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Abstract

If we represent aλ-calculus term as a DAG rather than a tree, we can efficiently repre-
sent the sharing that arises fromβ-reduction, thus avoiding combinatorial explosion
in space. By adding uplinks from a child to its parents, we can efficiently imple-
ment β-reduction in a bottom-up manner, thus avoiding combinatorial explosion in
time required to search the term in a top-down fashion. We present an algorithm for
performingβ-reduction onλ-terms represented as uplinked DAGs; describe its proof
of correctness; discuss its relation to alternate techniques such as Lamping graphs,
explicit-substitution calculi and director strings; and present some timings of an imple-
mentation. Besides being both fast and parsimonious of space, the algorithm is particu-
larly suited to applications such as compilers, theorem provers, and type-manipulation
systems that may need to examine terms in-between reductions—i.e., the “readback”
problem for our representation is trivial. Like Lamping graphs, and unlike director
strings or the suspensionλ calculus, the algorithm functions by side-effecting the term
containing the redex; the representation isnot a “persistent” one. The algorithm ad-
ditionally has the charm of being quite simple; a complete implementation of the data
structure and algorithm is 180 lines of SML.

∗Visiting faculty at BRICS, Department of Computer Science, University ofÅrhus.
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1 Introduction
The λ calculus [2, 5] is a simple language with far-reaching use in the programming-
languages and formal-methods communities, where it is frequently employed to represent,
among other objects, functional programs, formal proofs, and types drawn from sophisti-
cated type systems. Here, our particular interest is in the needs of client applications such
as compilers, which may useλ-terms to represent both program terms as well as complex
types. We are somewhat less focussed on the needs of graph-reduction engines, where
there is greater representational license—a graph reducer can represent a particularλ-term
as a chunk of machine code (e.g., by means of supercombinator extraction), because its
sole focus is onexecutingthe term. A compiler, in contrast, needs to examine, analyse and
transform the term in-between operations on it, which requires the actual syntactic form of
the term be available at the intermediate steps.

There are only three forms in the basic language:λ expressions, variable references,
and applications of a function to an argument:

t ∈ Term ::= λx.t | x | tf ta

wherex stands for a member of some infinite set of variables. (We’ll also allow ourselves
parenthesisation of terms to indicate precedence in the parsing of concrete examples.)

Of the three basic operations on terms in theλ calculus—α-conversion,β-reduction,
andη-reduction—it isβ-reduction that accomplishes the “heavy lifting” of term manipu-
lation. (The other two operations are simple to implement.) Unfortunately, na¨ıve imple-
mentations ofβ-reduction can lead to exponential time and space blowup.β-reduction is
the operation of taking an application term whose function subterm is aλ-expression, and
substituting the argument term for occurrences of theλ’s bound variable in the function
body. The result, called thecontractum,can be used in place of the original application,
called theredex. We write

(λx.b) a ⇒ [x 7→a]b

to express the idea that the redex applying functionλx.b to argumenta reduces to the
contractum[x 7→ a]b, by which we mean termb, with free occurrences ofx replaced with
terma.

We can define the core substitution function with a simple recursion:

[y 7→t][[x]] = t x = y
[y 7→t][[x]] = x x 6= y
[x 7→t][[tf ta]] = ([x 7→t]tf )([x 7→t]ta)
[x 7→t][[λy.b]] = λy′.([x 7→t][y 7→y′]b) y′ fresh inb andt.

Note that, in the final case above, when we substitute a termt under aλ-expressionλy.b,
we must first replace theλ-expression’s variabley with a fresh, unused variabley′ to ensure
that any occurrence ofy in t isn’t “captured” by the[x 7→ t] substitution. If we know that
there are no free occurrences ofy in t, this step is unnecessary—which is the case if we
adopt the convention that everyλ-expression binds a unique variable.

