
BRICS
Basic Research in Computer Science

A Simple Proof of a Folklore Theorem
about Delimited Control

Dariusz Biernacki
Olivier Danvy

BRICS Report Series RS-05-10

ISSN 0909-0878 March 2005

B
R

IC
S

R
S

-05-10
B

iernacki&
D

anvy:
A

S
im

ple
P

roofofa
F

olklore
T

heorem
aboutD

elim
ited

C
ontrol

Copyright c© 2005, Dariusz Biernacki & Olivier Danvy.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/05/10/

A Simple Proof of a Folklore Theorem

about Delimited Control

Dariusz Biernacki and Olivier Danvy

BRICS∗

Department of Computer Science
University of Aarhus†

March 18, 2005

Abstract

We formalize and prove the folklore theorem that the static delimited-
control operators shift and reset can be simulated in terms of the dy-
namic delimited-control operators control and prompt. The proof is based
on small-step operational semantics.

Keywords

Delimited continuations, abstract machines.

∗Basic Research in Computer Science (www.brics.dk),
funded by the Danish National Research Foundation.

†IT-parken, Aabogade 34, DK-8200 Aarhus N, Denmark.
Email: {dabi,danvy}@brics.dk

i

Contents

1 Introduction 1

2 The formalization 1
2.1 A definitional abstract machine for shift and reset 1
2.2 A definitional abstract machine for control and prompt 3
2.3 Static vs. dynamic delimited continuations 3

3 The folklore theorem and its formal proof 6
3.1 An auxiliary abstract machine for control and prompt 6
3.2 A family of relations . 7
3.3 The formal proof . 9

4 Conclusion 10

List of Figures

1 A definitional abstract machine for shift and reset 2
2 A definitional abstract machine for control and prompt 4

ii

1 Introduction

The recent upsurge of interest in delimited continuations [1,5,8,12] seems to take
it for granted that dynamic delimited continuations can simulate static delim-
ited continuations by delimiting the context of their resumption. And indeed
this property has been mentioned early in the literature about delimited contin-
uations [4, Section 5]. We are, however, not aware of any proof of this folklore
theorem, and our goal here is to provide such a proof. To this end, we present two
abstract machines—one for static delimited continuations as provided by the con-
trol operators shift and reset [4] and inducing a partial evaluation function eval sr,
and one for dynamic delimited continuations as provided by the control operators
control and prompt [7] and inducing a partial evaluation function eval cp—and
one compositional mapping [[·]] from programs using shift and reset to programs
using control and prompt. We then prove that the following diagram commutes:

Expsr

eval sr //

[[·]]
��

ValsrOO

'v

���
�
�
�
�

Expcp eval cp
// Valcp

where the value equivalence 'v, for ground values, is defined as equality.

2 The formalization

Figures 1 and 2 display two abstract machines, one for the λ-calculus extended
with shift and reset, and one for the λ-calculus extended with control and
prompt. These two machines only differ in the application of captured contexts.

In the source syntax, we distinguish between λ-bound variables (x) and shift-
or control-bound variables (k). We use the same meta-variables (e, n, i, x , k , v, ρ,
C1 and C2) ranging over the components of the two abstract machines whenever
it does not lead to ambiguity. Programs are closed terms.

2.1 A definitional abstract machine for shift and reset

In our earlier work [2], we derived a definitional abstract machine for shift and
reset by defunctionalizing the continuation and meta-continuation of Danvy and
Filinski’s definitional evaluator [4]. This definitional abstract machine is displayed
in Figure 1; it is a straightforward extension of Felleisen et al.’s CEK machine [6]
with a meta-context. The source language is the untyped λ-calculus extended
with integers, the successor function, shift (noted S), and reset (noted 〈〈〈·〉〉〉).

