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Bas Luttik

BRICS Report Series RS-05-19

ISSN 0909-0878 June 2005

B
R

IC
S

R
S

-05-19
A

ceto
etal.:

F
inite

E
quationalB

ases
in

P
rocess

A
lgebra:

R
esults

and
O

pen
Q

uestions



Copyright c© 2005, Luca Aceto & Willem Jan Fokkink & Anna
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Abstract. Van Glabbeek (1990) presented the linear time-branching time spec-
trum of behavioral equivalences for finitely branching, concrete, sequential pro-
cesses. He studied these semantics in the setting of the basic process algebra
BCCSP, and tried to give finite complete andω-complete axiomatizations for
them. (An axiomatizationE is ω-complete when an equation can be derived from
E if, and only if, all its closed instantiations can be derived fromE.) Obtaining
such axiomatizations in concurrency theory often turns out to be difficult, even
in the setting of simple languages like BCCSP. This has raised a host of open
questions that have been the subject of intensive research in recent years. Most
of these questions have been settled over BCCSP, either positively by giving a
finite complete orω-complete axiomatization, or negatively by proving that such
an axiomatization does not exist. Still some open questions remain. This paper
reports on these results, and on the state-of-the-art on axiomatizations for richer
process algebras, containing constructs like sequential and parallel composition.

1 Introduction

One of Jan Willem Klop’s main contributions to the theory of concurrency is the devel-
opment of the ACP family of process algebras in collaboration with Jan Bergstra—see
the original papers [8–12], the textbooks [6, 18] and the historical paper [5]. Process
algebras in the ACP style are defined, following the tradition of the algebraic speci-
fication of abstract data types, relying on tools from universal algebra and equational
logic. More specifically, languages in the ACP family are defined by specifying their
signature—that is, the collection of algebraic operations that can be used to build new



descriptions of reactive systems in terms of ones that we have already constructed—
together with a collection of equational axioms that implicitly define the expected se-
mantic properties of processes. This is an application of the classic axiomatic method,
on which the development of modern algebra rests, to concurrency theory.

An example of a typical axiom that holds for all of the classic algebras in the ACP
family, and is familiar from the theory of regular languages [16, 34], is

(x+ y) · z ≈ (x · z) + (y · z) .
In the above equation, the operation symbols+ and · stand for “alternative composi-
tion” (or nondeterministic choice) and “sequencing”, respectively. Intuitively, this ax-
iom states that a process that can initially choose to behave either likex or like y, and
then proceeds to behave likez, is “equivalent” to one that initially chooses to behave
either likex · z or like y · z.

On the other hand, the right-distributivity axiom of alternative composition over
sequencing familiar from formal language theory, namely

x · (y + z) ≈ (x · y) + (x · z) ,
is usuallynot considered part of the axiom systems for process algebras since the left-
and right-hand sides of the above equation may exhibit different deadlock potential, and
should not be equated as descriptions of reactive systems.

Axiom systems arise from the desire of isolating the features that are common to a
collection of algebraic structures—namely, theirmodels. Early examples of models of
the axiom systems for ACP style process algebras were the “projective limit” model—
as employed in, e.g., [8]—, and the “graph model” adopted in [11].

Given a language in the ACP family, one may define intuitively appealing models
of its axiom system as quotients of the collection of labelled transition systems modulo
some behavioural congruence.Labelled transition systems(LTSs) [33] are a funda-
mental formalism for the description of concurrent computation, which is widely used
in light of its flexibility and applicability. In particular, they underlie Plotkin’s Struc-
tural Operational Semantics [42, 43] and, following Milner’s pioneering work on CCS
[37], are by now the standard formalism for describing the semantics of various process
description languages.

LTSs model processes by explicitly describing their states and their transitions
from state to state, together with the actions that produced them. Since this view of
process behaviours is very detailed, several notions of behavioural equivalence and
preorder have been proposed for LTSs. The aim of such behavioural semantics is to
identify those (states of) LTSs that afford the same “observations”, in some appropri-
ate technical sense. The lack of consensus on what constitutes an appropriate notion
of observable behaviour for reactive systems has led to a large number of proposals
for behavioural equivalences for concurrent processes. (See the study [24], where van
Glabbeek presents the linear time-branching time spectrum—a lattice of known be-
havioural equivalences and preorders over LTSs, ordered by inclusion.)

Having defined a model of an axiom system for a process algebra in terms of LTSs,
it is natural to study the connection between the equations that are valid in the chosen
model, and those that are derivable from the axioms using the rules of equational logic.
The key questions here are:
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– Is the axiom system complete? That is, can all of the equations that hold in the
LTS model modulo the chosen notion of behavioural equivalence be derived from
the axiom system using the rules of equational logic? (A complete axiom system
is also referred to as abasisfor the algebra it axiomatizes.) Researchers in concur-
rency theory often restrict themselves to studying axiom systems that are complete
with respect to the collection of valid equations that do not contain occurrences of
variables.

– Does the algebra of LTSs modulo the chosen notion of behavioural equivalence
afford a finite equational axiomatization?

A complete axiomatization of a behavioural congruence yields a purely syntactic char-
acterization, independent of LTSs and of the actual details of the definition of the chosen
behavioural equivalence, of the semantics of the process algebra. This bridge between
syntax and semantics plays an important role in both the practice and the theory of pro-
cess algebras. From the point of view of practice, these proof systems can be used to
perform system verifications in a purely syntactic way using general purpose theorem
provers or proof checkers, and form the basis of purpose built axiomatic verification
tools like, e.g., PAM [35]. A positive answer to the first basic question raised above is
therefore not just theoretically pleasing, but has potential practical applications. From
the theoretical point of view, complete axiomatizations of behavioural equivalences cap-
ture the essence of different notions of semantics for processes in terms of a basic col-
lection of identities, and this often allows one to compare semantics which may have
been defined in very different styles and frameworks. A review of existing complete
equational axiomatizations for many of the behavioural semantics in van Glabbeek’s
spectrum is offered in [24]. The equational axiomatizations offeredibidemare over the
languageBCCSP, a common fragment of Milner’s CCS [37] and Hoare’s CSP [32]
suitable for describing finite synchronization trees, and characterize the differences be-
tween behavioural semantics in terms of a few revealing axioms.

Negative answers to the second basic question mentioned above have instead served
as a motivation for the development of auxiliary operations, whose addition to the origi-
nal signature of the language under investigation yields an algebra with a finite basis. A
classic example of this line of research, which can again be traced back to Jan Willem
Klop’s work in concurrency theory, is offered by the paper [10]. There Bergstra and
Klop showed how to give a finite axiomatization of the language ACP using the auxil-
iary left and communication merge operators to characterize parallel composition. As
shown by Moller [39, 40], auxiliary operators are needed to obtain a finite basis for that
language because the process algebras CCS and ACP without the auxiliary left merge
operator from [8] do not have a finite equational axiomatization modulo bisimulation
equivalence.

An axiom systemE is ω-completewhen an equation can be derived fromE if,
and only if, all of its closed instantiations can be derived fromE. In theorem proving
applications, it is often convenient to work with axiomatizations that areω-complete. In
fact, using anω-complete axiomatization one can avoid proofs by (structural) induction
in favour of purely equational reasoning. Moreover, as argued by Heering in [27],ω-
completeness of an axiom system is desirable in the partial evaluation of programs.
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A classic example of an axiom system that isnot ω-complete is that for the lambda-
calculus—see [41].

