational basis
for an algebraA is a sound axiom systei that is complete with respect te 4. We
say that an algebral is finitely basedf it has a finite equational basis.

The notion of completeness of an axiom system relates the proof-theoretic notion of
derivability using the rules of equational logic with the model-theoretic one of “validity
in a model”. From a proof-theoretic perspective, a useful property of an axiom system
E is that, for all termg, v € T(X),

Ebt=~u iff Eto(t)~o(u), foreach closed substitution . (1)

An axiom system with the above property is calle@dompleteIn theorem proving ap-
plications, it is convenient if an axiomatizationdscomplete, because this means that
proofs by (structural) induction can be avoided in favour of purely equational reason-
ing. In fact, suppose that(t) ~ o(u) is provable from an axiom systeif, for each
closed substitutiow. If E is w-complete, then we know that an equational proof of
the actual equatioh =~ « from E exists. In general, the equatiorr » might not be



derivable fromFE if E is just ground complete. In that case, we might have to content
ourselves with showing that all closed instantiations of that equation are derivable from
FE, and this is usually done by induction on the structure of the closed terms that can be
substituted for the variables occurringtiand.

Example 5.The collection of equations corresponding to the congruences listed in Ex-
ample 4 is easily seen to be ground complete with respeef\toThat axiom system
is, however, neither complete norcomplete. For example, the equation

rVr~zx (2)

is valid in the algebraV/, and all of its closed instantiations are provable from the three
equations in Example 4. However, the above equation itsetbiglerivable from the
axioms in Example 4. (See Examples 7 and 8 for proofs of this claim.)

A finite basis for the algebr&/ is given by the following axiom system

zVO=xz
S(x) v S(y) = Sz Vy)
S(z) V= S(x)
rVr=xzr
xVy=~yVae and
xV(yVz)=(xVyVz.

It turns out that completeness atnecompleteness are closely related properties of an
axiom system. Indeed, assume thiis a Y'-algebra each of whose elements is deno-
table. Suppose thdt is sound and complete with respecttg,. It is not hard to argue
that, in this casek is alsow-complete.

Remark 1.For the aforementioned connection between the model-theoretic notion of
completeness and the proof-theoretic onevafompleteness to hold, it is crucial that
each element in the algehrhbe denotable. To see this, consider the signature consist-
ing of the constant. and the unary function symb@l. Interpret this language over the
algebra havind0, 1} as carrier set, wheré is interpreted a9, and P is interpreted

as the constant functidh We claim that no basis for this algebra can.beomplete.

To see that this holds, note, first of all, that each closed term over the aforementioned
signature denotes the eleméntTherefore each closed instantiation of the equation
P(z) ~ z holds in the algebra, and is provable from the chosen basis. However, the
equationP(z) =~ =z is itself not provable. This follows becausg is sound, and that
equation does not hold in the algebra, as can be seen by setting the vatiable

Consider the¥-algebra obtained by quotienting the set of closed ter(is)Twith re-
spect to the congruence relation that equates two closed tearifsthe equationt ~ u
is provable from an axiom systefm. As a corollary of the aforementioned observation,
we have that an equational basis for that algebra isialsomplete.
One of the classic topics in the field of equational logic, and in its applications
in process algebra, is the study of results pertaining to the existence or non-existence



of finite bases for algebras. In the realm of concurrency theory, van Glabbeek pre-
sented in [23, 24] the linear time-branching time spectrum of behavioral equivalences
for finitely branching, concrete, sequential processes. He studied these semantics in the
setting of the basic process algebra BCCSP, and tried to givedirgtanplete axioma-
tizations for them. In many cases this turns out to be a difficult question. Most of these
finite basis questions have been settled, either positively by giving adiréemplete
axiomatization, or negatively by proving that such an axiomatization does not exist.
But some open questions remain. The main aim of this paper is to survey such results.
Before doing so, however, we give a brief overview of some of the general proof tech-
niques that have been developed in the literature on universal algebra, and more specif-
ically within process algebra, to show that certain algebras afford a finite equational
basis, or that no such basis exists. These strategies will then be used in Sections 3-5 to
establish positive and negative results on the existence of finite bases for behavioural
congruences over several process description languages.

2.2 Methods for Establishing Positive Results

Assume that we have an algebfaand a (finite) axiom systery' that is sound with
respect to= 4. How can we show thak' is complete or ground complete? There are

a few general proof techniques that have been applied in the literature to answer this
question, and we review some of those in the remainder of this section.

Normal Forms A classic strategy for showing that an axiom system is complete or
ground complete that has had a wealth of applications in process algebra relies on the
following two steps:

— Isolation of normal forms. In this step one finds a collection of terms, the so-
called normal forms with the property that each tertncan be proved equal to a
normal form using the equations in. In other words, the set of normal forms is as
expressive as the whole collection of terms modulo the equational theory generated
by E. (If we are aiming at showing that our axiom systéhs ground complete,
then the normal forms are closed terms, and it suffices only to prove that each closed
term is provably equal to a normal form using the equations.)n

— Distinctness of normal forms.In this second step, one argues that two normal
forms are related by 4 if, and only if, they are “identical”. This is often done by
showing that, for each pair of different normal forms, it is possible to construct an
environmenp distinguishing them.