It is a straightforward matter to translate the recursive substitution function defined
above into a recursive procedure. Consider the case of performing a substitution[y 7→t] on
an applicationtf ta. Our procedure will recurse on both subterms of the application. . . but
we could also use a less positive term in place of “recurse” to indicate the trouble with
the algorithmic handling of this case: search. In the case of an application, the procedure
will blindly searchbothsubterms, even though one or both may have no occurrences of the
variable for which we search. Suppose, for example, that the function subtermtf is very
large—perhaps millions of nodes—but contains no occurrences of the substituted variable
y. The recursive substitution will needlessly search out the entire subterm, constructing an
identical copy oftf . What we want is some way to direct our recursion so that we don’t
waste time searching into subterms that do not contain occurrences of the variable being
replaced.

1



Procedure addItem(node, i)
if node = nil then

new := NewNode()
new.val := i
new.left := nil
new.right := nil

else if node.val < i then
new := NewNode()
new.right := addItem(node.right,i)
new.left := node.left
new.val := node.val

else if node.val > i then
new := NewNode()
new.left := addItem(node.left,i)
new.right := node.right
new.val := node.val

else new := node
return new

Figure 1: Make a copy of ordered binary treenode, with added entryi. The original tree is
not altered.

2 Guided tree substitution
Let’s turn to a simpler task to develop some intuition. Consider inserting an integer into a
set kept as an ordered binary tree (Fig. 1). There are three things about this simple algorithm
worth noting:

• No search
The pleasant property of ordered binary trees is that we have enough information as
we recurse down into the tree to proceed only into subtrees that require copying.

• Steer down; build up
The algorithm’s recursive control structure splits decision-making and the actual
work of tree construction: the downward recursion makes the decisions about which
nodes need to be copied, and the upward return path assembles the new tree.

• Shared structure
We copy only nodes along the spine leading from the targeted node to the root; the
result tree shares as much structure as possible with the original tree.

3 Guiding tree search with uplinks
Unfortunately, in the case ofβ-reduction, there’s no simple, compact way of determining,
as we recurse downwards into a tree, which way to go at application nodes—an applica-
tion has two children, and we might need to recurse into one, the other, both, or neither.
Suppose, however, that we represent our tree using not only down-links that allow us to
go from a parent to its children, but also with redundant up-links that allow us to go from
a child to its parent. If we can (easily) find the leaf node in the original tree we wish to
replace, we can chase uplinks along the spine from the old leaf to the tree root, copying
as we go. This gives us the algorithm of Fig. 2, presented somewhat abstractly for simple
binary trees. The core iteration of this algorithm is thec 7→c′ upcopy:

�� AA
p

c c’ o
⇒ �� AA,,

p

c c’ o

p’
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while old 6= root do
newparent := NewNode()
if old is left-child of parent then

newparent.left := new
newparent.right := old.right

else
newparent.right := new
newparent.left := old.left

old := old.parent
new := newparent d fe hgba c x

Figure 2: The algorithm copies a tree with child→parent uplinks, replacing leafold with
new. The example shows the algorithm making a copy of the original tree, replacing leafc
with x. Arrows show the path of the algorithm as it copies up the spine of the tree fromc
to the root; dotted lines show new structure.

We take a childc and its intended replacementc′, and replicate the parentp of c, making
thec 7→ c′ substitution. This produces freshly-created nodep′; we can now iterate, doing
a p 7→ p′ upcopy into the parent ofp at the next step, and so on, moving up through the
original tree until we reach the root.

Note the similar properties this upcopy algorithm has with the previous algorithm: no
search required; we build as we move upwards; we share as much structure as possible with
the old tree, copying only the nodes along the “spine” leading from the leaf up to the root.
For a balanced tree, the amount of copying is logarithmic in the total number of nodes. By
starting at the leaf node to be replaced in the old tree, the construction phase just follows
uplinks to the root, instead of using a path saved in the recursion stack by the downwards
search.