1

• Terms and identifiers: e ::= pnq | i | λx .e | e0 e1 | succ e | 〈〈〈e〉〉〉 | Sk .e
i ::= x | k

• Values (integers, closures, and captured contexts):
v ::= n | [x , e, ρ] | C1

• Environments: ρ ::= ρmt | ρ{i 7→ v}
• Contexts: C1 ::= END | ARG ((e, ρ), C1) | FUN (v, C1) | SUCC (C1)

• Meta-contexts: C2 ::= nil | C1 :: C2

• Initial transition, transition rules, and final transition:

e ⇒sr 〈e, ρmt , END, nil〉eval
〈pnq, ρ, C1, C2〉eval ⇒sr 〈C1, n, C2〉cont1

〈i, ρ, C1, C2〉eval ⇒sr 〈C1, ρ(i), C2〉cont1

〈λx .e, ρ, C1, C2〉eval ⇒sr 〈C1, [x , e, ρ], C2〉cont1

〈e0 e1, ρ, C1, C2〉eval ⇒sr 〈e0, ρ, ARG ((e1, ρ), C1), C2〉eval
〈succ e, ρ, C1, C2〉eval ⇒sr 〈e, ρ, SUCC (C1), C2〉eval

〈〈〈〈e〉〉〉, ρ, C1, C2〉eval ⇒sr 〈e, ρ, END, C1 :: C2〉eval
〈Sk .e, ρ, C1, C2〉eval ⇒sr 〈e, ρ{k 7→ C1}, END, C2〉eval

〈END, v, C2〉cont1 ⇒sr 〈C2, v〉cont2

〈ARG ((e, ρ), C1), v, C2〉cont1 ⇒sr 〈e, ρ, FUN (v, C1), C2〉eval
〈FUN ([x , e, ρ], C1), v, C2〉cont1 ⇒sr 〈e, ρ{x 7→ v}, C1, C2〉eval

〈FUN (C′
1, C1), v, C2〉cont1 ⇒sr 〈C′

1, v, C1 :: C2〉cont1

〈SUCC (C1), n, C2〉cont1 ⇒sr 〈C1, n + 1, C2〉cont1

〈C1 :: C2, v〉cont2 ⇒sr 〈C1, v, C2〉cont1

〈nil, v〉cont2 ⇒sr v

Figure 1: A definitional abstract machine for shift and reset

2

Definition 1. The partial evaluation function eval sr mapping programs to values
is defined as follows: eval sr (e) = v if and only if 〈e, ρmt , END, nil〉eval ⇒+

sr

〈nil, v〉cont2 .

N.B.: ρ is a partial function mapping identifiers to values, ρmt is the empty
environment, i.e., a function with an empty domain; and ρ{i 7→ v} is defined as
follows:

(ρ{i 7→ v})(i′) =
{

v if i′ = i
(ρ \ {i})(i′) otherwise

where ρ \ {i} denotes the restriction of ρ to its domain excluding i.

2.2 A definitional abstract machine for control and prompt

In our earlier work [2], we also showed how to modify the abstract machine
for shift and reset to obtain a definitional abstract machine for control and
prompt [7]. This abstract machine is displayed in Figure 2. The source language
is the λ-calculus extended with integers, the successor function, control (noted
F) and prompt (noted #).

Definition 2. The partial evaluation function eval cp mapping programs to values
is defined as follows: eval cp (e) = v if and only if 〈e, ρmt , END, nil〉eval ⇒+

cp

〈nil, v〉cont2 .

2.3 Static vs. dynamic delimited continuations

In Figure 1, shift and reset are said to be static because the application of a
delimited continuation (represented as a captured context) does not depend on
the current context. It is implemented by pushing the current context on the
stack of contexts and installing the captured context as the new current context,
as shown by the following transition:

〈FUN (C′
1, C1), v, C2〉cont1 ⇒sr 〈C′

1, v, C1 :: C2〉cont1

A subsequent shift operation will therefore capture the remainder of the rein-
stated context, statically.

In Figure 2, control and prompt are said to be dynamic because the application
of a delimited continuation (also represented as a captured context) depends on
the current context. It is implemented by concatenating the captured context to
the current context, as shown by the following transition:

〈FUN (C′
1, C1), v, C2〉cont1 ⇒cp 〈C′

1 ? C1, v, C2〉cont1

A subsequent control operation will therefore capture the remainder of the rein-
stated context together with the then-current context, dynamically.