In applications of this method in process algebra, the former step in this proof strategy
is often carried out with the use of term rewriting techniques. In that case, the normal
forms are precisely those of the term rewriting system, and the analysis is complicated
by the need to consider rewriting modulo commutativity and associativity of certain
operators like alternative composition. Moreover, the isolation of a suitable notion of
normal form often requires considerable ingenuity, and is a difficult art.

Example 6.The aforementioned strategy based upon the isolation of suitable normal
forms for terms can be used to show that the axiom system presented in Example 5 is,



as claimed there, a finite basis for the algebtandeed, a suitable set of normal forms
for terms over the signature of that algebra is given by the collection of terms of the

form
\/ s (@) v \/ y; [vS™(0)] ,

iel jeJ

where

— I andJ are finite index sets,
— n; >0, foreachi € I, and
— the variables; (i € I) andy; (j € J) are all different.

The notationvV{S™(0)}] used in defining normal forms means that the t&ff0) is
optional. If that term is present thenmust be larger than each of the (i € I).
Itis not too hard to argue that

1. each term can be proven equal to a normal form using the equations in Example 5
and

2. if t andu are different normal forms, then there is an environmemapping
variables to natural numbers such thét) # p(u).

Therefore, as claimed in Example 5, that axiom system is a finite basis for the algebra
N. Since each element &f is denotable (Example 3); is alsow-complete.

Inverted Substitutiong\ proof technique that can be used to provedheompleteness

of an axiom system, and that originates from research in process algebra, was offered
by Groote in [26]. Groote’s strategy is based on proof transformations, and proceeds as
follows. Assume that we have an axiom systéimand an arbitrary equatian~ v all

of whose closed instantiations are provable frBnThe first step in Groote’s “inverted
substitutions” strategy is to find a closed substitutiosuch that a proof of the equation

o(t) = o(u) from E can be transformed uniformly to a proof of the equation w.

This proof transformation is achieved by means of a mapping (X) — T(X) that
intuitively maps each closed term representing a variable to the variable itself. This
transformation yields the desired proof of the equatienu from £, provided that the
technical conditions stated in the following theorem are met.

Theorem 1 (Groote [26]).Let £ be an axiom system over sighature Assume that,
for each equation = u all of whose closed instantiations can be proven fibrthere
exist a closed substitutionand a mapping : T(X) — T(X), satisfying the following
conditions:

1. E proves the equations(c(t)) ~ t ands(o(u)) ~ u,

2. for each operation symbdgland termsuy, . .., u,, u}, . .., u,, wheren is the arity
of f, the equatior (f (u1,...,un)) ~ &(f(u},...,ul))is provable from those in
E and the equations; ~ v} andé(u;) ~ &(u}) (1 < i <n)and

3. the equatiori (o' (t1)) =~ &(o’(t2)) is provable fromE for each(t; ~ t3) € E
and closed substitution’.

ThenFE is w-complete.
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The strategy for proving the-completeness of axiom systems offered by the above
result has been applied with success by Groote and other researchers in the field of
process algebra, and, when applicable, often leads to simpler proofs than the standard
one based on normal forms. As remarked by Groote in [26]wttempleteness of the

finite basis for the algebt& given in Example annote shown using the technique

in Theorem 1.

Giving Semantics to All Term3he algebras that are used in the field of process de-
scription languages to interpret terms over some signaturan all be characterized as
the quotient algebra(T)/~ of closed terms oveE' modulo some notion of congru-
ence~. The interpretation of a closed term in this algebra is its congruence class with
respect to~, and two arbitrary terms are congruent if, and only if, so are all of their
closed instantiations.

Another technique that has been developed in the field of process algebra to estab-
lish w-completeness results for axiom systems relies on the following steps:

— Define the congruence relation- over all terms in T(X') directly. The relation~
should, of course, be defined ovELY) in such a way that two terms are related by
~ if, and only if, so are all of their closed instantiations. This means, in particular,
that an equation~ « is sound in the quotient algebrdY) /~ exactly whent ~ «
holds.

— Completeness over termdn this second step, one proves that the candidate axiom
systemkF is a basis for the quotient algebra of terfie’) modulo~, and hence
for the quotient algebra aflosederms T ') modulo~. Since each element of the
algebra TX)/~ is denotable, it follows thaF is alsow-complete.

To the best of our knowledge, this technique was first applied in [36] by Milner to show
completeness of his inference system for bisimulation equivalence over the regular frag-
ment of the Calculus of Communicating Systems (CCS) [37].

Cover EquationsThis technique from Fokkink and Nain [20] is tailored BCCSP.
The aim is to obtain an explicit description of the equational theory for a particular
semantics. The central idea is that if an equatioa « is sound foBCCSP nodulo
some semantics in the linear time-branching time spectrumthéns t andt+u ~ u
are sound as well; and from the last two equations one can desive. This implies
that it is sufficient to only consider sound equations of the fatm- u ~ u (wherea
denotes an action aridu are BCCSP terms). These are called¢heer equations

When the cover equations have been classified, one can proceed in two ways. Either
one can determine an infinite family of cover equations that obstructs a finite basis, or
one can determine a finite basis among the cover equations.

