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Secure Computing, Economy, and Trust

A Generic Solution for Secure Auctions with

Real-World Applications

Peter Bogetoft∗ Ivan Damg̊ard † Thomas Jakobsen†

Kurt Nielsen∗ Jakob Pagter† Tomas Toft†
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Abstract

In this paper we consider the problem of constructing secure auc-
tions based on techniques from modern cryptography. We combine
knowledge from economics, cryptography and security engineering and
develop and implement secure auctions for practical real-world prob-
lems.

In essence this paper is an overview of the research project which
attempts to build auctions for real applications using secure multiparty
computation.

The main contributions of this project are: A generic setup for
secure evaluation of integer arithmetic including comparisons; general
double auctions expressed by such operations; a real world double auc-
tion tailored to the complexity and performance of the basic primitives
+ and ≤; and finally evidence that our approach is practically feasible
based on experiments with prototypes.

∗Dept. of Economics, Agricultural University, Copenhagen
†Dept. of Computer Science, University of Aarhus
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1 Introduction

The area of secure auctions combines three different areas of research: eco-
nomics (mechanism design), cryptology, and security engineering.
From economy and game theory, it is well known that many forms of auc-
tions and trading mechanisms rely on/can benefit from a trusted third party
(TTP), also known as a mediator or social planner. As an example, the pres-
ence of a TTP prevents misuse of information that must be available to play
the optimal strategy. Possible misuse of this information may significantly
alter the game. Also a TTP may coordinate otherwise unattainable cor-
related equilibria, which may be of greater value to the players than other
equilibria. However, in a real application, it will often be the case that
such a TTP cannot be found, or is very expensive to establish (since one
basically has to counter-bribe it). In short, our goal is to investigate if a
distributed software solution based on modern cryptography can provide a
realistic and/or cheaper substitute for a single TTP.
Previous research in secure auctions has primarily been of a theoretical na-
ture because the cryptographic building blocks have appeared to be too
complex for practical applications.
In this paper we provide an overview of a research project which—among
other things—seeks to augment the current line of research on secure auc-
tions with a practically oriented dimension. In the paper we give

• A brief overview of related work on secure auctions.

• An overview of practical cryptographic protocols which securely imple-
ments the basic arithmetic operations (including comparisons) based
on so-called threshold trust. The full detail of these protocols can be
found in (30).

• An overview of two specific auctions which are practically realizable
based upon the protocols above. Specifically we present a traditional
double auction and a specialized version of this used for exchanging
agricultural production contracts. The full detail of these auctions
can be found in (31), but the details of the applications areas are held
confidential due to commercial interests of the industry partners.

• Evidence that all of the above is indeed practically realizable. First we
argue that the complexity of the proposed protocols and mechanisms
is low, and second we report empirical results from actual software
implementations.
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2 Secure Auctions

Secure auctions are emerging as a field of research in its own right. In recent
years a number of contributions have been made (e.g. (18; 28; 4; 5; 6; 40;
24)), and the topic is also closely related to another hot topic, namely that
of secure voting.

Due to the frequent usage and theoretical simplicity, the research focus has
primarily been on sealed-bid on-line auctions, where bidders submit secret
bids to the auctioneer who then decides the price and the winner of the
auction. If the price equals the winning offer, the auction is usually referred
to as a first price auction. This differs from a second price auction, where the
highest bidder wins but only pays the second highest bid. Many approaches
using cryptography has been proposed. Naive solutions include the simple
protection of the communication of bids from bidders to the auctioneer. In
these solutions, the auctioneer is considered as trusted.

Such solutions however are vulnerable. In a first price auction, for example,
a specific buyer and the auctioneer may collude to ensure that the specific
buyer bids just above the second highest bid and hereby wins the auction
while paying the least possible to the seller. In a second price auction the
seller may collude with the auctioneer and submit an extra bid just below
the highest bid hereby ensuring that his object is sold at the highest possible
price. This also goes for the general Vickrey Clark Groves approach, where
each participant i is given the drop in social welfare of the others caused by
i’s participation as information rent. As in a second score auction, submit-
ting the right extra bid can ensure the seller extra information rent at no
cost. In general, the auction literature contains numerous example of player
collusions.

In this paper, our primary motivating application is the case of double auc-
tions with many sellers and buyers (hundreds or thousands), and where a
single divisible commodity is being bought and sold. Bidding in such an
auction involves submitting your full strategy to an auctioneer, i.e., bid-
ders should specify the quantities they want to sell or buy as a function of
the price per unit. Based on the bids, the auctioneer then computes the
so called market clearing price, i.e., the price that best balance aggregated
demand and supply. Clearly, knowledge of individual bids may be of great
value to others, who may use this knowledge to better their own situation.
It is important to note that this does not only apply to the current auction
going on. A bid contains information about the bidder’s general economic
situation, and such information can be (mis)used in many other contexts.

3



Hence, if bidders are not fully convinced that their bids are kept private,
they may deviate from playing the otherwise optimal strategy.

The problems described here represent two important trends of security
issues in on-line auctions, namely manipulation of the auction result and
attempts to gain from knowing individual bids. Assuming that the commu-
nication of bids is secure, the auctioneer is the primary target of attacks on
both off- and on-line auctions. Hence much work has been done on how to
ensure the trustworthiness of the auctioneer1.

The table below provides an incomplete list of possible security properties for
secure on-line auctions in terms of some of the traditional security properties.

Integrity Confi-
dentiality

Avail-
ability

Bid bids are
unaltered

nobody
learn bids

bids can be
made

Bidder n/a anonymity n/a
Result correctness may be re-

stricted
auction
can be
completed

Pay-
ment

non-
repudiation

n/a n/a

Of course, not all properties are relevant for every auction. As argued above,
most of the work cited here, as well as our own work, focus on two properties,
namely bid confidentiality and result integrity.

The way these properties are enforced is typically by means of cryptography.
Using standard technology, it is straightforward to encrypt and sign bids
which are then sent to the auctioneer. The primary problem to address is
therefore how we can remove or reduce the need to put all our trust in a
single auctioneer? The basic idea is to replace trust in one party by trust
in many by distributing the responsibility of proper behavior amongst a
number of parties. There are different ways to do this.

Semi-trusted TTP (7) and (3) use the notion of a semi-trusted TTP.
This is basically an auctioneer who does not collude with any of the partic-
ipants. For some applications this is useful, but it should be evident from
the above examples that this approach is not sufficient in many situations,
including our specific applications commented on below.

1There are many other threats towards auctions. Most importantly, collusion among
the participants also known as bidding rings. Though in auctions with many participants
bidding rings are unlikely to be successful.
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Two TTPs (28) introduced the idea of splitting the responsibility of solv-
ing the auction and actually do the necessary computations among two par-
ties. Their approach uses so-called Yao encryption, (43).

(16) make the same split but use different cryptographic tools. (39) apply
the same technique to continuous double auctions.

It has also been suggested to split trust among the auctioneer and the
seller, but one should note that this in fact leaves the solution vulnerable to
auctioneer–seller collusion as discussed above.

Multiple TTPs This approach is based on threshold trust and multi-
party computation (MPC) (see e.g. (36; 21; 13)).

The basic idea is that 1) a value (e.g. a cryptographic key) can be shared
among n parties so that any subset of at most t (the threshold) parties
cannot reconstruct the value, but any subset of size at least t+1 can; and 2)
one can make computations on the shared values. One can then replace the
TTP with a network of TTPs that together emulate the actions of the single
TTP. Instead of trusting 1 TTP one now has to trust that at most t out
of n will collude or be hacked. These TTPs could even be the participants
in the auction (with a threshold t = n − 1). (6) calls this self-trust, as any
player need only trust himself.