3

• Terms and identifiers: e ::= pnq | i | λx .e | e0 e1 | succ e | #e | Fk .e
i ::= x | k

• Values (integers, closures, and captured contexts):
v ::= n | [x , e, ρ] | C1

• Environments: ρ ::= ρmt | ρ{i 7→ v}
• Contexts: C1 ::= END | ARG ((e, ρ), C1) | FUN (v, C1) | SUCC (C1)

• Concatenation of contexts:

END ? C′
1

def= C′
1

(ARG ((e, ρ), C1)) ? C′
1

def= ARG ((e, ρ), C1 ? C′
1)

(FUN (v, C1)) ? C′
1

def= FUN (v, C1 ? C′
1)

(SUCC (C1)) ? C′
1

def= SUCC (C1 ? C′
1)

• Meta-contexts: C2 ::= nil | C1 :: C2

• Initial transition, transition rules, and final transition:

e ⇒cp 〈e, ρmt , END, nil〉eval
〈pnq, ρ, C1, C2〉eval ⇒cp 〈C1, n, C2〉cont1

〈i, ρ, C1, C2〉eval ⇒cp 〈C1, ρ(i), C2〉cont1

〈λx .e, ρ, C1, C2〉eval ⇒cp 〈C1, [x , e, ρ], C2〉cont1

〈e0 e1, ρ, C1, C2〉eval ⇒cp 〈e0, ρ, ARG ((e1, ρ), C1), C2〉eval
〈succ e, ρ, C1, C2〉eval ⇒cp 〈e, ρ, SUCC (C1), C2〉eval

〈#e, ρ, C1, C2〉eval ⇒cp 〈e, ρ, END, C1 :: C2〉eval
〈Fk .e, ρ, C1, C2〉eval ⇒cp 〈e, ρ{k 7→ C1}, END, C2〉eval

〈END, v, C2〉cont1 ⇒cp 〈C2, v〉cont2

〈ARG ((e, ρ), C1), v, C2〉cont1 ⇒cp 〈e, ρ, FUN (v, C1), C2〉eval
〈FUN ([x , e, ρ], C1), v, C2〉cont1 ⇒cp 〈e, ρ{x 7→ v}, C1, C2〉eval

〈FUN (C′
1, C1), v, C2〉cont1 ⇒cp 〈C′

1 ? C1, v, C2〉cont1

〈SUCC (C1), n, C2〉cont1 ⇒cp 〈C1, n + 1, C2〉cont1

〈C1 :: C2, v〉cont2 ⇒cp 〈C1, v, C2〉cont1

〈nil, v〉cont2 ⇒cp v

Figure 2: A definitional abstract machine for control and prompt

4

The two abstract machines differ only in this single transition. Because of
this single transition, programs using shift and reset are compatible with the
traditional notion of continuation-passing style [2, 4, 11] whereas programs using
control and prompt give rise to a more complex notion of continuation-passing
style that threads a dynamic state [3, 5, 12]. This difference in the semantics of
shift and control also induces distinct computational behaviors. For example,
using call-with-current-delimited-continuation (instead of shift or control)
and delimit-continuation (instead of reset or prompt), let us consider the follow-
ing function that traverses a given list and returns another list;1 this function is
written in the syntax of Scheme [9]:

(define traverse

(lambda (xs)

(letrec ([visit

(lambda (xs)

(if (null? xs)

’()

(visit (call-with-current-delimited-continuation

(lambda (k)

(cons (car xs) (k (cdr xs))))))))])

(delimit-continuation

(lambda ()

(visit xs))))))

• The function copies its input list if shift and reset are used instead of
call-with- current-delimited-continuation and delimit-continuation. The
reason why is that reinstating a shift-abstracted context keeps it distinct
from the current context. Here, shift successively abstracts a delimited
context that solely consists in the call to visit. Intuitively, this delimited
context reads as follows:

(lambda (v)

(delimit-continuation

(lambda ()

(visit v))))

• The function reverses its input list if control and prompt are used instead of
call-with-current-delimited-continuation and delimit-continuation. The
reason why is that reinstating a control-abstracted context grafts it to the
current context. Here, control successively abstracts a context that consists
in the call to visit followed by the construction of a reversed prefix of the
input list. Intuitively, when the input list is (1 2 3), the successive contexts
read as follows:

(lambda (v) (visit v))

(lambda (v) (cons 1 (visit v))

(lambda (v) (cons 2 (cons 1 (visit v))))

1This example is due to Biernacka, Biernacki, and Danvy (March 2005).