2.3 Methods for Establishing Negative Results

To prove that a set of equations cannot be derived from a given, possibly finite, subset
of this set, we usually point out one specific equation in the superset, and prove that it
is not derivable from the subset. To show that an equational theory—that is, the set of

11



equations that hold in a given algebra—is not finitely based, we extend this reasoning
by proving that foreachfinite subset of the theory, there is an equation that cannot
be derived from this finite set. Often we obtain this result by establishing a stronger
result: we identify a particular countably infinite sequence of equations in the theory
with some suitable properties, and show that no finite subset of the theory can prove all
of the equations in that sequence.

The proof techniques used for this purpose can roughly be divided into two cate-
gories: the model-theoretic techniques and the proof-theoretic ones. In what follows we
will try to describe the essence of these two main methodologies.

Model-theoretic TechniqueH a set of equationg is sound in an algebrd, we say
that.A is a model forE. By Birkhoff’s completeness theorem for equational logic [13],
each equation that is derived frofmholds inA, if A is a model forE. Thus, to prove
that an equatioh~ v is notderivable fromZ it is sufficient to find an algebra thatis a
model for £/ but not of the equation= w.

Example 7.In Example 5 we claimed that equation (2) is not derivable from the axioms
in Example 4. As argued above, this can be proven by exhibiting a model of the axioms
in Example 4 where/ is not idempotent. A simple example of such a model consists
of the collection of all finite strings over the symhal where0 is interpreted as the
empty string, the unary operation symigols interpreted as the identity function, and

V is used to stand for concatenation.

In light of the previous observations, to prove that an equational theory is not finitely
based, one may therefore proceed as follows:

— isolate a countably infinite collection of equations (» > 0) in the equational
theory,

— for each finite subset’ of the equational theory, construct an algedrathat is a
model of £, but in which some of the equations fail.

Examples of the application of this strategy may be found in, e.g., [1, 2, 16, 22].

Proof-theoretic Technique&ecall that an equatioh ~ « is derivable from a set of
equationg if there is a sequende ~ u; (1 < i < n) of equations such that

- t, = t andu,, = u, and

— for eachl < i < n, the equation; = u; is obtained by applying one of the
aforementioned inference rules using equation8 or some of the equations that
precede it in the sequence as premises.

Proof-theoretic techniques aim at showing that « is notderivable fromE, by estab-
lishing that no such proof sequence exists. This is often done by finding a property of
equations that

— holds true for each instantiation of the axiomdin

— is preserved by the rules of equational logic—that is, if all of the equations that are
premises of the rule have the property, then so does the conclusion of the rule—,
and

12



— fails for the equation = .

This contradicts the existence of a proof for the equatien« from E, showing that
t =~ w is not derivable from that axiom system.

Example 8.The aforementioned proof-theoretic strategy can be used to give an alter-
native proof that the idempotencevfis not derivable from the axioms in Example 4.

To this end, observe that the left- and right-hand sides of each axiom in Example 4
contain the same number of occurrences of each variable. It is not hard to see that this
property is preserved under equational derivations. On the other hand, the term
contains two occurrences of the variablevhereas the term has only one. It follows

that equation (2) is not derivable from the axioms in Example 4.

The proof-theoretic strategy we have just described can be applied to show that an
equational theory is not finitely based as follows:

— isolate a countably infinite collection of equations (n > 0) in the equational
theory,

— for each finite subsel of the equational theory, show that there is a property of
equations that is satisfied by all of the equations that can be derivedArdmt
that is not afforded by some of the equatiens

Proof-theoretic techniques have found wide application in establishing that algebras
of processes do not afford a finite basis. In particular, all of the known proofs of the
negative results we survey in Sections 4 and 5 are based on applications of the afore-
mentioned proof-theoretic strategy.

Remark 2.An observation that can sometimes be used to show that an equational the-
ory does not afford a finite equational axiomatization relies owrtingpactness theorem
(see, e.g., [15]). Assume that we have an infinite axiomatizaditor an equational the-

ory T'. If T had a finite axiomatization, then, by the compactness theorem, some finite
subset ofF would be a complete axiomatization for the the@ryNamely, sinceV is
complete, each axiom in the finite axiomatization Tocould be derived fron¥, and

each of these derivations uses only finitely many axionts.ifo prove thafl’ does not

have a finite axiomatization, it therefore suffices to show that, for each finite sibset

of £, there is an equation if that is not provable fronk’. This can be achieved using
either of the two general proof strategies described above. Applications of this proof
methodology may be found in, e.g., [16, 17].

3 On Finite Bases for BCCSP

3.1 The Linear Time-Branching Time Spectrum

Van Glabbeek presented in [23,24] the linear time-branching time spectrum of be-
havioural equivalences for finitely branching, concrete processes. In this section, for
the sake of completeness, we define the semantics in this spectrum.

A labelled transition systemontains a set o$tateswith typical element, and a
set of transitions - s’, wherea ranges over some set of labels. TheB@t) consists
of those labels, for which there exists a transition-> s’.

First we define four semantics based on simulation.
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Definition 4 (Simulations). Assume a labelled transition system.

— Abinary relationR on states is @imulationif sy R s; andsg % sf, implys; = s/
with s R ).

— A simulationR is aready simulatiornif sy R s1 anda & Z(so) implya & Z(s1).

— A simulationR is a 2-nested simulatioit R~ is included in a simulation.

— A bisimulationis a symmetric simulation.