The notion of self-trust seems very appealing, but has limitations from both
practical as well as theoretical perspectives. Theoretically it is not obvious
that it is sound from a game theoretic, i.e. auction design, point of view. In
(14) it is shown that for two player games one can indeed use cryptography
to securely simulate the mediator (i.e. TTP) using self-trust; the crux of
the matter is how to punish (in the game) players who cheat in the crypto-
graphic protocol. In cryptographic protocol theory a player caught cheating
is eliminated, but this is often not a feasible approach in game theory. Also,
from a practical perspective it may not be feasible to perform a computation
which require active participation from, say, 5000 producers.

2.1 Contributions and Relation to Previous Work

To our knowledge the only other secure double auction is that of (40). They
realise two types of double auctions, McAfee and Yokoo, both of which only
auction a single item. Our auctions handle multiple items (in fact, one of
our real-life auction handles multiple items of three different goods).
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Using our basic protocols as building blocks, we can realise all of the auctions
described above which use trust based on multiple TTPs, i.e. trust based
on MPC.

The central primitive to implement is secure comparison of integers that
are shared among the TTP’s. That is, compute which of two numbers is
larger, without revealing further information on the numbers. We have
implemented two techniques for doing this, one of which is new, and the
other is similar to the construction of (28), i.e., it is based on so called Yao-
encrypted circuits, which we generalize from the two-party to the multi-party
case 2. A similar generalization was done previously in (15), our solution
is tecnically somewhat different but offers the same functionality. In our
typical application, it is possible to preproces some data before the auction
starts. This makes Yao-encryption attractive because most of the work done
does not depend on the actual inputs. However, we found that even using
preprocessing, Yao-encryption is not faster than the new technique—which
is simpler to manage because it does not require preprocessing. We give
details later on how the techniques compare.

From the perspective of implementation this paper contributes the first—
to our knowledge—practically feasible implementation of the multiple TTP
trust model based on MPC. We are currently only aware of similar work by
Malkhi et al. (25) and Feigenbaum et al. (17). Malkhi et al. use a two TTP
trust model based on Yao encryption and constructs a full system called
FairPlay including a special purpose language and compiler (this system is
available on-line, see (25)). They implement several functions in this system
and provide benchmarks on performance. The system of Feigenbaum et
al. is dedicated to a particular problem, a salary survey. Their procotol
supports a multiple TTP trust model, but their current implementation
only use two TTPs. In fact, the implementation of Feigenbaum et al. uses
parts of the FairPlay system. Other implementations of MPC do exist, for
instance within voting . Here implementations using multiple TTPs exist.
We are not aware of any implementations of self-trust.

Our implemented system use a multiple TTP trust model, can compute any
arithmetic function based on additions and comparisons (and in fact also
multiplications). To our knowledge this is the first implementation using a
multiple TTP trust model, and our results give strong empirical evidence

2Yao-encryption is a technique by which an algorithm (circuit) for computing a function
can be “encrypted” in such a way that given the encrypted input, the function can be
computed without revealing further information on the inputs
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that our protocols are sufficiently efficient for real-world applications. To
some extent this adresses an open challenge from Malkhi et al. (25).

We note that the work of (30) and (31) represent individual contributions
which are closely related to the work presented here.

3 The Scenario

We have the following players in our protocols

• Input Clients, who supply inputs to the computation. In a typical
application, input clients submits bids to an auction. The number of
input clients may be several hundreds or even thousands.

• A set of n TTP’s, who are responsible for executing the computation,
such as computing an auction result. We assume that input clients
can communicate privately with the TTP’s, and also that TTP’s can
broadcast information to all TTP’s. We want the computation to be
secure, even if up to t of the TTP’s are corrupted by an adversary.
Typical values of (n, t) might be (3,1) or (5,2).

4 Secure Arithmetic

In the following chapter we describe how our security goals are specified and
how we reach them.

4.1 Desirable Security Properties

The security properties can be defined in several ways. The traditional ap-
proach is to list the security properties that you would like the system to
have and then argue that the system indeed realises these properties. A re-
cent alternative is to use the concept of Universal Composability (UC) (8),
which goes beyond looking at specific security properties such as bid confi-
dentiality by instead defining security relative to an idealised system.
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4.2 Universal Composability

In the UC framework you first describe an idealised version of your system,
a so called ideal functionality which by assumption cannot be corrupted by
anyone. This functionality acts as a specification of the security properties
and input/output behavior you would like your protocol to have. Then you
prove under appropriate cryptographic assumptions that your implementa-
tion realises the idealised functionality. This - in a well-defined technical
sense - means that using the protocol is equivalent to using the ideal func-
tionality. In other words, the protocol inherits all the security properties
that the ideal functionality has. This includes those it was designed to have,
but also security properties that you were not initially aware of. Another
benefit is that the UC framework guarantees composability in the sense that
1) the UC security of a certain protocol is not affected by how it is used and
2) one implementation of an idealised system may be replaced by any other
implementation. This composability property allows us to plug’n’play dif-
ferent implementations of the same system.

4.3 An Idealised Functionality for Secure Arithmetic

We informally define our ideal functionality below. For a formal definition
as well as proofs that the protocols described below actually provide a UC
implementation of this system see (30).

Our ideal functionality can be thought of as a computer which can securely
do the following:

• Confidentially receive as input a set of integers from each input client.

• Execute one out of a number of built-in straight-line programs. Which
program to execute is determined from the inputs. Each program may
use the standard integer arithmetic operations and comparisons (actu-
ally, addition and comparison is sufficient for our main applications).
An operation like a ≤ b by definition returns 1 if the condition is true
and 0 otherwise. The programs are public and part of the specification
of the functionality. The outputs may be any of the values computed
underway.

• Send the outputs of the program to the players.

8



This may be seen as a definition of a totally trustworthy impartial mediator,
or TTP, which can compute any function using the listed instructions. By
definition of the functionality, nobody learns the input from the individual
participants, the computation is executed correctly, and the intended result
and only the result is made public. So if we use this functionality to imple-
ment an auctioneer, we clearly have bid confidentiality and result integrity
– provided, of course, that the required computations for the auctioneer can
be specified as a (set of) program of the form mentioned above. As we shall
see, this is indeed possible in several scenarios.

Notice that even if each operation provided by the functionality is straight-
line, we can still execute a non straight-line algorithm by calling the func-
tionality several times, letting the choice of operation depend on previous
outputs. This assumes, of course, that it is secure makes these outputs
public.

4.3.1 Trust and Assumptions

In (30) an implementation of the ideal functionality described above is pre-
sented, where the joint operation the n TTPs securely realizes the ideal
functionality.

The protocols are shown to be secure under standard cryptographic assump-
tions, namely existence of a secure public-key cryptosystem and a secure
pseudorandom function. Under these assumptions, the protocols can toler-
ate any set of less than n/2 TTP’s being passively corrupt, i.e. they may
share all their information but they continue to follow the protocol. Ac-
tive corruption, where corrupted parties may deviate from the protocol, can
also be handled. Using standard methods, less than n/3 corruptions can
be tolerated at the expense of a factor n in complexity, and still terminate
the protocol correctly. However, one may argue that the focus should be
on detecting that the protocol was not followed, rather than guaranteeing
that it terminates correctly. This allows to tolerate less than n/2 active
corruptions at a small constant factor cost, compared to the passive case.
The motivation for handing active corruption this way is that in a typical
application, TTP’s will be large organizations, public institutions and the
like, that have an interest in the auction being completed, and would suffer
severe damage to their reputations if they were found to have obstructed the
protocol. Hence the guarantee that any form of cheating will be detected,
can be expected to strongly motivate TTPs to follow the protocol.
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It is even possible to tolerate corruption of all but one TTP, however, in this
case it is not possible to guarantee that the protocol terminates, no matter
the cost. This requires that we use in addition a threshold homomorphic
public-key cryptosystem, and incurs a significant cost for tolerating active
cheating.

