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Abstract

We present an abstract machine and a reduction semantics for the λ-calculus extended
with control operators that give access to delimited continuations in the CPS hierarchy.
The abstract machine is derived from an evaluator in continuation-passing style (CPS);
the reduction semantics (i.e., a small-step operational semantics with an explicit represen-
tation of evaluation contexts) is constructed from the abstract machine; and the control
operators are the shift and reset family. At level n of the CPS hierarchy, programs can
use the control operators shifti and reseti for 1 ≤ i ≤ n, the evaluator has n + 1 layers of
continuations, the abstract machine has n + 1 layers of control stacks, and the reduction
semantics has n + 1 layers of evaluation contexts.

We also present new applications of delimited continuations in the CPS hierarchy:
finding list prefixes and normalization by evaluation for a hierarchical language of units
and products.
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1 Introduction

The studies of delimited continuations can be classified in two groups: those that use continu-
ation-passing style (CPS) and those that rely on operational intuitions about control instead.
Of the latter, there is a large number proposing a variety of control operators [5, 36, 39, 40,
47,50,51,61,66,70, 77] which have found applications in models of control, concurrency, and
type-directed partial evaluation [8,50,71]. Of the former, there is the work revolving around
the family of control operators shift and reset [26–28, 31, 41, 42, 53, 54, 62, 77] which have
found applications in non-deterministic programming, code generation, partial evaluation,
normalization by evaluation, computational monads, and mobile computing [6,7,9,16,21,22,
32,33,43,44,46,49,55,58,68,73,74,76].

The original motivation for shift and reset was a continuation-based programming pattern
involving several layers of continuations. The original specification of these operators relied
both on a repeated CPS transformation and on an evaluator with several layers of continu-
ations (as is obtained by repeatedly transforming a direct-style evaluator into continuation-
passing style). Only subsequently have shift and reset been specified operationally, by devel-
oping operational analogues of a continuation semantics and of the CPS transformation [31].

The goal of our work here is to establish a new operational foundation for delimited
continuations, using CPS as a guideline. To this end, we start with the original evaluator
for shift1 and reset1. This evaluator uses two layers of continuations: a continuation and a
meta-continuation. We then defunctionalize it into an abstract machine [1] and we construct
the corresponding reduction semantics [35], as pioneered by Felleisen and Friedman [38].
The development scales to shiftn and resetn. It is reusable for any control operators that are
compatible with CPS, i.e., that can be characterized with a (possibly iterated) CPS translation
or with a continuation-based evaluator. It also pinpoints where operational intuitions go
beyond CPS.

This article is structured as follows. In Section 2, we review the enabling technology of our
work: Reynolds’s defunctionalization, the observation that a defunctionalized CPS program
implements an abstract machine, and the observation that Felleisen’s evaluation contexts are
the defunctionalized continuations of a continuation-passing evaluator; we demonstrate this
enabling technology on a simple example, arithmetic expressions. In Section 3, we illustrate
the use of shift and reset with the classic example of finding list prefixes, using an ML-
like programming language. In Section 4, we then present our main result: starting from
the original evaluator for shift and reset, we defunctionalize it into an abstract machine;
we analyze this abstract machine and construct the corresponding reduction semantics. In
Section 5, we extend this result to the CPS hierarchy. In Section 6, we illustrate the CPS
hierarchy with a class of normalization functions for a hierarchical language of units and
products.

2 From evaluator to reduction semantics
for arithmetic expressions

We demonstrate the derivation from an evaluator to a reduction semantics. The derivation
consists of the following steps:

1. we start from an evaluator for a given language; if it is in direct style, we CPS-transform
it;
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2. we defunctionalize the CPS evaluator, obtaining a value-based abstract machine;

3. we modify the abstract machine to make it term-based instead of value-based; in partic-
ular, if the evaluator uses an environment, then so does the corresponding value-based
abstract machine, and in that case, making the machine term-based leads us to use
substitutions rather than an environment;

4. we analyze the transitions of the term-based abstract machine to identify the evaluation
strategy it implements and the set of reductions it performs; the result is a reduction
semantics.

The first two steps are based on previous work on a functional correspondence between evalu-
ators and abstract machines [1–3,16,25], which itself is based on Reynolds’s seminal work on
definitional interpreters [67]. The last two steps follow the lines of Felleisen and Friedman’s
original work on a reduction semantics for the call-by-value λ-calculus extended with control
operators [38]. The last step has been studied further by Hardin, Maranget, and Pagano [48]
in the context of explicit substitutions and by Danvy and Nielsen [30].

In the rest of this section, our running example is the language of arithmetic expressions,
formed using natural numbers (the values) and additions (the computations):

exp 3 e ::= pmq | e1 + e2

2.1 The starting point: an evaluator in direct style

We define an evaluation function for arithmetic expressions by structural induction on their
syntax. The resulting direct-style evaluator is displayed in Figure 1.

2.2 CPS transformation

We CPS-transform the evaluator by naming intermediate results, sequentializing their com-
putation, and introducing an extra functional parameter, the continuation [28, 64, 72]. The
resulting continuation-passing evaluator is displayed in Figure 2.

2.3 Defunctionalization

The generalization of closure conversion [57] to defunctionalization is due to Reynolds [67].
The goal is to represent a functional value with a first-order data structure. The means is
to partition the function space into a first-order sum where each summand corresponds to a
lambda-abstraction in the program. In a defunctionalized program, function introduction is
thus represented as an injection, and function elimination as a call to a first-order apply func-
tion implementing a case dispatch. In an ML-like functional language, sums are represented
as data types, injections as data-type constructors, and apply functions are defined by case
over the corresponding data types [29].

Here, we defunctionalize the continuation of the continuation-passing evaluator in Fig-
ure 2. We thus need to define a first-order algebraic data type and its apply function. To this
end, we enumerate the lambda-abstractions that give rise to the inhabitants of this function
space; there are three: the initial continuation in evaluate and the two continuations in eval.
The initial continuation is closed, and therefore the corresponding algebraic constructor is
nullary. The two other continuations have two free variables, and therefore the corresponding
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• Values: val 3 v ::= m

• Evaluation function: eval : exp → val

eval (pmq) = m
eval (e1 + e2) = eval (e1) + eval (e2)

• Main function: evaluate : exp → val

evaluate (e) = eval (e)

Figure 1: A direct-style evaluator for arithmetic expressions

• Values: val 3 v ::= m

• Continuations: cont = val → val

• Evaluation function: eval : exp × cont → val

eval (pmq, k) = k m
eval (e1 + e2, k) = eval (e1, λm1. eval (e2, λm2. k (m1 + m2)))

• Main function: evaluate : exp → val

evaluate (e) = eval (e, λv. v)

Figure 2: A continuation-passing evaluator for arithmetic expressions

• Values: val 3 v ::= m

• Defunctionalized continuations: cont 3 k ::= [ ] | ADD2 (e, k) | ADD1 (v, k)

• Functions eval : exp × cont → val and apply cont : cont × val → val:

eval (pmq, k) = apply cont (k, m)
eval (e1 + e2, k) = eval (e1, ADD2 (e2, k))

apply cont ([ ], v) = v
apply cont (ADD2 (e2, k), v1) = eval (e2, ADD1 (v1, k))

apply cont (ADD1 (m1, k), m2) = apply cont (k, m1 + m2)

• Main function: evaluate : exp → val

evaluate (e) = eval (e, [ ])

Figure 3: A defunctionalized continuation-passing evaluator for arithmetic expressions
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constructors are binary. As for the apply function, it interprets the algebraic constructors.
The resulting defunctionalized evaluator is displayed in Figure 3.

2.4 Abstract machines as defunctionalized continuation-passing programs

Elsewhere [1, 25], we have observed that a defunctionalized continuation-passing program
implements an abstract machine: each configuration is the name of a function together with
its arguments, and each function clause represents a transition. (As a corollary, we have also
observed that the defunctionalized continuation of an evaluator forms what is known as an
‘evaluation context’ [24,29,38].)

Indeed Plotkin’s Indifference Theorem [64] states that continuation-passing programs are
independent of their evaluation order. In Reynolds’s words [67], all the subterms in applica-
tions are ‘trivial’; and in Moggi’s words [60], these subterms are values and not computations.
Furthermore, continuation-passing programs are tail recursive [72]. Therefore, since in a
continuation-passing program all calls are tail calls and all subcomputations are elementary,
a defunctionalized continuation-passing program implements a transition system [65], i.e., an
abstract machine.

We thus reformat Figure 3 into Figure 4. The correctness of the abstract machine with
respect to the initial evaluator follows from the correctness of CPS transformation and of
defunctionalization.

2.5 From value-based abstract machine to term-based abstract machine

We observe that the domain of expressible values in Figure 4 can be embedded in the syntactic
domain of expressions. We therefore adapt the abstract machine to work on terms rather than
on values. The result is displayed in Figure 5; it is a syntactic theory [35].

2.6 From term-based abstract machine to reduction semantics

The method of deriving a reduction semantics from an abstract machine was introduced
by Felleisen and Friedman [38] to give a reduction semantics for control operators. Let us
demonstrate it.

We analyze the transitions of the abstract machine in Figure 5. The second component
of eval-transitions—the stack representing “the rest of the computation”—has already been
identified as the evaluation context of the currently processed expression. We thus read a
configuration 〈e, C〉eval as a decomposition of some expression into a sub-expression e and an
evaluation context C.

Next, we identify the reduction and decomposition rules in the transitions of the machine.
Since a configuration can be read as a decomposition, we compare the left-hand side and
the right-hand side of each transition. If they represent the same expression, then the given
transition defines a decomposition (i.e., it searches for the next redex according to some
evaluation strategy); otherwise we have found a redex. Moreover, reading the decomposition
rules from right to left defines a ‘plug’ function that reconstructs an expression from its
decomposition.

Here the decomposition function as read off the abstract machine is total. In general,
however, it may be undefined for stuck terms; one can then extend it straightforwardly into
a total function that decomposes a term into a context and a potential redex, i.e., an actual
redex (as read off the machine), or a stuck redex.
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• Values: v ::= m

• Evaluation contexts: C ::= [ ] | ADD2 (e, C) | ADD1 (v, C)

• Initial transition, transition rules, and final transition:

e ⇒ 〈e, [ ]〉eval

〈pmq, C〉eval ⇒ 〈C, m〉cont

〈e1 + e2, C〉eval ⇒ 〈e1, ADD2 (e2, C)〉eval

〈ADD2 (e2, C), v1〉cont ⇒ 〈e2, ADD1 (v1, C)〉eval

〈ADD1 (m1, C), m2〉cont ⇒ 〈C, m1 + m2〉cont

〈[ ], v〉cont ⇒ v

Figure 4: A value-based abstract machine for evaluating arithmetic expressions

• Expressions and values: e ::= v | e1 + e2

v ::= pmq

• Evaluation contexts: C ::= [ ] | ADD2 (e, C) | ADD1 (v, C)

• Initial transition, transition rules, and final transition:

e ⇒ 〈e, [ ]〉eval

〈pmq, C〉eval ⇒ 〈C, pmq〉cont

〈e1 + e2, C〉eval ⇒ 〈e1, ADD2 (e2, C)〉eval

〈ADD2 (e2, C), v1〉cont ⇒ 〈e2, ADD1 (v1, C)〉eval

〈ADD1 (pm1q, C), pm2q〉cont ⇒ 〈C, pm1 + m2q〉cont

〈[ ], v〉cont ⇒ v

Figure 5: A term-based abstract machine for processing arithmetic expressions
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In this simple example there is only one reduction rule. This rule performs the addition
of natural numbers:

(add) C [pm1q + pm2q] → C [pm1 + m2q]

The remaining transitions decompose an expression according to the left-to-right strategy.