Next we define six semantics based on decorated versions of execution traces.
Definition 5 (Decorated Traces)Assume a labelled transition system.

— Asequence; - --a,, Withn > 0, is atraceof a states if there is a sequence of
transitionssg = s; =3 ---s,_1 -3 s,,. It is a completed tracef s, if moreover
Z(sy) = 0.

— Apair(a; ---a,, X), withn > 0and X C A, is aready pairnof a states if there
is a sequence of transitiong > s; %3 --.s, 1 %% 5, with Z(s,) = X. Itis a
failure pairof sq if Z(s,) N X = 0.

— Asequenc&Xpai X ...a,X,, Withn > 0andX; C A, is aready tracef a state
so if there is a sequence of transitiorg > s; 23 --- 5,1 2 s, WithZ(s;) = X;
fori =0,...,n. Itis afailure traceof sy if Z(s;) N X; =0 fori=0,...,n.

Finally, we define two semantics based on possible futures and on possible worlds.
Definition 6 (Possible Futures/Worlds).Assume a labelled transition system.

— Apair(ay -+ an, X),withn > 0and X C A*, is apossible futuref a states if
there is a sequence of transitioas = s; 3 ---5,_; = s, whereX is the set of
traces ofs,,.

— A states is deterministidf for eacha € Z(s) there is exactly one staté such that
s % ', and moreoves’ is deterministic.

A states is a possible worldf a states if s is deterministic and R sg for some
ready simulatiorR.

Two statess ands’ are simulation / ready simulation / 2-nested simulation equivalent
if there exist simulations / ready simulations / 2-nested simulatnsnd R, with
sR1 s ands’ R, s. They arebisimilarif there is a bisimulation that relates them. They
arepossible futures / possible worlds / ready trace / failure trace / ready / failure / com-
pleted trace / trace equivaléhthey have the same possible futures / possible worlds /
ready traces / failure traces / ready pairs / failure pairs / completed traces / traces.

The linear time-branching time spectrum is depicted in Figure 1, where a directed
edge from one semantics to another means that the source of the edge is included in the
target.

3.2 BCCSP

BCCSP is a basic process algebra for expressing finite process behaviour. Its signature
consists of the constaff the binary operatar+ _ calledalternative compositigrand
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bisimulation

2-nested simulation
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possible worlds possible futures
ready traces

simulation failure traces ready pairs

S

failure pairs
completed traces

traces

Fig. 1. The Linear Time-Branching Time Spectrum

unaryprefixoperators:_, wherea ranges over a nonempty sétof actions, called the
alphabet(with typical elements:, b, ¢, d). Intuitively, closed BCCSP terms represent
finite process behaviour, whebaloes not exhibit any behaviour;+ ¢ is the nondeter-
ministic choice between the behaviourg@ndg, andap executes actionto transform
into p. This intuition is captured by the transition rules below, in whickanges over
A. They give rise ta4-labelled transitions between BCCSP terms.

a a
Tr — X Yy —

a

ar — T $+yi>$l m+yiy’

We usesummatiorE?:1 t;, withn > 0, to denote; + - - - + t,,, where the empty sum
denoted.

The semantics in the linear time-branching time spectrum all constitatearu-
encefor BCCSP, meaning thaty ~ ¢; andps ~ g2 imply ap; ~ aq; fora € A and
p1 + p2 ~ q1 + ¢q2, where~ ranges over the semantics in the spectrum.

3.3 Positive and Negative Results for BCCSP

In this section we will survey positive and negative results, and open questions, on the
existence of a finite basis for the equational theories of BCC8Rufo the equiva-
lences in the spectrum above. The axiomatizations that we will present for the different
semantics in the spectrum were mostly taken from [24].

In case of an infinite alphabet, occurrences of action names in axioms are interpreted
as variables (or action schemes).
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Bisimulation The core axioms in Table 1 are sound and ground completBG@SP
modulo bisimulation. Moller [38] proved using normal forms that this axiomatization
is w-complete; Groote provided an alternative proof of this result in [26] using inverted
substitutions.

Al z+y Nyt

A2 (zt+y)t+zra+(y+2)
A3 z+z ~ T

A6 z+0 ~ T

Table 1. The axioms for bisimulation.

2-Nested Simulation and Possible Futur&seto, Fokkink, van Glabbeek and Ingolfs-
dottir [4] proved that BCCSP odulo any semantics no coarser than possible futures and
no finer than 2-nested simulation does not possess a finite sound and ground complete
axiomatization. The infinite family of equations that they used to prove this negative
result is defined as follows. Léf be any finite axiomatization for BCCSP that ausid
modulo possible futures. Let theepthof a BCCSP ternt be the largest number of
transitions in sequence thiatan exhibit. Pick amn such that

m > max depth(t), depth(u) | (t ~u) € E} .
Forn > 0, let p,, andg, be defined inductively as follows, for somec A:

po  =a*"'0 @ =am"'0
Pn+1 = app + agqn gn+1 = aAPn

The equation®,, ~ ¢, for n > 2 are sound modulo 2-nested simulation. However,
they cannot be derived froif.