In general, the protocols are proved secure for a static adversary. This is
because we use the pseudorandom secret sharing technique from (11), in
order to reduce the required interaction, and this technique is only known
to be statically secure. At the expense of some loss of efficiency, we could
do without this technique and have adaptively secure protocols.

We essentially assume that the clients giving input always follow the proto-
col. This assumption could be removed at the expense of some efficiency,
however, such participants in a typical application will be bidders in an
auction, who take part because it is in their interest to do so. The cho-
sen auction mechanisms make sure that they can expect no economic gain
from providing inputs of incorrect form. Hence protecting against dishonest
bidders is not our first priority, and is handled only by having the client
software check that the inputs are contributed correctly.

4.4 Protocols

Appendix A contains an overview of the protocols from (30) for the inter-
ested reader. Since our goal in this paper is to report on the implementation
and its implications, we only give a short summary here.

We base the representation of input values on Shamir Secret sharing modulo
a prime p. Thus, input clients provide input by distributing shares of the
inputs privately to the TTP’s (this is implemented using public-key encryp-
tion). We use the pseudorandom secret sharing technique from (11), this
allows us to create sharings of random values without interaction, and also
saves work in several other cases.

This immediately allows addition, multiplication and multiplication by con-
stants modulo p using standard techniques. Say input numbers have bit
length at most w bits. Then by choosing the prime p such that it is much
larger than 2w, say p ' 22w, we can allow some number of additions and
multiplications while avoiding reductions mod p, i.e., we obtain a limited
number of integer additions and multiplications. This turns out to be suffi-
cient for our purposes.
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Comparison is more involved and seems to require that we look at individual
bits of a shared number. For instance, if we know about shared numbers a, b
that 0 ≤ a, b < 2l, we can easily compute shares in the number 2l+a−b, and
we have a ≥ b if and only if the l+1’st least significant bit of 2l +a−b is set.
Converting shares mod p of an unknown number to shares of individual bits
is possible, but quite cumbersome (see (1)). In (30), a different approach
is taken by observing that it is much easier to compute a random shared
number together with shares of its individual bits. This can be done in
a preprocessing phase. Once the inputs are supplied, we can combine the
preprocessed data with the shares of 2l + a − b to get securely the bit we
are after. This requires an on-line effort of O(log w) communication rounds
where each TTP receives a total of O(wn log n) bits. It is even possible to
have a constant-round solution, at the expense of (at least) an additional
factor w on the communication complexity. However, this will not be an
advantage in our particular case.

Thus, the conclusions on the protocols are that secure addition requires no
communication, opening of a secret value requires one round of commu-
nication, and that comparisons require several rounds, i.e., they are more
expensive, but manageable. Thus when designing algorithms, the amount
of comparisons should be kept at a minimum.

5 Auction Design

The application of auctions has a very long history but the theory of auctions
is rather new and has developed along with the discipline of information
economics. Klemperer (23) provides a recent survey. An auction is basically
a set of trading rules, and auction design aims at finding rules that ensure
a desired outcome. An auction may improve the allocation of goods and
services, e.g. by introducing a pricing setting mechanism that leads to more
profitable trading, by concentrating the market, or by making the market
more transparent.

The central difficulty in auctions is that of private information. The bid-
ders have private information, e.g. about their preferences or production
costs. This information is needed - directly or indirectly - to determine an
optimal allocation. On the other hand, economic agents cannot be trusted
to reveal their private information unless they are given the right incentives
to do so. There are at least two reasons why direct or indirect revelation
cannot be accomplished. First, the agents may try to act strategically to
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influence the auction outcome in their own favor. By taking advantage of
their information they might possibly get a better share of the reallocation
gains. Secondly, even if strategic manipulations does not pay in the auction,
e.g. because each agent is sufficiently small to have any significant impact,
the agents may still be reluctant to reveal their private information since
they may fear that it can be misused in later or parallel markets. Farmers,
for example, may not trust a monopsonist processor to run an auction to
reallocate production contracts since they may fear that the processor will
be able to learn the marginal costs of the individual farmers and use this in
subsequent negotiations.

An important group of auctions provide incentives to reveal truthful in-
formation. They are typically called direct revelation mechanisms, and a
central result in mechanism design states that for any mechanism there ex-
ists a direct revelation mechanism that yields the same result. The idea
of this so-called revelation principle is that an impartial mediator or social
planner uses the revealed information in the best interest of the parties. To
avoid that the parties would be better off giving plausibly false information,
the planner must restrict the way he uses the information - and he must
be able to commit to this restricted usage. In many cases, this is neither
trivially nor cheaply accomplished. A mediator may be tempted or bribe to
misuse the information he acquires in pursue of his own or a specific bidder’s
particular interests.

The lack of a trusted impartial social planner - or a trusted third party
TTP to use the terminology above - that can compute the optimal outcome
is hereby a major obstacle in mechanism design, see also e.g. Rothkopf et
al. (33). It follows that the construction of this impartial social planner
must be the core issue in research on secure auctions. The idealized system
described in section 4.3 illustrates this impartial computer that may imitate
the desired social planner.

In spite of the theoretical advantage of the direct revealing mechanisms,
other requirements may alter the choice of auction. In more complicated
allocation problems, the necessary truthful information may be overwhelm-
ingly large and the computations too complex. However, if the participants
understand the mechanism, truth-telling is a simple strategy. This is an
important requirement that is emphasized in the so-called Wilson’s doctrine
on detail-free mechanisms, Wilson (42)3.

3of the general criteria for selecting a mechanism, see e.g. Schotter (35)
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5.1 The Double Auction

A relatively small fraction of the literature on auctions considers multi-
unit double auctions where sellers and buyers reallocate multiple units of
a product or a service. These auctions are sometimes called exchanges, we
refer to them simple as double auctions or two-sided auctions. Some of the
most important real world markets are double auctions, e.g. the typical
stock exchanges.

To thoroughly study a double auction one needs an equilibrium model. At-
tempts have been made to introduce strategic behavior in double auctions
by invoking a series of further simplifications, see e.g. Wilson (41) and
Amir et al. (2). However, in general, the problem of solving for equilibria in
multi-unit auctions is analytically intractable, Gordy (22, p. 450).

The literature on double auctions focuses in particular on three problems:
1) incentive compatibility (i.e. truth-telling must be an optimal bidding
strategy), 2) ex post efficiency (i.e. the realization of all trades that improve
social welfare) and 3) budget balancing (i.e. the aggregated value sold must
equal the aggregated value bought). The two first problems follows from
the so-called Myerson-Satterthwaite theorem, Myerson (27). It says that
delays and failures are inevitable in private bargaining if the goods start
out in the wrong hands. This follows from the central observation that in
any two-persons bargaining game the seller have incentives to exaggerate its
value and the buyer has incentives to pretend the value is low. There have
been a few attempts to design truth-telling double auctions, see McAfee (26)
and Yoon (44; 45). Attempts to solve the first two problems is typically at
the cost of the third problem of balancing the budget. Fortunately, the
magnitude of the three problems diminish as the number of participants
grows.