Many of the existing axiomatizations of behavioural equivalences over expressive
process description languages studied in concurrency theory are powerful enough to
prove all of the valid equalities between terms that contain no occurrences of variables,
but arenotω-complete. In fact, obtainingω-complete axiomatizations in concurrency
theory often turns out to be a difficult question, even in the setting of simple languages
like BCCSP. This has raised a host of open questions that have been the subject of
intensive investigation by process algebraists in recent years. Most of these questions
have been settled over BCCSP and other simple process algebras, either positively by
giving a finiteω-complete axiomatization, or negatively by proving that such an ax-
iomatization does not exist. Still some open questions remain—especially for expres-
sive process description languages and behavioural equivalences that, like observation
equivalence [30, 37] and branching bisimilarity [25], abstract, in some formal sense,
from events in process behaviours that are deemed to be directly unobservable.

In this paper, we report on positive and negative results pertaining to the existence
of (finite)ω-complete axiomatizations for BCCSP and richer process algebras, contain-
ing constructs like sequential composition and interleaving. We hope that this survey of
results will contribute to their dissemination in our research community, and will stimu-
late further investigations leading to the solution of the challenging open problems that
are left.

The paper is organized as follows. We begin by presenting in Section 2 some basic
background on universal algebra and equational logic that will be useful for the remain-
der of this study. In this general setting, we describe a collection of proof techniques
that can be used to establish positive and negative results pertaining to the existence
of finite, complete orω-complete axiomatizations for algebras of processes. Section 3
reports on results and open problems on axiomatizations of behavioural equivalences
over the languageBCCSP studied by van Glabbeek in [24]. The paper concludes with
a survey of the state-of-the-art on the equational theory of extensions of that language
with more complex operators such as parallel composition and sequential composition
(Sections 4 and 5).

2 General Techniques

Our aim in this section is to present some general techniques that can be used to estab-
lish results pertaining to the existence or non-existence of finite equational axiomatiza-
tions for behavioural equivalences and preorders over process description languages. A
suitable general framework within which these techniques can be described is given by
the classic fields ofuniversal algebraandequational logic. We therefore begin by in-
troducing the basic notions from these areas of mathematical research that will be used
throughout this paper. We state at the outset that we shall not need very deep results or
constructions from universal algebra in what follows, and that much more on it may be
found in, e.g., the classic reference [15]. A self-contained presentation from a computer
science perspective of the topics we now proceed to introduce may be found in [28].

4



2.1 Preliminaries

Σ-AlgebrasWe start from a countably infinite setV of variableswith typical elements
x, y, w, z. A signatureΣ consists of a set ofoperation symbols, disjoint fromV , to-
gether with a functionarity that assigns a natural number to each operation symbol.
The set oftermsoverΣ is the least set such that

– Eachx ∈ V is a term.
– If f is an operation symbol of arityn, andt1, . . . , tn are terms, thenf(t1, . . . , tn)

is also a term.

An operation symbolf of arity 0 will be often called aconstantsymbol, and the term
f() will be abbreviated asf .

We write (Σ) for the set of all terms overΣ and uset, u, v, possibly subscripted
and/or superscripted, to range over terms. A term isclosed(or ground) if it contains
no occurrences of variables. We denote by T(Σ) the set ofclosedterms overΣ. A
substitution is a mapping from variables to terms. A substitution is closed if it maps
variables to closed terms. For every termt and substitutionσ, the term obtained by
replacing every occurrence of a variablex in t with the termσ(x) will be writtenσ(t).
Note thatσ(t) is closed, if so isσ. Throughout this paper, we use the symbol “=” to
stand for (syntactic) equality.

Example 1.A signature for the natural numbers with the operationmax yielding the
maximum between two numbers could contain a constant0, a unary successor operation
S and the binary operation symbol∨. We shall use this signature as our running example
throughout this section, and use∨ in its customary infix notation for the sake of clarity.

Example 2.A process algebra that will be discussed extensively in Section 3 is BCCSP.
Its signature consists of the constant0, the binary operator+ calledalternative compo-
sition, and unaryprefixoperatorsa , wherea ranges over a nonempty setA of actions.

The collection of terms over a signatureΣ yields a language. The semantics of this
language can be defined canonically once we equip the set of intended denotations with
the structure of aΣ-algebra. AΣ-algebrais a structure

A = (A,
{
fA | f ∈ Σ}

) ,

whereA is a non-empty set (often called thecarrierof the algebra), and

fA : An → A

for each operation symbolf ∈ Σ of arity n. Note that iff is a constant symbol, then
fA can be viewed as an element ofA.

In order to interpret terms in(Σ) in a Σ-algebraA = (A,
{
fA | f ∈ Σ}

) we
need the notion of an environment. Anenvironmentis a functionρ mapping variables
to elements ofA. The mappingρ can be extended homomorphically to(Σ) in a unique
way by stipulating that

ρ(f(t1, . . . , tn)) = fA(ρ(t1), . . . , ρ(tn))
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for each operation symbolf of arity n and termst1, . . . , tn. Note thatρ(t) is indepen-
dent ofρ whenevert is closed. For each closed termt, we writetA for the element of
A that is the interpretation oft in the algebraA. An element of the carrier set ofA is
denotableif it is the interpretation of some closed term.

Example 3.A suitable algebraN in which to interpret the collection of terms over the
signature introduced in Example 1 has the set of natural numbers IN as carrier set. The
constant symbol0 is interpreted as the natural number0, the unary function symbol
S is interpreted as the successor function—that is, the function mapping each natural
numbern to n + 1—and the binary function symbol∨ is interpreted as the function
mapping each pair of natural numbers to the largest of the two.

It is easy to see that each element ofN is denotable. Indeed, the natural numbern
is the interpretation of the termtn defined thus:

t0 = 0 and

tn+1 = S(tn) .

The interpretation of the language(Σ) in aΣ-algebraA = (A,
{
fA | f ∈ Σ}

) natu-
rally induces a congruence relation=A over (Σ). This is defined thus:

t =A u if, and only if, ρ(t) = ρ(u), for each environmentρ .

Example 4.Examples of identities that hold with respect to the congruence relation
=N induced by the interpretation of the language of terms over the signature for the
natural numbers in our running example are

x ∨ 0 =N x

0 ∨ x =N x and

S(x) ∨ S(y) =N S(x ∨ y) .
The results reviewed in this paper all aim at using the classic logic of equality to offer
a syntactic characterization of the relation=A for algebras of processes. The study
of such axiomatic characterizations of semantic equivalences falls therefore within the
realm of equational logic, whose basics we now proceed to present.

Equational Logic An axiom systemis a collectionE of equationst ≈ u over the
language (Σ). (The equations inE are often referred to asaxioms.) An equationt ≈ u
is derivable from an axiom systemE, notationE ` t ≈ u, if it can be proven from the
axioms inE using the rules of equational logic (viz. reflexivity, symmetry, transitivity,
substitution and closure underΣ-contexts):

t ≈ t
t ≈ u

u ≈ t

t ≈ u u ≈ v

t ≈ v

t ≈ u

σ(t) ≈ σ(u)

ti ≈ ui (1 ≤ i ≤ n)
f(t1, . . . , tn) ≈ f(u1, . . . , un)

.

(The first three rules above state that≈ is an equivalence relation, whereas the latter
two state that≈ is closed under substitutions, and is a congruence.) Formally, a proof
of an equationt ≈ u fromE is a sequenceti ≈ ui (1 ≤ i ≤ n) of equations such that
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– tn = t andun = u, and
– for each1 ≤ i ≤ n, the equationti ≈ ui is obtained by applying one of the

aforementioned inference rules using equations inE or some of the equations that
precede it in the sequence as premises.

Without loss of generality one may assume that the substitution rule is only applied to
axioms, i.e., that the rule

t ≈ u

σ(t) ≈ σ(u)

may only be used when(t ≈ u) ∈ E. In this case, the equationσ(t) ≈ σ(u) is called a
substitution instanceof an axiom inE.

