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A Quantum Cipher with Near Optimal
Key-Recycling

Ivan Damgard Thomas Brochmann Pedersen*  Louis Salvail*

May 2005

Abstract

Assuming an insecure quantum channel and an authenticated classi-
cal channel, we propose an unconditionally secure scheme for encrypting
classical messages under a shared key, where attempts to eavesdrop the
ciphertext can be detected. If no eavesdropping is detected, we can se-
curely re-use the entire key for encrypting new messages. If eavesdropping
is detected, we must discard a number of key bits corresponding to the
length of the message, but can re-use almost all of the rest. We show this
is essentially optimal. Thus, provided the adversary does not interfere
(too much) with the quantum channel, we can securely send an arbitrary
number of message bits, independently of the length of the initial key.
Moreover, the key-recycling mechanism only requires one-bit feedback.
While ordinary quantum key distribution with a classical one time pad
could be used instead to obtain a similar functionality, this would need
more rounds of interaction and more communication.

Key-words: quantum cryptography, key-recycling, unconditional security,
private-key encryption.

1 Introduction

It is well known that only assuming a quantum channel and an authenticated
classical channel, Quantum Key Distribution (QKD) can be used to generate
an unconditionally secure shared key between two parties. If we want to use
this key for encrypting classical messages, the simplest way is to use it as a
one-time pad. This way, an m-bit key can be used to encrypt no more than
m message bits, since re-using the key would not be secure (without extra
assumptions like in the bounded storage model[19, 10, 13]).

However, if we allow the same communication model for message transmis-
sion as for key exchange — which seems quite natural — an obvious question

*Part of this research was funded by European projects PROSECCO and SECOQC.



is whether we might gain something by using the quantum channel to transmit
ciphertexts. The reason why this might be a good idea is that the ciphertext
is now a quantum state, and so by the laws of quantum mechanics, the ad-
versary cannot avoid affecting the ciphertext when trying to eavesdrop. We
may therefore hope being able to detect — at least with some probability —
whether the adversary has interacted with the ciphertext. Clearly, if we know
he has not, we can re-use the entire key. Even if he has, we may still be able
to bound the amount of information he can obtain on the key, and hence we
can still re-use part of the key. Note that the authenticated classical channel
is needed in such a scheme, in order for the receiver to tell the sender whether
the ciphertext arrived safely, and possibly also to exchange information needed
to extract the part of the key that can be re-used. Such a system is called a
Quantum Key-Recycling Scheme (QKRS).

A possible objection against QKRS is that since it requires interaction, we
might as well use QKD to generate new key bits whenever needed. However,
in the model where the authenticated classical channel is given as a black-box
(i.e., not implemented via a shared key) QKD requires at least three messages:
the quantum channel must be used, and the authenticated channel must be
used in both directions, since otherwise the adversary could impersonate one
of the honest parties. Further, each move requires a substantial amount of
communication (if N qubits were transmitted then the two classical moves
require more than N classical bits each). Finally, N is typically larger than
the length of the secret-key produced. Hence, if we can build a QKRS scheme
that is efficient, particularly in terms of how much key material can be re-used,
this may be an advantage over straightforward use of QKD.

From a more theoretical point of view, our work can be seen as a study
of the recycling capabilities of quantum ciphers in general. In particular, how
many key bits can be recycled, and how much feedback information must go
from receiver to sender in order to guarantee the security of the recycled key?
How do these capabilities differ from those of classical ciphers? In this paper
we give precise answers to these questions.

The idea behind a QKRS originates from Bennett and Brassard during
the early days of quantum cryptography[4]. Although they did not provide
any fully satisfying solution or security proof, their approach to the problem
is similar to our. More recently Leung studied recycling of quantum keys
in a model where Alice and Bob are allowed three moves of interaction[12].
In this model, however, quantum key distribution can be applied. Leung
also suggested that classical keys can be recycled when no eavesdropping is
detected. In [16], a QKRS was proposed based on quantum authentication
codes[2]. The key-recycling capabilities of their scheme can be described in
terms of 2 parameters: the message length m and the security parameter £.
The scheme uses 2m + 2¢ bits of key, and is based on quantum authentication



schemes that, as shown in [2], must always encrypt the message. The receiver
first checks the authenticity of the received quantum state and then sends the
result to the sender on the authenticated channel. Even when the receiver
accepts, the adversary may still have obtained a small amount of information
on the key. The receiver therefore also sends a universal hash function, and
privacy amplification is used to extract from the original key a secure key of
length 2m + £. If the receiver rejects then a secure key of length m + ¢ can be
extracted.

In this paper, we propose a QKRS for encrypting classical messages. Our
QKRS is based on a new technique where we append a k-bit classical authen-
tication tag to the message, and then encrypt the n = m + £-bit plaintext
using the W,,-quantum cipher introduced in [8]. The authentication is based
on universal hashing using an m-bit key. The cipher uses 2n = 2(m + £) bits
of key, where m + £ bits are used as a one-time pad, and m + £ bits are used to
select in which basis to send the result, out of a set of 27+ so called mutually
unbiased bases. Thus, the entire key of the QKRS consists of 3m + 2¢ bits. The
receiver decrypts and checks the authentication tag. If the tag is correct, we
can show that the adversary has exponentially small information about the
key, and the entire key can therefore be recycled. If the tag is incorrect, we
can still identify 2m + £ bits of the key, about which the adversary has no
information, and they can therefore be re-used. Since this subset of bits is
always the same, the receiver only needs to tell the sender whether he accepts
or not.

Being able to recycle the entire key in case the receiver accepts is of course
optimal. On the other hand, we can show that any QKRS must discard at least
m — 1 bits of key in case the receiver rejects. Since m can be chosen to be
much larger than /¢, discarding m + ¢ bits, as we do, is almost optimal.

In comparison with earlier works, our technique completely eliminates the
use of privacy amplification, and hence reduces the communication on the
authenticated channel to a single bit. Moreover, we can recycle the entire key
when the receiver accepts the authentication tag. Hence, in scenarios where
interference from the adversary is not too frequent, our keys can last much
longer than with previous schemes, even though we initially start with a longer
key.

Our results differ from those of [16], since quantum authentication based
QKRS do not guarantee the privacy of the authentication tag. Therefore, part
of the key must be discarded even if the receiver accepts. Instead of quantum
authentication, we use classical Wegman and Carter authentication codes|6]
and a quantum encryption of classical messages|[8] applied to both the message
and the tag. This construction allows to recycle the entire authentication key
securely.

The scheme we introduce can also be used as an authentication code for



quantum messages. However, it requires a longer secret-key than the scheme
in [2], but allows for recycling the authentication key entirely upon acceptance.

Our QKRS is composable since the security is expressed in terms of dis-
tance from uniform. The secret-keys and plaintexts are private when, from
the adversary’s point of view, they look like uniformly distributed random vari-
ables. This has been shown to provide universal composability in the quantum
world[17].