4 Upcopy with DAGs
We can avoid space blowup when performingβ-reduction onλ-calculus terms if we can
represent them as directed acyclic graphs (DAGs), not trees. Allowing sharing means that
when we substitute a large term for a variable that has five or six references inside its bind-
ing λ-expression, we don’t have to create five or six distinct copies of the term (that is,
one for each place it occurs in the result). We can just have five or six references to the
same term. This has the potential to provide logarithmic compression on the simple repre-
sentation ofλ-calculus terms as trees. These term DAGs can be thought of as essentially
a space-saving way to represent term trees, so we can require them, like trees, to have a
single top or root node, from which all other nodes can be reached.

When we shift from trees to DAGs, however, our simple functional upcopy algorithm
no longer suffices: we have to deal with the fact that there may be multiple paths from a
leaf node (a variable reference) of our DAG up to the root of the DAG. That is, any term
can have multiple parents. However, we can modify our upwards-copying algorithm in the
standard way one operates on DAGs: we search upwards along all possible paths, marking
nodes as we encounter them. The first time we copy up into a noden, we replicate it, as in
the previous tree algorithm, and continue propagating the copy operation up the tree to the
(possibly multiple) parents ofn. However, before we move upwards fromn, we first store
the copyn′ away in a “cache” field ofn. If we later copy up inton via its other child, the
presence of the copyn′ in the cache slot ofn will signal the algorithm that it should not
make a second copy ofn, and should not proceed upwards fromn—that has already been
handled. Instead, it mutates the existing copyn′ and returns immediately.

The code to copy a binary DAG, replacing a single leaf, is shown in Fig. 3. Every node
in the DAG maintains a set of its uplinks; each uplink is represented as a〈parent, relation〉

3



Procedure upcopy(childcopy, parent, relation)
if parent.cache is empty then

parcopy := NewNode()
if relation is "left child" then

parcopy.left := childcopy
parcopy.right := parent.right

else
parcopy.right := childcopy
parcopy.left := parent.left

parent.cache := parcopy
for-each <grandp,gprel> in parent.uplinks do
upcopy(parcopy, grandp, gprel)

else
parcopy := parent.cache
if relation is "left child"
then parcopy.left := childcopy
else parcopy.right := childcopy

Figure 3: Procedureupcopy makes a copy of a binary DAG, replacing therelation child
(left or right) ofparentwith childcopy.

pair. For example, if nodec is the left child of nodep, then the pair〈p, left-child〉 will be
one of the elements inc’s uplink set.

The upcopy algorithm explores each edge on all the paths between the root of the DAG
and the replaced leaf exactly once; marking parent nodes by depositing copies in their cache
slots prevents the algorithm from redundant exploration. Hence this graph-marking algo-
rithm runs in time proportional to the number of edges,not the number of paths (which can
be exponential in the number of edges). Were we to “unfold” the DAG into its equivalent
tree, we would realise this exponential blowup in the size of the tree, and, consequently,
also in the time to operate upon it. Note that, analogously to the tree-copying algorithm,
the new DAG shares as much structure as possible with the old DAG, only copying nodes
along the spine (in the DAG case, spines) from the replaced leaf to the root.

After an upcopy has been performed, we can fetch the result DAG from the cache slot
of the original DAG’s root. We must then do another upwards search along the same paths
to clear out the cache fields of the original nodes that were copied, thus resetting the DAG
for future upcopy operations. (Alternatively, we can keep counter fields on the nodes to
discriminate distinct upcopy operations, and perform a global reset on the term when the
current-counter value overflows.) This cache-clearing pass, again, takes time linear in the
number of edges occurring on the paths from the copied leaf to the root:

Procedure clear(node)
if node.cache = nil then return
node.cache := nil
for-each <par,rel> ∈ node.uplinks do
clear(par)

5 Reduction onλ-DAGs
We now have the core idea of our DAG-basedβ-reduction algorithm in place, and can fill
in the details specific to ourλ-expression domain.

Basic representation We will represent aλ-calculus term as a rooted DAG.
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Sharing Sharing will be generally allowed, and sharing will berequired of variable-
reference terms. That is, any given variable will have no more than one node in the DAG
representing it. If one variable is referenced by (is the child of) multiple parent nodes in
the graph, these nodes simply will all contain pointers to the same data structure.