Moreover, by postulating that for each axiom inE also its symmetric counterpart
is present inE, one may assume that there are no applications of the symmetry rule in
equational proofs.

It is well-known (see, e.g., Sect. 2 in [26]) that if an equation relating two closed
terms can be proven from an axiom systemE, then there is a closed proof for it.

Definition 1 (Soundness).LetA be aΣ-algebra. An equationt ≈ u is soundwith
respect to=A iff t =A u. An axiom system is sound with respect to=A iff so is each of
its equations.

In other words, an axiom system is sound with respect to=A if it can only be used
to prove equations that are valid in the algebraA. This is, of course, a most natural
requirement on an axiom system. However, ideally an axiom system should also allow
us to prove all of the equations that hold in a given algebra. This is captured by the
technical requirement ofcompleteness.

Definition 2 (Completeness).LetA be aΣ-algebra. An axiom systemE is ground
completewith respect to=A iff E ` t ≈ u whenevert =A u, for all closedtermst, u.

E is completewith respect to=A iff E ` t ≈ u whenevert =A u, for all termst, u.

Definition 3 (Equational Bases and Finitely Based Algebras).An equational basis
for an algebraA is a sound axiom systemE that is complete with respect to=A. We
say that an algebraA is finitely basedif it has a finite equational basis.

The notion of completeness of an axiom system relates the proof-theoretic notion of
derivability using the rules of equational logic with the model-theoretic one of “validity
in a model”. From a proof-theoretic perspective, a useful property of an axiom system
E is that, for all termst, u ∈ (Σ),

E ` t ≈ u iff E ` σ(t) ≈ σ(u), for each closed substitutionσ . (1)

An axiom system with the above property is calledω-complete. In theorem proving ap-
plications, it is convenient if an axiomatization isω-complete, because this means that
proofs by (structural) induction can be avoided in favour of purely equational reason-
ing. In fact, suppose thatσ(t) ≈ σ(u) is provable from an axiom systemE, for each
closed substitutionσ. If E is ω-complete, then we know that an equational proof of
the actual equationt ≈ u from E exists. In general, the equationt ≈ u might not be
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derivable fromE if E is just ground complete. In that case, we might have to content
ourselves with showing that all closed instantiations of that equation are derivable from
E, and this is usually done by induction on the structure of the closed terms that can be
substituted for the variables occurring int andu.

Example 5.The collection of equations corresponding to the congruences listed in Ex-
ample 4 is easily seen to be ground complete with respect to=N . That axiom system
is, however, neither complete norω-complete. For example, the equation

x ∨ x ≈ x (2)

is valid in the algebraN , and all of its closed instantiations are provable from the three
equations in Example 4. However, the above equation itself isnot derivable from the
axioms in Example 4. (See Examples 7 and 8 for proofs of this claim.)

A finite basis for the algebraN is given by the following axiom system

x ∨ 0 ≈ x

S(x) ∨ S(y) ≈ S(x ∨ y)
S(x) ∨ x ≈ S(x)

x ∨ x ≈ x

x ∨ y ≈ y ∨ x and

x ∨ (y ∨ z) ≈ (x ∨ y) ∨ z .

It turns out that completeness andω-completeness are closely related properties of an
axiom system. Indeed, assume thatA is aΣ-algebra each of whose elements is deno-
table. Suppose thatE is sound and complete with respect to=A. It is not hard to argue
that, in this case,E is alsoω-complete.

Remark 1.For the aforementioned connection between the model-theoretic notion of
completeness and the proof-theoretic one ofω-completeness to hold, it is crucial that
each element in the algebraA be denotable. To see this, consider the signature consist-
ing of the constant⊥ and the unary function symbolP . Interpret this language over the
algebra having{0, 1} as carrier set, where⊥ is interpreted as0, andP is interpreted
as the constant function0. We claim that no basis for this algebra can beω-complete.
To see that this holds, note, first of all, that each closed term over the aforementioned
signature denotes the element0. Therefore each closed instantiation of the equation
P (x) ≈ x holds in the algebra, and is provable from the chosen basis. However, the
equationP (x) ≈ x is itself not provable. This follows becauseE is sound, and that
equation does not hold in the algebra, as can be seen by setting the variablex to 1.

Consider theΣ-algebra obtained by quotienting the set of closed terms T(Σ) with re-
spect to the congruence relation that equates two closed termst, u iff the equationt ≈ u
is provable from an axiom systemE. As a corollary of the aforementioned observation,
we have that an equational basis for that algebra is alsoω-complete.

One of the classic topics in the field of equational logic, and in its applications
in process algebra, is the study of results pertaining to the existence or non-existence
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of finite bases for algebras. In the realm of concurrency theory, van Glabbeek pre-
sented in [23, 24] the linear time-branching time spectrum of behavioral equivalences
for finitely branching, concrete, sequential processes. He studied these semantics in the
setting of the basic process algebra BCCSP, and tried to give finiteω-complete axioma-
tizations for them. In many cases this turns out to be a difficult question. Most of these
finite basis questions have been settled, either positively by giving a finiteω-complete
axiomatization, or negatively by proving that such an axiomatization does not exist.
But some open questions remain. The main aim of this paper is to survey such results.
Before doing so, however, we give a brief overview of some of the general proof tech-
niques that have been developed in the literature on universal algebra, and more specif-
ically within process algebra, to show that certain algebras afford a finite equational
basis, or that no such basis exists. These strategies will then be used in Sections 3–5 to
establish positive and negative results on the existence of finite bases for behavioural
congruences over several process description languages.

2.2 Methods for Establishing Positive Results

Assume that we have an algebraA and a (finite) axiom systemE that is sound with
respect to=A. How can we show thatE is complete or ground complete? There are
a few general proof techniques that have been applied in the literature to answer this
question, and we review some of those in the remainder of this section.

Normal Forms A classic strategy for showing that an axiom system is complete or
ground complete that has had a wealth of applications in process algebra relies on the
following two steps:

– Isolation of normal forms. In this step one finds a collection of terms, the so-
callednormal forms, with the property that each termt can be proved equal to a
normal form using the equations inE. In other words, the set of normal forms is as
expressive as the whole collection of terms modulo the equational theory generated
by E. (If we are aiming at showing that our axiom systemE is ground complete,
then the normal forms are closed terms, and it suffices only to prove that each closed
term is provably equal to a normal form using the equations inE.)

– Distinctness of normal forms.In this second step, one argues that two normal
forms are related by=A if, and only if, they are “identical”. This is often done by
showing that, for each pair of different normal forms, it is possible to construct an
environmentρ distinguishing them.

In applications of this method in process algebra, the former step in this proof strategy
is often carried out with the use of term rewriting techniques. In that case, the normal
forms are precisely those of the term rewriting system, and the analysis is complicated
by the need to consider rewriting modulo commutativity and associativity of certain
operators like alternative composition. Moreover, the isolation of a suitable notion of
normal form often requires considerable ingenuity, and is a difficult art.

Example 6.The aforementioned strategy based upon the isolation of suitable normal
forms for terms can be used to show that the axiom system presented in Example 5 is,

9



as claimed there, a finite basis for the algebraN . Indeed, a suitable set of normal forms
for terms over the signature of that algebra is given by the collection of terms of the
form ∨

i∈I

Sni(xi) ∨
∨

j∈J

yj [∨Sn(0)] ,

where

– I andJ are finite index sets,
– ni > 0, for eachi ∈ I, and
– the variablesxi (i ∈ I) andyj (j ∈ J) are all different.

The notation[∨{Sn(0)}] used in defining normal forms means that the termSn(0) is
optional. If that term is present thenn must be larger than each of theni (i ∈ I).