2.7 From reduction semantics to term-based abstract machine

In Section 2.6, we have constructed the reduction semantics corresponding to the abstract
machine of Figure 5, as pioneered by Felleisen and Friedman [37, 38]. Over the last few
years [23,30], Danvy and Nielsen have studied the converse transformation and systematized
the construction of an abstract machine from a reduction semantics. The main idea is to
short-cut the decompose-contract-plug loop, in the definition of evaluation as the transitive
closure of one-step reduction, into a refocus-contract loop. The refocus function is constructed
as an efficient (i.e., deforested) composition of plug and decompose that maps a term and a
context either to a value or to a redex and a context. The result is a ‘pre-abstract machine’
computing the transitive closure of the refocus function. This pre-abstract machine can then
be simplified into an eval/apply abstract machine.

It is simple to verify that using refocusing, one can go from the reduction semantics of
Section 2.6 to the eval/apply abstract machine of Figure 5.

2.8 Summary and conclusion

We have demonstrated how to derive an abstract machine out of an evaluator, and how to
construct the corresponding reduction semantics out of this abstract machine. In Section 4,
we apply this derivation and this construction to the first level of the CPS hierarchy, and in
Section 5, we apply them to an arbitrary level of the CPS hierarchy. But first, let us illustrate
how to program with delimited continuations.

3 Programming with delimited continuations

We present two examples of programming with delimited continuations. Given a list xs and
a predicate p, we want

1. to find the first prefix of xs whose last element satisfies p, and

2. to find all such prefixes of xs.

For example, given the predicate λm.m > 2 and the list [0, 3, 1, 4, 2, 5], the first prefix is [0, 3]
and the list of all the prefixes is [[0, 3], [0, 3, 1, 4], [0, 3, 1, 4, 2, 5]].

In Section 3.1, we start with a simple solution that uses a first-order accumulator. This
simple solution is in defunctionalized form. In Section 3.2, we present its higher-order counter-
part, which uses a functional accumulator. This functional accumulator acts as a delimited
continuation. In Section 3.3, we present its direct-style counterpart (which uses shift and
reset) and in Section 3.4, we present its continuation-passing counterpart (which uses two
layers of continuations). In Section 3.5, we introduce the CPS hierarchy informally. We then
mention a typing issue in Section 3.6 and review related work in Section 3.7.
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3.1 Finding prefixes by accumulating lists

A simple solution is to accumulate the prefix of the given list in reverse order while traversing
this list and testing each of its elements:

• if no element satisfies the predicate, there is no prefix and the result is the empty list;

• otherwise, the prefix is the reverse of the accumulator.

find first prefix a (p, xs) def= letrec visit (nil , a)
= nil
| visit (x :: xs , a)

= let a ′ = x :: a
in if p x

then reverse (a ′, nil)
else visit (xs , a ′)

and reverse (nil , xs)
= xs
| reverse (x :: a, xs)

= reverse (a, x :: xs)
in visit (xs , nil)

find all prefixes a (p, xs) def= letrec visit (nil , a)
= nil
| visit (x :: xs , a)

= let a ′ = x :: a
in if p x

then (reverse (a ′, nil)) :: (visit (xs , a ′))
else visit (xs , a ′)

and reverse (nil , xs)
= xs
| reverse (x :: a, xs)

= reverse (a, x :: xs)
in visit (xs , nil)

To find the first prefix, one stops as soon as a satisfactory list element is found. To list all
the prefixes, one continues the traversal, adding the current prefix to the list of the remaining
prefixes.

We observe that the two solutions are in defunctionalized form [29, 67]: the accumulator
has the data type of a defunctionalized function and reverse is its apply function. We present
its higher-order counterpart next [52].

3.2 Finding prefixes by accumulating list constructors

Instead of accumulating the prefix in reverse order while traversing the given list, we accu-
mulate a function constructing the prefix:

• if no element satisfies the predicate, the result is the empty list;

7



• otherwise, we apply the functional accumulator to construct the prefix.

find first prefix c1 (p, xs) def= letrec visit (nil , k)
= nil
| visit (x :: xs , k)

= let k ′ = λvs .k (x :: vs)
in if p x

then k ′ nil
else visit (xs , k ′)

in visit (xs , λvs .vs)

find all prefixes c1 (p, xs) def= letrec visit (nil , k)
= nil
| visit (x :: xs , k)

= let k ′ = λvs .k (x :: vs)
in if p x

then (k ′ nil) :: (visit (xs , k ′))
else visit (xs , k ′)

in visit (xs , λvs .vs)

To find the first prefix, one applies the functional accumulator as soon as a satisfactory list
element is found. To list all such prefixes, one continues the traversal, adding the current
prefix to the list of the remaining prefixes.

Defunctionalizing these two definitions yields the two definitions of Section 3.1.
The functional accumulator is a delimited continuation:

• In find first prefix c1, visit is written in CPS since all calls are tail calls and all sub-
computations are elementary. The continuation is initialized in the initial call to visit ,
discarded in the base case, extended in the induction case, and used if a satisfactory
prefix is found.

• In find all prefixes c1, visit is almost written in CPS except that the continuation is
composed if a satisfactory prefix is found: it is used twice—once where it is applied
to the empty list to construct a prefix, and once in the visit of the rest of the list to
construct a list of prefixes; this prefix is then prepended to the list of prefixes.

These continuation-based programming patterns (initializing a continuation, not using it, or
using it more than once as if it were a composable function) have motivated the control
operators shift and reset [27, 28]. Using them, in the next section, we write visit in direct
style.

3.3 Finding prefixes in direct style

The two following local functions are the direct-style counterpart of the two local functions
in Section 3.2:

8



find first prefix c0 (p, xs) def= letrec visit nil
= Sk.nil
| visit (x :: xs)

= x :: (if p x then nil else visit xs)
in 〈〈〈visit xs〉〉〉

find all prefixes c0 (p, xs) def= letrec visit nil
= Sk.nil
| visit (x :: xs)

= x :: if p x
then Sk′.(k ′ nil) :: 〈〈〈k′ (visit xs)〉〉〉
else visit xs

in 〈〈〈visit xs〉〉〉

In both cases, visit is in direct style, i.e., it is not passed any continuation. The initial calls
to visit are enclosed in the control delimiter reset (noted 〈〈〈·〉〉〉 for conciseness). In the base
cases, the current (delimited) continuation is captured with the control operator shift (noted
S), which has the effect of emptying the (delimited) context; this captured continuation is
bound to an identifier k, which is not used; nil is then returned in the emptied context. In the
induction case of find all prefixes c0, if the predicate is satisfied, visit captures the current
continuation and applies it twice—once to the empty list to construct a prefix, and once to
the result of visiting the rest of the list to construct a list of prefixes; this prefix is then
prepended to the list of prefixes.

CPS-transforming these two local functions yields the two definitions of Section 3.2 [28].

3.4 Finding prefixes in continuation-passing style

The two following local functions are the continuation-passing counterpart of the two local
functions in Section 3.2:

find first prefix c2 (p, xs) def= letrec visit (nil , k1, k2)
= k2 nil
| visit (x :: xs , k1, k2)

= let k ′1 = λ(vs , k ′2).k1 (x :: vs , k ′2)
in if p x

then k ′1 (nil , k2)
else visit (xs , k ′1, k2)

in visit (xs , λ(vs , k2).k2 vs, λvs.vs)

find all prefixes c2 (p, xs) def= letrec visit (nil , k1, k2)
= k2 nil
| visit (x :: xs , k1, k2)

= let k ′1 = λ(vs , k ′2).k1 (x :: vs , k ′2)
in if p x

then k ′1 (nil , λvs.visit (xs , k ′1, λvss.k2 (vs :: vss)))
else visit (xs , k ′1, k2)

in visit (xs , λ(vs , k2).k2 vs, λvss.vss)

9



CPS-transforming the two local functions of Section 3.2 adds another layer of continuations
and restores the syntactic characterization of all calls being tail calls and all sub-computations
being elementary.

3.5 The CPS hierarchy

If k2 were used non-tail recursively in a variant of the examples of Section 3.4, we could
CPS-transform the definitions one more time, adding one more layer of continuations and
restoring the syntactic characterization of all calls being tail calls and all sub-computations
being elementary. We could also map this definition back to direct style, eliminating k2 but
accessing it with shift. If the result were mapped back to direct style one more time, k2 would
then be accessed with a new control operator, shift2, and k1 would be accessed with shift
(more precisely shift1).

All in all, successive CPS-transformations induce a CPS hierarchy [27,31], and abstracting
control up to each successive layer is achieved with successive pairs of control operators shift
and reset—reset to initialize the continuation up to a level, and shift to capture a delimited
continuation up to this level. Each pair of control operators is indexed by the corresponding
level in the hierarchy. Applying a captured continuation packages all the current layers on
the next layer and restores the captured layers. When a captured continuation completes,
the packaged layers are put back into place and the computation proceeds. (This informal
description is made precise in Section 4.)

3.6 A note about typing

The type of find all prefixes c1, in Section 3.2, is

(α→ bool )× α list → α list list

and the type of its local function visit is

α list × (α list → α list)→ α list list .

In this example, the co-domain of the continuation is not the same as the co-domain of visit .
Thus find first prefix c0 provides a simple and meaningful example where Filinski’s typing

of shift [41] does not fit, since it must be used at type

((β → ans)→ ans)→ β

for a given type ans , i.e., the answer type of the continuation and the type of the computation
must be the same. In other words, control effects are not allowed to change the types of the
contexts. Due to a similar restriction on the type of shift, the example does not fit either in
Murthy’s pseudo-classical type system for the CPS hierarchy [62] and in Wadler’s most general
monadic type system [77, Section 3.4]. It however fits in Danvy and Filinski’s original type
system [26] which Ariola, Herbelin, and Sabry have recently embedded in classical subtractive
logic [5].

3.7 Related work

The example considered in this section builds on the simpler function that unconditionally
lists the successive prefixes of a given list. This simpler function is a traditional example of
delimited continuations [20,69]:
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• In the Lisp Pointers [20], Danvy presents three versions of this function: a typed
continuation-passing version (corresponding to Section 3.2), one with delimited con-
trol (corresponding to Section 3.3), and one in assembly language.