Bound-variable short-cuts Everyλ-expression node will, in addition to having a ref-
erence to its body node, also have a reference to the variable node that it binds. This, of
course, is how we navigate directly to the leaf node to replace when we begin the upcopy
for a β-reduction operation. Note that this amounts to anα-uniqueness condition—we
require that everyλ-expression bind a unique variable.

Cache fields Every application node has a cache field that may either be empty or contain
another application node.λ-expression nodes do not need cache fields—they only have one
child (the body of theλ-expression), so the upcopy algorithm can only copy up through a
λ-expression once during aβ-reduction.

Uplinks Uplinks are represented by〈parent, relation〉 pairs, where the three possible re-
lations are “λ body,” “application function,” and “application argument.” For example, if a
noden has an uplink〈l, λ-body〉, thenl is aλ-expression, andn is its body.

Copying λ-expressions With all the above structure in place, the algorithm takes shape.
To perform aβ-reduction of redex(λx.b) a, whereb and a are arbitrary subterms, we
simply initiate anx 7→ a upcopy. This will copy up through all the paths connecting top
nodeb and leaf nodex, building a copy of the DAG witha in place ofx, just as we desire.

Application nodes, having two children, are handled just as binary-tree nodes in the
general DAG-copy algorithm discussed earlier: copy, cache & continue on the first visit;
mutate the cached copy on a second visit.λ-expression nodes, however, require different
treatment. Suppose, while we are in the midst of performing the reduction above, we find
ourselves performing ac 7→ c′ upcopy, for some internal nodec, into aλ parent ofc: λy.c.
The general structure of the algorithm calls for us to make a copy of theλ-expression, with
bodyc′. But we must also allocate a fresh variabley′ for our newλ-expression, since we
require allλ-expressions to bind distinct variables. This gives usλy′.c′. Unfortunately, if
old bodyc contains references toy, these will also occur inc′—not y′. We can be surec′

contains no references toy′, sincey′ was created afterc′! We need to fix up bodyc′ by
replacing all its references toy with references toy′.

Luckily, we already have the mechanism to do this: before progressing upwards to the
parents ofλy.c, we simply initiate ay 7→y′ upcopy through the existing DAG. This upcopy
will proceed along the paths leading from they reference, up through the DAG, to theλy.c
node. If there are such paths, theymustterminate on a previously-copied application node,
at which point the upcopy algorithm will mutate the cached copy and return.

Why must these paths all terminate on some previously copied application node? Be-
cause we have already traversed a path fromx up toλy.c, copying and caching as we went.
Any path upwards from they reference must eventually encounterλy.c, as well—this is
guaranteed by lexical scope. The two paths must, then, converge on a common application
node—the only nodes that have two children. That node was copied and cached by the
originalx-to-λy.c traversal.

When they 7→ y′ upcopy finishes updating the new DAG structure and returns, the
algorithm resumes processing the originalc 7→ c′ upcopy, whose next step is to proceed
upwards with a(λy.c) 7→ (λy′.c′) upcopy to all of the parents ofλy.c, secure that thec′

sub-DAG is now correct.

The single-DAG requirement We’ve glossed over a limitation of the uplink representa-
tion, which is that a certain kind of sharing is not allowed: after aβ-reduction, the original
redex must die. That is, the model we have is that we start with aλ-calculus term, rep-
resented as a DAG. We choose a redex node somewhere within this DAG, reduce it, and
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alter the original DAG to replace the redex with the contractum. When done, the original
term has been changed: where the redex used to be, we now find the contractum. What
we can’t do is choose a redex, reduce it, and then continue to refer to the redex or main-
tain an original, unreduced copy of the DAG. Contracting a redex kills the redex; the term
data structure is not “pure functional” or “persistent” in the sense of the old values being
unchanged. (As we discuss later, we can, however, “clone” a multiply-referenced redex,
splitting the parents between the original and the clone, and then contract only one of the
redexes.)