The markets considered in the specific implementations of this project are
two-sided and consist of a large number of participants. We therefore assume
that the buyers and sellers are non-strategic price-takers. They do not spec-
ulate in the price effect of demand and supply reductions. This assumption
can be justified by several observations. First, this is a two-sided auction
with elastic supply and demand. Any attempt to influence the price has a
smaller effect in a two-sided auction than a one-sided auction with in-elastic
supply. Second, we consider a market with a high number of participants.
This makes every participant marginal. Third, several empirical studies and
laboratory experiments have shown that the double auctions are very stable,
i.e. they are robust against strategic behavior. Test auctions with as few
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as 2-3 buyers and 2-3 sellers have generated almost efficient outcomes ((19)
and (20)). Fourth, Satterthwaite and Williams (34) show analytically that
a double auction modelled as a bayesian game converges rapidly towards ex
post efficiency as the market grows.

Consider a large number of both sellers and buyers that meet in a double auc-
tion to exchange multiple items of a good. The sellers have well-defined sup-
ply schemes represented by a set of quantity-price bids (s1, p1), (s2, p2), . . . , (sL, pL).
Here, sl is the quantity seller i offer for sale at pl. In this general representa-
tion, the supply scheme consists of L bids, one for each of the L possible bid
prices. Likewise the buyers have well-defined demand schemes represented
by a set of quantity-price bids (d1, p1), (d2, p2), . . . , (dL, pL). The demand
and supply schemes are assumed to be monotone in the price. That is for
any two prices ph and pl where ph ≤ pl, we have sh ≤ sl, i.e. a seller will
supply at least the same when the price increases, and dh ≥ dl, i.e. a buyer
will demand at least the same when the price falls. All trade is executed
at the same market clearing price. Bids to buy above and sell below the
market clearing price is accepted, the remaining bids are rejected.

Now the aggregated demand/supply is found by summing up the demand/supply
for each feasible market clearing price. Let I be the number of buyers, J
the number of sellers, and i and j be the associated counters. For any
market clearing price pl , l = 1, 2, . . . , L, the aggregated demand is given
by ADl =

∑I
i=1 di

l and the aggregated supply is ASl =
∑J

j=1 sj
l . Also the

excess demand is defined as Zl = ADl − ASl,∀l = 1, 2, . . . , L. The discrete
nature of the bids, requires a clearing policy. We will typically say that an
(approximate) equilibrium is where Zl is closest to zero. With price-taking
behavior the optimal bidding strategy is simply to submit the true demand
and/or supply schemes, see e.g. Nautz (29).

5.1.1 Double Auction Algorithm

Here we explicitly describe the iterative algorithm used to implement the
double auction, and we analyze its complexity in terms of computations.
The algorithm is implemented on a price grid. For simplicity, we assume
that it is an equidistant grid with a distance of 1 between each price.

Consider I general demand schemes and J general supply schemes, and let
p̃t be the equilibrium candidate in iteration t. An initial minimum price
is pmin

t = 0 and an initial maximum price is pmax
t = max{p1, p2, . . . , pL}.

Also, given an initial candidate p̃t, the equilibrium is found by the following
algorithm:
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Step 1: Compute Z(p̃t) =
∑I

i=1 di(p̃t)−
∑J

j=1 sj(p̃t).

Step 2: Determine the sign of Z(p̃t). The result is public.

Step 3: If Z(p̃t) < 0, then pmax
t+1 = p̃t and p̃t+1 = p̃t −b p̃t−pmin

t
2 c. Otherwise

Step 4: If p̃t = p̃t+1 we stop. Otherwise, we return to Step 1.

Appendix C.2.1 contains a program implementing this algorithm.

The excess demand at the stop price may be positive or negative. An addi-
tional rule is needed in this case to clear the market entirely. Note however
that the excess demand will typically be very close to zero. To solve this
problem in practice, different tie-breaking rules may be applied e.g. a small
reduction (or expansion) in the total set of production rights or a rationing
of the bids in question a.o.

From a computational point of view, we note that the only operations re-
quired are + and ≤.

The complexity relies entirely on the number of participants (I buyers and J
sellers) and the number of possible prices L. An evaluation of an equilibrium
candidate involves I + J + 1 additions and 1 comparison. The bisector
search requires a maximum of log2 L iterations. Altogether a maximum of
log2 L(I + J + 1) additions and log2 L comparisons.

Note that the only information revealed is that a given equilibrium candidate
is above or below equilibrium. Clearly, this information is valueless since it
follows directly from the public equilibrium price. Of course this presumes
that the demand and supply schemes cannot be altered during the iterations.

5.2 The Danisco Case

We consider two different markets for trading production rights. They are
both related to a major international processor of farm products, the ingre-
dients producer Danisco. For commercial reasons, we cannot give details
about the markets. One market involves a single processing plant and one
involves three different processing plants. The main goal is to allocate pro-
duction contracts to the producers that value them the most - taking into
account also their transportation costs to the processing plants.

A production contract is the right to deliver raw products to Danisco for a
given period. The raw products are inputs in the production of ingredients
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of various arts. The relationship between the large number of upstream
producers and the single downstream processor is regulated by long term
contracts. These contracts are the same for all plants and they define how
the price of the raw products depends on their characteristics. In none
of the markets are the producers compensated for the transportation cost.
Therefore, the closeness to a processing plant is a comparative advantage.

The first market with a single processing plant, consists of several hundreds
of potential participants that meet to exchange multiple units of single good
production contracts to the same processing plant. This is equivalent to
solving a double auction with secure computing as described in Section 5.1.
In appendix B we describe and discuss the more complicated market with 3
processing plants.

6 Prototype

We are currently in the process of implementing the cryptographic protocols
of (30) as well as the auctions of (31) on top of the protocols. For comparison
we have also implemented the problems benchmarked in (25).

Currently our setup ignores most practical as well as a few perhaps more
theoretical issues that should be handled by a commercial application. These
include key management, integrity of the executed programs, etc.

Our main conclusion from implementing this prototype is that this approach
is feasible in practice—for the right problems.

6.1 Architecture and Technological Choices

Our system consist of the following components which are deployed in the
obvious way:

• SmcLibrary: the component which handles all cryptography. This
is used by the TTPs as well as the Coordinator.

• ScriptEngine: a component which can basically evaluate JScript
scripts which make calls to the SmcLibrary through an API called
SmcJScript (described in Appendix C.1).

• CoordinatorServer: a component which handles all the “logistics”—
announcing computations, receiving input, publicizing the result etc.
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• Participant: a component which is used by participants for providing
input to a computation.

All components are implemented on the Microsoft .Net platform using C# .
Programs are written in JScript.Net compatible. An alternative could have
been Suns Java4.

Communication is realised via direct calls to tcp through the .Net libraries
using the .Net remoting framework.

Our system use a straight-forward implementation of the cryptographic pro-
tocols described, except that we introduce an extra component called a coor-
dinator. First, the coordinator facilitates the necessary broadcast function-
ality. Second, the coordinator serves as the central component controlling
when an auction will be performed etc.—all information which could well
be announced on an accompanying web-site of the auctioneer. Third and
last, this removes the need for the TTPs to have a fixed position on the
net, since they may just register immediately before an auction. By this
construction, the TTPs—and in particular their secrets—need not have a
fixed net location, making it harder to perform network based attacks.