5

Programming folklore. To obtain the effect of shift and reset using control

and prompt, one should replace every occurrence of a shift-bound variable k by its
η-expanded and delimited version λx .#(k x). (As a β-optimization, every appli-
cation of k to a simple expression e can be replaced by #(k e).)

And indeed, replacing

(cons (car xs) (k (cdr xs)))

by

(cons (car xs) (delimit-continuation

(lambda ()

(k (cdr xs)))))

in the definition of traverse above makes it copy its input list, no matter whether
shift and reset or control and prompt are used.

We formalize the replacement above with the following compositional trans-
lation from the language with shift and reset to the language with control and
prompt.

Definition 3. The translation [[·]] is defined as follows:

[[pnq]] = pnq
[[x]] = x
[[k]] = λx .#(k x), where x is fresh

[[λx .e]] = λx .[[e]]
[[e0 e1]] = [[e0]] [[e1]]

[[〈〈〈e〉〉〉]] = #[[e]]
[[Sk .e]] = Fk .[[e]]

In the next section, we prove that for any program e, eval sr (e) and eval cp ([[e]])
are observationally equivalent and, in particular, equal for ground values.

3 The folklore theorem and its formal proof

We first define an auxiliary abstract machine for control and prompt that imple-
ments the application of an η-expanded and delimited continuation in one step.
By construction, this auxiliary abstract machine is equivalent to the definitional
one of Figure 2. We then show that the auxiliary machine operates in lock step
with the definitional abstract machine of Figure 1. To this end, we define a family
of relations between the abstract machine for shift and reset and the auxiliary
abstract machine. The folklore theorem follows.

3.1 An auxiliary abstract machine for control and prompt

Definition 4. The auxiliary abstract machine for control and prompt is defined
as follows:

6

(1) All the components, including configurations δ, of the auxiliary abstract ma-
chine are identical to the components of the definitional abstract machine of
Figure 2.

(2) The transitions of the auxiliary abstract machine, denoted δ ⇒aux δ′, are
defined as follows:

• if δ = 〈FUN ([x , #(k x), ρ], C1), v, C2〉cont1

then δ′ = 〈C′
1, v, C1 :: C2〉cont1 , where C′

1 = ρ(k);

• otherwise, δ′ is the configuration such that δ ⇒cp δ′, if it exists.

(3) The partial evaluation function evalaux is defined in the usual way: evalaux (e)
= v if and only if 〈e, ρmt , END, nil〉eval ⇒+

aux 〈nil, v〉cont2 .

The following lemma shows that the definitional abstract machine for control

and prompt simulates the single step of the auxiliary abstract machine in several
steps.

Lemma 1. For all v, C1, C′
1 and C2,

〈FUN ([x , #(k x), ρ], C1), v, C2〉cont1 ⇒+
cp 〈C′

1, v, C1 :: C2〉cont1 , where C′
1 = ρ(k).

Proof. From the definition of the abstract machine for control and prompt in
Figure 2:

〈FUN ([x , #(k x), ρ], C1), v, C2〉cont1 ⇒cp

〈#(k x), ρ{x 7→ v}, C1, C2〉eval ⇒cp

〈k x , ρ{x 7→ v}, END, C1 :: C2〉eval ⇒cp

〈k , ρ{x 7→ v}, ARG ((x , ρ{x 7→ v}), END), C1 :: C2〉eval ⇒cp

〈ARG ((x , ρ{x 7→ v}), END), C′
1, C1 :: C2〉cont1 ⇒cp

〈x , ρ{x 7→ v}, FUN (C′
1, END), C1 :: C2〉eval ⇒cp

〈FUN (C′
1, END), v, C1 :: C2〉cont1 ⇒cp

〈C′
1, v, C1 :: C2〉cont1

Proposition 1. For any program e and for any value v, evalcp (e) = v if and
only if evalaux (e) = v.

Proof. Follows directly from Definition 4 and Lemma 1.