We end this introduction with some remarks on the authenticated classical
channel. Having such a channel given for free as a black-box may not be a
realistic assumption, but it is well known that it can be implemented assuming
the players initially have a (short) shared key.! In this model, the distinction
between QKD and QKRS is not as clear as before, since we now assume an
initial shared key for both primitives. Indeed, our QKRS can be seen as an
alternative way to do QKD: we can form a message as the concatenation of
new random key bits to be output and a short key for implementing the next
usage of the authenticated channel. Having sent enough messages of this form
successfully, we can generate a much larger number of secure key bits than we
started from. Note that this is harder to achieve when using the earlier QKRS
scheme since bits of the original key are lost even in successful transmissions.

2 Preliminaries

2.1 Density Operators and Distance Measures

We denote by 8(H) the set of density operators on Hilbert space H (i.e. pos-
itive operators ¢ such that tr(c) = 1). In the following, 3, denotes the
2"-dimensional Hilbert space over C, 1,, denotes the 2" x 2" identity oper-
ator, and I, = 27"1,, denotes the completely mixed state. The trace-norm
distance between two quantum states p,o € $(H) is defined as:

D(p. ) = 5 tr (o~ o).

where the right-hand side denotes half the sum over the absolute value of all
eigenvalues of p—o. The trace-norm distance is a metric over the set of density
operators in §(JH). In the following, we use the same notation as [17]. Let
(Q, P) be a discrete probability space. A random state p is a function from 2
to 8(H). This means that to w € Q corresponds the mixed state p(w). To an
observer ignorant of the randomness w € €2, the density operator described by
p is given by
lp] = Pw)p(w).

weN

!Even in this case, QKD does something that is impossible classically, namely it generates
a shared key that is longer than the initial one.



For any event €, the density operator described by p conditioned on € is given
by .
PI€] = gy O Pe)p(e).
weé

Classical random variables can also be represented as random states. Let X
be a random variable with range X and let H be a #X-dimensional Hilbert
space with orthonormal basis {|z)},cx. The random state corresponding to
X is denoted by {X} = [X)XX| and [{X}] = >y P(z)|z)z| denotes its
associated density operator. Let p ® {X} be a random state with a classical
part {X}. The corresponding density operator is given by

@ {X}] =) P()lp|X =] ® |a)z|.

zeX

If X is independent of p then [p® {X}] = [p] ® [{X}]. Let X be a classical
random variable with range X and let p be a random state. The distance to
uniform of X given p is defined by

d(X|p) = D({X} @ pl, {U}] @ [p)), (1)

where U is a random variable uniformly distributed over X.

2.2 Quantum Ciphers

A quantum encryption scheme for classical messages is the central part of any
QKRS. Such schemes where introduced in [1], and further studied in [8], where
their performances were analyzed against known-plaintext attacks. We adopt
a similar definition here except that we allow for the encryption to provide
only statistical instead of perfect privacy. As in [1, 8], we model encryption
under key k by an appropriate unitary operator Ej acting upon the message
and a possible ancilla of any size initially in state |0). Decryption is simply
done by applying the inverse unitary.
For convenience we will use the notation

pr= Y 2"Eylz)z| @ |0)0|E],
ke{0,1}n

for the equal mixture of a plaintext x € {0,1}" encrypted under all possi-
ble keys with uniform probability. A quantum cipher is private if, given a
cipherstate, almost no information can be extracted about the plaintext.

Definition 1 For a non-negative function e(n), a e¢(n)-private (n, m)-quan-
tum cipher is described by a set of 2™ unitary encryption operators {Ek}k€{071}n7



acting on a set of m-bit plaintexts and an arbitrary ancilla initially in state
|0) such that,
(v, 0" € {0, 1) [D(py pur) < e(n)].

If €(n) is a negligible function of n we say that the scheme is statistically
private.

The total mixture of ciphertexts associated with an e-private (n, m)-quantum
cipher with encryption operators { Ej }refo,13n is

g= > 27 3 2 Ea)a| @ |0)0|E]. (2)

ke{0,1}» ze{0,1}m

The next technical Lemma states that the total mixture of any e-private quan-
tum cipher is e-close to any plaintext encryption under a random and private
key.

Lemma 1 Any e-private (n, m)-quantum cipher satisfy that for allx € {0,1}™,
D(fa pﬂ?) <€

Proof. Simply observe that,

D ps)=D 27" Z Pys Pe | < Z 27" D(py, pa) <€,
ye{o,1}m ye{0,1}m

from the convexity of D(-,-) and the e-privacy of the quantum cipher. O

2.3 Mutually Unbiased Bases

A set B, = {Bj,..., By} of 2! orthonormal bases in a Hilbert space of dimen-
sion 2" is said to be mutually unbiased (we abbreviate mutually unbiased bases
set as MUBS) if for all |u) € B; and |v) € B; for i # j, we have |(u[v)| = 27"/2.
Wootters and Fields[20] have shown that there are MUBSs of up to 2" + 1
bases in a Hilbert space of dimension 2", and such sets are mazimum. They
also give a construction for a maximal MUBS in Hilbert spaces of prime-power
dimensions. For B, = {Bp}scfo,13+ & MUBS, w € {0,1}", and b € {0,1}", we
denote by \v$)> the w-th state in basis By € B,,.

Lawrence, Brukner, and Zeilinger[11] introduced an alternative construc-
tion for maximal MUBSs based on algebra in the Pauli group. Their construc-
tion plays an important role in the security analysis of our QKRS. The method
for constructing a maximal MUBS in JH,, relies on a special partitioning of all
Pauli operators in H,,. These operators live in a vector space of dimension 4".
Let ¥ = {04,0y,0:,01} (where o1 = 1;) be the set of Pauli operators in (;.



This set forms a basis for all one-qubit operators. A basis for operators on n
qubits is constructed as follows for i € {0,...,4" — 1}:

_ 1 2
0i = 9,0, %u2) - - Ttnsi) = H%(m (3)

such that o* u(k0) is an operator in X acting only on the k-th qubit. We use
the convention Op = 1,,. The action of O; on the k-th qubit is o, ;) where

p(k,i) € {z,y,z 1}. The basis described in (3) is orthogonal, tr(0;0;) =
2"6; ; where i = j means that u(k,i) = u(k,j) for any qubit k. Every Pauli
operator O; is such that OZ2 = 1,. Apart from the identity 1,, all O;’s are
traceless and have eigenvalues +1.

In [11], it is first shown how to partition the set of 4" — 1 non-trivial Pauli
operators {Oi};ﬁfl into 2™ 4+ 1 subsets, each containing 2" — 1 commuting
members. Second, each such partitioning is shown to define a maximal MUBS.
Let us denote by P} = |véb) )(vg))| the projector on the 8-th vector in basis By.
Saying that B,, = {B;}; is a MUBS means that tr(Png) = 27" when a # b and
tr(Png/) = d35. Let (ep3)p3 be a 2" x 2" matrix consisting of orthogonal
rows, one of which is all +1, and the remaining ones all contain as many +1
as —1. The b-th partition contains Pauli operators {Og}%n:*ll such that

211
04 => esall. (4)
a=1

In the following, (£5.4)5.a Will always denote the operator 2"/2 HE™ where H®"
is the n-qubit Hadamard transform (i.e. g5, = (—1)79).