It is not too hard to argue that

1. each term can be proven equal to a normal form using the equations in Example 5
and

2. if t andu are different normal forms, then there is an environmentρ mapping
variables to natural numbers such thatρ(t) 6= ρ(u).

Therefore, as claimed in Example 5, that axiom system is a finite basis for the algebra
N . Since each element ofN is denotable (Example 3),E is alsoω-complete.

Inverted SubstitutionsA proof technique that can be used to prove theω-completeness
of an axiom system, and that originates from research in process algebra, was offered
by Groote in [26]. Groote’s strategy is based on proof transformations, and proceeds as
follows. Assume that we have an axiom systemE, and an arbitrary equationt ≈ u all
of whose closed instantiations are provable fromE. The first step in Groote’s “inverted
substitutions” strategy is to find a closed substitutionσ such that a proof of the equation
σ(t) ≈ σ(u) from E can be transformed uniformly to a proof of the equationt ≈ u.
This proof transformation is achieved by means of a mappingσ̂ : T(Σ) → (Σ) that
intuitively maps each closed term representing a variable to the variable itself. This
transformation yields the desired proof of the equationt ≈ u fromE, provided that the
technical conditions stated in the following theorem are met.

Theorem 1 (Groote [26]).LetE be an axiom system over signatureΣ. Assume that,
for each equationt ≈ u all of whose closed instantiations can be proven fromE, there
exist a closed substitutionσ and a mappinĝσ : T(Σ) → (Σ), satisfying the following
conditions:

1. E proves the equationŝσ(σ(t)) ≈ t andσ̂(σ(u)) ≈ u,
2. for each operation symbolf and termsu1, . . . , un, u

′
1, . . . , u

′
n, wheren is the arity

of f , the equation̂σ(f(u1, . . . , un)) ≈ σ̂(f(u′1, . . . , u
′
n)) is provable from those in

E and the equationsui ≈ u′i andσ̂(ui) ≈ σ̂(u′i) (1 ≤ i ≤ n) and
3. the equation̂σ(σ′(t1)) ≈ σ̂(σ′(t2)) is provable fromE for each(t1 ≈ t2) ∈ E

and closed substitutionσ′.

ThenE is ω-complete.
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The strategy for proving theω-completeness of axiom systems offered by the above
result has been applied with success by Groote and other researchers in the field of
process algebra, and, when applicable, often leads to simpler proofs than the standard
one based on normal forms. As remarked by Groote in [26], theω-completeness of the
finite basis for the algebraN given in Example 5cannotbe shown using the technique
in Theorem 1.

Giving Semantics to All TermsThe algebras that are used in the field of process de-
scription languages to interpret terms over some signatureΣ can all be characterized as
the quotient algebra T(Σ)/∼ of closed terms overΣ modulo some notion of congru-
ence∼. The interpretation of a closed term in this algebra is its congruence class with
respect to∼, and two arbitrary terms are congruent if, and only if, so are all of their
closed instantiations.

Another technique that has been developed in the field of process algebra to estab-
lish ω-completeness results for axiom systems relies on the following steps:

– Define the congruence relation∼ over all terms in (Σ) directly. The relation∼
should, of course, be defined over(Σ) in such a way that two terms are related by
∼ if, and only if, so are all of their closed instantiations. This means, in particular,
that an equationt ≈ u is sound in the quotient algebra T(Σ)/∼ exactly whent ∼ u
holds.

– Completeness over terms.In this second step, one proves that the candidate axiom
systemE is a basis for the quotient algebra of terms(Σ) modulo∼, and hence
for the quotient algebra ofclosedterms T(Σ) modulo∼. Since each element of the
algebra T(Σ)/∼ is denotable, it follows thatE is alsoω-complete.

To the best of our knowledge, this technique was first applied in [36] by Milner to show
completeness of his inference system for bisimulation equivalence over the regular frag-
ment of the Calculus of Communicating Systems (CCS) [37].

Cover EquationsThis technique from Fokkink and Nain [20] is tailored toBCCSP.
The aim is to obtain an explicit description of the equational theory for a particular
semantics. The central idea is that if an equationt ≈ u is sound forBCCSP modulo
some semantics in the linear time-branching time spectrum, thenu+t ≈ t andt+u ≈ u
are sound as well; and from the last two equations one can derivet ≈ u. This implies
that it is sufficient to only consider sound equations of the format + u ≈ u (wherea
denotes an action andt, u are BCCSP terms). These are called thecover equations.

When the cover equations have been classified, one can proceed in two ways. Either
one can determine an infinite family of cover equations that obstructs a finite basis, or
one can determine a finite basis among the cover equations.

2.3 Methods for Establishing Negative Results

To prove that a set of equations cannot be derived from a given, possibly finite, subset
of this set, we usually point out one specific equation in the superset, and prove that it
is not derivable from the subset. To show that an equational theory—that is, the set of
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equations that hold in a given algebra—is not finitely based, we extend this reasoning
by proving that foreachfinite subset of the theory, there is an equation that cannot
be derived from this finite set. Often we obtain this result by establishing a stronger
result: we identify a particular countably infinite sequence of equations in the theory
with some suitable properties, and show that no finite subset of the theory can prove all
of the equations in that sequence.

The proof techniques used for this purpose can roughly be divided into two cate-
gories: the model-theoretic techniques and the proof-theoretic ones. In what follows we
will try to describe the essence of these two main methodologies.

Model-theoretic TechniquesIf a set of equationsE is sound in an algebraA, we say
thatA is a model forE. By Birkhoff’s completeness theorem for equational logic [13],
each equation that is derived fromE holds inA, if A is a model forE. Thus, to prove
that an equationt ≈ u is notderivable fromE it is sufficient to find an algebra that is a
model forE but not of the equationt ≈ u.

Example 7.In Example 5 we claimed that equation (2) is not derivable from the axioms
in Example 4. As argued above, this can be proven by exhibiting a model of the axioms
in Example 4 where∨ is not idempotent. A simple example of such a model consists
of the collection of all finite strings over the symbola, where0 is interpreted as the
empty string, the unary operation symbolS is interpreted as the identity function, and
∨ is used to stand for concatenation.

In light of the previous observations, to prove that an equational theory is not finitely
based, one may therefore proceed as follows:

– isolate a countably infinite collection of equationsen (n ≥ 0) in the equational
theory,

– for each finite subsetE of the equational theory, construct an algebraAE that is a
model ofE, but in which some of the equationsen fail.

Examples of the application of this strategy may be found in, e.g., [1, 2, 16, 22].

Proof-theoretic TechniquesRecall that an equationt ≈ u is derivable from a set of
equationsE if there is a sequenceti ≈ ui (1 ≤ i ≤ n) of equations such that

– tn = t andun = u, and
– for each1 ≤ i ≤ n, the equationti ≈ ui is obtained by applying one of the

aforementioned inference rules using equations inE or some of the equations that
precede it in the sequence as premises.

Proof-theoretic techniques aim at showing thatt ≈ u is notderivable fromE, by estab-
lishing that no such proof sequence exists. This is often done by finding a property of
equations that

– holds true for each instantiation of the axioms inE,
– is preserved by the rules of equational logic—that is, if all of the equations that are

premises of the rule have the property, then so does the conclusion of the rule—,
and
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– fails for the equationt ≈ u.

This contradicts the existence of a proof for the equationt ≈ u from E, showing that
t ≈ u is not derivable from that axiom system.

Example 8.The aforementioned proof-theoretic strategy can be used to give an alter-
native proof that the idempotence of∨ is not derivable from the axioms in Example 4.
To this end, observe that the left- and right-hand sides of each axiom in Example 4
contain the same number of occurrences of each variable. It is not hard to see that this
property is preserved under equational derivations. On the other hand, the termx ∨ x
contains two occurrences of the variablex, whereas the termx has only one. It follows
that equation (2) is not derivable from the axioms in Example 4.