3.2 A family of relations

We now define a family of relations between the abstract machine for shift and
reset and the auxiliary abstract machine for control and prompt. To distinguish
between the two machines, as a diacritical convention [10], we annotate the com-
ponents of the machine for shift and reset with a tilde.

7

Definition 5. The relations between the components of the abstract machine for
shift and reset and the auxiliary abstract machine for control and prompt are
defined as follows:

(1) Terms: ẽ 'e e iff [[ẽ]] = e

(2) Values:

(a) ñ 'v n iff ñ = n

(b) [x̃ , ẽ, ρ̃] 'v [x , e, ρ] iff x̃ = x , ẽ 'e e and ρ̃ 'env ρ

(c) C̃1 'v [x , #(k x), ρ] iff C̃1 'c ρ(k)

(d) C̃1 'v C1 iff C̃1 'c C1

(3) Environments:

(a) ρ̃mt 'env ρmt

(b) ρ̃{i 7→ ṽ} 'env ρ{i 7→ v} iff ṽ 'v v and ρ̃ \ {i} 'env ρ \ {i}.
(4) Contexts:

(a) ẼND 'c END

(b) ÃRG ((ẽ, ρ̃), C̃1) 'c ARG ((e, ρ), C1) iff ẽ 'e e, ρ̃ 'env ρ, and C̃1 'c C1

(c) F̃UN (ṽ, C̃1) 'c FUN (v, C1) iff ṽ 'v v and C̃1 'c C1

(d) S̃UCC (C̃1) 'c SUCC (C1) iff C̃1 'c C1

(5) Meta-contexts:

(a) ñil 'mc nil

(b) C̃1 :: C̃2 'mc C1 :: C2 iff C̃1 'c C1 and C̃2 'mc C2

(6) Configurations:

(a) 〈ẽ, ρ̃, C̃1, C̃2〉geval
' 〈e, ρ, C1, C2〉eval iff

ẽ 'e e, ρ̃ 'env ρ, C̃1 'c C1, and C̃2 'mc C2

(b) 〈C̃1, ṽ, C̃2〉c̃ont1
' 〈C1, v, C2〉cont1 iff

C̃1 'c C1, ṽ 'v v, and C̃2 'mc C2

(c) 〈C̃2, ṽ〉
c̃ont2

' 〈C2, v〉cont2 iff

C̃2 'mc C2 and ṽ 'v v

8

3.3 The formal proof

As a stepping stone, we show that running the abstract machine for shift and
reset on a program e and running the auxiliary abstract machine for control and
prompt on a program [[e]] yield results that are equivalent in the sense of the above
relations.

Expsr

eval sr //

[[·]]
��

ValsrOO

'v

���
�
�
�
�

Expcp

eval cp
//

evalaux //
Valcp

Moreover, we show that the abstract machines operate in lock-step with respect
to the relations. To this end we need to prove the following lemmas.

Lemma 2. For all configurations δ̃, δ, δ̃′ and δ′, if δ̃ ' δ then

δ̃ ⇒sr δ̃′ if and only if δ ⇒aux δ′ and δ̃′ ' δ′.

Proof. By case inspection of δ̃ ' δ. All cases follow directly from the definition
of the relation ' and the definitions of the abstract machines. We present two
crucial cases:

Case: δ̃ = 〈k , ρ̃, C̃1, C̃2〉geval
and δ = 〈λx .#(k x), ρ, C1, C2〉eval .

From the definition of the abstract machine for shift and reset, δ̃ ⇒sr δ̃′,
where δ̃′ = 〈C̃1, ρ̃(k), C̃2〉c̃ont1

.
From the definition of the auxiliary abstract machine for control and prompt,
δ ⇒cp δ′, where δ′ = 〈C1, [x , #(k x), ρ], C2〉cont1 .
By assumption, ρ̃(k) 'v ρ(k), C̃1 'c C1 and C̃2 'mc C2. Hence, δ̃′ ' δ′.