• In his PhD thesis [69, Section 6.3], Sitaram presents two versions of this function: one
with an accumulator (corresponding to Section 3.1) and one with delimited control
(corresponding to Section 3.3).

In Section 3.2, we have shown that the continuation-passing version mediates the version with
an accumulator and the version with delimited control since defunctionalizing the continuation-
passing version yields one and mapping it back to direct style yields the other.

3.8 Summary and conclusion

We have illustrated delimited continuations with the classic example of finding list prefixes,
using CPS as a guideline. Direct-style programs using shift and reset can be CPS-transformed
into continuation-passing programs where not all calls are tail calls and all sub-computations
are elementary. One more CPS transformation establishes this syntactic property with a
second layer of continuations. Further CPS transformations provide the extra layers of con-
tinuation that are characteristic of the CPS hierarchy.

In the next section, we specify the λ-calculus extended with shift and reset.

4 From evaluator to reduction semantics

for delimited continuations

We derive a reduction semantics for the call-by-value λ-calculus extended with shift and
reset, using the method demonstrated in Section 2. First, we transform an evaluator into an
environment-based abstract machine. Then we eliminate the environment from this abstract
machine, making it substitution-based. Finally, we read all the components of a reduction
semantics off the substitution-based abstract machine.

Terms consist of integer literals, variables, λ-abstractions, function applications, applica-
tions of the successor function, reset expressions, and shift expressions:

t ::= pmq | x | λx .t | t0 t1 | succ t | 〈〈〈t〉〉〉 | Sk .t

Programs are closed terms.
This source language is a subset of the language used in the examples of Section 3. Adding

the remaining constructs is a straightforward exercise and does not contribute to our point
here.

4.1 An environment-based evaluator

Figure 6 displays an evaluator for the language of the first level of the CPS hierarchy. This
evaluation function represents the original call-by-value semantics of the λ-calculus with shift
and reset [27], augmented with integer literals and applications of the successor function. It is
defined by structural induction over the syntax of terms, and it makes use of an environment
e, a continuation k1, and a meta-continuation k2.
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• Terms: term 3 t ::= pmq | x | λx .t | t0 t1 | succ t | 〈〈〈t〉〉〉 | Sk .t

• Values: val 3 v ::= m | f

• Answers, meta-continuations, continuations and functions:

ans = val
k2 ∈ cont2 = val → ans
k1 ∈ cont1 = val × cont2 → ans

f ∈ fun = val × cont1 × cont2 → ans

• Initial continuation and meta-continuation: θ1 = λ(v, k2). k2 v
θ2 = λv. v

• Environments: env 3 e ::= eempty | e[x 7→ v]

• Evaluation function: eval : term × env × cont1 × cont2 → ans

eval (pmq, e, k1, k2) = k1 (m, k2)
eval (x , e, k1, k2) = k1 (e(x ), k2)

eval (λx .t, e, k1, k2) = k1 (λ(v, k′1, k′2). eval (t, e[x 7→ v], k′1, k′2), k2)
eval (t0 t1, e, k1, k2) = eval (t0, e, λ(f, k′2). eval (t1, e, λ(v, k′′2). f (v, k1, k′′2 ), k′2), k2)

eval (succ t, e, k1, k2) = eval (t, e, λ(m, k′2). k1 (m + 1, k′2), k2)
eval (〈〈〈t〉〉〉, e, k1, k2) = eval (t, e, θ1, λv. k1 (v, k2))

eval (Sk.t, e, k1, k2) = eval (t, e[k 7→ c], θ1, k2)
where c = λ(v, k′1, k′2). k1 (v, λv′. k′1 (v′, k′2))

• Main function: evaluate : term → val

evaluate (t) = eval (t, eempty , θ1, θ2)

Figure 6: An environment-based evaluator for the first level of the CPS hierarchy

The evaluation of a terminating program that does not get stuck (i.e., a program where
no ill-formed applications occur in the course of evaluation) yields either an integer, a func-
tion representing a λ-abstraction, or a captured continuation. Both evaluate and eval are
partial functions to account for non-terminating or stuck programs. The environment stores
previously computed values of the free variables of the term under evaluation.

The meta-continuation intervenes to interpret reset expressions and to apply captured
continuations. Otherwise, it is passively threaded through the evaluation of literals, variables,
λ-abstractions, function applications, and applications of the successor function. (If it were
not for shift and reset, and if eval were curried, k2 could be eta-reduced and the evaluator
would be in ordinary continuation-passing style.)

The reset control operator is used to delimit control. A reset expression 〈〈〈t〉〉〉 is interpreted
by evaluating t with the initial continuation and a meta-continuation on which the current
continuation has been “pushed.” (Indeed, and as will be shown in Section 4.2, defunctional-
izing the meta-continuation yields the data type of a stack [29].)
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The shift control operator is used to abstract (delimited) control. A shift expression Sk.t
is interpreted by capturing the current continuation, binding it to k, and evaluating t in
an environment extended with k and with a continuation reset to the initial continuation.
Applying a captured continuation is achieved by “pushing” the current continuation on the
meta-continuation and applying the captured continuation to the new meta-continuation.
Resuming a continuation is achieved by reactivating the “pushed” continuation with the
corresponding meta-continuation.

4.2 An environment-based abstract machine

The evaluator displayed in Figure 6 is already in continuation-passing style. Therefore, we
only need to defunctionalize its expressible values and its continuations to obtain an abstract
machine. This abstract machine is displayed in Figure 7.

The abstract machine consists of three sets of transitions: eval for interpreting terms, cont1

for interpreting the defunctionalized continuations (i.e., the evaluation contexts),1 and cont2

for interpreting the defunctionalized meta-continuations (i.e., the meta-contexts). The set of
possible values includes integers, closures and captured contexts. In the original evaluator,
the latter two were represented as higher-order functions, but defunctionalizing expressible
values of the evaluator has led them to be distinguished.

This eval/apply abstract machine is an extension of the CEK machine [38] with the meta-
context C2 and its two transitions, and the two transitions for shift and reset. C2 intervenes
to process reset expressions and to apply captured continuations. Otherwise, it is passively
threaded through the processing of literals, variables, λ-abstractions, function applications,
and applications of the successor function. (If it were not for shift and reset, C2 and its
transitions could be omitted and the abstract machine would reduce to the CEK machine.)

Given an environment e, a context C1, and a meta-context C2, a reset expression 〈〈〈t〉〉〉 is
processed by evaluating t with the same environment e, the empty context •, and a meta-
context where C1 has been pushed on C2.

Given an environment e, a context C1, and a meta-context C2, a shift expression Sk.t is
processed by evaluating t with an extension of e where k denotes C1, the empty context [ ],
and a meta-context C2. Applying a captured context C ′

1 is achieved by pushing the current
context C1 on the current meta-context C2 and continuing with C ′

1. Resuming a context C1

is achieved by popping it off the meta-context C2 · C1 and continuing with C1.
The correctness of the abstract machine with respect to the evaluator is a consequence

of the correctness of defunctionalization. In order to express it formally, we define a partial
function evale mapping a term t to a value v whenever the environment-based machine, started
with t, stops with v. The following theorem states this correctness by relating observable
results:

Theorem 1. For any program t and any integer value m, evaluate (t) = m if and only if
evale (t) = m.

Proof. The theorem follows directly from the correctness of defunctionalization [10,63].

1The grammar of evaluation contexts in Figure 7 is isomorphic to the grammar of evaluation contexts in
the standard inside-out notation:

C1 ::= [ ] | C1[[ ] (t, e)] | C1[succ [ ]] | C1[v [ ]]
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• Terms: t ::= pmq | x | λx .t | t0 t1 | succ t | 〈〈〈t〉〉〉 | Sk .t

• Values (integers, closures, and captured continuations): v ::= m | [x , t, e] | C1

• Environments: e ::= eempty | e[x 7→ v]

• Evaluation contexts: C1 ::= [ ] | ARG((t, e), C1) | SUCC(C1) | FUN(v,C1)

• Meta-contexts: C2 ::= • | C2 · C1

• Initial transition, transition rules, and final transition:

t ⇒ 〈t, eempty , [ ], •〉eval

〈pmq, e, C1, C2〉eval ⇒ 〈C1, m, C2〉cont1

〈x , e, C1, C2〉eval ⇒ 〈C1, e (x ), C2〉cont1

〈λx .t, e, C1, C2〉eval ⇒ 〈C1, [x , t, e], C2〉cont1

〈t0 t1, e, C1, C2〉eval ⇒ 〈t0, e, ARG((t1, e), C1), C2〉eval

〈succ t, e, C1, C2〉eval ⇒ 〈t, e, SUCC(C1), C2〉eval

〈〈〈〈t〉〉〉, e, C1, C2〉eval ⇒ 〈t, e, [ ], C2 · C1〉eval

〈Sk .t, e, C1, C2〉eval ⇒ 〈t, e[k 7→ C1], [ ], C2〉eval

〈[ ], v, C2〉cont1 ⇒ 〈C2, v〉cont2

〈ARG((t, e), C1), v, C2〉cont1 ⇒ 〈t, e, FUN(v,C1), C2〉eval

〈SUCC(C1), m, C2〉cont1 ⇒ 〈C1, m + 1, C2〉cont1

〈FUN([x , t, e], C1), v, C2〉cont1 ⇒ 〈t, e[x 7→ v], C1, C2〉eval

〈FUN(C ′
1, C1), v, C2〉cont1 ⇒ 〈C ′

1, v, C2 · C1〉cont1

〈C2 · C1, v〉cont2 ⇒ 〈C1, v, C2〉cont1

〈•, v〉cont2 ⇒ v

Figure 7: An environment-based abstract machine for the first level of the CPS hierarchy

The environment-based abstract machine can serve both as a foundation for implementing
functional languages with control operators for delimited continuations and as a stepping stone
in theoretical studies of shift and reset. In the rest of this section, we use it to construct a
reduction semantics of shift and reset.
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• Terms and values: t ::= v | x | t0 t1 | succ t | 〈〈〈t〉〉〉 | Sk .t
v ::= pmq | λx .t | C1

• Evaluation contexts: C1 ::= [ ] | ARG(t, C1) | SUCC(C1) | FUN(v,C1)

• Meta-contexts: C2 ::= • | C2 · C1

• Initial transition, transition rules, and final transition:

t ⇒ 〈t, [ ], •〉eval

〈pmq, C1, C2〉eval ⇒ 〈C1, pmq, C2〉cont1

〈λx .t, C1, C2〉eval ⇒ 〈C1, λx .t, C2〉cont1

〈C ′
1, C1, C2〉eval ⇒ 〈C1, C ′

1, C2〉cont1

〈t0 t1, C1, C2〉eval ⇒ 〈t0, ARG(t1, C1), C2〉eval

〈succ t, C1, C2〉eval ⇒ 〈t, SUCC(C1), C2〉eval

〈〈〈〈t〉〉〉, C1, C2〉eval ⇒ 〈t, [ ], C2 · C1〉eval

〈Sk .t, C1, C2〉eval ⇒ 〈t{C1/k}, [ ], C2〉eval

〈[ ], v, C2〉cont1 ⇒ 〈C2, v〉cont2

〈ARG(t, C1), v, C2〉cont1 ⇒ 〈t, FUN(v,C1), C2〉eval

〈SUCC(C1), pmq, C2〉cont1 ⇒ 〈C1, pm + 1q, C2〉cont1

〈FUN(λx .t, C1), v, C2〉cont1 ⇒ 〈t{v/x}, C1, C2〉eval

〈FUN(C ′
1, C1), v, C2〉cont1 ⇒ 〈C ′

1, v, C2 · C1〉cont1

〈C2 · C1, v〉cont2 ⇒ 〈C1, v, C2〉cont1

〈•, v〉cont2 ⇒ v

Figure 8: A substitution-based abstract machine for the first level of the CPS hierarchy

4.3 A substitution-based abstract machine

The environment-based abstract machine of Figure 7, on which we want to base our de-
velopment, makes a distinction between terms and values. Since a reduction semantics is
specified by purely syntactic operations (it gives meaning to terms by specifying their rewrit-
ing strategy and an appropriate notion of reduction, and is indeed also referred to as ‘syntactic
theory’), we need to embed the domain of values back into the syntax. To this end we trans-
form the environment-based abstract machine into the substitution-based abstract machine
displayed in Figure 8. The transformation is standard, except that we also need to embed
evaluation contexts in the syntax; hence the substitution-based machine operates on terms
where “quoted” (in the sense of Lisp) contexts can occur. (If it were not for shift and reset,
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C2 and its transitions could be omitted and the abstract machine would reduce to the CK
machine [38].)