The proof-theoretic strategy we have just described can be applied to show that an
equational theory is not finitely based as follows:

– isolate a countably infinite collection of equationsen (n ≥ 0) in the equational
theory,

– for each finite subsetE of the equational theory, show that there is a property of
equations that is satisfied by all of the equations that can be derived fromE, but
that is not afforded by some of the equationsen.

Proof-theoretic techniques have found wide application in establishing that algebras
of processes do not afford a finite basis. In particular, all of the known proofs of the
negative results we survey in Sections 4 and 5 are based on applications of the afore-
mentioned proof-theoretic strategy.

Remark 2.An observation that can sometimes be used to show that an equational the-
ory does not afford a finite equational axiomatization relies on thecompactness theorem
(see, e.g., [15]). Assume that we have an infinite axiomatizationE for an equational the-
ory T . If T had a finite axiomatization, then, by the compactness theorem, some finite
subset ofE would be a complete axiomatization for the theoryT . Namely, sinceE is
complete, each axiom in the finite axiomatization forT could be derived fromE, and
each of these derivations uses only finitely many axioms inE. To prove thatT does not
have a finite axiomatization, it therefore suffices to show that, for each finite subsetE′

of E, there is an equation inE that is not provable fromE′. This can be achieved using
either of the two general proof strategies described above. Applications of this proof
methodology may be found in, e.g., [16, 17].

3 On Finite Bases for BCCSP

3.1 The Linear Time-Branching Time Spectrum

Van Glabbeek presented in [23, 24] the linear time-branching time spectrum of be-
havioural equivalences for finitely branching, concrete processes. In this section, for
the sake of completeness, we define the semantics in this spectrum.

A labelled transition systemcontains a set ofstates, with typical elements, and a
set of transitionss

a→ s′, wherea ranges over some set of labels. The setI(s) consists
of those labelsa for which there exists a transitions

a→ s′.
First we define four semantics based on simulation.
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Definition 4 (Simulations).Assume a labelled transition system.

– A binary relationR on states is asimulationif s0 R s1 ands0
a→ s′0 implys1

a→ s′1
with s′0 R s′1.

– A simulationR is a ready simulationif s0 R s1 anda 6∈ I(s0) implya 6∈ I(s1).
– A simulationR is a 2-nested simulationif R−1 is included in a simulation.
– A bisimulationis a symmetric simulation.

Next we define six semantics based on decorated versions of execution traces.

Definition 5 (Decorated Traces).Assume a labelled transition system.

– A sequencea1 · · · an, with n ≥ 0, is a traceof a states0 if there is a sequence of
transitionss0

a1→ s1
a2→ · · · sn−1

an→ sn. It is a completed traceof s0 if moreover
I(sn) = ∅.

– A pair (a1 · · · an, X), with n ≥ 0 andX ⊆ A, is a ready pairof a states0 if there
is a sequence of transitionss0

a1→ s1
a2→ · · · sn−1

an→ sn with I(sn) = X . It is a
failure pairof s0 if I(sn) ∩X = ∅.

– A sequenceX0a1X1 . . . anXn, with n ≥ 0 andXi ⊆ A, is a ready traceof a state
s0 if there is a sequence of transitionss0

a1→ s1
a2→ · · · sn−1

an→ sn with I(si) = Xi

for i = 0, . . . , n. It is a failure traceof s0 if I(si) ∩Xi = ∅ for i = 0, . . . , n.

Finally, we define two semantics based on possible futures and on possible worlds.

Definition 6 (Possible Futures/Worlds).Assume a labelled transition system.

– A pair (a1 · · ·an, X), with n ≥ 0 andX ⊆ A∗, is apossible futureof a states0 if
there is a sequence of transitionss0

a1→ s1
a2→ · · · sn−1

an→ sn whereX is the set of
traces ofsn.

– A states is deterministicif for eacha ∈ I(s) there is exactly one states′ such that
s

a→ s′, and moreovers′ is deterministic.
A states is a possible worldof a states0 if s is deterministic ands R s0 for some
ready simulationR.

Two statess ands′ aresimulation / ready simulation / 2-nested simulation equivalent
if there exist simulations / ready simulations / 2-nested simulationsR1 andR2 with
sR1 s

′ ands′R2 s. They arebisimilar if there is a bisimulation that relates them. They
arepossible futures / possible worlds / ready trace / failure trace / ready / failure / com-
pleted trace / trace equivalentif they have the same possible futures / possible worlds /
ready traces / failure traces / ready pairs / failure pairs / completed traces / traces.

The linear time-branching time spectrum is depicted in Figure 1, where a directed
edge from one semantics to another means that the source of the edge is included in the
target.

3.2 BCCSP

BCCSP is a basic process algebra for expressing finite process behaviour. Its signature
consists of the constant0, the binary operator+ calledalternative composition, and
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Fig. 1. The Linear Time-Branching Time Spectrum

unaryprefix operatorsa , wherea ranges over a nonempty setA of actions, called the
alphabet(with typical elementsa, b, c, d). Intuitively, closed BCCSP terms represent
finite process behaviour, where0 does not exhibit any behaviour,p+ q is the nondeter-
ministic choice between the behaviours ofp andq, andap executes actiona to transform
into p. This intuition is captured by the transition rules below, in whicha ranges over
A. They give rise toA-labelled transitions between BCCSP terms.

ax
a→ x

x
a→ x′

x+ y
a→ x′

y
a→ y′

x+ y
a→ y′

We usesummation
∑n

i=1 ti, with n ≥ 0, to denotet1 + · · ·+ tn, where the empty sum
denotes0.

The semantics in the linear time-branching time spectrum all constitute acongru-
encefor BCCSP, meaning thatp1 ∼ q1 andp2 ∼ q2 imply ap1 ∼ aq1 for a ∈ A and
p1 + p2 ∼ q1 + q2, where∼ ranges over the semantics in the spectrum.

3.3 Positive and Negative Results for BCCSP

In this section we will survey positive and negative results, and open questions, on the
existence of a finite basis for the equational theories of BCCSP modulo the equiva-
lences in the spectrum above. The axiomatizations that we will present for the different
semantics in the spectrum were mostly taken from [24].

In case of an infinite alphabet, occurrences of action names in axioms are interpreted
as variables (or action schemes).
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Bisimulation The core axioms in Table 1 are sound and ground complete forBCCSP
modulo bisimulation. Moller [38] proved using normal forms that this axiomatization
is ω-complete; Groote provided an alternative proof of this result in [26] using inverted
substitutions.

A1 x + y ≈ y + x
A2 (x + y) + z ≈ x + (y + z)
A3 x + x ≈ x
A6 x + 0 ≈ x

Table 1.The axioms for bisimulation.

2-Nested Simulation and Possible FuturesAceto, Fokkink, van Glabbeek and Ingolfs-
dottir [4] proved that BCCSP modulo any semantics no coarser than possible futures and
no finer than 2-nested simulation does not possess a finite sound and ground complete
axiomatization. The infinite family of equations that they used to prove this negative
result is defined as follows. LetE be any finite axiomatization for BCCSP that is sound
modulo possible futures. Let thedepthof a BCCSP termt be the largest number of
transitions in sequence thatt can exhibit. Pick anm such that

m > max{depth(t), depth(u) | (t ≈ u) ∈ E} .

Forn ≥ 0, let pn andqn be defined inductively as follows, for somea ∈ A:

p0 = a2m−10 q0 = am−10
pn+1 = apn + aqn qn+1 = apn

The equationspn ≈ qn for n ≥ 2 are sound modulo 2-nested simulation. However,
they cannot be derived fromE.