Case: δ̃ = 〈F̃UN (C̃1

′
, C̃1), ṽ, C̃2〉geval

and δ = 〈FUN ([x , #(k x), ρ], C1), v, C2〉eval .
From the definition of the abstract machine for shift and reset, δ̃ ⇒sr δ̃′,
where δ̃′ = 〈C̃1

′
, ṽ, C̃1 :: C̃2〉c̃ont1

.
From the definition of the auxiliary abstract machine for control and prompt,
δ ⇒cp δ′, where δ′ = 〈C′

1, v, C1 :: C2〉cont1 , and C′
1 = ρ(k).

By assumption, C̃1

′ 'v C′
1, C̃1 'c C1 and C̃2 'mc C2. Hence, δ̃′ ' δ′.

Lemma 3. For all configurations δ̃, δ, δ̃′ and δ′, and for any n ≥ 1, if δ̃ ' δ then

δ̃ ⇒n
sr δ̃′ if and only if δ ⇒n

aux δ′ and δ̃′ ' δ′.

Proof. By induction on n, using Lemma 2.

9

We are now in position to prove the formal statement of the equivalence be-
tween the two abstract machines:

Proposition 2. For any program e, and for any values ṽ and v, eval sr (e) = ṽ if
and only if evalaux ([[e]]) = v and ṽ 'v v.

Proof. The initial configurations 〈e, ρ̃mt , ẼND, ñil〉geval
and 〈[[e]], ρmt , END, nil〉eval

are in the relation' and thus by Lemma 3 both abstract machines reach their final
configurations 〈ñil, ṽ〉

c̃ont2
and 〈nil, v〉cont2 after the same number of transitions

and with ṽ 'v v, or both diverge.

Theorem 1. For any program e, and for any values ṽ and v, eval sr (e) = ṽ if
and only if eval cp ([[e]]) = v and ṽ 'v v.

Proof. Follows directly from Proposition 1 and Proposition 2.

Corollary 1 (Folklore). For any program e, and for any integer n, eval sr (e) = n
if and only if evalcp ([[e]]) = n.

Extending the source language with more syntactic constructs (other ground
values and primitive operations, conditional expressions, recursive definitions,
etc.) is straightforward. It is equally simple to extend the proofs.

4 Conclusion

We have formalized and proved that the dynamic delimited-control operators
control and prompt can simulate the static delimited-control operators shift and
reset by delimiting the context of the resumption of captured continuations. Shan
has recently presented a converse simulation [12]. This converse simulation is
considerably more involved than the present one, and it has not been formalized
and proved yet.

Acknowledgments: We are grateful to Mads Sig Ager, Ma lgorzata Biernacka,
Julia Lawall, Kevin Millikin, and Kristian Støvring for their comments. This work
is supported by the ESPRIT Working Group APPSEM II (http://www.appsem.
org) and by the Danish Natural Science Research Council, Grant no. 21-03-0545.

References

[1] Zena M. Ariola, Hugo Herbelin, and Amr Sabry. A type-theoretic foundation
of continuations and prompts. In Kathleen Fisher, editor, Proceedings of the
2004 ACM SIGPLAN International Conference on Functional Programming,
pages 40–53, Snowbird, Utah, September 2004. ACM Press.

[2] Ma lgorzata Biernacka, Dariusz Biernacki, and Olivier Danvy. An operational
foundation for delimited continuations in the CPS hierarchy. Technical Re-
port BRICS RS-04-29, DAIMI, Department of Computer Science, University

10

of Aarhus, Aarhus, Denmark, December 2004. A preliminary version was
presented at the the Fourth ACM SIGPLAN Workshop on Continuations
(CW 2004).

[3] Dariusz Biernacki, Olivier Danvy, and Kevin Millikin. A dynamic
continuation-passing style for dynamic delimited continuations. Technical
Report BRICS RS-05-5, DAIMI, Department of Computer Science, Univer-
sity of Aarhus, Aarhus, Denmark, February 2005.

[4] Olivier Danvy and Andrzej Filinski. Abstracting control. In Mitchell Wand,
editor, Proceedings of the 1990 ACM Conference on Lisp and Functional
Programming, pages 151–160, Nice, France, June 1990. ACM Press.

[5] R. Kent Dybvig, Simon Peyton-Jones, and Amr Sabry. A monadic framework
for subcontinuations. Available at http://www.cs.indiana.edu/~sabry/
research.html, February 2005.