6.2 Performance

We have performed tests on the primitive operations +, ·, and <, as well
as the programs Double Auction, PIR. PIR is included for comparison with
Malkhi et al. (25). Malkhi et al. also benchmark Median, which we have
not currently implemented, and AND as well as the Billionaires problem.
The two latter corresponds to our multiplication (GF (28)), see Appendix
A) and comparison, respectively.

We have used two machines for testing: “laptop” (1.1GHz Intel Centrino
with 2GB ram) and “desktop” (2.4GHz Intel Celeron with 512MB ram).
Typically we have used the laptop for everything except the Coordina-
torServer and the desktop as the CoordinatorServer, in this case the ma-
chines have been physically separated (one using the university LAN to
access the global internet and one using a privately operated ADSL connec-
tion) but connected via VPN to the university LAN. This distributed setup
incurs a realistic communication price and certainly does not speed up local

4Which would perhaps be better in terms of platform independence—a practical re-
quirement argued in (17)—but with the emergence of cross-platform implementations of
the CLR (e.g. Mono) the .Net platform may not be that bad.
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computation as everything takes place on one rather than many machines.
As can be seen below, some benchmarks have also been performed using
a local setup where everything, including the CoordinatorServer, was run
on the laptop. The purpose of this was to try and estimate actual cost of
network communication.

Below, measurements in Zp refer to 32 bit integers unless otherwise stated.

6.2.1 Performance of Multiplication

The following tables show times (in milliseconds) for multiplication in the
distributed setting; (b) refers to batch execution, i.e. performing many
multiplications in parallel.

(n,t) (3,1) (5,2) (7,3) (9,4)
Zp 141 228 788 7476
GF (28) 126 197 256 884
Zp(b) 27 95 618 4308
GF (28)(b) 5 18 105 607

As expected batch execution pays off. For multiplication we have performed
the same measurements in the local setup, to get an idea of the price of
communication.
(n,t) (3,1) (5,2) (7,3) (9,4)
Zp 18 117 n/a 6634
GF (28) 5 26 149 881
Zp(b) 12 94 797 1818
GF (28)(b) 2 15 111 939

Surprisingly it seems that as the number of TTPs grow, the relative commu-
nication overhead gets smaller. When faster implementations are available,
we might get more insight on this issue. One explanation may be problems
arising from the local machine having to run several TTPs at once.

6.2.2 Performance of Open

The following tables shows times for the open (decryption) operation.

(n,t) (3,1) (5,2) (7,3)
Zp 176 266 607
GF (28) 139 215 420
Zp(b) 360 580 1293
GF (28)(b) 302 571 1380
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We are a bit surprised that batch execution is slower. This is probably
because the tests where run at different times, with different available band-
width. (We aim to have verified this for the final version of this paper.)

6.2.3 Performance of Comparison

As can be seen in Appendix A, the we have two different techniques for
doing comparisons. One is referred to as the Yao-based technique, and this
naturally split up in two steps: Yao-encryption of a Booleand circuit and
evaluation of this circuit (see A for details). The other technique is called
BBM.

Our implementation of these comparison techniques is not completed, but
we do have results based on preliminary code which has not yet been opti-
mized (e.g. making sure to parallelize where possible). Still, it does provide
evidence that comparisons are practically feasible, at least for a small num-
ber of TTPs (say, 3 or 5).

The following table shows some measurements using the Yao-based compar-
ison technique for (n, t) = (3, 1); the final column shows the total time in
minutes rather than milliseconds.

Encrypt Eval Total Min
w = 8 33698 1081 34779 0.57
w = 16 71062 1512 72574 1.2
w = 24 113343 2113 115456 1.9
w = 32 243971 3355 247326 4.1

For (n, t) = (5, 2) the numbers looks as follows:

Encrypt Eval Total Min
w = 8 n/a n/a n/a n/a
w = 16 760587 3675 794262 13
w = 24 1640519 5128 1645647 27
w = 32 2691670 9694 2701364 45

It is clear that there is a huge gain in preprocessing the Yao-encryption of
the circuits to be used.

For the BBM we have the following measurements:

(n,t) (3,1) (5,2) (7,3) (9,4)
millisecs 3889 8906 48297 579263
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6.2.4 Performance of Auctions

We have benchmark the double auction program shown in Appendiks C.2.1.

Based on the benchmarks of comparisons the ordinary double auction cer-
tainly seem feasible for a wide range of parameters (say, a price grid of size
L = 2000—leading to some 11 comparisons—and hundreds of participants,
corresponding to the actual numbers of the market with a single processing
plant).

Preliminary tests has given the following numbers which indicate, that for
(n, t) = (3, 1) the double auction does seem feasible:

L 10 20 40 60 80 500
ms 18592 22352 26998 72554 128835 91993
min 0.30 0.37 0.44 1.20 2.14 1.53

Concerning the market with 3 processing plants. To estimate the number of
rounds needed for the auction to converge to equilibrium, we are currently
working on a simulation of the suggested tatonnement. With no preliminary
results on this simulation, we do not have hard evidence that the auction
converge faster than reducing the size of the price grid with one per round,
which is not sufficient with a price grid of size, say, L = 2000 (since we
will need on the order of L3, i.e., billions of rounds leading to billions of
comparisons).

6.2.5 Performance of PIR

We have benchmark the PIR program shown in Appendiks C.2.2, to give an
idea of how our work compares to the FairPlay system of Malkhi et al. (25).
For (n, t) = (3, 1) where one participant hols a database with 16 elements,
computation time is about 1.9 minutes, and for (n, t) = (5, 2) it is about 5.4
minutes. FairPlay can compute this function in roughly 8 seconds.

Also, recall that AND and Billionaires from Malkhi et al. (25) correspond to
· (multiplication) and < in this paper. The following table gives an overview
(in seconds):

(3,1) (5,2) Malkhi et al. (25)
PIR 113 327 8.65
· 0.126 0.197 2.14
< 3.8 8.9 4.03

Our solution and that of Malkhi are not entirely comparable, but the trust
models are also different as are the ideas behind the implementations. It
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does seem though that except for PIR they are within the same order of
magnitude.
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A Cryptographic Protocols

In this section we provide an overview of the protocols of (30) implementing
the idealised system mentioned in section 4.3. The purpose of this presenta-
tion is to give the reader a feeling for what is going on, as well as providing
enough insight to understand the complexity of these protocols.

A.1 Secret Sharings

Our implementation builds on the ideas presented in (1), namely compu-
tation on secret shared values. This is combined with the techniques from
(11) and some new ideas. We start off by describing two ways of sharing a
secret value among a set of parties.

Additive sharings allow a number of parties to share a number, say modulo
a prime p, by giving each party a number such that the sum of the numbers
of all parties add up to the shared value (modp). It is clear that if the
numbers are uniformly random then no proper subset of all parties will have
any knowledge of the shared value, while it can be reconstructed if all parties
cooperate. Thus a value can be shared among a number of parties. This
form of sharing can be used in any group.

Sharings can be generalized such that if the value is shared among n parties
then any t of them have no information on the actual value, while any t + 1
can reconstruct it fully. We do this using Shamir-sharings — each party is
given a unique point on a (random) polynomial, f , of degree t, where the
shared value is defined to be f(0). Given t + 1 points, the polynomial is
uniquely defined, thus allowing for computation of the shared value. How-
ever if t or less points are known, then all possible values of f(0) are equally
likely — ie. no information on the secret is known. For a full description,
see (36). Note that this form of sharing can be used to share elements in any
field, though the order of the field must be “large enough” compared to the
number of participants such that we may have polynomials of sufficiently
large degree and can give every party a unique point.