Ready SimulationVan Glabbeek presented a conditional axiom for ready simulation
equivalence:I(x) = I(y) ⇒ a(x + y) ≈ a(x + y) + ay. Blom, Fokkink and Nain
[14] showed that a sound and ground complete equational axiomatization forBCCSP
modulo ready simulation exists. It is obtained by extending the four core axioms with

a(bx+ by + z) ≈ a(bx+ by + z) + a(bx+ z)

wherea, b range overA. WhenA is infinite, Groote’s technique of inverted substitutions
can be applied to show that this axiomatization isω-complete. WhenA is finite, it
remains an open question whether BCCSP modulo ready simulation is finitely based.

Simulation A sound and ground complete axiomatization forBCCSP modulo simula-
tion is obtained by extending the four core axioms with

a(x+ y) ≈ a(x+ y) + ay
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WhenA is infinite, Groote’s technique of inverted substitutions can be applied to show
that this axiomatization isω-complete. When1 < |A| < ∞, it remains an open ques-
tion whether BCCSP modulo simulation is finitely based. When|A| = 1, simulation
equivalence coincides with trace equivalence, and we will see that in this case a finite
basis does exist.

Possible WorldsA sound and ground complete axiomatization forBCCSP modulo
possible worlds is obtained by extending the four core axioms with

a(bx+ by + z) ≈ a(bx+ z) + a(by + z)

WhenA is infinite, Groote’s technique of inverted substitutions can be applied to show
that this axiomatization isω-complete. Fokkink and Nain [20] showed that when1 <
|A| < ∞, BCCSP modulo any semantics no coarser than ready equivalence and no
finer than possible world equivalence does not possess a finite basis. (Note that ready
traces are within this semantic range.) Their proof of this negative result, which uses
cover equations and applies the compactness theorem to the equational theory for terms
of depth 1, is based on the following infinite family of equations:

a(
|A|−1∑

i=1

xi) +
|A|−1∑

j=1

a(
j−1∑

i=1

xi +
n∑

i=j+1

xi) +
n∑

j=|A|
a(
|A|−1∑

i=1

xi + xj + yj) ≈

a(
|A|−1∑

i=1

xi) +
|A|−1∑

j=1

a(
j−1∑

i=1

xi +
n∑

i=j+1

xi) +
n∑

j=|A|
a(
|A|−1∑

i=1

xi + xj + yj) + a(
n∑

i=1

xi)

These equations are sound modulo possible worlds forn ≥ |A|. However, any finite
axiomatization that is sound forBCCSP modulo ready pairs cannot derive them all.
When|A| = 1, possible world equivalence coincides with completed trace equivalence,
and we will see that in this case a finite basis does exist.

Ready TracesVan Glabbeek presented a conditional axiom for ready trace equivalence:
I(x) = I(y) ⇒ ax+ ay ≈ a(x+ y). Blom, Fokkink and Nain [14] showed that when
A is finite, a sound and ground complete equational axiomatization forBCCSP modulo
ready traces exists. It is obtained by extending the four core axioms with

a(
|A|∑

i=1

(bixi + biyi) + z) ≈ a(
|A|∑

i=1

bixi + z) + a(
|A|∑

i=1

biyi + z)

WhenA is infinite, they showed using the compactness theorem that a finite sound and
ground complete axiomatization does not exist. Their proof is based on the following
equations, forn > 0:

a(
n∑

i=1

(bic0 + bid0)) ≈ a(
n∑

i=1

bic0) + a(
n∑

i=1

bid0)

When1 < |A| < ∞, the aforementioned negative result from [20] (see the paragraph
on possible worlds) implies that BCCSP modulo ready traces does not possess a finite
basis. When|A| = 1, ready trace equivalence coincides with completed trace equiva-
lence, and we will see that in this case a finiteω-complete axiomatization does exist.
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Failure TracesVan Glabbeek presented a conditional axiom for failure traces (the same
one as for ready traces). Blom, Fokkink and Nain [14] showed using normal forms that
a sound and ground complete equational axiomatization forBCCSP modulo failure
traces exists. It is obtained by extending the four core axioms with

a(bx+ by + z) ≈ a(bx+ by + z) + a(by + z)
ax+ ay ≈ ax+ ay + a(x+ y)

WhenA is infinite, Groote’s technique of inverted substitutions can be applied to show
that this axiomatization isω-complete. When1 < |A| <∞, it remains an open question
whether BCCSP modulo failure traces is finitely based. When|A| = 1, failure trace
equivalence coincides with completed trace equivalence, and we will see that in this
case a finite basis does exist.

Ready PairsA sound and ground complete axiomatization forBCCSP modulo ready
pairs is obtained by extending the four core axioms with

a(bx+ by + z) ≈ a(bx+ by + z) + a(by + z)

WhenA is infinite, Groote’s technique of inverted substitutions can be applied to show
that this axiomatization isω-complete. When1 < |A| < ∞, the aforementioned nega-
tive result from [20] (see the paragraph on possible worlds) implies that BCCSP modulo
ready pairs does not possess a finite basis. When|A| = 1, ready equivalence coincides
with completed trace equivalence, and we will see that in this case a finite basis does
exist.

Failure Pairs A sound and ground complete axiomatization forBCCSP modulo failure
pairs is obtained by extending the four core axioms with

a(bx+ by + z) ≈ a(bx+ by + z) + a(bx+ z)
ax+ a(y + z) ≈ ax+ a(y + z) + a(x+ y)

Fokkink and Nain [21] proved using cover equations that whenA is infinite, this ax-
iomatization isω-complete. They also proved that whenA is finite, one extra axiom is
needed to obtain anω-complete axiomatization:

a(
|A|∑

i=1

bixi + y + z) ≈ a(
|A|∑

i=1

bixi + y + z) + a(
|A|∑

i=1

bixi + y)

Completed TracesA sound and ground complete axiomatization forBCCSP modulo
completed traces is obtained by extending the four core axioms with

a(bw + y) + a(cx+ z) ≈ a(bw + cx+ y + z)

Groote [26] proved using normal forms that in order to obtain anω-complete axiomati-
zation, one extra axiom is needed:

ax+ a(y + z) ≈ ax+ a(y + z) + a(x+ y)
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Traces A sound and ground complete axiomatization forBCCSP modulo traces is ob-
tained by extending the four core axioms with

ax+ ay ≈ a(x+ y)

Groote [26] proved using normal forms that this axiomatization isω-complete when
|A| > 1. When|A| = 1, it is not hard to see that one extra axiom,ax + x ≈ ax, suf-
fices to make the axiomatizationω-complete. Indeed, in that case, the algebra of closed
BCCSP terms modulo trace equivalence is isomorphic to the algebraN in Example 3.
(To the best of our knowledge this is the first time this last observation appears in print.)

3.4 Overview

Concluding, BCCSP has a finite sound and ground complete axiomatization for most
of the semantics in the linear time-branching time spectrum. Only for 2-nested simula-
tion and possible futures, and for ready traces in case of an infinite alphabet, such an
axiomatization does not exist.

Regardingω-completeness, matters are more mixed, especially when1 < |A| <
∞. The table below presents an overview, where+ means that there a finite basis,–
means that there is no finite basis, and? means that it is unknown whether a finite basis
exists. We distinguish between an infinite alphabet, a finite alphabet with more than one
element, and a singleton alphabet.

|A| = 1 1 < |A| <∞ |A| = ∞
bisim + + +
2-nes sim – – –
poss futu – – –
ready sim ? ? +
sim + ? +
poss worl + – +
ready tr + – –
failure tr + ? +
ready + – +
failure + + +
compl tr + + +
traces + + +

4 Parallelism

In this section we discuss extensions ofBCCSP with a binary operation‖ for parallel
composition. We only consider bisimulation semantics. The intuition is thatp ‖ q does
a move from either component, or establishes some kind of synchronization between
its components. The synchronization mechanism differs from one process description
language to another. For the sake of generality, we make use of the mechanism in-
corporated inACP, and show how it can be instantiated, e.g., to the synchronization
mechanism ofCCS.