Ready Simulationvan Glabbeek presented a conditional axiom for ready simulation
equivalenceZ(z) = Z(y) = a(z + y) = a(z + y) + ay. Blom, Fokkink and Nain
[14] showed that a sound and ground complete equational axiomatizati®CfosP
modulo ready simulation exists. It is obtained by extending the four core axioms with

a(bx + by + z) = a(bx + by + z) + a(bx + z)

wherea, b range overd. WhenA is infinite, Groote’s technique of inverted substitutions
can be applied to show that this axiomatizationvicomplete. WhenA is finite, it
remains an open question whether BCCS#®lmlo ready simulation is finitely based.

Simulation A sound and ground complete axiomatization B 8CSP nodulo simula-
tion is obtained by extending the four core axioms with

a(z +y) ~a(z +y) +ay
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When A is infinite, Groote’s technique of inverted substitutions can be applied to show
that this axiomatization is-complete. Wherl < |A| < oo, it remains an open ques-

tion whether BCCSP odulo simulation is finitely based. Whed| = 1, simulation
equivalence coincides with trace equivalence, and we will see that in this case a finite
basis does exist.

Possible WorldsA sound and ground complete axiomatization BECSP nodulo
possible worlds is obtained by extending the four core axioms with

a(br + by + z) =~ a(br + z) + a(by + z)

When A is infinite, Groote’s technique of inverted substitutions can be applied to show
that this axiomatization is-complete. Fokkink and Nain [20] showed that whier:

|A] < oo, BCCSP nodulo any semantics no coarser than ready equivalence and no
finer than possible world equivalence does not possess a finite basis. (Note that ready
traces are within this semantic range.) Their proof of this negative result, which uses
cover equations and applies the compactness theorem to the equational theory for terms
of depth 1, is based on the following infinite family of equations:

|A]—1 [Al-1  j-1 n n [Al-1

a( D w)+ D> ad mi+ Y, w)+ > al > witai+y) R
i=1 j=1  i=1 i=j+1 j=lA]  i=1
lAl-1 [Al-1  j-1 n n [A]-1 n

a( Z x;) + Z a(in—i- Z x;) + Z a( Z i+ T +yj)+a(2xi)
i=1 j=1  i=1 i=j+1 j=lA]  i=1 i=1

These equations are sound modulo possible worlds for |A|. However, any finite
axiomatization that is sound f@CCSP nodulo ready pairs cannot derive them all.
When|A| = 1, possible world equivalence coincides with completed trace equivalence,
and we will see that in this case a finite basis does exist.

Ready Traced/an Glabbeek presented a conditional axiom for ready trace equivalence:
I(x) =I(y) = az + ay =~ a(z +y). Blom, Fokkink and Nain [14] showed that when

A is finite, a sound and ground complete equational axiomatizaticdB@@SP nodulo
ready traces exists. It is obtained by extending the four core axioms with

|A] |A] |A]
G(Z(bixi +biyi) +2) & G(Z biz; +2) + a(z biyi + z)
i=1 i=1 i=1
When A is infinite, they showed using the compactness theorem that a finite sound and
ground complete axiomatization does not exist. Their proof is based on the following
equations, fon > 0:
n n n
a(> " (bic0 + b;d0)) ~ (D> _ bic0) + a(>_ b;d0)
i=1 i=1 i=1
Whenl < |A4] < oo, the aforementioned negative result from [20] (see the paragraph
on possible worlds) implies that BCCSPodulo ready traces does not possess a finite
basis. WhenA| = 1, ready trace equivalence coincides with completed trace equiva-
lence, and we will see that in this case a finiteomplete axiomatization does exist.
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Failure TracesVan Glabbeek presented a conditional axiom for failure traces (the same
one as for ready traces). Blom, Fokkink and Nain [14] showed using normal forms that
a sound and ground complete equational axiomatizatiorBl@€CSP nodulo failure
traces exists. It is obtained by extending the four core axioms with

a(br + by + z) =~ albr + by + z) + a(by + z)
ax + ay = ax + ay + a(z + y)
When A is infinite, Groote’s technique of inverted substitutions can be applied to show
that this axiomatization is-complete. When < |A| < oo, it remains an open question
whether BCCSP wdulo failure traces is finitely based. Whe#a| = 1, failure trace

equivalence coincides with completed trace equivalence, and we will see that in this
case a finite basis does exist.

Ready Pairs A sound and ground complete axiomatization B CSP nodulo ready
pairs is obtained by extending the four core axioms with

a(bx 4+ by + z) = a(br + by + z) + a(by + 2)

When A is infinite, Groote’s technique of inverted substitutions can be applied to show
that this axiomatization is-complete. Wherl < |A| < oo, the aforementioned nega-

tive result from [20] (see the paragraph on possible worlds) implies that BC@8ERIm

ready pairs does not possess a finite basis. WHAge= 1, ready equivalence coincides
with completed trace equivalence, and we will see that in this case a finite basis does
exist.