A.2 Simple Computations

Given multiple values shared using Shamir-sharing, we can compute secretly.
As an example, consider the two values s1 and s2 shared using the two
polynomials p1 and p2 between the parties P1, P2, . . .Pn. If each party is
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given a unique, non-zero value — e.g. party Pi is given the value i — and
this value is used as a basis for Pi’s shares, i.e. Pi’s shares are pb(i) for
b ∈ {1, 2}, then computing a sharing of the sum of s1 and s2 is simple: Each
party just computes the sum of the original shares and uses this as their
share for the sum. Similarly, a shared value can be multiplied by a public
constant, and using this, subtraction can be implemented.

More complex operations, e.g. multiplication, can also be implemented,
however, this requires that the parties having shares cooperate, i.e. requiring
communication between the parties.

In our implementation we use two fields, Zp, where p is a 65-bit prime, and
GF (28). The former is used for general computation — shared values will
be integers small enough so that additions modp will not lead to modular
reductions and hence we can do the integer operations we need. The field
GF (28) is used for computation on individual bits. As GF (28) has charac-
teristic 2, x-or and logical and are simply addition and multiplication for
the elements 0 and 1, both in GF (28). Using Zp allows computation on
large values which is more efficient, while using GF (28) facilitates computa-
tion on individual bits when that is advantageous. The latter is used in the
comparison-computations of two shared “integers” discussed in more detail
below.

These ideas are essentially standard and were already used, e.g., in (1).
However, we improve them considerably by combining with the “pseudo-
random secret sharing” technique from (11). This technique allows creating
Shamir-sharings of random values without having to communicate, and this
allows us to reduce the communication needed in the standard protocols. In
fact, we can remove the need for private communication among the TTP’s
and only send information that may be seen by everyone.

A.3 Comparisons

The most complex operation we need is the comparison, i.e. ≤, which maps
a pair of numbers into some representation of true and false, naturally
these could be represented by values in any fields, e.g. by one and zero. We
have two techniques for comparisons, both of which are different from the
tecnique of (1). We call the first the Bit-by-bit method (BBM), the second
uses a Yao-circuit — an encrypted, binary circuit, in our case an addition
circuit for binary representations of several numbers. This technique enables
us to secretly evaluate any circuit in a constant number of rounds, though
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the actual size of the communication may depend on other parameters —
in our case, the size of the circuit and therefore also the size of the com-
munication depends on the size of the numbers, as well as the number of
trusted parties. For more details on Yao-circuits, see (43) and (15). We
note that the multiparty solution of (15) differs from ours in that we real-
ize the required encryption via multiparty computation on shared keys and
data, while (15) does this by having each player know a part of the key and
perform his part of the encryption locally. Our solution leads to more work
to create the encrypted circuit, but this is not a problem, since this work is
done in a preprocessing phase. The advantage is that the encrypted circuit
becomes much smaller, leading to svaings in the on-line work.

A quick sketch of our algorithms follows below. Note that they are only in-
tended to give a brief overview, thus concreteness has been sacrificed for sim-
plicity, however, every step of the algorithms is still present in the overview.

• Given two shared (binary) numbers, the parties construct a sharing of
a number a defined as the difference of the numbers plus 2B , where B
is the maximal bit length of our numbers.

• In the case of BBM we note that the answer to the original comparison
is also the answer of the comparison of a ≥ 2B .

Or - since the compared numbers are smaller then 2B - the question
is whether the bit at position B in a is 1. We assume without loss
of generality that the numbers we are comparing are not equal5, and
proceed as follows:

– Compute a sharing of a random number b unknown to all parties,
and a sharing of its B least significant bits b0, . . . bB−1. This can
be done using standard methods. b should have bit length B + κ
bits where κ is a security parameter.

– Compute and open a + b (which statistically hides a, since b
was random and κ bits longer than a). Now observe that the
question whether the bit at position B in a is set can be decided
by subtracting b from a + b and figuring out whether a carry
occurs at position B. This can in turn be decided from the B
least significant bits of a + b and b via a circuit of logarithmic
depth using carry look-ahead techniques. Since we know all bits

5This assumption can be dropped at the expense of an additional bit by noting that
that x > y ⇔ 2x + 1 ≥ 2y.
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of a + b and have sharing of the bits of b, this leads to a secure
protocol with a logarithmic number of rounds.

• In the case of Yao encryption, we also exploit that it is enough to
decide whether the bit in position B of a is 1. We now proceed as
follows:

– Create an additive sharing of a as in (1).

– Each party now shares the individual bits of their part of the
additive share in the field GF (28).

– The parties add the numbers represented by the (secret) bits just
published — this is done by evaluating a Yao-circuit for addition.

– As the bits output by the circuit simply represent the sum of
the values of the additive shares, we can obtain the B’th least
significant bit of a.

Addition, subtraction and multiplication by public constants are very easy
operations requiring no communication at all and the creation of additive
sharings in the first step above can be optimized using (11) so it only requires
each TTP to broadcast two values. For BBM, the bulk of the work is partly
to compute the shares of b and its bits, and partly the computation of the
carry bit in the final step. For Yao encryption, the buld of the work lies in
constructing the encrypted Yao-circuit.

It is important to note that our algorithm gives the option of an online
vs offline tradeoff, namely that the shared b and the encrypted Yao-circuit
are independent of the numbers to be computed on and can therefore be
constructed in advance. In a typical application, it will be known well in
advance when an auction is going to take place, and which TTP’s will be
involved. Assuming that the encrypted circuits are constructed in advance,
evaluating these circuits on given inputs requires only local computation
and no communication. This produces for both methods a quite dramatic
improvement of the on-line performance over (1).

A.4 Complexity of the System

When considering the complexity of computations, communication is as-
sumed to be the “scarce resource” rather than raw computing power. The
reasoning behind using communication complexity is that the computations
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occur naturally in rounds, and logically a round must end before any re-
sult computed can be used in a subsequent computation — for an example,
consider the description of the algorithms used for comparisons. When all
parties must both send data to and receive data from each other before the
computation can continue, it naturally leads to “idle time” in the computa-
tion, when parties wait for the next data to process. Thus considering the
number of rounds executed is a good measurement of the complexity.

Note that as we consider rounds of communication, multiple operations may
be executed simultaneously, if they do not depend on each others output,
essentially giving us “free computations”. In practice, however, this requires
computing power and, more data to be sent and received. Thus even though
round-complexity is our primary concern when considering the system, com-
putational complexity is not ignored.

Complexity of addition: As described above, addition of shared numbers
is simply implemented as each party adding two local values. Thus no
communication at all is required. Multiplication by a globally known
constant is similar to this, but rather than adding the values, each
party multiplies his sharing with the constant.

Complexity of opening a secret value: Opening a shared value — i.e.
extracting the actual value from the shares of the parties — simply
consists of all parties broadcasting their share of the value. Anyone
listening may then compute the secret.

Complexity of multiplication Above it was mentioned, that it is possi-
ble to multiply values using standard methods, though this requires a
single round of communication. The reason for this is that although
we can create a sharing of the product of two sharings simply by hav-
ing all parties multiply their local shares, the degree of the polynomial
used for the sharing becomes too large. Thus a round is spent on
creating a sharing with a polynomial of lower degree.