The number of partitions {O }g defined by (4) is 2" 41 when constructed
from a maximal MUBS. Each partltlon contains 2" — 1 operators after dis-
carding the identity (they all contain the identity). Each of these operators is
traceless and has £1 eigenvalues as for the Pauli operators. It is easy to verify
that for a # b,

tr (ogOg) =Y caucptr (P;P;’) ~0. (5)
/J/?V
Moreover,

tr (OgO%) = 265#55/ tr (Pb ) Z&g wEB = =2" 08,3 (6)
IR

It follows from (5) and (6) that all operators in (4) are unitarily equivalent to
Pauli operators. This essentially shows that partitioning the Pauli operators
the way we want is always possible.



It remains to argue that any such partitioning defines a maximal MUBS.
Notice that partition {O%,...,08, 1} (i.e. without the identity Of) defines a
unique basis {Pg}g where

Ph=2"") ¢,500. (7)
o
It is not difficult to verify that tr(Png/) = d,3 and for a # b, tr(Png) =2""
thus leading to a maximal MUBS.

In other words, there is a one-to-one correspondence between maximal
MUBSs and the partitionings {{Og} 3} of the 4" —1 Pauli operators (except the
identity), acting on n qubits, into 2"+ 1 partitions {Og}g of 2" — 1 commuting
members. Each partition is a subgroup of the n-qubit Pauli group and is
generated by n of these operators. Any Pauli operator commutes with all
other operators in the partition in which it is, and anti-commutes with exactly
half of the operators, including the identity, in all other partitions. See [11]
for more details.

2.4 The W,-Cipher

In [8], quantum ciphers based on MUBSs were introduced and studied with
respect to their secret-key uncertainty against known-plaintext attacks. Our
QKRS, presented in Sect. 5.1, uses one of these ciphers, the W,,-cipher, as its
main building block. The W, -cipher is a (2n,n)-quantum cipher, that is, it
encrypts n-bit classical messages with the help of a 2n-bit secret-key. The
W,,-cipher enjoys perfect privacy when the secret-key is perfectly private. It
is easy to verify that the cipher is e-private if the secret-key is only e-close to
uniform[17].

Let B, = {By}iefo,1}» be a MUBS of cardinality 2" for J(,. Remember

that |v$)> denotes the w-th basis state in basis B, € B. The secret-key k
for the W,,-cipher is conveniently written as k = (z,b) where z,b € {0,1}".
Encryption according secret-key k = (z,b) of message = € {0,1}" consists in
preparing the following state:

b

Uie)92> € By.

In other words, the encryption process first one-time pad message x with key
z before mapping the resulting state to basis By. Encryption and decryption
can be performed efficiently on a quantum computer[20, 8].

Ek;|x> = E(z,b)|x> =

3 Key-Recycling Schemes

A QKRS is an encryption scheme with authentication. In addition, there are
two key-recycling mechanisms, RZI’{S and Rﬁé)t, allowing one to recycle part of



the secret-key shared between Alice and Bob in case where the authentication
succeeds and fails respectively. We model the recycling mechanism by privacy
amplification. That is, R[;* and R are classes of hashing functions mapping
the current key k € {0,1}" into a recycled key k of length s and ¢ respectively.
In order to apply privacy amplification, an authentic classical feedback channel
is necessary for announcing Bob’s random recycling function R €r R};® or
R er Ry depending on the outcome of authentication. Alice and Bob then
compute k = R(k) as their recycled secret-key. We do not allow further
interaction between Alice and Bob since otherwise quantum key distribution
could take place between them allowing not only to recycle their secret-key but
even to increase its length. Key-recycling should be inherently non-interactive
from Bob to Alice since the authentication outcome should anyway be made
available to Alice. For simplicity, we assume that the classical feedback channel
between Bob and Alice is authenticated. In general, a small secret key could be

used for providing classical message-authentication on the feedback channel.
Definition 2 A (n,m, s,t)-QKRS is defined by a pair (€™, (R, Rﬁét)) where
o &M 4s a (m,n)-quantum cipher, and
o (R}, Rﬁ,’f) is a key-recycling mechanism.

In this paper, the privacy of the recycled key is characterized by its distance
from uniform. In [17], it is shown that when the distance is negligible, the key
behaves as a perfectly private key except with negligible probability. It follows
that the application is composable provided the adversary is static[14, 17, 3].

For a QKRS to be secure, we require that even knowing the plaintext, the
function R, and the authentication outcome, the adversary’s view about the
recycled key is at negligible distance from uniform. This should hold except
for a negligible number of functions in R}}” and R, Security against known
plaintext attacks is an important property of good key-recycling mechanisms.
Otherwise, extra conditions on the a posteriori probability distribution over
plaintexts have to be enforced. In particular a recycled key could be compro-
mised if a previous plaintext gets revealed to the adversary.

The adversary’s view typically changes depending on whether the authen-
tication succeeds or fails. Let Ay, (resp. A,,) be the event consisting in a
successful (resp. unsuccessful) authentication. Conditioned on A, the ad-
versary should have access only to very limited amount of information about
the secret-key. The better the authentication scheme is, the more key ma-
terial the recycling mechanism can handle. When A,, occurs, however, the
adversary may hold the entire cipherstate. Let K be the random variable for
the secret-key. Let p(z) be the random state corresponding to the adversary’s
view on an encryption of classical message x using a random key. We denote



by [po(@)] = [p(@) [ Aot] and [pyo(x)] = [p(x)[Ano] the random state p(x)
conditioned on the event A, and A, respectively.

Definition 3 A key-recycling mechanism (R}}”, R is (8ok, Ono )-indistinguish-
able if for all x € {0,1}™:

1. d(R(K)|pok(z) @ {R}) < dok (where R €R Rgl’{s), and
2. d(R(K)|pyo(x) ® {R}) < 6no (where R € RLS ).

For dox,0n0 negligible functions of n, we say that the key-recycling mechanism is
statistically indistinguishable. The class of key-recycling functions R™;® or Ry
is said to be d-indistinguishable if condition 1 or 2 respectively holds relative
to 6.

Finally, a QKRS is secure if it is a private encryption scheme together with a
statistically indistinguishable key-recycling mechanism. In general,

Definition 4 A (n,m, s, t)-QKRs defined by (€™, (R}, RI)) s (€, Gok, Ono )-
secure if

1. €™ 45 e-private,

2. when no eavesdropping occurs the key-recycling mechanism Rgl’(s s used,
and

3. (RY?, R is @ (Ook, Ono )-indistinguishable key-recycling mechanism.

If the scheme is such that €,d0)x, and dno are all negligible functions of n then
we say that the scheme is statistically secure.