We write t{v/x} to denote the result of the usual capture-avoiding substitution of the
value v for x in t.

Formally, the relationship between the two machines is expressed with the following sim-
ulation theorem, where evaluation with the substitution-based abstract machine is captured
by the partial function evals, defined analogously to evale.

Theorem 2. For any program t and any values v, v′, evals (t) = v if and only if evale (t) = v′

and T (v′) = v. The function T relates a semantic value with its syntactic representation and
is defined as follows:2

T (m) = pmq
T ([x , t, e]) = λx .t{T (e(x1))/x1} . . . {T (e(xn))/xn}, {x1, . . . , xn} = FV (λx . t)

T ([ ]) = [ ]
T (ARG((t, e), C1)) = ARG(t{T (e(x1))/x1} . . . {T (e(xn))/xn},T (C1)), {x1, . . . , xn} = FV (t)
T (FUN(v,C1)) = FUN(T (v),T (C1))
T (SUCC(C1)) = SUCC(T (C1))

Proof. We extend the translation function T to meta-contexts and configurations, in the
expected way, e.g.,

T (〈t, e, C1, C2〉eval ) = 〈t{T (e(x1))/x1} . . . {T (e(xn))/xn}, T (C1), T (C2)〉eval
where {x1, . . . , xn} = FV (t)

Then it is straightforward to show that the two abstract machines operate in lock step with
respect to the translation. Hence, for any program t, both machines diverge or they both
stop (after the same number of transitions) with the values v and T (v), respectively.

We now proceed to analyze the transitions of the machine displayed in Figure 8. We can
think of a configuration 〈t, C1, C2〉eval as the following decomposition of the initial term into
a meta-context C2, a context C1, and an intermediate term t:

C2 # C1[t]

where # separates the context and the meta-context. Each transition performs either a
reduction, or a decomposition in search of the next redex. Let us recall that a decomposition
is performed when both sides of a transition are partitions of the same term; in that case,
depending on the structure of the decomposition C2 # C1[t], a subpart of the term is chosen
to be evaluated next, and the contexts are updated accordingly. We also observe that eval -
transitions follow the structure of t, cont1-transitions follow the structure of C1 when the
term has been reduced to a value, and cont2-transitions follow the structure of C2 when a
value in the empty context has been reached.

Next we specify all the components of the reduction semantics based on the analysis of
the abstract machine.

2T is a generalization of Plotkin’s function Real [64].
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4.4 A reduction semantics

A reduction semantics provides a reduction relation on expressions by defining values, evalu-
ation contexts, and redexes [35,37,38,79]. In the present case,

• the values are already specified in the (substitution-based) abstract machine:

v ::= pmq | λx .t | C1

• the evaluation contexts and meta-contexts are already specified in the abstract machine,
as the data-type part of defunctionalized continuations;

C1 ::= [ ] | ARG(t, C1) | FUN(v,C1) | SUCC(C1)
C2 ::= • | C2 · C1

• we can read the redexes off the transitions of the abstract machine:

r ::= succ pmq | (λx .t) v | Sk .t | C ′
1 v | 〈〈〈v〉〉〉

Based on the distinction between decomposition and reduction, we single out the following
reduction rules from the transitions of the machine:

(δ) C2 # C1[succ pmq] → C2 # C1[pm + 1q]
(βλ) C2 # C1[(λx .t) v] → C2 # C1[t{v/x}]
(Sλ) C2 # C1[Sk .t] → C2 # [t{C1/k}]
(βctx ) C2 # C1[C ′

1 v] → C2 · C1 # C ′
1[v]

(val) C2 # C1[〈〈〈v〉〉〉] → C2 # C1[v]

(βλ) is the usual call-by-value β-reduction; we have renamed it to indicate that the applied
term is a λ-abstraction, since we can also apply a captured context, as in (βctx ). (Sλ) is
plausibly symmetric to (βλ) — it can be seen as an application of the abstraction λk .t to
the current context. Moreover, (βctx ) can be seen as performing both a reduction and a
decomposition: it is a reduction because an application of a context with a hole to a value is
reduced to the value plugged into the hole; and it is a decomposition because it changes the
meta-context, as if the application were enclosed in a reset. Finally, (val) makes it possible
to pass the boundary of a context when the term inside this context has been reduced to a
value.

The βctx -rule and the Sλ-rule give a justification for representing a captured context C1

as a term λx .〈〈〈C1[x ]〉〉〉, as found in other studies of shift and reset [53, 54, 62]. In particular,
the need for delimiting the captured context is a consequence of the βctx -rule.

Finally, we can read the decomposition function off the transitions of the abstract machine:

decompose(t) = decompose ′ (t, [ ], •)
decompose ′ (t0 t1, C1, C2) = decompose ′ (t0, ARG(t1, C1), C2)

decompose ′ (succ t, C1, C2) = decompose ′ (t, SUCC(C1), C2)
decompose ′ (〈〈〈t〉〉〉, C1, C2) = decompose ′ (t, [ ], C2 · C1)

decompose ′ (v, ARG(t, C1), C2) = decompose ′ (t, FUN(v,C1), C2)
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In the remaining cases either a value or a redex has been found:

decompose ′ (v, [ ], •) = • # [v]
decompose ′ (v, [ ], C2 · C1) = C2 # C1[〈〈〈v〉〉〉]
decompose ′ (Sk .t, C1, C2) = C2 # C1[Sk .t]

decompose ′ (v, FUN((λx .t), C1), C2) = C2 # C1[(λx .t) v]
decompose ′ (v, FUN(C ′

1, C1), C2) = C2 # C1[C ′
1 v]

decompose ′ (pmq, SUCC(C1), C2) = C2 # C1[succ pmq]

An inverse of the decompose function, traditionally called plug , reconstructs a term from
its decomposition:

plug (• # [t]) = t
plug (C2 · C1 # [t]) = plug (C2 # C1[〈〈〈t〉〉〉])

plug (C2 # (ARG(t′, C1))[t]) = plug (C2 # C1[t t′])
plug (C2 # (FUN(v,C1))[t]) = plug (C2 # C1[v t])
plug (C2 # (SUCC(C1))[t]) = plug (C2 # C1[succ t])

In order to talk about unique decomposition, we need to define the set of potential redexes
(i.e., the disjoint union of actual redexes and stuck redexes). The grammar of potential redexes
reads as follows:

p ::= succ v | v0 v1 | Sk .t | 〈〈〈v〉〉〉

Lemma 1 (Unique decomposition). A program t is either a value v or there exist a unique
context C1, a unique meta-context C2 and a potential redex p such that t = plug (C2 # C1[p]).
In the former case decompose(t) = • # [v] and in the latter case either decompose (t) =
C2 # C1[p] if p is an actual redex, or decompose(t) is undefined.

Proof. The first part follows by induction on the structure of t. The second part follows from
the equation decompose(plug (C2 # C1[r])) = C2 # C1[r] which holds for all C2, C1 and r.

It is evident that evaluating a program either using the derived reduction rules or using
the substitution-based abstract machine yields the same result.

Theorem 3. For any program t and any value v, evals (t) = v if and only if t →∗ v, where
→∗ is the reflexive, transitive closure of the one-step reduction defined by the relation →.

Proof. When evaluating with the abstract machine, each contraction is followed by decom-
posing the contractum in the current context and meta-context. When evaluating with the
reduction rules, however, each contraction is followed by plugging the contractum and de-
composing the resulting term. Therefore, the theorem follows from the equation

decompose ′ (t, C1, C2) = decompose(plug (C2 # C1[t]))

which holds for any C2, C1 and t.

We have verified that using refocusing [30], one can go from this reduction semantics to
the abstract machine of Figure 8.
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4.5 Beyond CPS

Alternatively to using the meta-context to compose delimited continuations, as in Figure 7,
we could compose them by concatenating their representation. Such a concatenation function
is defined as follows:

[ ] ? C ′
1 = C ′

1

(ARG((t, e), C1)) ? C ′
1 = ARG((t, e), C1 ? C ′

1)
(SUCC(C1)) ? C ′

1 = SUCC(C1 ? C ′
1)

(FUN(v,C1)) ? C ′
1 = FUN(v,C1 ? C ′

1)

(The second clause would read (ARG(t, C1))?C ′
1 = ARG(t, C1?C ′

1) for the contexts of Figure 8.)
Then, in Figures 7 and 8, we could replace the transition

〈FUN(C ′
1, C1), v, C2〉cont1 ⇒ 〈C ′

1, v, C2 · C1〉cont1

by the following one:

〈FUN(C ′
1, C1), v, C2〉cont1 ⇒ 〈C ′

1 ? C1, v, C2〉cont1

This replacement changes the control effect of shift to that of Felleisen et al.’s F operator [36].
Furthermore, the modified abstract machine is in structural correspondence with Felleisen et
al.’s abstract machine for F and # [36,40].

This representation of control (as a list of ‘stack frames’) and this implementation of
composing delimited continuations (by concatenating these lists) are at the heart of virtually
all non-CPS-based accounts of delimited control. However, the modified environment-based
abstract machine does not correspond to a defunctionalized continuation-passing evaluator
because it is not in the range of defunctionalization [29] since the first-order representation
of functions should have a single point of consumption. Here, the constructors of contexts
are not solely consumed by the cont1 transitions of the abstract machine as in Figures 7
and 8, but also by ?. Therefore, the abstract machine that uses ? is not in the range of
Reynolds’s defunctionalization and it thus does not immediately correspond to a higher-order,
continuation-passing evaluator. In that sense, control operators using ? go beyond CPS.