Complexity of comparison: In contrast to the above operations, a com-
parison of two numbers requires much communication. However, there
are only four steps in the Yao algorithm, each taking only a constant
number of rounds, thus everything can be done in a constant number
of rounds. The BBM approach requires a number of rounds propor-
tional to the logarithm of the bit-length of the numbers computed on.
This is all described in more detail in (30).
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Space complexity The space-complexity of our system — i.e. how much
space is used for a given sharing — is good. For “integer” values, we may
choose the field in which values are shared such that it has a fairly tight
bound around the values. As noted above, we share numbers in Zp, where p
is a 65-bit prime. This has been done to allow use of 32-bit numbers, result-
ing in a doubling of the size. For sharings of individual bits, where we use
GF (28), the blowup is clearly greater, however it is hard to choose a smaller
field. For Shamir-sharings, the field must be sufficiently large to accommo-
date a polynomial of sufficiently high degree, as well as a point for all parties
to base their part of the sharings on. Thus settling on GF (28) is a compro-
mise — the blowup is relatively small, while we can still accommodate a few
hundred parties.

B The Danisco case: market with 3 plants

The focus in this Section is on the more complicated market with 3 pro-
cessing plants. This market may consist of more than thousand potential
participants that meet to exchange multiple units of 3 different goods cor-
responding to production contracts with the three processing plants.

The possible interdependency between the three type of contracts adds a
new layer of complexity to the auction design. A widely discussed example
of these issues is the trade of licenses for using radio spectrums in the US.
If a city is divided into two licenses having both licenses is worth far more
than the separate values of the two. On the other hand the value of two
spectrum licenses for two different cities may very well be independent. This
problem of handling goods that can be both complements and substitutes on
the same market is not an easy task. The general approach, known as com-
binatorial auctions, allows the bidders’ to bid on any combination of items,
which in itself may be an overwhelming task. Also, the problem of selecting
the winner and setting the price is in general NP-hard. Fortunately, most
problems may be treated either by restricting the allowed combinations or
by algorithms that finds reasonable solutions. For a survey on combinatorial
auctions see e.g. Vries and Vohra (37) and Pekec and Rothkopf (32).

In general the 3 different production contracts are both substitutes and com-
plements. Conditional sell and buy can be optimal for some producers due
to economies or diseconomies of scale in both production and transporta-
tion. (31) describe this market and suggest a simplified market that does not
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expose the bidders to any combinatorial bidding. The suggested restrictions
are:

• A buyer can bid on all 3 types but only buy one type of contract

• Given the resulting market clearing prices (the equilibrium), each
buyer’s most preferred contract is selected

• A seller can not condition a sale of one type on the sale of another
type of contract

A tendency to economies of scale in production and transport and the fact
that most producers only hold a single type of contract, suggest that the
restricted flexibility have little influence on the efficiency of the market.
It is for this simplified auction market that we suggest a secure auction.
The suggested auction provides two important simplifications. First, the
required information is traditional monotone demand and supply schemes,
which makes the bidding simple and the required information suitable for
practice. Second, the simplifications make the contracts mutual substitutes,
which simplifies the price formation. If the contracts are mutual substitutes
it is well-known that a unique equilibrium can be found by a Walrasian
tatonnement (38). The suggested auction is a closed auction, where the
participants submit the required information once and for all. Therefore,
the challenge is to find the Walrasian equilibrium with as few secure com-
putations as possible.

In this paper we suggest an algorithm that evaluates parallel equilibria can-
didates. That is P̃ + θe, where P̃ = (p̃A, p̃B , p̃C), e = (1, 1, 1) and θ is a
multiple of the size of the price grids, pl − pl−1(= 1). A somewhat similar
approach is applied in some versions of the open so-called simultaneous as-
cending clock auction used for selling power capacity, see e.g. Cramton (12).
For more on discrete computations of Walrasian equilibria see e.g. Cheng
et al. (9; 10).

To evaluate any equilibrium candidate, P̃ = (p̃A, p̃B , p̃C), each buyer’s opti-
mal response is determined and subsequently the excess demand and supply
on each of the three markets are calculated. We define the (approximate)
equilibrium as the price vector P̂ = (p̂A, p̂B , p̂C) that results in the smallest
aggregated excess demand and no excess supply on any market:

P̂ = arg min
P̃

{
C∑

k=A

Zk(P̃ )|Zk(P̃ ) ≥ 0∀k = A, B, C

}
(1)
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Now, for any equilibrium candidate P̃ , a buyer’s preferred market is the one
that gives him the largest surplus. If his demand - price relation in market
k is given by (dl

k, p
l
k), l = 1, .., L, his surplus is:

πk(p̃k) =
∑

l:pl
k≥p̃k

(dl
k − dl−1

k )(pl
k − p̃k)∀k = A, B, C (2)

where d0 = 0. For each possible P̃ the largest of the three corresponding
surpluses defines his preferred market. Observe that a complete bidding
strategy for a buyer can hereby be represented by a L×6 matrix, representing
the quantity and resulting surplus for each of the L possible prices on each
of the three type of contracts 6. To avoid secure comparisons in selecting the
optimal response, the 3L surplus numbers are replaced by random numbers
that keeps the same ranking7. Also, for the equilibrium candidates, P̃ , where
no contract is attractive (all surpluses are negative), the index number selects
a 0 quantity of the relatively most preferred contract. Hereby no information
beyond the actual trade is revealed, e.g. it is only possible to say that a given
buyer’s willingness to pay is below the equilibrium price.

Since the 3 contracts are mutual substitutes we can find a lower bound on
the set of possible equilibrium candidates. Let the minimum price vector
Pmin be P̃ +θ∗e where θ is the largest integer thus there is no excess supply
on any markets:

θ∗ = argmax
θ
{P̃ + θe|Zk(P̃ + θe) ≥ 0, ∀k = A, B, C} (3)

To see that Pmin is a global minimum, note that a decrease in the price
on any one market results in weakly lower prices on the other markets. The
same reasoning may be used to find a global maximum Pmax. The interval
(box) between Pmin and Pmax constitute a possibility set W in which the
equilibrium must be found. This set may also be refined into bounds on the
individual market prices. For market k we have

θ∗k = argmax
θk

{P̃ + θke|Zk(P̃ + θke) ≥ 0}∀k = A, B, C (4)

as an upper bound. With parallel price vectors, Zk will be monotone in
θ and the smallest positive value (smallest excess demand) may be found

6The complete representation of L3 possible P̃ is to much information to submit over
the Internet.

7This approach provides information about what processing plant a buyer prefer at
some P̃ , which may provide partial information about the buyer’s transportation cost.
However, a much more precise estimate of the transportation cost can be found based on
public data.
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by a simple bi-sector search. A better guess of an equilibrium is found
by adjusting the relative prices such that with excess demand the price
is adjusted upwards and downwards with excess supply. For example, if
P̃A is at the Pmin level, then the prices on market B and C are adjusted
upwards8. The possibility set W is public information and an indication of
the convergency9.

As W shrinks the valuable information contained in the resulting Zk become
smaller. Therefore, in order to settle the final adjustments the Zk columns
may be revealed for a sufficiently small W . For example, with 5 price grids
between min and max, the remaining 53 possible outcomes may be computed
and the Zk numbers revealed. Then the (approximate) clearing price, P̂ ,
can be selected by simple enumeration.

B.1 Danisco Auction Algorithm

Here we explicitly describe the algorithm used for implementing the double
auction and we analyze its complexity in terms of computations.