The efficiency of a QKRS is characterized by n, s and t. When authenti-
cation succeeds n — s bits of secret-key must be thrown away while, when
authentication fails, n — ¢t have to be discarded. Clearly, any purely classical
key-recycling scheme must have s,t < n —m. This does not have to hold for
quantum schemes. However, we show next that quantum schemes suffer the
same restrictions as classical ciphers when authentication fails.

4 Upper Bound on Key-Recycling

In this section, we show that any statistically secure QKRS must discard as
many key-bits as the length of the plaintext (minus one bit) when the authen-
tication fails. In other words, when authentication fails no QKRS does better
than the classical one-time-pad.

When authentication fails, the adversary may have kept the entire cipher-
text and may know the plaintext € {0,1}"". On the other hand, con-
dition 2 in Definition 3 requires that the key-recycling mechanism satisfies

10



d(R(K)|pyo(z) ® {R}) < (n) where d(n) is negligible and R € Rjy. Using
(1), it follows that

D({R(K)} @ pyo(x) @ {R}], {U}] @ [pyo(®) @ {R}]) <d(n).  (8)

The density operator pno(k, 2, R) = [pyo(2)|R(K) = k] corresponds to the
adversary’s view when the plaintext is z, the recycled key is k € {0,1}!, and
the privacy amplification function is R € RI%. We have that,

A 1
prolk,z, R) = Y ————Eifa)x] @ [0X0] E]. 9)
k:R(k)=k #R7(K) '

For convenience, we define ppo(k, ) = ﬁ 2 ReRM puo(k, z, R) ® |[R)R|. 1f
a key-recycling scheme is statistically indistinguishable then for a negligible
function d(n),

5(n) > d(R(K)|pao(x) @ {RY) (10)
= D (Zpg(l%) k><k‘ @ poo(k, ), 1 @Y p(k)pno(k, z) | (11)
k k
> S S R RT (W) Dpuelh, ., R). ). (12)
#RI G

where (10) follows by definition of statistical indistinguishability, and (11) is
obtained using (8) and (9). The last step follows from the fact that D(p,0) =
maxg, 1, D(p(m),q(m)) where the maximum is computed over all POVMs
{En}m and p(m) = tr(pE,,), ¢(m) = tr(cE,,) are probability distributions
for the outcomes of {E,,},, when applied to p and o respectively (see for
example Theorem 9.1 in [15]). In order to get (12) from (11) one only has
to consider a POVM that first measures R and k before performing the
POVM {E},}m (depending on R and k) on the residual state that satisfies
D(puolh, 7, ), py) = d(p! (m), ¢ (m)).

It can be shown that for ¢ > n—m+2, (12) implies the existence of R € Rpy
and ko € {0,1}* such that #R (ko) < 2™~ 1 and D(pyo(ko, z, R), pz) < ¢ for
any constant 0 < ¢ < 1. Moreover, since the cipher is statistically private,
there exists a negligible function €(n) such that,

D(puo(kos ., R),€) < D(E, pz) + Dlpws prolho, 2, R)) < e(n) +¢. (13)

On the other hand, an argument along the lines of the proof of Lemma
IV.3.2 in [5] allows us to conclude that when #R~1(ko) < 21, D(puno(ko, x, R),€) >
1/2 which contradicts (13) when ¢ < 1/2 and ¢(n) is negligible (see Lemma 3
in [9]). Next Theorem, proven in Appendix A, follows:

11



Theorem 1 (Key-Recycling Bound) Any statistically secure (n,m,s,t)-
QKRS is such thatt <n—m+ 1.

We believe that a more careful analysis would show that statistically secure
(n,m, s,t)-QKRS must satisfy ¢t < n —m. Theorem 1 implies that in order to
recycle more secret-key bits than any classical scheme, quantum ciphers must
provide authentication. It is only when the authentication succeeds that a
QKRS may perform better than classical ones.

5 A Near Optimal Quantum Key-Recycling Scheme

We introduce a QKRS, called W,,C,,,, that recycles an almost optimal amount
of key material. Moreover, the key-recycling mechanism does not use privacy
amplification. Deterministic functions are sufficient to guarantee the statistical
indistinguishability of the recycled key. The scheme is introduced in Sect. 5.1.
In Sect. 5.2 we present an EPR-version of the scheme and we prove it secure.
In Sect. 5.3 we reduce the security of W,,C,, to that of the EPR-version.

5.1 The Scheme

The W,,C,,-cipher encrypts a message together with its Wegman-Carter one-
time authentication tag[6] using the W,,-cipher[8]. We need an authentication
code constructed from XOR-universal classes of hash-functions:

Definition 5 ([6]) An XOR-universal family of hash-functions is a set of
functions Hy, ,, = {hy : {0,1}" — {0,1}*},, such that for all a # b € {0,1}™
and all z € {0,1}*, #{h € Hy, |h(a) ® h(b) = z} = Fma,

There exists an XOR-universal class of hash-functions Hy, , (for any m > u)
that requires only m bits to specify and such that picking a function at random
can be done efficiently.

For the transmission of m-bit messages, W,C,, requires Alice and Bob
to share a secret-key of size N = 2n + m bits where n = m + ¢(m), and
£(m) € Q(m) is the size of the Wegman-Carter authentication tag. We denote
secret-key k by the triplet: k = (z,b,u) where z,b € {0,1}" is the key for
the W,,-cipher and u € {0,1}"™ is the description of a random function h, €
Hﬁg t(m)” Encrypting message x € {0,1}™ is performed by first computing the
Wegman-Carter one-time authentication tag h,(x). The message (x, hy(x)) €
{0,1}" is then encrypted using the W,-cipher with secret-key (z,b). Bob
decrypts the W,,-cipher and verifies that a message of the form (z, h,(x)) is
obtained. Bob announces to Alice the outcome of the authentication using the
authenticated feedback channel. When it is successful, Alice and Bob recycle
the whole secret-key. If the authentication fails then Alice and Bob throw
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away the one-time-pad z. The remaining part (b,u) is entirely recycled. In
other words, Révk’s is the identity with s = N and RN is deterministic with
t=N—-n=N-—m—{(m).

Private-Key: (z,b,u) €g {0,1}2"t™ where n = m + £(m).

1. Alice creates the message ¢ = (x,hy(x)) where h, € HY t(m)"

She then encrypts this message with key (z,b) according to the
W,,-cipher.

2. Bob decodes the received W,,-cipher with key (z,b) and gets ¢ =
(2',t"). He then verifies the authentication tag ' = h,(z’). Bob
sends the result of the test to Alice through a classical authentic
channel.

3. [Key-Recycling] If Bob accepts then Alice and Bob recycle the
entire key (b, z,u). If Bob rejects then Alice and Bob recycle (b, u)
and throw away z € {0,1}™.

Figure 1: The W,C,,.

It is almost straightforward to show that our key-recycling function is
perfectly indistinguishable when authentication fails.

Lemma 2 Let N = 2n + m where n = m + ¢(m),£(m) > 0 be the key-length
used in W,,Cp, and let R(z,b,u) = (b,u) for z,b € {0,1}" and v € {0,1}™.
The key-recycling mechanism RN = {R} is 0-indistinguishable.