Failure Pairs A sound and ground complete axiomatizationB&@CSP nodulo failure
pairs is obtained by extending the four core axioms with

a(bx + by + 2) = a(bz + by + z) + a(bz + 2)
ax +a(y + z) = ax + a(y + z) + alx + y)

Fokkink and Nain [21] proved using cover equations that wHeis infinite, this ax-
iomatization isu-complete. They also proved that whdris finite, one extra axiom is
needed to obtain an-complete axiomatization:

1Al 1| |A|

G(Z bixi+y+z)= CL(Z bizi +y+z) + a(z bixi +y)

i=1 i=1 i=1

Completed TracesA sound and ground complete axiomatization B2 CSP nodulo
completed traces is obtained by extending the four core axioms with

albw+y) +alcx + 2) = albw +cx +y + z)

Groote [26] proved using normal forms that in order to obtaivazomplete axiomati-
zation, one extra axiom is needed:

ar+aly+z)~ax+aly+z)+alz+y)
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Traces A sound and ground complete axiomatizationB&@CSP nodulo traces is ob-
tained by extending the four core axioms with

ax + ay ~ a(x + y)

Groote [26] proved using normal forms that this axiomatizatiow-isomplete when

|A] > 1. When|A| = 1, itis not hard to see that one extra axiam,+ = =~ ax, suf-

fices to make the axiomatizatiorcomplete. Indeed, in that case, the algebra of closed
BCCSP terms mdulo trace equivalence is isomorphic to the algelran Example 3.

(To the best of our knowledge this is the first time this last observation appears in print.)

3.4 Overview

Concluding, BCCSP has a finitewnd and ground complete axiomatization for most
of the semantics in the linear time-branching time spectrum. Only for 2-nested simula-
tion and possible futures, and for ready traces in case of an infinite alphabet, such an
axiomatization does not exist.

Regardingu-completeness, matters are more mixed, especially when|A| <
oco. The table below presents an overview, whermeans that there a finite basis,
means that there is no finite basis, &weans that it is unknown whether a finite basis
exists. We distinguish between an infinite alphabet, a finite alphabet with more than one
element, and a singleton alphabet.

Al = 1]1 < |A] < o0||4] = 0
bisim + + +
2-nes si - - -
poss futﬂ - — -
ready si ? ? +
sim + ? +
posswor| + - +
ready tr + - -
failure tr + ? +
ready + - +
failure + + +
compl tr + + +
traces + + +

4 Parallelism

In this section we discuss extension3CSP with a binary operatior| for parallel
composition. We only consider bisimulation semantics. The intuition isptiat does
a move from either component, or establishes some kind of synchronization between
its components. The synchronization mechanism differs from one process description
language to another. For the sake of generality, we make use of the mechanism in-
corporated inACP, and show how it can be instantiated, e.g., to the synchronization
mechanism oCS.

ACP’s synchronization mechanism presupposes@munication functiony, i.e.,
a partial function

y:AxA—A

such that for all, b, c € A:
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(i) if v(a,b) is defined, then so i$(b, a) and moreovety(a,b) = v(b,a); and
(i) y(a,v(b,c)) is defined iffy(v(a,b),c) is defined, and if both are defined, then
v(a,7(b,c)) = v(7(a,b),c).

The operational semantics ppfs then given by the following transition rules:

5 y Sy rSa y Sy, yab) =c
a / a / C / /
zlly—a |y rlly—xly zlly—ay

By additional assumptions enpwe can obtain the different versions of parallel compo-
sition that are encountered in the literature; we give three examples:

1. The assumptioy = () expresses that there is no communication at all, i.e., the
operation|| modelspure interleaving

2. The assumption that(a, (b, ¢)) is always undefined expresses that there is only
handshakingommunication.

3. We get the operation for parallel composition&fS by assuming that
(a) A contains a special actian
(b) there is a bijectionon A— {7} suchthatt = a anda # a foralla € A—{7};
(c) v(a,a) =~(a,a) = 7 foralla € A— {7}, andy is undefined otherwise.

Let BCCSP| be the extension odBCCSP with [|. A ground complete axiomati-
zation forBCCSP| modulo bisimulation equivalence is obtained by adding to the ax-
ioms Al1-3,6 in Table 1 the equations generated by the so-dakpension Lawfor
allt = Zie] a;x; andu = Zje.] bjyj:

tlus ai(@ lu)+Y b (lly)+ D> @b lly) . @3)

iel jeJ iel jeJ

with, fori € I andj € J, the summand (a;, b;)(t; || u;) only present whery(a;, b;)
is defined. The result was first established by Hennessy and Milner [30].

Since the Expansion Law generates infinitely many equations, the aforementioned
ground complete axiomatization is infinite. If the set of actighsontains at least one
elementu such thaty(a, a) is undefined, then a finite ground complete axiomatization
is not possible, as shown by Moller [38, 40]. He establishes that there does not exist a
finite set of BCCSP -equations, sound with respect to bisimulation equivalence, from
which all equations of the form

n n
a0 || pn = apy, + Z aa”™ (with ¢, = Z a,n>1) 4
i=1

i=1

are equationally derivable. Moller carries out his proof in a pure interleaving setting
(i.e.,v = 0), but it is easy to see that the assumption can be relaxed(tox) is
undefined. First note that, with the relaxed requirement, the equations in (4) are still
sound with respect to bisimulation equivalence. Now, suppose there does exist a finite
basisE for BCCSP | modulo bisimulation equivalence. Then, since the equationsin (4)
are sound with respect to bisimulation equivalence, they are all derivableArdrat
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E’ C F be the set of equations ifi that are involved in the derivations of the equations
in (4). ThenE’ consists of equations in which no actions other thasccur (for if p
andgq are bisimulation equivalent clos&CCSP -terms, then andq contain the same
actions). Obviously, the equations &1 are all sound foBCCSP|| with A = {a} and

~ = 0, contradicting Moller’s result.