ACP’s synchronization mechanism presupposes acommunication functionγ, i.e.,
a partial function

γ : A×A ⇀ A

such that for alla, b, c ∈ A:
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(i) if γ(a, b) is defined, then so isγ(b, a) and moreoverγ(a, b) = γ(b, a); and
(ii) γ(a, γ(b, c)) is defined iffγ(γ(a, b), c) is defined, and if both are defined, then

γ(a, γ(b, c)) = γ(γ(a, b), c).

The operational semantics of‖ is then given by the following transition rules:

x
a→ x′

x ‖ y a→ x′ ‖ y
y

a→ y′

x ‖ y a→ x ‖ y′
x

a→ x′, y b→ y′, γ(a, b) = c

x ‖ y c→ x′ ‖ y′

By additional assumptions onγ we can obtain the different versions of parallel compo-
sition that are encountered in the literature; we give three examples:

1. The assumptionγ = ∅ expresses that there is no communication at all, i.e., the
operation‖modelspure interleaving.

2. The assumption thatγ(a, γ(b, c)) is always undefined expresses that there is only
handshakingcommunication.

3. We get the operation for parallel composition ofCCS by assuming that
(a) A contains a special actionτ ;
(b) there is a bijection̄. onA−{τ} such that̄̄a = a andā 6= a for all a ∈ A−{τ};
(c) γ(a, ā) = γ(ā, a) = τ for all a ∈ A− {τ}, andγ is undefined otherwise.

Let BCCSP‖ be the extension ofBCCSP with ‖. A ground complete axiomati-
zation forBCCSP‖ modulo bisimulation equivalence is obtained by adding to the ax-
ioms A1–3,6 in Table 1 the equations generated by the so-calledExpansion Law: for
all t =

∑
i∈I aixi andu =

∑
j∈J bjyj :

t ‖ u ≈
∑

i∈I

ai (xi ‖ u) +
∑

j∈J

bj (t ‖ yj) +
∑

i∈I

∑

j∈J

γ(ai, bj)(xi ‖ yj) , (3)

with, for i ∈ I andj ∈ J , the summandγ(ai, bj)(ti ‖ uj) only present whenγ(ai, bj)
is defined. The result was first established by Hennessy and Milner [30].

Since the Expansion Law generates infinitely many equations, the aforementioned
ground complete axiomatization is infinite. If the set of actionsA contains at least one
elementa such thatγ(a, a) is undefined, then a finite ground complete axiomatization
is not possible, as shown by Moller [38, 40]. He establishes that there does not exist a
finite set ofBCCSP‖-equations, sound with respect to bisimulation equivalence, from
which all equations of the form

a0 ‖ ϕn ≈ aϕn +
n∑

i=1

aan (with ϕn =
n∑

i=1

ai, n ≥ 1) (4)

are equationally derivable. Moller carries out his proof in a pure interleaving setting
(i.e., γ = ∅), but it is easy to see that the assumption can be relaxed to:γ(a, a) is
undefined. First note that, with the relaxed requirement, the equations in (4) are still
sound with respect to bisimulation equivalence. Now, suppose there does exist a finite
basisE for BCCSP‖ modulo bisimulation equivalence. Then, since the equations in (4)
are sound with respect to bisimulation equivalence, they are all derivable fromE. Let
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E′ ⊆ E be the set of equations inE that are involved in the derivations of the equations
in (4). ThenE′ consists of equations in which no actions other thana occur (for if p
andq are bisimulation equivalent closedBCCSP‖-terms, thenp andq contain the same
actions). Obviously, the equations inE′ are all sound forBCCSP‖ with A = {a} and
γ = ∅, contradicting Moller’s result.

Moller’s result shows that for a finite axiomatization of parallel composition aux-
iliary operators are indispensable. Three such auxiliary operators have been proposed
in the literature: Bergstra and Klop introduced theleft merge(‖ ) in [8] and thecom-
munication merge(|) in [10], and Hennessy [29] introduced an operation that we call
Hennessy’s merge(|/). In the remainder of this section we discuss these auxiliary op-
erators in the context ofBCCSP. In the next section we examine the consequences of
replacing action prefixing inBCCSP by a binary operation for sequential composition.

4.1 Left merge

First we consider the special case of axiomatizing parallel composition under the pure
interleaving assumption (γ = ∅). In that case, as can be seen from the transition rules
for ‖, a parallel compositionp ‖ q either does a movep

a→ p′ from its left component
p and proceeds asp′ ‖ q, or it does a moveq

a→ q′ from its right componentq and
proceeds asp ‖ q′. So, intuitively, it is an alternative composition of two subprocesses.
The auxiliary operation left merge is a device for expressing these subprocesses in terms
of p andq; its operational semantics is given by the following transition rule:

x
a→ x′

x ‖ y
a→ x′ ‖ y

Using the left merge the intuition with respect to the behaviour of a parallel composition
can be captured in a single equation:

M x ‖ y ≈ x ‖ y + y ‖ x .

The axiom M and the axioms L1–3 in Table 2 allow the elimination of all occurrences
of ‖ and‖ from closed terms. (Bergstra and Klop [10] established a similar result in the
more general setting ofACP.) Hence, together with the axioms ofBCCSP in Table 1,
those equations constitute a ground complete axiomatization ofBCCSP‖,T.

L1 0 ‖ x ≈ 0

L2 ax ‖ y ≈ a(x ‖ y)

L3 (x + y) ‖ z ≈ x ‖ z + y ‖ z

L4 (x ‖ y) ‖ z ≈ x ‖ (y ‖ z)

L5 x ‖ 0 ≈ x

Table 2.The axioms for left merge.

An ω-complete axiomatization is obtained by adding the axioms L4 and L5 in Ta-
ble 2. Moller [38] proved this assuming thatA is infinite. He used the technique based
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on normal forms: first he showed that every term is provably equal to a normal form,
and then he argued that for distinct normal forms there is a distinguishing environment.
Moller used a distinguishing environment that substitutes a special action (not already
occurring in either normal form) for every variable, which is only possible if there are
infinitely many actions. Both the proof that every term is provably equal to a normal
form and the proof that normal forms can be distinguished are quite involved. It turns
out that Groote’s inverted substitutions technique also applies (see [26]), and the appli-
cation is in fact quite straightforward.

The requirement thatA is infinite seems essential for the application of Groote’s
technique. However, the authors have recently established that Moller’s proof can be
adapted with a distinguishing environment that only requires one action. So, ifγ =
∅, then the axioms ofBCCSP together with the axioms in Table 2 constitute a basis
for BCCSP‖,T modulo bisimulation equivalence, for each non-empty set of actionsA.
Hence, ifA is finite, thenBCCSP‖,T modulo bisimulation equivalence is finitely based.

4.2 Communication merge

C1 0 | x ≈ 0
C2 ax | by ≈ c(x ‖ y) if γ(a, b) = c
C3 ax | by ≈ 0 if γ(a, b) is undefined
C4 (x + y) | z ≈ x | z + y | z
C5 x | y ≈ y | x
C6 (x | y) | z ≈ x | (y | z)

C7 x | (y ‖ z) ≈ (x | y) ‖ z

Table 3.The axioms for communication merge.