Proof. Since pno((b,u),z, R) = I, = pno((b',u’), z, R) for all (b,u),(b',u’), and
x, it easily follows that d(R(K)|p,,(z) ® {R}) = 0. O Since

W,.C,, encrypts m-bit messages and recycles N — n bits of key, the scheme is
sub-optimal according Theorem 1. In the next sections, we see that W,C,,
remains statistically secure for any ¢(m) € Q(m). It follows that although
sub-optimal, W,,C,, is nearly optimal.

5.2 An EPR variant of W,C,,

We establish the security of the key-recycling mechanism in W,C,, when
the authentication is successful. We prove this case using a Shor-Preskill
argument[18] similar to the ones invoked in [16] and [2] for key-recycling and
quantum authentication respectively.

We first define a variant of W,,C,,, called EPR-W,,C,,, using EPR-pairs and
having access to an additional authenticated and private classical channel. The
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key-recycling mechanism of EPR-W,,C,,, can be proven secure more easily since
it has access to more powerful resources. Second, we show that the security
of W,,.C,,, follows from the security of EPR-W,,C,,

In EPR-W,,C,,, Alice and Bob initially share an n-bit key b, and an m-bit
key u. They agree on 2" mutually unbiased bases in H,,, and a family of
XOR-universal hash-functions HY, , = {hu}ueqo,1ym- As for W,,.Cp, the key b is
used to select in which of the bases of the MUBS the encryption will take place.
The key u indicates the selection of the hash-function for authentication. The
key z in EPR-W,,C,, is not shared beforehand but will be implicitly generated
by measuring the shared EPR-pairs. This corresponds to refreshing z before
each round of EPR-W,,C,,

In order for Alice to send classical message 2 € {0,1}"™ to Bob, Alice and
Bob proceeds as described in Fig. 2. The key-recycling mechanism of EPR-
W,C,, only takes place when authentication succeeds. The quantum trans-
mission in W,,C,, is replaced by transmitting half of a maximally entangled
state consisting of n EPR-pairs.

= Y 2P Ee Y 2 ”/2‘,5(’”” > (14)

ze{0,1}n ze{0,1}n

for some orthonormal basis {|§§b)>}z.
Any trace-preserving operator the adversary can apply to Bob’s half EPR-
pairs can be described in terms of the 4" Pauli operators,

An_14n—1
E(UNT) = D > e, @ 0| )W|(L, © 0)), (15)

=0 j=0

where Op = 1,,. We can split (15) into the case where the error leaves the
state untouched, and the case where the state is changed

p = leo U] + (1= [eo*) ", (16)
b,u cicj .
where pp" = 32 54(0.0) T lea]? )( n ® O)|UNT|(1,, ® O;)T, and |cp|? is the

probability that the state is left unchanged by &.

The idea behind the security of the key-recycling mechanism is that an
eavesdropper, performing any non-trivial action upon Bob’s system, will fail
authentication with high probability. Any eavesdropping strategy that re-
mains undetected with a not too small probability is such that |cp|? is at
negligible distance from 1. This means that the ciphertext will be left un-
touched with probability essentially 1. In other words the probability of being
detected is closely related to 1 — |co|?.

The probability that Bob will accept the authentication tag, when Alice
and Bob share key (b,u) can be expressed by the observable projecting onto
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Private-Key: (b,u) € {0,1}"T™.

1. Alice prepares the n EPR-pairs in state |\IJ>AB.

2. Alice sends the B-register to Bob.

3. Bob acknowledges receiving the state using the classical authentic
feedback channel.

4. Alice measures her A-register in basis {|§£b)>}c€{071}n (See (14)).
On classical outcome ¢, she computes z := ¢ @ (z, hy(x)).

5. Alice sends z to Bob through the additional private and authen-
ticated classical channel.

6. Bob measures his B-register in the b-th basis of the MUBS, gets
outcome ¢, and computes (z/,t') = ¢ @ z. Bob verifies that
t' = hy(2") and announces the result to Alice through the classical
authenticated feedback channel.

7. If Bob accepts, Alice and Bob recycle the whole key (b, ).

Figure 2: The EPR-W,,C,,-cipher using an extra private and authentic classical
channel.

the space of states where Alice has her untouched EPR-halves, and Bob has
anything that passes the authentication test:
(0) (0)
vez,u(i)> <vez,u(§:)

M= > > 5iz?u(x>><5$?u(x>

2€{0,1}™ £€{0,1}™
where e, ,(z) = 2z @ (z,hy(z)). The probability that Bob will accept the
authentication, when using key (b,u), is p}* = tr(I1%" 5).

As mentioned in Sect. 2.3, all 4"—1 Pauli operators (excluding the identity)
are partitioned into 2" + 1 sets, each containing 2" — 1 commuting members.
Each operator, O;, appearing in (15), will be in one of the 2™ +1 partitions (i.e.
which each forms a subgroup). In the partition or basis where an error operator
O; belongs, its action will leave all cipherstates unchanged. For each other 2"
basis b, O; will anti-commute with exactly half the operators (including the
identity). This means that in basis b, the action of O; permutes the basis
vectors. Since this permutation is independent of the authentication code, we
can show that the probability for O; to remain undetected is negligible when
the class of Wegman-Carter authentication functions is XOR-universal. Let

®

, (17)
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ﬁggc be the normalized state conditioned on A, defined as,

bu

byu ayrb,u
HAccpHAcc
PAace =

; . (18)
U ~
tr (HA’CC,O>

We are going to estimate the average fidelity? of /SZ’ZC to the ideal state |U)(].
To do so we split p according to (16) and use the concavity of the fidelity,
b, 2 . b, .
F(pte, [W)(¥]) > 2. Applying (16) to pi, gives us

Pace

|co|?

F(pe, |eXw)) > .
b, b
col2 + (1= Jeof?) tr (T3 ")

To lower bound the average fidelity, >, , 27" ™ F (ﬁggc, |[W)X¥|). We split the

sum into keys (bases and authentication keys) for which tr(HZZC b £") is small,
and keys for which this probability is large. We know from the previous
argument, that the probability of accepting a non-trivial error will be small
in most bases, and indeed the terms with tr(H%ﬁcp%u) negligible compared to
|co|? give the main contribution to the fidelity.

In summary, an undetected attack is almost always trivial since it corre-
sponds to the case where no eavesdropping occurred. Next Theorem, proven
in Appendix B, gives the desired result.

Theorem 2 For all adversary strategies for which paee > 2~ (~m=2)/2+1
S>> R (. ee]) 21—
be{0,1}™ ue{0,1}™

provided n is sufficiently large.

Let p}' () be the random state corresponding to the adversary’s view in
EPR-W,C,, given A,,. Let K = (B,U, Z) be the random variable describing
the key (b,u) € {0,1}"™ x {0,1}", and z € {0,1}" computed from the mea-
surement outcome. Using the same line of arguments as [3] (for completeness,
the proof can be found in Appendix C), Theorem 2 implies that:

Theorem 3 For all adversary strategies for which page > 2~ (—m=2)/2+1

d(K|p(z) @ {RY) < 27751,

provided n is sufficiently large.