Elsewhere [18], we have rephrased the modified abstract machine to put it in defunc-
tionalized form, and we have exhibited the corresponding higher-order evaluator and the
corresponding continuation-passing style. This dynamic CPS is not just plain CPS but is a
form of continuation+state-passing style where the threaded state is a list of intermediate
delimited continuations. Unexpectedly, it is also in structural correspondence with the archi-
tecture for delimited control recently proposed by Dybvig, Peyton Jones, and Sabry on other
operational grounds [34].

In any case, and irrespectively of any new dynamic CPS and any new architecture for de-
limited control, there seems to be remarkably few examples that actually illustrate the expres-
sive power of dynamic delimited continuations. We have recently presented one, breadth-first
traversal [17], and we present another one below.
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The two following functions traverse a given list and return another list. The recursive
call to visit is abstracted into a delimited continuation, which is applied to the tail of the list:

foo xs def= letrec visit nil
= nil
| visit (x :: xs)

= visit (Sk .x :: (k xs))
in 〈〈〈visit xs〉〉〉

bar xs def= letrec visit nil
= nil
| visit (x :: xs)

= visit (Fk .x :: (k xs))
in 〈〈〈visit xs〉〉〉

On the left, foo uses S and on the right, bar uses F ; for the rest, the two definitions are
identical. Given an input list, foo copies it and bar reverses it.

To explain this difference and to account for the extended source language, we need to
expand the grammar of evaluation contexts, e.g., with a production to account for calls to
the list constructor:

C1 ::= [ ] | ARG(t, C1) | SUCC(C1) | FUN(v,C1) | CONS(v,C1) | . . .

Similarly, we need to expand the definition of concatenation as follows:

(CONS(v,C1)) ? C ′
1 = CONS(v,C1 ? C ′

1)

Here is a trace of the two computations in the form of the calls to and returns from visit
for the input list 1 :: 2 :: nil :

foo: Every time the captured continuation is resumed, its representation is kept separate from
the current context. The meta-context therefore grows whereas the captured context
solely consists of FUN(visit , [ ]) throughout (writing visit in the context for simplicity):

C2 # C1[〈〈〈visit (1 :: 2 :: nil)〉〉〉]
C2 · C1 # [visit (1 :: 2 :: nil)]

C2 · C1 · (CONS(1, [ ])) # [visit (2 :: nil)]
C2 · C1 · (CONS(1, [ ])) · (CONS(2, [ ])) # [visit nil ]
C2 · C1 · (CONS(1, [ ])) · (CONS(2, [ ])) # [nil ]

C2 · C1 · (CONS(1, [ ])) # [2 :: nil ]
C2 · C1 # [1 :: 2 :: nil ]

C2 # C1[1 :: 2 :: nil ]

bar : Every time the captured continuation is resumed, its representation is concatenated to
the current context. The meta-context therefore remains the same whereas the context
changes dynamically. The first captured context is FUN(visit , [ ]); concatenating it to
CONS(1, [ ]) yields CONS(1, FUN(visit , [ ])), which is the second captured context:

C2 # C1[〈〈〈visit (1 :: 2 :: nil)〉〉〉]
C2 · C1 # [visit (1 :: 2 :: nil)]
C2 · C1 # (CONS(1, [ ]))[visit (2 :: nil)]
C2 · C1 # (CONS(1, CONS(2, [ ])))[visit nil ]
C2 · C1 # (CONS(1, CONS(2, [ ])))[nil ]
C2 · C1 # (CONS(2, [ ]))[1 :: nil ]
C2 · C1 # [2 :: 1 :: nil ]

C2 # C1[2 :: 1 :: nil ]
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4.6 Summary and conclusion

We have presented the original evaluator for the λ-calculus with shift and reset; this evaluator
uses two layers of continuations. From this call-by-value evaluator we have derived two
abstract machines, an environment-based one and a substitution-based one; each of these
machines uses two layers of evaluation contexts. Based on the substitution-based machine we
have constructed a reduction semantics for the λ-calculus with shift and reset; this reduction
semantics, by construction, is sound with respect to CPS.

5 From evaluator to reduction semantics
for the CPS hierarchy

We construct a reduction semantics for the call-by-value λ-calculus extended with shiftn

and resetn. As in Section 4, we go from an evaluator to an environment-based abstract
machine, and from a substitution-based abstract machine to a reduction semantics. Because
of the regularity of CPS, the results can be generalized from level 1 to higher levels without
repeating the actual construction, based only on the original specification of the hierarchy [27].
In particular, the proofs of the theorems generalize straightforwardly from level 1.

5.1 An environment-based evaluator

At the nth level of the hierarchy, the language is extended with operators shifti and reseti for
all i such that 1 ≤ i ≤ n. The evaluator for this language is shown in Figures 9 and 10. If
n = 1, it coincides with the evaluator displayed in Figure 6.

• Terms (1 ≤ i ≤ n): term 3 t ::= pmq | x | λx .t | t0 t1 | succ t | 〈〈〈t〉〉〉i | Sik .t

• Values: val 3 v ::= m | f

• Answers, continuations and functions (1 ≤ i ≤ n):

ans = val
kn+1 ∈ contn+1 = val → ans

ki ∈ conti = val × conti+1 × . . . × contn+1 → ans
f ∈ fun = val × cont1 × . . . × contn+1 → ans

• Initial continuations (1 ≤ i ≤ n):

θi = λ(v, ki+1, ki+2, . . ., kn+1). ki+1 (v, ki+2, . . ., kn+1)
θn+1 = λv. v

• Environments: env 3 e ::= eempty | e[x 7→ v]

• Evaluation function: see Figure 10

Figure 9: An environment-based evaluator for the CPS hierarchy at level n
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• Evaluation function (1 ≤ i ≤ n): evaln : term × env × cont1 × . . . × contn+1 → ans

evaln (pmq, e, k1, k2, . . ., kn+1) = k1 (m, k2, . . ., kn+1)

evaln (x , e, k1, k2, . . ., kn+1) = k1 (e(x ), k2, . . ., kn+1)
evaln (λx .t, e, k1, k2, . . ., kn+1) = k1 (λ(v, k′1, k′2, . . ., k′n+1). evaln (t, e[x 7→ v], k′1, k′2, . . ., k′n+1), k2, . . ., kn+1)
evaln (t0 t1, e, k1, k2, . . ., kn+1) = evaln (t0, e,

λ(f, k′2, . . ., k′n+1). evaln (t1, e,
λ(v, k′′2 , . . ., k′′n+1). f (v, k1, k′′2 , . . ., k′′n+1),
k′2, . . ., k′n+1),

k2, . . ., kn+1)
evaln (succ t, e, k1, k2, . . ., kn+1) = evaln (t, e, λ(m, k′2, . . ., k′n+1). k1 (m + 1, k′2, . . ., k′n+1), k2, . . ., kn+1)

evaln (〈〈〈t〉〉〉i, e, k1, k2, . . ., kn+1) = evaln (t, e, θ1, . . ., θi, λ(v, k′i+2, . . ., k′n+1). k1 (v, k2, . . ., ki, ki+1, k′i+2, . . ., k′n+1), ki+2, . . ., kn+1)
evaln (Sik.t, e, k1, k2, . . ., kn+1) = evaln (t, e[k 7→ ci], θ1, . . ., θi, ki+1, . . ., kn+1)

where ci = λ(v, k′1, . . ., k′n+1). k1 (v, k2, . . ., ki, λ(v′, k′′i+2, . . ., k′′n+1). k′1 (v′, k′2, . . ., k′i+1, k′′i+2, . . ., k′′n+1), k′i+2, . . ., k′n+1)

• Main function: evaluaten : term → val

evaluaten (t) = evaln (t, eempty , θ1, . . ., θn, θn+1)

Figure 10: An environment-based evaluator for the CPS hierarchy at level n, ctd.
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The evaluator uses n+1 layers of continuations. In the five first clauses (literal, variable, λ-
abstraction, function application, and application of the successor function), the continuations
k2, . . . , kn+1 are passive: if the evaluator were curried, they could be eta-reduced. In the
clauses defining shifti and reseti, the continuations ki+2, . . . , kn+1 are also passive. Each pair
of control operators is indexed by the corresponding level in the hierarchy: reseti is used to
“push” each successive continuation up to level i onto level i+ 1 and to reinitialize them with
θ1, . . . , θi, which are the successive CPS counterparts of the identity function; shifti is used to
abstract control up to level i into a delimited continuation and to reinitialize the successive
continuations up to level i with θ1, . . . , θi.

Applying a delimited continuation that was abstracted up to level i “pushes” each succes-
sive continuation up to level i onto level i + 1 and restores the successive continuations that
were captured in a delimited continuation. When such a delimited continuation completes,
and when an expression delimited by reseti completes, the successive continuations that were
pushed onto level i + 1 are “popped” back into place and the computation proceeds.

5.2 An environment-based abstract machine

Defunctionalizing the evaluator of Figures 9 and 10 yields the environment-based abstract
machine displayed in Figures 11 and 12. If n = 1, it coincides with the abstract machine
displayed in Figure 7.

The abstract machine consists of n + 2 sets of transitions: eval for interpreting terms and
cont1, . . . , contn+1 for interpreting the successive defunctionalized continuations. The set of
possible values includes integers, closures and captured contexts.

This abstract machine is an extension of the abstract machine displayed in Figure 7 with
n + 1 contexts instead of 2 and the corresponding transitions for shifti and reseti. Each
metai+1-context intervenes to process reseti expressions and to apply captured continuations.
Otherwise, the successive contexts are passively threaded to process literals, variables, λ-
abstractions, function applications, and applications of the successor function.

Given an environment e and a series of successive contexts, a reseti expression 〈〈〈t〉〉〉i is
processed by evaluating t with the same environment e, i empty contexts, and a metai+1-
context over which all the intermediate contexts have been pushed on.