If p
a→ p′ andq

b→ q′ andγ(a, b) = c, then the parallel compositionp ‖ q has the
extra option to perform the synchronization movep ‖ q c→ p′ ‖ q′. The communication
merge provides notation for this part of the behaviour of a parallel composition; its
operational semantics is given by the following transition rule:

x
a→ x′, y b→ y′, γ(a, b) = c

x | y c→ x′ ‖ y′

Of course, if synchronization is possible, then the axiom M is not sound and needs to
be replaced by:

M’ x ‖ y ≈ (x ‖ y + y ‖ x) + x | y .

Using the axiom M’, the axioms L1–3 in Table 2 and the axioms C1–5 in Table 3
all occurrences of‖, ‖ and | can be eliminated from closed terms. Hence, together
with the axioms ofBCCSP in Table 1, those equations constitute a ground complete
axiomatization ofBCCSP‖,T,|.
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Let us now considerω-completeness. Note that it critically depends onγ whether
certain equations between terms with variables are sound. For instance, the equation

x | y ≈ 0

is sound ifγ = ∅, but if there exist actionsa andb such thatγ(a, b) is defined, then it
is clearly not sound.

Groote [26] proved that ifA is a commutative semigroup underγ (which means
thatγ is an associative and commutative total function onA), andA is moreover freely
generated by some infinite subset, then the axioms ofBCCSP in Table 1 together with
M’ and the axioms in Tables 2 and 3 constitute anω-complete axiomatization. (Of
course, sinceγ is total, the axiom C3 is superfluous in this axiomatization.) It is an
open problem whether it is necessary to requireA to be generated by aninfinite subset.

If γ satisfies the requirement thatγ(a, γ(b, c)) is undefined for alla, b, c ∈ A (i.e.,
there is only handshaking communication), then the axiom

H x | y | z ≈ 0

is sound. We conjecture that ifA is non-empty andγ implements theCCS communi-
cation mechanism, then the axioms M’ and H together with the axioms in Tables 1, 2
and 3 constitute anω-complete axiomatization.

4.3 Hennessy’s merge

In [29], Hennessy proposed another auxiliary operator, using it in his axiomatizations of
observation congruence and timed congruence.Hennessy’s merge, as we call it, com-
bines the behaviour of the left merge and the communication merge. Its operational
semantics is given by the following transition rules:

x
a→ x′

x |/ y a→ x′ ‖ y
x

a→ x′, y b→ y′, γ(a, b) = c

x |/ y c→ x′ ‖ y′
Note that with Hennessy’s merge, parallel composition is definable with the following
equation:

x ‖ y ≈ x |/ y + y |/ x .

This may seem promising for the existence of a finite axiomatization of parallel compo-
sition that only uses Hennessy’s merge as auxiliary operation. However, as was already
conjectured by Bergstra and Klop in [10], it turns out that the operation itself cannot
be finitely axiomatized. Assuming theCCS synchronization mechanism (see the begin-
ning of Section 4), the authors recently proved in [3] that there does not exist a finite set
of soundBCCSP‖,|/-equations from which all equations of the form

a0 |/ ψn ≈ aψn +
n∑

i=0

τai (with ψn =
n∑

i=0

āai, n ≥ 0)

are equationally derivable.
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4.4 Overview

In the table below we summarize the results and open problems discussed in this sec-
tion. A + in the first (respectively, second) column means that there exists afinite ground
complete (respectively,ω-complete) axiomatization, a– means that such an axiomati-
zation does not exist, and a? means that it is unknown whether such an axiomatization
exists.

ground completeω-complete
BCCSP‖ – –
BCCSP‖,T + +
BCCSP‖,T,| (handshaking) + ?
BCCSP‖,|/ – –

Moller’s result shows thatBCCSP‖ has no finite ground complete axiomatiza-
tion. With the two auxiliary binary operations‖ and | of Bergstra and Klop a finite
ground complete axiomatization becomes possible. If one assumes pure interleaving,
then adding only‖ suffices, and then there even exists a finiteω-complete axiomati-
zation. It remains an open problem whether it is possible to axiomatizeBCCSP‖ with
arbitrary handshaking or theCCS synchronization mechanism adding only one auxil-
iary binary operation.

5 Sequential composition

In this section we discuss the consequences of having sequential composition instead
of action prefixing. We remove the constant0 and the unary prefixesa from BCCSP,
and replace them by a binary operation· for sequential composition, treating the actions
in A as constant symbols. Thus we get the signature ofBPA [10]. The transition rules
for actions and sequential composition are as follows:

a
a→ √ x

a→ x′

x · y a→ x′ · y
Note the special state

√
that we use to write the transition rules; it signals successful

termination. To make the rules work, we stipulate that
√·x = x and

√‖x = x‖√ = x.
We also require that bisimulations relate

√
only to

√
.

A1 x + y ≈ y + x
A2 x + (y + z) ≈ (x + y) + z
A3 x + x ≈ x
A4 (x + y) · z ≈ x · z + y · z
A5 (x · y) · z ≈ x · (y · z)

Table 4.The axioms for alternative and sequential composition.
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The axioms ofBPA are obtained by taking the first three axioms ofBCCSP, adding
that · distributes from the right over+ and that· is associative. For the sake of clarity,
we list them all in Table 4. It is folklore that they constitute a ground complete axiom-
atization ofBPA. Moreover, the axiomatization isω-complete. As far as we know, this
latter result does not explicitly appear in print, but a proof can be extracted from the
ω-completeness proof forPA [19] that we discuss below.

In [39], Moller adapted his proof thatBCCSP‖ is not finitely based to the setting
with sequential composition. The infinite family of equations he uses to establish this
result is obtained from the equations in (4) by the obvious translation (replace action
prefixes by actions and sequential compositions, and omit all occurrences of0).

M1 x ‖ y ≈ x ‖ y + y ‖ x

M2 a ‖ x ≈ a · x
M3 a · x ‖ y ≈ a · (x ‖ y)

M4 (x + y) ‖ z ≈ x ‖ z + y ‖ z

M5 (x ‖ y) ‖ z ≈ x ‖ (y ‖ z)

M6 (x · α) ‖ α ≈ (x ‖ α) · α
Table 5.The axioms for merge and left merge.

The signature ofPA combines that ofBPA with ‖ and‖ . Parallel composition
in PA stands for pure interleaving (i.e.,γ = ∅), so the relation between‖ and‖ is
expressed by the axiom M1 in Table 5. For a ground complete axiomatization ofPA it
suffices to add the first four axioms in Table 5 to the axioms ofBPA. Fokkink and Luttik
proved in [19] that if M5 and M6 are added too, then the axiomatization isω-complete.
Theα in M6 ranges over finite sums of distinct actions. The equation that results by
replacing both occurrences of‖ in M6 with ‖ is also sound (it is an instructive exercise
to derive it using M6 and the other axioms). It is an example of a so-calledmixed
equation, equating a parallel composition and a sequential composition. There is a deep
theory of mixed equations developed by Hirshfeld and Jerrum [31] for the benefit of
their proof that bisimulation equivalence is decidable for normedPA. The proof in [19]
that the presented axiomatization isω-complete partly relies on their theory.

Incorporation of synchronization can be done by adding a communication merge
and replacing the axiom M1 by M’. It is not difficult to adapt the axioms in Table 3
in such a way that all communication merges can be eliminated from closed terms;
thus a ground complete axiomatization can be obtained. Note that this does require the
addition of a special constantδ that will assume the rˆole of0; it satisfies

δ · x ≈ δ

x + δ ≈ x .

There are no knownω-completeness results pertaining to the extension ofBPA with
‖, | andδ. It would again be necessary to make some assumptions about the synchro-
nization mechanism. If there is only handshaking communication, then the equations

(· · · (((x1 | x2) · y1 ‖ z1) · y2 ‖ z2) · · · · yn ‖ zn) | x3 ≈ δ (n ≥ 0)
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are sound. We conjecture that there does not exist a finite set of sound equations from
which they are all derivable.
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