*Where the fidelity F(p%", [U)¥]) = (¥|p5" |¥).
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5.3 Back to W,C,,

We now show that Theorem 3 also applies to W,,C,,,. Similarly to other Shor-
Preskill arguments[18, 2, 16], we transform EPR-W,C,, into W,,C,, by simple
modifications leaving the adversary’s view unchanged.

In Step 4 of EPR-W,C,,, Alice measures her part of the entangled pair
in order to extract ¢ € {0,1}". Instead, she could have measured already
in Step 1 since the measurement commutes with everything the adversary
and Bob do up to Step 4. Measuring half the EPR-pairs immediately after
creating them is equivalent to Alice preparing ¢ €r {0,1}" before sending
]v@) in Step 2.

Instead of picking ¢ €g {0,1}™ in Step 1, Alice could choose z €r {0,1}"
at random before sending ]v%@ I (z))> to Bob. All these modifications change
nothing to the adversary’s view.

Now, sending z through the private and authenticated classical channel in
Step 5 becomes unnecessary if Alice and Bob share z before the start of the
protocol (thus making z part of the key). We have now removed the need for
the private and authenticated classical channel.

The resulting protocol is such that Bob first acknowledges receiving the
cipher, then measures it, and finally replies with either accept or reject. The
acknowledgment of Step 3 is unnecessary and can safely be postponed to Bob’s
announcement in Step 6. The EPR-W,,C,,,-cipher has now been fully converted
into the W,,C,,,-cipher without interfering with the eavesdropper’s view. It
follows directly that Theorem 3 also applies to W,C,,,.

Theorem 3 shows that one use of the W,,C,,-cipher leaves the secret-key at
negligible distance from uniform when it was initially 0-indistinguishable. In
general, if a random variable K is at distance no more than e from uniform
then K behaves exactly like a uniform random variable except with probability
at most €[17]. Our main result follows:

Theorem 4 (Main Result) Let n = m+ ¢(m). For all adversary strategies
the W,,Cy, -cipher used with an initial e-indistinguishable private-key satisfies,

1. cither d(K|py(x) ® {R}) < 4278 1 or page < 27 UmM=2/241,
2. d(K|pyo(r) ©{R}) <,
provided n is sufficiently large.

In other words, the key-recycling mechanism is statistically indistinguishable
when ¢(m) € Q(m). It follows that, when starting from a statistically indis-
tinguishable secret-key, key-recycling can take place exponentially many times
without compromising the statistical indistinguishability of the resulting key.
As mentioned in Sect. 3, Theorem 4 and the discussion in [17] imply that the
W,,C,,-cipher is universally composable against static adversaries.
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6 Conclusion and Open Questions

We have shown that the W.,,C,,,-cipher is an almost optimal key-recycling cipher
with one-bit feedback. There are many possible improvements of our scheme.
In this paper, we assume noiseless quantum communication. This is of course
an unrealistic assumption. Our scheme can easily be made resistant to noise by
encoding the quantum cipher using a quantum error-correcting code. Since a
quantum error-correcting code is also a secret-sharing[7], it can be shown that
when authentication succeeds almost no information about the cipherstate is
available to the eavesdropper. On the other hand, if the eavesdropper gains
information about the cipherstate then authentication will fail similarly to the
case where no error-correction is used.

It would be interesting to show that the key recycling bound(i.e. Theorem
1) can be improved to t < n—m (instead of n—m+1) as for classical schemes.
It is an open question whether there exists a QKRS achieving this upper bound.

It is also possible to allow for more key-recycling mechanisms associated
to different output values for the authentication process. Such a generalized
scheme would allow to recycle key-material as a function of the adversary’s
available information but would require more than one-bit feedback.

It is easy to see that the W,,C,,-cipher can be used as a re-usable quantum
authentication scheme when authentication succeeds. Our construction (using
MUBSs) is different than the ones based on purity testing codes[2] and may be
of independent interest.
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to the program committee for valuable comments and suggestions.
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A Proof of Theorem 1
The following lemma will be useful in the proof of Theorem 1.

Lemma 3 Let 0 < ¢ < 1 be a constant. Let Rgg,t be a statistically indis-
tinguishable key-recycling mechanism in case of authentication failure. Then,
there exists R € Ry and k € {0,1}* such that

1. D(pyo(k,z, R), ps) < ¢, and

Q#R ()<2n t+1

Proof. Suppose for a contradiction that for all R € Rﬁgt, all k € {0,1}!, and a
constant ¢ < 1/2 either

o D(puo(k,z,R), ps) > ¢, or
° #R ( )>2n t+1

Let 6(n) be a negligible function such that R is d(n)—indistinguishable. We
define K*(R) = {k | D(pno(k,z, R), ps) > cn} as the set of recycled keys for
Which condition 1 is not satified under R. Remember that Pr (K = =k | R) =

274 R~1(k) where K is the random variable for the recycled key Using (12),
we easily get

1 A .
s(n) > WZZ2—”#}%—1(k)D(pno(k,ac,R>,pg@>

ntZ > 2#R Nk e

Rno 7 ke K*(R)

— WZH (k € K*(R) | R)
no R

= ¢-Pr(ke K*(R)),

v

which implies
6(n)

C

Pr(k € K*(R)) < (19)

On the other hand, when k ¢ K*(R) it must be the case that #R1(k) >
2n—t+1 However, by definition of a statistically indistinguishable key-recycling
mechanism,

d(n) = d(R(K) | pno(2) ® {R})

v

d(R(K )I{R})
—Z#nt > Pr(K=k|R)-2"

kg K*(R)

Y
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v

Pr(K=Fk|R
_Z#got 3 %

kg K*(R)

which is clearly impossible when d(n) is negligible. It follows that conditions
1 and 2 must be satisfied by some R and k. U

We are now ready to prove Theorem 1. Proofof Theorem 1. Suppose for
a contradiction the existence of a statistically indistinguishable key-recycling
mechanism such that t =n—m —|— 2. By Lemma 3, there exists R and ko such
that D(pno(ko,z, R), pr) < ¢ < 2. and #R~! <277 = 2m~1 From Lemma
1, D(&, py) < €(n) for negligible €(n). Using the triangle inequality together
with (12), it follows that

D(puo(kos ., R),€) < D(, pz) + Dlpws prolho, 2, R)) < e(n) +¢. (20)

On the other hand, we can lower bound the trace-norm distance between
pno(fco, x, R) and £ using a similar argument as in the proof of Lemma IV.3.2
in [5]. We rewrite the operator pno(l%o,x, R) — ¢ as P — N, where P, and N
are positive operators with orthogonal support. We then have,

Dpuo(o, 7, R),) = 3 tr (Ipnolho,, B) ~ €]) = 5 tr (P4 N).