• Terms (1 ≤ i ≤ n): t ::= pmq | x | λx .t | t0 t1 | succ t | 〈〈〈t〉〉〉i | Sik .t

• Values (1 ≤ i ≤ n): v ::= m | [x , t, e] | Ci

• Evaluation contexts (2 ≤ i ≤ n + 1):

C1 ::= [ ] | ARG((t, e), C1) | SUCC(C1) | FUN(v,C1)
Ci ::= [ ] | Ci · Ci−1

• Environments: e ::= eempty | e[x 7→ v]

• Initial transition, transition rules, and final transition: see Figure 12

Figure 11: An environment-based abstract machine for the CPS hierarchy at level n
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• Initial transition, transition rules, and final transition (1 ≤ i ≤ n, 2 ≤ j ≤ n):

t ⇒ 〈t, eempty , [ ], [ ], . . ., [ ]〉eval

〈pmq, e, C1, C2, . . ., Cn+1〉eval ⇒ 〈C1, m, C2, . . ., Cn+1〉cont1

〈x , e, C1, C2, . . ., Cn+1〉eval ⇒ 〈C1, e (x ), C2, . . ., Cn+1〉cont1

〈λx .t, e, C1, C2, . . ., Cn+1〉eval ⇒ 〈C1, [x , t, e], C2, . . ., Cn+1〉cont1

〈t0 t1, e, C1, C2, . . ., Cn+1〉eval ⇒ 〈t0, e, ARG((t1, e), C1), C2, . . ., Cn+1〉eval

〈succ t, e, C1, C2, . . ., Cn+1〉eval ⇒ 〈t, e, SUCC(C1), C2, . . ., Cn+1〉eval

〈〈〈〈t〉〉〉i, e, C1, C2, . . ., Cn+1〉eval ⇒ 〈t, e, [ ], . . ., [ ], Ci+1 · (Ci · . . . (C2 · C1) . . .), Ci+2, . . ., Cn+1〉eval

〈Sik .t, e, C1, C2, . . ., Cn+1〉eval ⇒ 〈t, e[k 7→ Ci · (Ci−1 · . . . (C2 · C1) . . .)], [ ], . . ., [ ], Ci+1, . . ., Cn+1〉eval

〈[ ], v, C2, . . ., Cn+1〉cont1 ⇒ 〈C2, v, C3, . . ., Cn+1〉cont2

〈ARG((t, e), C1), v, C2, . . ., Cn+1〉cont1 ⇒ 〈t, e, FUN(v,C1), C2, . . ., Cn+1〉eval

〈SUCC(C1), m, C2, . . ., Cn+1〉cont1 ⇒ 〈C1, m + 1, C2, . . ., Cn+1〉cont1

〈FUN([x , t, e], C1), v, C2, . . ., Cn+1〉cont1 ⇒ 〈t, e[x 7→ v], C1, C2, . . ., Cn+1〉eval

〈FUN((C ′
i · (C ′

i−1 · . . . (C ′
2 · C ′

1) . . .)), C1), v, C2, . . ., Cn+1〉cont1 ⇒ 〈C ′
1, v, C ′

2, . . ., C ′
i, Ci+1 · (Ci · . . . (C2 · C1) . . .), Ci+2, . . ., Cn+1〉cont1

〈[ ], v, Cj+1, . . ., Cn+1〉contj ⇒ 〈Cj+1, v, Cj+2, . . ., Cn+1〉contj+1

〈Cj · (Cj−1 · . . . (C2 · C1) . . .), v, Cj+1, . . ., Cn+1〉contj ⇒ 〈C1, v, C2, . . ., Cn+1〉cont1

〈Cn+1 · (Cn · . . . (C2 · C1) . . .), v〉contn+1 ⇒ 〈C1, v, C2, . . ., Cn+1〉cont1

〈[ ], v〉contn+1 ⇒ v

Figure 12: An environment-based abstract machine for the CPS hierarchy at level n, ctd.
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Given an environment e and a series of successive contexts, a shift expression Sik.t is
processed by evaluating t with an extension of e where k denotes a composition of the i sur-
rounding contexts, i empty contexts, and the remaining outer contexts. Applying a captured
context is achieved by pushing all the current contexts on the next outer context, restoring the
composition of the captured contexts, and continuing with them. Resuming a composition
of captured contexts is achieved by popping them off the next outer context and continuing
with them.

In order to relate the resulting abstract machine to the evaluator, we define a partial
function evalen mapping a term t to a value v whenever the machine for level n, started with
t, stops with v. The correctness of the machine with respect to the evaluator is ensured by
the following theorem:

Theorem 4. For any program t and any integer value m, evaluaten (t) = m if and only if
evalen (t) = m.

5.3 A substitution-based abstract machine

In the same fashion as in Section 4.3, we construct the substitution-based abstract machine
corresponding to the environment-based abstract machine of Section 5.2. The result is dis-
played in Figures 13 and 14. If n = 1, it coincides with the abstract machine displayed in
Figure 8.

The nth level contains n + 1 evaluation contexts and each context Ci can be viewed as a
stack of non-empty contexts Ci−1. Terms are decomposed as

Cn+1 #n Cn #n−1 Cn−1 #n−2 · · · #2 C2 #1 C1[t],

where each #i represents a context delimiter of level i. All the control operators that occur
at the jth level (with j < n) of the hierarchy do not use the contexts j + 2, . . . , n + 1. The
functions decompose and its inverse plug can be read off the machine, as for level 1.

The transitions of the machine for level j are “embedded” in the machine for level j + 1;
the extra components are threaded but not used.

We define a partial function evalsn capturing the evaluation by the substitution-based
abstract machine for an arbitrary level n, analogously to the definition of evalen. Now we can

• Terms and values (1 ≤ i ≤ n): t ::= v | x | t0 t1 | succ t | 〈〈〈t〉〉〉i | Sik .t
v ::= pmq | λx .t | Ci

• Evaluation contexts (2 ≤ i ≤ n + 1):

C1 ::= [ ] | ARG(t, C1) | SUCC(C1) | FUN(v,C1)
Ci ::= [ ] | Ci · Ci−1

• Initial transition, transition rules, and final transition: see Figure 14

Figure 13: A substitution-based abstract machine for the CPS hierarchy at level n
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• Initial transition, transition rules, and final transition (1 ≤ i ≤ n, 2 ≤ j ≤ n):

t ⇒ 〈t, [ ], [ ], . . ., [ ]〉eval

〈pmq, C1, C2, . . ., Cn+1〉eval ⇒ 〈C1, pmq, C2, . . ., Cn+1〉cont1

〈λx .t, C1, C2, . . ., Cn+1〉eval ⇒ 〈C1, λx .t, C2, . . ., Cn+1〉cont1

〈C ′
i, C1, C2, . . ., Cn+1〉eval ⇒ 〈C1, C ′

i, C2, . . ., Cn+1〉cont1

〈t0 t1, C1, C2, . . ., Cn+1〉eval ⇒ 〈t0, ARG((t1, e), C1), C2, . . ., Cn+1〉eval

〈succ t, C1, C2, . . ., Cn+1〉eval ⇒ 〈t, SUCC(C1), C2, . . ., Cn+1〉eval

〈Sik .t, C1, C2, . . ., Cn+1〉eval ⇒ 〈t{Ci · (Ci−1 · . . . (C2 · C1) . . .)/k}, [ ], . . ., [ ], Ci+1, . . ., Cn+1〉eval

〈〈〈〈t〉〉〉i, C1, C2, . . ., Cn+1〉eval ⇒ 〈t, [ ], . . ., [ ], Ci+1 · (Ci · . . . (C2 · C1) . . .), Ci+2, . . ., Cn+1〉eval

〈[ ], v, C2, . . ., Cn+1〉cont1 ⇒ 〈C2, v, C3, . . ., Cn+1〉cont2

〈ARG(t, C1), v, C2, . . ., Cn+1〉cont1 ⇒ 〈t, FUN(v,C1), C2, . . ., Cn+1〉eval

〈SUCC(C1), pmq, C2, . . ., Cn+1〉cont1 ⇒ 〈C1, pm + 1q, C2, . . ., Cn+1〉cont1

〈FUN((λx .t), C1), v, C2, . . ., Cn+1〉cont1 ⇒ 〈t{v/x}, C1, C2, . . ., Cn+1〉eval

〈FUN((C ′
i · (C ′

i−1 · . . . (C ′
2 · C ′

1) . . .)), C1), v, C2, . . ., Cn+1〉cont1 ⇒ 〈C ′
1, v, C ′

2, . . ., C ′
i, Ci+1 · (Ci · . . . (C2 · C1) . . .), Ci+2, . . ., Cn+1〉cont1

〈[ ], v, Cj+1, . . ., Cn+1〉contj ⇒ 〈Cj+1, v, Cj+2, . . ., Cn+1〉contj+1

〈Cj · (Cj−1 · . . . (C2 · C1) . . .), v, Cj+1, . . ., Cn+1〉contj ⇒ 〈C1, v, C2, . . ., Cn+1〉cont1

〈Cn+1 · (Cn · . . . (C2 · C1) . . .), v〉contn+1 ⇒ 〈C1, v, C2, . . ., Cn+1〉cont1

〈[ ], v〉contn+1 ⇒ v

Figure 14: A substitution-based abstract machine for the the CPS hierarchy at level n, ctd.
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relate evaluation with the environment-based and the substitution-based abstract machines
for level n.

Theorem 5. For any program t and any values v, v′ in the language of level n, evalsn (t) = v
if and only if evalen (t) = v′ and Tn (v′) = v.

The definition of Tn extends that of T from Theorem 2 in such a way that it is homomor-
phic for all the contexts Ci, with 2 ≤ i ≤ n.

5.4 A reduction semantics

Along the same lines as in Section 4.4, we construct the reduction semantics for the CPS
hierarchy based on the abstract machine of Figures 13 and 14. For an arbitrary level n we
obtain the following set of reduction rules, for all 1 ≤ i ≤ n; they define the actual redexes:

(δ) Cn+1 #n · · · #1 C1[succ pmq]→n Cn+1 #n · · · #1 C1[pm + 1q]

(βλ) Cn+1 #n · · · #1 C1[(λx .t) v]→n Cn+1 #n · · · #1 C1[t{v/x}]
(Si

λ) Cn+1 #n · · · #1 C1[Sik .t]→n

Cn+1 #n · · · #i+1 Ci+1 #i [ ] . . . #1 [t{Ci · (. . . (C2 · C1) . . .)/k}]
(βi

ctx ) Cn+1 #n · · · #1 C1[C ′
i · (. . . (C ′

2 · C ′
1) . . .) v]→n

Cn+1 #n · · · #i+1 Ci+1 · (Ci · (. . . (C2 · C1) . . .)) #i C ′
i #i−1 · · · #1 C ′

1[v]

(vali) Cn+1 #n · · · #1 C1[〈〈〈v〉〉〉i]→n Cn+1 #n · · · #1 C1[v]

Each level contains all the reductions from lower levels, and these reductions are compat-
ible with additional layers of evaluation contexts. In particular, at level 0 there are only δ-
and βλ-reductions.

The values and evaluation contexts are already specified in the abstract machine. More-
over, the potential redexes are defined according to the following grammar:

pn ::= succ v | v0 v1 | Sik .t | 〈〈〈v〉〉〉i (1 ≤ i ≤ n)

Lemma 2 (Unique decomposition for level n). A program t is either a value or there ex-
ists a unique sequence of contexts C1, . . . , Cn+1 and a potential redex pn such that
t = plug (Cn+1 #n · · · #1 C1[pn]).

Evaluating a term using either the derived reduction rules or the substitution-based ab-
stract machine from Section 5.3 yields the same result:

Theorem 6. For any program t and any value v, evalsn (t) = v if and only if t→∗
n v, where

→∗
n is the reflexive, transitive closure of →n.

As in Section 4.4, using refocusing, one can go from a given reduction semantics of Sec-
tion 5.4 into a pre-abstract machine and the corresponding eval/apply abstract machine of
Figures 13 and 14.