Let P̃t = {p̃A, p̃B , p̃C} be an equilibrium candidate and P̂ = {p̂A, p̂B, p̂C}
the equilibrium. Consider 3I general demand schemes (the demand for
any possible prices l on each of the three markets) and 3J general supply
schemes (the supply for all possible prices l on the three markets). Given
the initial equilibrium candidate, lower and upper bounds on the equilib-
rium price vector, Pmin and Pmax, are found (essentially) by applying the
double auction algorithm three times. Consider an initial candidate P̃t and
three initial minimum prices (pmin

k,t = 0) and three initial maximum prices
(pmax

k,t = max{p1, p2, . . . , pL}). For each k = A,B,C the following algorithm
is applied:

Step 1: Each buyer’s best response (di
k(P̃t)∀i = {1, 2, . . . , I}) is found by

the largest corresponding surplus (represented by an arbitrary index
that is made public for the specific P̃t)

Step 2: Excess demand is computed Zk(P̃t) =
∑I

i=1 di
k(P̃t)−

∑J
j=1 sj

k(P̃t).

8If P̃A equals e.g. P̃B , then only the price on market C is adjusted upwards.
9It may be possible reduce W considerably by an arbitrage argument. The price

difference between any two processing plants must fall short of the transportation costs
between them since it may otherwise pay to simply ship between the two markets. This
provide a good first guess of the initial P̃ .
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Step 3: The sign of Zk(P̃t) is found and made public

Step 4: If Zk(P̃t) < 0, the pmax
k,t+1 = p̃k,t and P̃t+1 = P̃t − eb p̃t−pmin

k,t

2 c, other-

wise pmin
k,t+1 = p̃k

t and P̃t+1 = P̃t + ebpmax
k,t −p̃t

2 c.

Step 5: If P̃t = P̃t+1 stop, otherwise return to Step 1

Again, note that we only use the operations + and≤, and that some innocent
information is made public.

The three intermediate equilibria define three price vectors PA, PB and PC .
Taking coordinate wise minimum and maximum defines the public possibil-
ity set (W ) in which the equilibrium is to be found. To find the equilibrium
the relative prices in P̃ is adjusted according to a Walrasian tatonnement.
The new relative prices is evaluated according to the algorithm above. How-
ever, we only have to consider the possibility set found in previous rounds.

The initial round requires 3 times as many computations as the single double
auction: 3(log2 L(I + J + 1)) additions and 3log2 L comparisons, besides
selecting the optimal response in Step 1 (which involve no secure computing).
The number of computations in the next rounds depend entirely on the
size of the possibility set from the previous rounds. (31) suggest different
heuristics for this convergency.

As in a single double auction, the information that a given equilibrium
candidate is above or below equilibrium is valueless since it follows directly
from the public equilibrium price. Also, as mentioned above, the extra
information about a buyer’s optimal choice of contract for the considered
equilibrium candidates, is of no or little value in this setting.

C Programs

Here we present the programs mentioned above together with the API that
provides the operations needed. These programs are to be executed by each
TTP. As described in Section 6, the programs are written in JScript and the
API is implemented in C#. These are glued together through .NET, as the
JScript is compiled and executed from C#.
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C.1 API

All variables are in reality pointers. Functions where a result is expected
but the return type is void , return the result using the final argument.

The methods equalYao and equalBBM simply make to comparisons to
determine the equality relation.

public class SmcJScript
{

public int ResultId { get; set; }
public int newVariable();
public int[][] getAllInput();
public void open(int); // decrypt
public void open(int[]);
public void add(int, int, int);
public void multiply(int, int, int);
public void multiply(int[], int[], int[]);
public void prepareYaoComparison();
public void compareYao(int, int, int);
public void equalYao(int, int, int);
public void equalBBM(int, int, int);
public void comparatorBBM(int, int);
public void compareBBM(int, int, int);
public void constantInteger(int, int);
public void constantBoolean(int, int);
public int bool2Integer(int);
public int getBoolean(int);// decrypt a boolean

//value and return it as an integer
// ...

}

C.2 Programs

C.2.1 Double Auction

/* Double Auction
*
* Let the be n prices: p0, p1, ..., pn-1 - this will
* be the input of the first (pseudo) participant. Each
* partipant submits 2n values, where either the first
* or the last n are all 0. The first n are used if the
* participant is a buyer and thelatter n if the
* participant is a seller.
*
* For each price, the participant specify the quantum
* he will buy if this was the clearing price.
*
* The aggregated sum is the addition of all inputs.
*
* The clearing price is where supply meets demand, i.e.
* the price where the aggregates buyer quanta equal the
* aggregated seller quanta. This is the same as the
* price where the difference between buy and sell is
* closest to zero
*
* The result is the clearing price
*/

public class SecureFunction
{

public static function eval(smc : SmcJScript)
{

var inputs : int[][] = smc.getAllInput();
doubleAuction(smc,inputs);
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}

public static function
doubleAuction(smc : SmcJScript, inputs : int[][])

{
var aggregatedBids : int[] = addBids(smc,inputs);
binSearchZero(smc,aggregatedBids);
var priceIndex = smc.ResultId;
smc.open(inputs[0][priceIndex]);
smc.ResultId = inputs[0][priceIndex];

}

public static function
addBids(smc : SmcJScript, inputs : int[][])

{ // inputs[0]is prices
var n = inputs[1].length;
var res : int[] = new int[n];
for(var i=0; i<res.length; i++)
{

res[i] = smc.newVariable();
smc.constantInteger(res[i],0);
for(var j=1; j<inputs.length; j++)
{ // take i’th bid for each participant

smc.add(res[i],inputs[j][i],res[i]);
}

}
return res;

}

// first n/2 are decreasing, last n/2 increasing;
// so their difference is decreasing
public static function

binSearchZero(smc : SmcJScript, agg : int[])
{

var tmp = smc.newVariable();
var n = agg.length/2;
var low = 0;
var high = n; // indexing start at 0
var mid = 0;

// | not here | could be here... | not here
// +--------------------------------------------+
// | | | | | |
// +--------------------------------------------+
// low high
while (low < high)
{

if ((low + 1) == high) high = low; // stop
else {

mid = Math.ceil((low + high) / 2);
smc.compareBBM(agg[mid+n], agg[mid], tmp);
var res = smc.getBoolean(tmp);
if (res == 1) low = mid;
else high = mid;

}
}
smc.ResultId = low; // the array idx of the root

}
}

C.2.2 PIR

/* PIR - Private Information Retreaval
*
* Participant 0 holds database (dictionary)
* - n items, each indexed by a key (originally 16 items
* w/ 6 bit key and 24 bits data)
* - [0..n-1] are keys
* - [n..2n-1] are values
*
* Participant 1 provides index + encryption key
*
* The result is the indexed element added to the provided

36



* encryption key
*/

public class SecureFunction
{

public static function eval(smc : SmcJScript)
{

var inputs : int[][] = smc.getAllInput();
pir(smc,inputs);

}

public static function
pir(smc : SmcJScript, inputs : int[][])

{
var result = smc.newVariable();
smc.constantInteger(result,0);
// add participant 1’s encryption key
smc.add(result,inputs[1][1],result);
var masks = computeMasks(smc,inputs);
var n = masks.length;
for(var i=0 ; i<n ; i++)
{

var tmp = smc.newVariable();
smc.multiply(masks[i],inputs[0][n+i],tmp);
smc.add(result,tmp,result);

}
smc.ResultId = result;

}

private static function
computeMasks(smc : SmcJScript, inputs : int[][])

{
// half of inputs are keys, half are values
var masks : int[] = new int[inputs[0].length/2];
for(var i=0 ; i<masks.length ; i++)
{

smc.equalBBM(inputs[0][i],inputs[1][0],masks[i]);
masks[i] = smc.bool2Integer(masks[i]);

}
return masks;

}
}
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