Since pno(l%o, x, R)—& = P— N, we define the operator C = pno(iﬂo, z,R)+N =
¢ 4+ P so that,

%tr (C — €+ C = puolho, 7, R))

> % D= 2M(0) = M) — M (puolko. 2. B)),

D(pno(l%o, €, R)v 5)

where )\%(C) are the eigenvalues of C in decreasing order. By Weyl’s mono-
tonicity theorem, )\Z-l(C) > )\Z-l(f) and )\ZL(C) > )\Zl (pno(ko, x, R)) for all i. Ap-
plying these inequalities and subtracting from )\Z-l(C) the largest of the values
)\Z-l(f) and )\Z-l(pno(iﬂo,x,R)), lead to

Dipuolln . R, = 5 3 AHC) — min{AHE), Ao o 7, )}

AV

% Z (max{)\f (€), Ak (pno(ko, 2, R))}
—mln{)\l &), A (pno(k()vx R))})
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= 53 I anolo, 2, ) = A(E)] (21)

The eigenvalues of § are A(§) = A(D_, 27" M), where My, = > 27" Ep|z)(x|®

|0>(0|E,1 is a rank 2" matrix with eigenvalues 27™. By Lidskii’s theorem (for
example see equation IIL.13 in [5]) A(30, 27" M) < 3, 27"AH(M}) which
is the vector where the first 2" entries are 27™, and the remaining ones are
all 0’s® This means that the largest eigenvalue of ¢ is at most 2. Since
the rank of puo(ko,x, R) cannot exceed the cardinality of R~(ko) which by
assumption is 271 (21) is minimized when )\il(pno(ifo,x,R)) = 27+l for
i=1,...,27 " and A (€) =27™, for i =1,...,2™. We finally get,

D(pno(l%o,x, R)vg) > % (2m71(27m+1 - 27m) + (2m - 2m71)27m) = % (22)

Equation 20 and (22) lead to the desired contradiction since €(n) + ¢ < 1/2
for n sufficiently large. O

B Proof of Theorem 2

The following Lemma is the main tool for proving Theorem 2.

Lemma 4 Let pacc = >, 27" " tr(Hi{ZcpA) be the probability that Bob ac-
cepts the authentication (when probability is taken over all keys), and let |co|?
be defined as in (15), then

PAce < |CO|2 + 27n+m+2.

Proof. The probability that Bob will accept the authentication, when proba-
bility is taken over all keys (b,u), is pace = 27", tr(H%zcﬁ). Applying
(16) we rewrite the trace as tr(HZ’ngA) = leo 2 tr(JUNP|)+(1—]|co|?) tr(H[XZCp%u),
and we get

pace =leol + (1= l2 ™ DT ST wr(Mel) . (23)

be{0,1}" ue{0,1}™
Since p%’“ = D (i./)#£(0,0) %(ﬂn ® O0;) U)X V| (1, ® O;)T, the trace of (23) is

S e 3 (e ([0 )60 o) (o))

(1,4)£(0,0) kJE{0,1}m
(24)

3(z1,...,2n) < (y1,...,yn) means that vector x is majorized by vector y. That is,
Zle z; < Ele yi forall 1 < £ <n.
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), and applying the

Using the notation from Sect. 2.3 (i.e. P? := \v(b)>(v((1 ]
) becomes

equality tr(A ® B) = tr(A) tr(B), the inner sum of (24

R R
)

= ) > tr(£§1<x>><€§?u<x >< ‘ tr ( ew(x>><”g,u(gz>

k,,2€{0,1}™ 2€{0,1}"
>, Dt (sz,u(m OiP;, (x>0> (25)

z€{0,1}™ z€{0,1}™

O;

We further re-write the trace by writing the two projectors as linear combina-
tions of Pauli operators as in (7). This way, the trace in (25) can be re-written

as
-n b -n b T
tr 2 Z 5(#’,ez,u(50))0u’ O; |2 Z €(M’ez,u(m))ou Oj
H/E{()?l}n ME{O,I}"

— 9—2n b b it
=2 Z E(W ez (@))€ (yez ul@)) tr (Ou’0i0u0j>
pop' €{0,1}7
— 9—2n Com(0;,0% b b N
=2 Z E(/J'/vez,uc;?))€(U7€z,u(x))(_1) ( M) tr (OM’OuOle> ) (26)
pop' €40, 137

where Com(O;, OZ) is 0 if O; and OZ commute, and 1 if they anti-commute.
Since both O; and OZ are Pauli operators they will either commute or anti-
cominute.

Using the fact that (e4,3)q,s represents the operator 27/2 H®" and summing
E( exu(#))E (ses.u(x)) OVET 2, We see that

Z E er @) (rern(z)) = Z (_1)u/-(z®(i7hu(i)))(_1)u-(ze9(z7hu(:v)))
z€{0,1}m z€{0,1}"
= Z (—1)7 WOH DU (& hu(2))Dpr (. hu())
z€{0,1}"
= 2"5%“,(_1);/-(ivhu(i))ﬂw-(z,hu(:v))_ (27)

We insert (26) into (25) while using (27) and the fact that (Oﬁ)2 =1,:

S () (5 0ol )1 o)

k,le{0,1}™

Z 9—2n Z 2n(_1)u-(i},hu(i))@u'(m,hu(x))(_1)Com(0i,Oz)tr(Oio;r)’
ze{0,1}m nef{0,1}m

(28)

24

) ("[0})



which is non-zero only when ¢ = j, since tr(OiO;[) = 9;,;2". Inserting (28) into
(24), we get

Z B ‘Cz’ Z Z u( Z,ho (2 ))EB(J;,hu(x)))(_1)Com(0i,02). (29)

= (1= col?)
z;ﬁO ze{0,1}™ pe{0,1}m

Let up € {0,1}™ be the first m bits of i, and pq € {0,1}"~™ the last n—m bits
of 1. We can now use the properties of XOR-universal classes of hash-functions
to upper bound

YT (CpEh@emh ), (30)

#€{0,1}m uef0,1}m
When # = z, the whole sum is 22 so (30) is
92m + Z (_1);10'(5:6990) Z (_1)#1'(hu(ii‘)@hu($)). (31)
#e{0,1}m i#x ue{0,1}m

If 41 = 0 then the inner sum is 2™, else it is zero since, by the definition of
XOR-universal hash-functions, each n bit string occurs the same number of
times:

22 45, 02" Y (—1yrelEen), (32)
£#€{0,1}m iz

The last sum is 2™ if pg = 0, else it is —1, since the only element & & x we do
not include in the sum is the bit-string of m zeros. We get,

Z Z e ((2,hu(2))@(z,hu(x))) 92m + 5#1,02m(5l£0,02m . (1 N 5#070))
#e{0,1}m ue{0,1}m