5.5 Beyond CPS

As in Section 4.5, one can define a concatenation function over contexts and use it to imple-
ment composable continuations in the CPS hierarchy. Again the modified environment-based
abstract machine does not immediately correspond to a defunctionalized continuation-passing
evaluator. Such control operators go beyond traditional CPS.
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5.6 Summary and conclusion

We have generalized the results presented in Section 4 from level 1 to the whole CPS hierarchy
of control operators shiftn and resetn. Starting from the original evaluator for the λ-calculus
with shiftn and resetn that uses n + 1 layers of continuations, we have derived two abstract
machines, an environment-based one and a substitution-based one; each of these machines
use n + 1 layers of evaluation contexts. Based on the substitution-based machine we have
obtained a reduction semantics for the λ-calculus extended with shiftn and resetn which, by
construction, is sound with respect to CPS.

6 Programming in the CPS hierarchy

To finish, we present new examples of programming in the CPS hierarchy. The examples
are normalization functions. In Sections 6.1 and 6.2, we first describe normalization by
evaluation and we present the simple example of the free monoid. In Section 6.3, we present a
function mapping a proposition into its disjunctive normal form; this normalization function
uses delimited continuations. In Section 6.4, we generalize the normalization functions of
Sections 6.2 and 6.3 to a hierarchical language of units and products, and we express the
corresponding normalization function in the CPS hierarchy.

6.1 Normalization by evaluation

Normalization by evaluation is a ‘reduction-free’ approach to normalizing terms. Instead of
reducing a term to its normal form, one evaluates this term into a non-standard model and
reifies its denotation into its normal form [33]:

eval : term → value
reify : value → termnf

normalize : term → termnf

normalize = reify ◦ eval

Normalization by evaluation has been developed in intuitionistic type theory [19,59], proof
theory [12,13], category theory [4], and partial evaluation [21,22], where it has emerged as a
new field of application for delimited continuations [9, 22,33,43,46,49,74].

6.2 The free monoid

A source term in the free monoid is either a variable, the unit element, or the product of two
terms:

term 3 t ::= x | ε | t ? t′

The product is associative and the unit element is neutral. These properties justify the
following conversion rules:

t ? (t′ ? t′′) ↔ (t ? t′) ? t′′

t ? ε ↔ t

ε ? t ↔ t
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We aim (for example) for list-like flat normal forms:

termnf 3 t̂ ::= εnf | x ?nf t̂

In a reduction-based approach to normalization, one would orient the conversion rules into
reduction rules and one would apply these reduction rules until a normal form is obtained:

t ? (t′ ? t′′) ← (t ? t′) ? t′′

ε ? t → t

In a reduction-free approach to normalization, one defines a normalization function as the
composition of a non-standard evaluation function and a reification function. Let us state
such a normalization function.

The non-standard domain of values is the transformer

value = termnf → termnf .

The evaluation function is defined by induction over the syntax of source terms, and the
reification function inverts it:

eval x = λt.x ?nf t
eval ε = λt.t

eval (t ? t′) = (eval t) ◦ (eval t′)

reify v = v εnf

normalize t = reify (eval t)

In effect, eval is a mapping from the source monoid to the monoid of transformers (unit
is mapped to unit and products are mapped to products) and the normalization function
hinges on the built-in associativity of function composition. Dybjer et al. have studied its
theoretical content [14, 19, 56]. From a (functional) programming standpoint, the reduction-
based approach amounts to flattening a tree iteratively by reordering it, and the reduction-free
approach amounts to flattening a tree with an accumulator.

6.3 A language of propositions

A source term, i.e., a proposition, is either a variable, a literal (true or false), a conjunction,
or a disjunction:

term 3 t ::= x | true | t ∧ t′ | false | t ∨ t′

Conjunction and disjunction are associative and distribute over each other; true is neutral for
conjunction and absorbant for disjunction; and false is neutral for disjunction and absorbant
for conjunction.

We aim (for example) for list-like disjunctive normal forms:

termnf 3 t̂ ::= d

termnf
d 3 d ::= falsenf | c ∨nf d

termnf
c 3 c ::= truenf | x ∧nf c

Our normalization function is the result of composing a non-standard evaluation function and
a reification function. We state them below without proof.
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Given the domains of transformers

F1 = termnf
c → termnf

c

F2 = termnf
d → termnf

d

the non-standard domain of values is ans1, where

ans2 = F2

ans1 = (F1 → ans2) → ans2.

The evaluation function is defined by induction over the syntax of source terms, and the
reification function inverts it:

eval0 x k d = k (λc.x ∧nf c) d
eval0 true k d = k (λc.c) d

eval0 (t ∧ t′) k d = eval0 t (λf1.eval0 t′ (λf ′
1.k (f1 ◦ f ′

1))) d
eval0 false k d = d

eval0 (t ∨ t′) k d = eval0 t k (eval0 t′ k d)

reify0 v = v (λf1.λd.(f1 truenf) ∨nf d) falsenf

normalize t = reify0 (eval0 t)

This normalization function uses a continuation k, an accumulator d to flatten disjunctions,
and another one c to flatten conjunctions. The continuation is delimited: the three first
clauses of eval0 are in CPS; in the fourth, k is discarded (accounting for the fact that false
is absorbant for conjunction); and in the last, k is duplicated and used in non-tail position
(achieving the distribution of conjunctions over disjunctions). The continuation and the
accumulators are initialized in the definition of reify0.

Uncurrying the continuation and mapping eval0 and reify0 back to direct style yield the
following definition, which lives at level 1 of the CPS hierarchy:

eval1 x d = (λc.x ∧nf c, d)
eval1 true d = (λc.c, d)

eval1 (t ∧ t′) d = let (f1, d) = eval1 t d
in let (f ′

1, d) = eval1 t′ d
in (f1 ◦ f ′

1, d)
eval1 false d = Sk.d

eval1 (t ∨ t′) d = Sk.k (eval1 t 〈〈〈k (eval1 t′ d)〉〉〉)

reify1 v = 〈〈〈let (f1, d) = v falsenf

in (f1 truenf) ∨nf d〉〉〉
normalize t = reify1 (eval1 t)

The three first clauses of eval1 are in direct style; the two others abstract control with
shift. In the fourth clause, the context is discarded; and in the last clause, the context is
duplicated and composed. The context and the accumulators are initialized in the definition
of reify1.

This direct-style version makes it even more clear than the CPS version that the accumula-
tor for the disjunctions in normal form is a threaded state. A continuation-based, state-based
version (or better, a monad-based one) can therefore be written—but it is out of scope here.
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6.4 A hierarchical language of units and products

We consider a generalization of propositional logic where a source term is either a variable, a
unit in a hierarchy of units, or a product in a hierarchy of products:

term 3 t ::= x | εi | t ?i t′

where 1 ≤ i ≤ n.

All the products are associative. All units are neutral for products with the same index.

The free monoid: The language corresponds to that of the free monoid if n = 1, as in
Section 6.2.

Boolean logic: The language corresponds to that of propositions if n = 2, as in Section 6.3:
ε1 is true, ?1 is ∧, ε2 is false, and ?2 is ∨.

Multi-valued logic: In general, for each n > 2 we can consider a suitable n-valued logic [45];
for example, in case n = 4, the language corresponds to that of Belnap’s bilattice
FOUR [11]. It is also possible to modify the normalization function to work for less
regular logical structures (e.g., other bilattices).

Monads: In general, the language corresponds to that of layered monads [60]: each unit
element is the unit of the corresponding monad, and each product is the ‘bind’ of the
corresponding monad. In practice, layered monads are collapsed into one for program-
ming consumption [42], but prior to this collapse, all the individual monad operations
coexist in the computational soup.

In the remainder of this section, we assume that all the products, besides being associative,
distribute over each other, and that all units, besides being neutral for products with the same
index, are absorbant for products with other indices. We aim (for example) for a generalization
of disjunctive normal forms:

termnf 3 t̂ ::= tn
termnf

n 3 tn ::= εnf
n | tn−1 ?nf

n tn
...

termnf
1 3 t1 ::= εnf

1 | t0 ?nf
1 t1

termnf
0 3 t0 ::= x

For presentational reasons, in the remainder of this section we arbitrarily fix n to be 5.
Our normalization function is the result of composing a non-standard evaluation func-

tion and a reification function. We state them below without proof. Given the domains of
transformers

F1 = termnf
1 → termnf

1

F2 = termnf
2 → termnf

2

F3 = termnf
3 → termnf

3

F4 = termnf
4 → termnf

4

F5 = termnf
5 → termnf

5

the non-standard domain of values is ans1, where
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ans5 = F5

ans4 = (F4 → ans5) → ans5

ans3 = (F3 → ans4) → ans4

ans2 = (F2 → ans3) → ans3

ans1 = (F1 → ans2) → ans2.

The evaluation function is defined by induction over the syntax of source terms, and the
reification function inverts it:

eval0 x k1 k2 k3 k4 t5 = k1 (λt1.x ?nf
1 t1) k2 k3 k4 t5

eval0 ε1 k1 k2 k3 k4 t5 = k1 (λt1.t1) k2 k3 k4 t5
eval0 (t ?1 t′) k1 k2 k3 k4 t5 = eval0 t (λf1.eval0 t′ (λf ′

1.k1 (f1 ◦ f ′
1))) k2 k3 k4 t5

eval0 ε2 k1 k2 k3 k4 t5 = k2 (λt2.t2) k3 k4 t5
eval0 (t ?2 t′) k1 k2 k3 k4 t5 = eval0 t k1 (λf2.eval0 t′ k1 (λf ′

2.k2 (f2 ◦ f ′
2))) k3 k4 t5

eval0 ε3 k1 k2 k3 k4 t5 = k3 (λt3.t3) k4 t5
eval0 (t ?3 t′) k1 k2 k3 k4 t5 = eval0 t k1 k2 (λf3.eval0 t′ k1 k2 (λf ′

3.k3 (f3 ◦ f ′
3))) k4 t5

eval0 ε4 k1 k2 k3 k4 t5 = k4 (λt4.t4) t5
eval0 (t ?4 t′) k1 k2 k3 k4 t5 = eval0 t k1 k2 k3 (λf4.eval0 t′ k1 k2 k3 (λf ′

4.k4 (f4 ◦ f ′
4))) t5

eval0 ε5 k1 k2 k3 k4 t5 = t5
eval0 (t ?5 t′) k1 k2 k3 k4 t5 = eval0 t k1 k2 k3 k4 (eval0 t′ k1 k2 k3 k4 t5)

reify0 v = v (λf1.λk2.k2 (λt2.(f1 εnf
1 ) ?nf

2 t2))
(λf2.λk3.k3 (λt3.(f2 εnf

2 ) ?nf
3 t3))

(λf3.λk4.k4 (λt4.(f3 εnf
3 ) ?nf

4 t4))
(λf4.λt5.(f4 εnf

4 ) ?nf
5 t5)

ε5

normalize t = reify0 (eval0 t)

This normalization function uses four delimited continuations k1, k2, k3, k4 and five accu-
mulators t1, t2, t3, t4, t5 to flatten each of the successive products. In the clause of each
εi, the continuations k1, . . . , ki−1 are discarded, accounting for the fact that εi is absorbant
for ?1, . . . , ?i−1, and the identity function is passed to ki, accounting for the fact that εi is
neutral for ?i. In the clause of each ?i+1, the continuations k1, . . . , ki are duplicated and used
in non-tail position, achieving the distribution of ?i+1 over ?1, . . . , ?i. The continuations and
the accumulators are initialized in the definition of reify0.