Moller’s result shows that for a finite axiomatization of parallel composition aux-
iliary operators are indispensable. Three such auxiliary operators have been proposed
in the literature: Bergstra and Klop introduced te& merge(|| ) in [8] and thecom-
munication mergé|) in [10], and Hennessy [29] introduced an operation that we call
Hennessy’s mergd/). In the remainder of this section we discuss these auxiliary op-
erators in the context dCCSP. In the next section we examine the consequences of
replacing action prefixing iBCCSP by a binary operation for sequential composition.

4.1 Left merge

First we consider the special case of axiomatizing parallel composition under the pure
interleaving assumptiony(= (). In that case, as can be seen from the transition rules
for ||, a parallel compositiop || ¢ either does a move % 7’ from its left component

p and proceeds as || ¢, or it does a movg = ¢ from its right componeny and
proceeds ag || ¢’. So, intuitively, it is an alternative composition of two subprocesses.
The auxiliary operation left merge is a device for expressing these subprocesses in terms
of p andgq; its operational semantics is given by the following transition rule:

v
ally=aly
Using the left merge the intuition with respect to the behaviour of a parallel composition
can be captured in a single equation:

M z|ly=z|| y+y| z .

The axiom M and the axioms L1-3 in Table 2 allow the elimination of all occurrences
of || and|| from closed terms. (Bergstra and Klop [10] established a similar result in the
more general setting afCP.) Hence, together with the axioms B CSP in Table 1,
those equations constitute a ground complete axiomatizatiBCoSP | .

L1 0| = ~0

L2 az| y ~a(z|ly)

L3 (z+y)|]zrz| z2+y]| =
L4 @lLy)z~a] (]2
L5 z| O R

Table 2. The axioms for left merge.

An w-complete axiomatization is obtained by adding the axiomsihd L5 in Ta-
ble 2. Moller [38] proved this assuming thatis infinite. He used the technique based
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on normal forms: first he showed that every term is provably equal to a normal form,
and then he argued that for distinct normal forms there is a distinguishing environment.
Moller used a distinguishing environment that substitutes a special action (not already
occurring in either normal form) for every variable, which is only possible if there are
infinitely many actions. Both the proof that every term is provably equal to a normal
form and the proof that normal forms can be distinguished are quite involved. It turns
out that Groote’s inverted substitutions technique also applies (see [26]), and the appli-
cation is in fact quite straightforward.

The requirement thatl is infinite seems essential for the application of Groote’s
technique. However, the authors have recently established that Moller's proof can be
adapted with a distinguishing environment that only requires one action. So-if
(, then the axioms oBCCSP together with the axioms in Table 2 constitute a basis
for BCCSP | modulo bisimulation equivalence, for each non-empty set of actions
Hence, ifA is finite, thenBCCSP || | modulo bisimulation equivalence is finitely based.

4.2 Communication merge

Cl 0|z ~0

C2 azxl|by =c(z|y) if v(a,b) =c

C3 ax|by =0 if v(a,b) is undefined
C4 (z+y)|lz=z|z+y|z

Cs z|y ~yl|x

C6 (zly)lz =z|(y|=2)
CT zlylLa)= @y L=
Table 3. The axioms for communication merge.

If p % p’ andg LN ¢’ and~y(a,b) = ¢, then the parallel compositign|| ¢ has the
extra option to perform the synchronization mevg g < p’ || ¢’. The communication
merge provides notation for this part of the behaviour of a parallel composition; its
operational semantics is given by the following transition rule:

25l y Sy, yab) =c

zlySa |y
Of course, if synchronization is possible, then the axiom M is not sound and needs to
be replaced by:
M zlly~@Ly+tyllz)+aly .
Using the axiom M’, the axioms L1-3 in Table 2 and the axioms C1-5 in Table 3
all occurrences of|, | and| can be eliminated from closed terms. Hence, together

with the axioms ofBCCSP in Table 1, those equations constitute a ground complete
axiomatization oBCCSP | |.

22



Let us now considew-completeness. Note that it critically depends-owhether
certain equations between terms with variables are sound. For instance, the equation

z|y~0

is sound ify = (), but if there exist actions andb such thaty(a, b) is defined, then it
is clearly not sound.

Groote [26] proved that ifA is a commutative semigroup under(which means
that~ is an associative and commutative total functionfnandA is moreover freely
generated by some infinite subset, then the axioni“ESP in Table 1 together with
M’ and the axioms in Tables 2 and 3 constitute catomplete axiomatization. (Of
course, sincey is total, the axiom @ is superfluous in this axiomatization.) It is an
open problem whether it is necessary to requir® be generated by dnfinite subset.

If v satisfies the requirement thata, v(b, ¢)) is undefined for alk, b, c € A (i.e.,
there is only handshaking communication), then the axiom

H z|ly|z=0

is sound. We conjecture thatif is non-empty and implements theCCS communi-
cation mechanism, then the axioms M’ and H together with the axioms in Tables 1, 2
and 3 constitute an-complete axiomatization.