< 22§, 0(27M 4 2m). (33)
Inserting (29) into (23) using (33), we get

Pace = leo2 + (1= leo)27" ™ 30 > (Wi op")
bc{0,1}" uc{0,1}m

‘C ‘2+2 2n—m Z Z ’62’2 Z Z Z u( (Z,hu(2))®(z, hu(x)))(_l)Com(Oi,OZ)

be{0,1}™ i#0 ne{0,1} £€{0,1}™ ue{0,1}™

< |CO|2 9—2n—m Z Z|Cz| Z 22m+5“0 22m+2m))( )Com(OZ,O)

be{0,1}™ i#0

When 4 = 0, Com(0;, 0%) = 0 and (34) becomes

‘00‘2 49 n—m Z ‘ci’2(22m+1 + Qm). (35)
i#0
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Since the Pauli operator O; anti-commutes with exactly half the Pauli oper-
ators (including the identity) in all bases except one, in which it commutes
with all the operators, summing (—1)C°m(oi’oz) over terms p # 0 is (2" — 1)
if O; € {OZ}M, and —1 otherwise (since O; # 1,,). Let b; be the basis where
O; commutes with all operators. In this case (34) becomes

|CO|2 + 272n7m Z |Ci|222m (2n - 1) + Z o
i#£0 b£b;
= leo]? + 2727 P22 (2" — 1) — (2" = 1)) = 0. (36)
i#£0

Thus, (34) can finally be re-written as,

‘CO‘Q_i_anfmZ ‘ci‘2(22m+1+2m) < ’60’2+27n+m+2(1_‘00’2) < ‘CO‘Q_i_anerJrQ’
i£0
(37)

which completes the proof. ]

We are now ready to prove Theorem 2.
Proofof Theorem 2.

Let an adversary strategy be given, such that pa. > 2~ (=1m-m=2)+1
for some 0 < v < 1.

Note first that, when |cg|? = 1, the eavesdropper does not interfere with the
shared state |[U)(¥|, and the average fidelity >, , 27" "F ﬁgzc, |UX¥|) = 1.
When |¢p|2 = 0, Lemma 4 implies that pa.. < 2-"~™=2) which can only be
possible if v < 0, which contradicts v > 0. In the rest of this proof, we assume
that 0 < |co|2 <1

Let pE = tr(HZZCp%u) Using (16) we define,

2 2

b, b ~rbu ) b, |col (1 —leol®) ibu b,
pATCLc = HAZCpHATCLc pATCLc = pb7u ‘\I]><\I]‘ + pb,u HATCchEuHATCLc

Acc Acc

b,u
|co|? (1= |eol*)pp" -
= S [ONY[+ (38)
Acc Pace

where p = Hggcp%u Ace / pp" when p 2 # 0, and is arbitrary otherwise.

By the concavity of the fidelity, after discarding p, gives

c 2
P ) > 19 pwy ) = — (30)

7}) N
pAcc tr (HAZCP)
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Applying (16) to tr(Hgﬁcf)), and using the linearity of the trace

|co|?
b
|co|? + (1 = [col?)pp”

F(pe., | U)X @) > (40)

Lemma 4 states that when |cp|? is small, then so is the probability of
accepting the authentication is small for most keys. We split the sum,

2n+m > X F(ﬁlfx?@ ><\If!>, (41)

be{0,1}" uc{0,1}™

up in key-pairs, (b, u), for which p%’u is larger than a threshold ¢, and key-pairs
where p%’“ is smaller than t. We define,

Ly = {(b, u)| P < t} . (42)
Now
~bu 1 ’60’2
e XS r(hm) 2 ¥ Y Ll
be{0,1}" ue{0,1}m be{0,1}" s€{0,1}™ lcol? + (1 = [eol?)p

|co|?

> L, 2 n—m .
#L BT (L= )t

(43)

Since pace = Spu 2" Phte = leof? + Yyl — o2 R > el +

(2”+m #L4)27""(1 — |eg|?)t, we have that the number of keys for which
2

pE <tis#Ly > 2" (1 — %). Using this bound on #L; in (43), and

setting t = (2-G=M=m=2)/2) /(1 _ |¢y|?), we get:

1 b, PAce — |ol? |col®
F(pie1wpwl) = (1-
on-+m Z Z pACC >< ‘ - < t(l — ‘00‘2) ’C0’2 + (1 - ‘00‘2)75

be{0,1}" ue{0,1}™
_ 1 Pace — |col® |col®
N 2= (2=7)(n=m=2)/2 ] |cy|2 4 2-(2=7)(n—

M
N
s
~

)

The assumption paee > 2~ M=m=2+1 tooether with Lemma 4, implies
o> > 2= (=N (=m=2)+1 _9=(n=m=2) 5 9=(1-7)(n=m=2) " Fyrthermore Lemma
4 implies pace — |col? < 2~ (n—m-2).

o 2 F ()

be{0,1}™ ue{0,1}™

Y

9—(n—m-2) 1
L= e o2 | T 2 mm)2 /|col?

1 — 9—v(n—m—2)/2
2 T
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> 11— 2—7(n—m—2)/2+1.

Setting v = 1/2, we have that

Qnim SY F(flenw)) = 1-atemm AL ()
be{0,1}™ ue{0,1}™

—(n—m—2)/2+1

when pac. > 2 . This completes the proof. O

C Proof of Theorem 3

The proof of Theorem 3 is essentially identical to the proof in section 5.3 of
3].
ProofOf Theorem 3. We know from Theorem 2 that

S 2 (1-F (g (wKe)) <2 emeRA )

be{0,1}" ue{0,1}™

Let W’f’u> be a purification of the state held by Alice, Bob, and Eve, that
contains a description of the key. If we trace out the systems of Eve, the
key, and the environment of W’f’u> we get p. If we trace out the systems of
Alice, Bob, the key, and the environment we get pok((b, u), z). So |¢ll)’“> is also
a purification of the states ﬁg’zc, and pok((b,u),z). By Ulhmann’s Theorem,
there exists a purification |¢S’“> of |U)X¥|, such that

F([oh) us)) = F (o 1wxwl) (48)

When measuring the systems of Alice and Bob, and tracing out the envi-
ronment of ]1#?’“) we get |b, u)b, u| ® pok((b,u),z). Since |¥)Y¥| is already a
pure state, measuring the systems of Alice and Bob, and tracing out the en-
vironment of WS’“) gives |b,u)b,u| ® |[)1)|, for some pure-state |1)). Since
measuring and tracing out can only increase the fidelity,

B(Jb,ub,u] @ po(br ), ). b ool © s > F (i [wie) . (49)
Using the fact that D(p,0)? <1 — F(p,0), and (47), we get

D{K} @ pyy ()], {U}] @ gy (2)])
< D> D> 27D(bu)b,ul @ pok((byu), @), b, u)b, ul @ [0)X0])

be{0,1}™ ue{0,1}™

< X D> 27 mD(byu)b,ul @ poi((byw), @), b ub, ul © 0)0])2

be{0,1}™ ue{0,1}™
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< D0 D 2= F(lb,upb,ul @ pox((bu), @), b, u)b, ul © [0)X0]))

be{0,1}m ue{0,1}m < 9~ (n=m=2)/8+1/2 < 9=(n-m=2)/8+1 (50

0
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