[6] Matthias Felleisen and Daniel P. Friedman. Control operators, the SECD
machine, and the λ-calculus. In Martin Wirsing, editor, Formal Description
of Programming Concepts III, pages 193–217. Elsevier Science Publishers
B.V. (North-Holland), Amsterdam, 1986.

[7] Matthias Felleisen, Mitchell Wand, Daniel P. Friedman, and Bruce F. Duba.
Abstract continuations: A mathematical semantics for handling full func-
tional jumps. In Robert (Corky) Cartwright, editor, Proceedings of the 1988
ACM Conference on Lisp and Functional Programming, pages 52–62, Snow-
bird, Utah, July 1988. ACM Press.

[8] Martin Gasbichler and Michael Sperber. Final shift for call/cc: direct im-
plementation of shift and reset. In Simon Peyton Jones, editor, Proceedings
of the 2002 ACM SIGPLAN International Conference on Functional Pro-
gramming, SIGPLAN Notices, Vol. 37, No. 9, pages 271–282, Pittsburgh,
Pennsylvania, September 2002. ACM Press.

[9] Richard Kelsey, William Clinger, and Jonathan Rees, editors. Revised5 report
on the algorithmic language Scheme. Higher-Order and Symbolic Computa-
tion, 11(1):7–105, 1998.

[10] Robert E. Milne and Christopher Strachey. A Theory of Programming Lan-
guage Semantics. Chapman and Hall, London, and John Wiley, New York,
1976.

[11] Gordon D. Plotkin. Call-by-name, call-by-value and the λ-calculus. Theoret-
ical Computer Science, 1:125–159, 1975.

[12] Chung-chieh Shan. Shift to control. In Olin Shivers and Oscar Waddell,
editors, Proceedings of the 2004 ACM SIGPLAN Workshop on Scheme and
Functional Programming, Snowbird, Utah, September 2004.

11

Recent BRICS Report Series Publications

RS-05-10 Dariusz Biernacki and Olivier Danvy.A Simple Proof of a Folk-
lore Theorem about Delimited Control. March 2005. ii+11 pp.

RS-05-9 Gudmund Skovbjerg Frandsen and Peter Bro Miltersen.Re-
viewing Bounds on the Circuit Size of the Hardest Functions.
March 2005. 6 pp. To appear inInformation Processing Let-
ters.

RS-05-8 Peter D. Mosses.Exploiting Labels in Structural Operational
Semantics. February 2005. 15 pp. Appears inFundamenta
Informaticae, 60:17–31, 2004.

RS-05-7 Peter D. Mosses.Modular Structural Operational Semantics.
February 2005. 46 pp. Appears inJournal of Logic and Alge-
braic Programming, 60–61:195–228, 2004.

RS-05-6 Karl Krukow and Andrew Twigg. Distributed Approximation
of Fixed-Points in Trust Structures. February 2005. 41 pp.

RS-05-5 A Dynamic Continuation-Passing Style for Dynamic Delim-
ited Continuations. Dariusz Biernacki and Olivier Danvy and
Kevin Millikin . February 2005.

RS-05-4 Andrzej Filinski and Henning Korsholm Rohde. Denotational
Aspects of Untyped Normalization by Evaluation. February
2005.

RS-05-3 Olivier Danvy and Mayer Goldberg. There and Back Again.
January 2005. iii+16 pp. Extended version of an article to
appear in Fundamenta Informatica. This version supersedes
BRICS RS-02-12.

RS-05-2 Dariusz Biernacki and Olivier Danvy. On the Dynamic Extent
of Delimited Continuations. January 2005. ii+30 pp.

RS-05-1 Mayer Goldberg. On the Recursive Enumerability of Fixed-
Point Combinators. January 2005. 7 pp. Superseedes BRICS
report RS-04-25.

RS-04-41 Olivier Danvy.Sur un Exemple de Patrick Greussay. December
2004. 14 pp.

RS-04-40 Mads Sig Ager, Olivier Danvy, and Henning Korsholm Rohde.
Fast Partial Evaluation of Pattern Matching in Strings. Decem-
ber 2004. 22 pp. To appear in TOPLAS. Supersedes BRICS
report RS-03-20.