4.3 Hennessy’s merge

In [29], Hennessy proposed another auxiliary operator, using it in his axiomatizations of
observation congruence and timed congruektsnnessy’s mergas we call it, com-
bines the behaviour of the left merge and the communication merge. Its operational
semantics is given by the following transition rules:

x = rSa y Sy, yab)=c
a . co_ ’
el ySaly afySaly

Note that with Hennessy’s merge, parallel composition is definable with the following
equation:
zlly~z{y+ylaz.

This may seem promising for the existence of a finite axiomatization of parallel compo-
sition that only uses Hennessy’s merge as auxiliary operation. However, as was already
conjectured by Bergstra and Klop in [10], it turns out that the operation itself cannot
be finitely axiomatized. Assuming ti&CS synchronization mechanism (see the begin-
ning of Section 4), the authors recently proved in [3] that there does not exist a finite set
of soundBCCSP y-equations from which all equations of the form

a0 |/ Un = ahy, +27ai (with ¢,, = Zdai,n > 0)

=0 =0

are equationally derivable.
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4.4 Overview

In the table below we summarize the results and open problems discussed in this sec-
tion. A +in the first (respectively, second) column means that there exisiigssground
complete (respectively-complete) axiomatization,-ameans that such an axiomati-
zation does not exist, and?aneans that it is unknown whether such an axiomatization
exists.

ground complete,-complet
BCCSP|, - -
BCCSP”U + +
BCCSP”H_‘ (handshakin?) + ?
BCCSP||7/ - -

Moller’s result shows thaBCCSP | has no finite ground complete axiomatiza-
tion. With the two auxiliary binary operatiorjs and| of Bergstra and Klop a finite
ground complete axiomatization becomes possible. If one assumes pure interleaving,
then adding only| suffices, and then there even exists a finiteomplete axiomati-
zation. It remains an open problem whether it is possible to axiomBtizeSP | with
arbitrary handshaking or thHeCS synchronization mechanism adding only one auxil-
iary binary operation.

5 Sequential composition

In this section we discuss the consequences of having sequential composition instead
of action prefixing. We remove the consténand the unary prefixes from BCCSP,

and replace them by a binary operatidar sequential composition, treating the actions

in A as constant symbols. Thus we get the signatuigiok [10]. The transition rules

for actions and sequential composition are as follows:

a
xr — X

a=y  weySaloy

Note the special stat¢/ that we use to write the transition rules; it signals successful
termination. To make the rules work, we stipulate that = = and\/||z = z ||/ = =.
We also require that bisimulations relageonly to /.

Al z+y Yyt

A2 z+4+ (y+z2)~(x+y) +=z
A3 x4z ~ T

Ad (z+4+y) 2z ~x-z2+y-2z
As5 (z-y)-z max-(y-2)

Table 4. The axioms for alternative and sequential composition.
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The axioms oBPA are obtained by taking the first three axiom8afCSP, adding
that- distributes from the right over and that is associative. For the sake of clarity,
we list them all in Table 4. It is folklore that they constitute a ground complete axiom-
atization ofBPA. Moreover, the axiomatization is-complete. As far as we know, this
latter result does not explicitly appear in print, but a proof can be extracted from the
w-completeness proof fdPA [19] that we discuss below.

In [39], Moller adapted his proof thd8CCSP| is not finitely based to the setting
with sequential composition. The infinite family of equations he uses to establish this
result is obtained from the equations in (4) by the obvious translation (replace action
prefixes by actions and sequential compositions, and omit all occurren@ps of

M1 z|y rr|ly+ty| x
M2 al = Xa-T
M3 a-zlly =a-(z|y)
M4 (z+y) | z~rz| z2+y]| =
M5 (z|Ly) |l z==z| (yll=2)
M6 (z-a)| a =(z]| «a) -«
Table 5. The axioms for merge and left merge.

The signature oPA combines that oBPA with || and | . Parallel composition
in PA stands for pure interleaving (i.ey, = ), so the relation betweehand|| is
expressed by the axiomMn Table 5. For a ground complete axiomatizatiorPdf it
suffices to add the first four axioms in Table 5 to the axiomi3leA . Fokkink and Luttik
proved in [19] that if M and M6 are added too, then the axiomatizatiowisomplete.
The « in M6 ranges over finite sums of distinct actions. The equation that results by
replacing both occurrences|pfin M6 with || is also sound (it is an instructive exercise
to derive it using M and the other axioms). It is an example of a so-caheged
equationequating a parallel composition and a sequential composition. There is a deep
theory of mixed equations developed by Hirshfeld and Jerrum [31] for the benefit of
their proof that bisimulation equivalence is decidable for norin&dThe proofin [19]
that the presented axiomatizationdscomplete partly relies on their theory.

Incorporation of synchronization can be done by adding a communication merge
and replacing the axiom Mby M'. It is not difficult to adapt the axioms in Table 3
in such a way that all communication merges can be eliminated from closed terms;
thus a ground complete axiomatization can be obtained. Note that this does require the
addition of a special constafithat will assume theale of 0; it satisfies

d-x~0
r+oi~z .

There are no knowa-completeness results pertaining to the extensidsitf with
I, | andé. It would again be necessary to make some assumptions about the synchro-
nization mechanism. If there is only handshaking communication, then the equations

(@ lze) v |l z1) w2l 22) - yn | 2n) |23=d  (n>0)
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are sound. We conjecture that there does not exist a finite set of sound equations from
which they are all derivable.
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