This normalization function lives at level 0 of the CPS hierarchy, but we can express it at
a higher level using shift and reset. For example, uncurrying k3 and k4 and mapping eval0
and reify0 back to direct style twice yield the following intermediate definition, which lives at
level 2:

eval2 x k1 k2 t5 = k1 (λt1.x ?nf
1 t1) k2 t5

eval2 ε1 k1 k2 t5 = k1 (λt1.t1) k2 t5
eval2 (t ?1 t′) k1 k2 t5 = eval2 t (λf1.eval2 t′ (λf ′

1.k1 (f1 ◦ f ′
1))) k2 t5

eval2 ε2 k1 k2 t5 = k2 (λt2.t2) t5
eval2 (t ?2 t′) k1 k2 t5 = eval2 t k1 (λf2.eval2 t′ k1 (λf ′

2.k2 (f2 ◦ f ′
2))) t5

eval2 ε3 k1 k2 t5 = (λt3.t3, t5)
eval2 (t ?3 t′) k1 k2 t5 = let (f3, t5) = eval2 t k1 k2 t5

in let (f ′
3, t5) = eval2 t′ k1 k2 t5

in (f3 ◦ f ′
3, t5)
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eval2 ε4 k1 k2 t5 = S1k3.(λt4.t4, t5)
eval2 (t ?4 t′) k1 k2 t5 = S1k3.let (f4, t5) = 〈〈〈k3 (eval2 t k1 k2 t5)〉〉〉1

in let (f ′
4, t5) = 〈〈〈k3 (eval2 t′ k1 k2 t5)〉〉〉1

in (f4 ◦ f ′
4, t5)

eval2 ε5 k1 k2 t5 = S2k4.t5
eval2 (t ?5 t′) k1 k2 t5 = S1k3.S2k4.let t5 = 〈〈〈k4 〈〈〈k3 (eval2 t′ k1 k2 t5)〉〉〉1〉〉〉2

in 〈〈〈k4 〈〈〈k3 (eval2 t k1 k2 t5)〉〉〉1〉〉〉2
reify2 v = 〈〈〈let (f4, t5) = 〈〈〈let (f3, t5) = v (λf1.λk2.k2 (λt2.(f1 εnf

1 ) ?nf
2 t2))

(λf2.λt3.(f2 εnf
2 ) ?nf

3 t3)
ε5

in (λf4.(f3 εnf
3 ) ?nf

4 t4, t5)〉〉〉1
in (f4 εnf

4 ) ?nf
5 t5〉〉〉2

normalize t = reify2 (eval2 t)

Whereas eval0 had four layered continuations, eval2 has only two layered continuations since it
has been mapped back to direct style twice. Where eval0 accesses k3 as one of its parameters,
eval2 abstracts the first layer of control with shift1, and where eval0 accesses k4 as one of its
parameters, eval2 abstracts the first and the second layer of control with shift2.

Uncurrying k1 and k2 and mapping eval2 and reify2 back to direct style twice yield the
following direct-style definition, which lives at level 4 of the CPS hierarchy:

eval4 x t5 = (λt1.x ?nf
1 t1, t5)

eval4 ε1 t5 = (λt1.t1, t5)
eval4 (t ?1 t′) t5 = let (f1, t5) = eval4 t t5

in let (f ′
1, t5) = eval4 t′ t5

in (f1 ◦ f ′
1, t5)

eval4 ε2 t5 = S1k1.(λt2.t2, t5)
eval4 (t ?2 t′) t5 = S1k1.let (f2, t5) = 〈〈〈k1 (eval4 t t5)〉〉〉1

in let (f ′
2, t5) = 〈〈〈k1 (eval4 t′ t5)〉〉〉1

in (f2 ◦ f ′
2, t5)

eval4 ε3 t5 = S2k2.(λt3.t3, t5)
eval4 (t ?3 t′) t5 = S1k1.S2k2.let (f3, t5) = 〈〈〈k2 〈〈〈k1 (eval 4 t t5)〉〉〉1〉〉〉2

in let (f ′
3, t5) = 〈〈〈k2 〈〈〈k1 (eval4 t′ t5)〉〉〉1〉〉〉2

in (f3 ◦ f ′
3, t5)

eval4 ε4 t5 = S3k3.(λt4.t4, t5)
eval4 (t ?4 t′) t5 = S1k1.S2k2.S3k3.let (f4, t5) = 〈〈〈k3 〈〈〈k2 〈〈〈k1 (eval4 t t5)〉〉〉1〉〉〉2〉〉〉3

in let (f ′
4, t5) = 〈〈〈k3 〈〈〈k2 〈〈〈k1 (eval4 t′ t5)〉〉〉1〉〉〉2〉〉〉3

in (f4 ◦ f ′
4, t5)

eval4 ε5 t5 = S4k4.t5
eval4 (t ?5 t′) t5 = S1k1.S2k2.S3k3.S4k4.let t5 = 〈〈〈k4 〈〈〈k3 〈〈〈k2 〈〈〈k1 (eval4 t′ t5)〉〉〉1〉〉〉2〉〉〉3〉〉〉4

in 〈〈〈k4 〈〈〈k3 〈〈〈k2 〈〈〈k1 (eval4 t t5)〉〉〉1〉〉〉2〉〉〉3〉〉〉4
reify4 v = 〈〈〈let (f4, t5) = 〈〈〈let (f3, t5) = 〈〈〈let (f2, t5) = 〈〈〈let (f1, t5) = v ε5

in (λf2.(f1 εnf
1 ) ?nf

2 t2, t5)〉〉〉1
in (λf3.(f2 εnf

2 ) ?nf
3 t3, t5)〉〉〉2

in (λf4.(f3 εnf
3 ) ?nf

4 t4, t5)〉〉〉3
in (f4 εnf

4 ) ?nf
5 t5〉〉〉4

normalize t = reify4 (eval4 t)
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Whereas eval2 had two layered continuations, eval4 has none since it has been mapped back
to direct style twice. Where eval2 accesses k1 as one of its parameters, eval4 abstracts the
first layer of control with shift1, and where eval2 accesses k2 as one of its parameters, eval4
abstracts the first and the second layer of control with shift2. Where eval2 uses reset1 and
shift1, eval4 uses reset3 and shift3, and where eval2 uses reset2 and shift2, eval4 uses reset4

and shift4.

6.5 A note about efficiency

We have implemented all the definitions of Section 6.4 as well as the intermediate versions
eval1 and eval3, using Standard ML of New Jersey [31]. We have also implemented hierarchical
normalization functions for other values than 5.

For high products (i.e., in Section 6.4, for source terms using ?3 and ?4), the normalization
function living at level 0 of the CPS hierarchy is the most efficient one. On the other hand,
for low products (i.e., in Section 6.4, for source terms using ?1 and ?2), the normalization
functions living at a higher level of the CPS hierarchy are the most efficient ones. These
relative efficiencies are explained in terms of resources:

• Accessing to a continuation as an explicit parameter is more efficient than accessing to
it through a control operator.

• On the other hand, the restriction of eval4 to source terms that only use ε1 and ?1 is
in direct style, whereas the corresponding restrictions of eval2 and eval0 pass a number
of extra parameters. These extra parameters penalize performance.

The better performance of programs in the CPS hierarchy has already been reported for
level 1 in the context of continuation-based partial evaluation [58], and it has been reported
for a similar “pay as you go” reason: a program that abstracts control relatively rarely is run
more efficiently in direct style with a control operator rather than in continuation-passing
style.

6.6 Summary and conclusion

We have illustrated the CPS hierarchy with an application of normalization by evaluation
that naturally involves successive layers of continuations and that demonstrates the expressive
power of shiftn and resetn.

The application also suggests alternative control operators that would fit better its continu-
ation-based programming pattern. For example, instead of representing a delimited continu-
ation as a function and apply it as such, we could represent it as a continuation and apply it
with a throw operator as in MacLisp and Standard ML of New Jersey. For another example,
instead of throwing a value to a continuation, we could specify the continuation of a compu-
tation, e.g., with a reflect i special form. For a third example, instead of abstracting control
up to a layer n, we could give access to each of the successive layers up to n, e.g., with a Ln

operator. Then instead of

eval4 (t ?4 t′) t5 = S1k1.S2k2.S3k3.let (f4, t5) = 〈〈〈k3 〈〈〈k2 〈〈〈k1 (eval4 t t5)〉〉〉1〉〉〉2〉〉〉3
in let (f ′

4, t5) = 〈〈〈k3 〈〈〈k2 〈〈〈k1 (eval4 t′ t5)〉〉〉1〉〉〉2〉〉〉3
in (f4 ◦ f ′

4, t5)
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one could write

eval4 (t ?4 t′) t5 = L3 (k1, k2, k3).let (f ′
4, t5) = reflect3 (eval4 t t5, k1, k2, k3)

in let (f ′
4, t5) = reflect3 (eval4 t′ t5, k1, k2, k3)

in (f4 ◦ f ′
4, t5).

Such alternative control operators can be more convenient to use, while being compatible
with CPS.

7 Conclusion and issues

We have used CPS as a guideline to establish an operational foundation for delimited con-
tinuations. Starting from a call-by-value evaluator for λ-terms with shift and reset, we have
mechanically derived the corresponding abstract machine. From this abstract machine, it is
straightforward to obtain a reduction semantics of delimited control that, by construction, is
compatible with CPS—both for one-step reduction and for evaluation. These results can also
be established without the guideline of CPS, but less easily.

The whole approach generalizes straightforwardly to account for the shiftn and resetn

family of delimited-control operators and more generally for any control operators that are
compatible with CPS. These results would be non-trivial to establish without the guideline
of CPS.

Defunctionalization provides a key for connecting continuation-passing style and oper-
ational intuitions about control. Indeed most of the time, control stacks and evaluation
contexts are the defunctionalized continuations of an evaluator. Defunctionalization also pro-
vides a key for identifying where operational intuitions about control go beyond CPS (see
Section 4.5). We do not know whether CPS is the ultimate answer, but the present work
shows yet another example of its usefulness. It is like nothing can go wrong with CPS.
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[47] Carl Gunter, Didier Rémy, and Jon G. Riecke. A generalization of exceptions and control
in ML-like languages. In Simon Peyton Jones, editor, Proceedings of the Seventh ACM
Conference on Functional Programming and Computer Architecture, pages 12–23, La
Jolla, California, June 1995. ACM Press.
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