This limitation is due to the presence of the uplinks. They mean that a subterm can
belong to only one rooted DAG, in much the same way that the backpointers in a doubly-
linked list mean that a list element can belong to only one list (unlike a singly-linked list,
where multiple lists can share a common tail). The upcopy algorithm assumes that the
uplinks exactly mirror the parent→child downlinks, and traces up through all of them. This
rules out the possibility of having a node belong to multiple distinct rooted DAGs, such as
a “before” and “after” pair related by theβ-reduction of some redex occurring within the
“before” term.

Hence the algorithm, once it has finished the copying phase, takes the final step of
disconnecting the redex from its parents, and replacing it with the contractum. The redex
application node is now considered dead, since it has no parents, and can be removed from
the parent/uplink sets of its children and deallocated. Should one of its two children thus
have its parent set become empty, it, too, can be removed from the parent sets of its children
and deallocated, and so forth. Thus we follow our upwards-recursive construction phase
with a downwards-recursive deallocation phase.

It’s important to note that this deallocation phase is not optional. A dead node must be
removed from the parent sets of its children, lest we subsequently waste time doing an up-
copy from a child up into a dead parent during a later reduction. Failing to deallocate dead
nodes would also break the invariants of the data structure, such as the requirement that
uplinks mirror the downlink structure, or the fact that every path upwards from a variable
reference must encounter that variable’s bindingλ-node.

Termination and the top application Another detail we’ve not yet treated is termination
of the upcopy phase. One way to handle this is simply to check as we move up through the
DAG to see if we’ve arrived at theλ-expression being reduced, at which point we could
save away the new term in some location and return without further upward copying. But
there is an alternate way to handle this. Suppose we are contracting redex(λx.b)n, for
arbitrary sub-termsb andn. At the beginning of the reduction operation, we first check to
see ifx has no references (an easy check: is its uplink set empty?). If so, the answer isb;
we are done.

Otherwise, we begin at theλ-expression being reduced and scan downwards fromλ-
expression to body, until we encounter a non-λ-expression node—that is, a variable or an
application. If we halt at a variable, itmustbex—otherwisex would have no references,
and we’ve already ruled that out. This case can also be handled easily: we simply scan
back through this chain of nestedλ-expressions, wrapping freshλ-expressions aroundn as
we go.

Finally, we arrive at the general case: the downward scan halts at the topmost applica-
tion nodea of sub-termb. We make an identical copya′ of a, i.e. one that shares both the
function and argument children, and installa′ in the cache slot ofa.

Now we can initiate anx 7→n upcopy, knowing that all upwards copying must terminate
on a previously-copied application node. This is guaranteed by the critical, key invariant of
the DAG: all paths from a variable reference upward to the rootmustencounter theλ-node
binding that variable—this is simply lexical scoping in the DAG context. The presence of
a′ in the cache slot ofa will prevent upward copying from proceeding abovea. Nodea
acts as a sentinel for the algorithm; we can eliminate the root check from the upcopy code,
for time savings.
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When the upcopy phase finishes, we passa′ back up through the nested chain ofλ-
expressions leading froma back to the topλx.b term. As we pass back up through each
λ-expressionλy.t, we allocate a freshλ-expression term and a fresh variabley′ to wrap
around the valuet′ passed up, then perform ay 7→ y′ upcopy to fix up any variable refer-
ences in the new body, and then pass the freshly-createdλy′.t′ term on up the chain.

(Note that the extended example shown in Sec. 7 omits this technique to simplify the
presentation.)

6 Fine points
These fine points of the algorithm can be skipped on a first reading.

Representing uplinks A node keeps its uplinks chained together in a doubly-linked list,
which allows us to remove an uplink from a node’s uplink set in constant time. We will
need to do this, for example, when we mutate a previously copied noden to change one of
its children—the old child’s uplink ton must be removed from its uplink set.

We simplify the allocation of uplinks by observing that each parent node has a fixed
number of uplinks pointing to it: two in the case of an application and one in the case of
a λ-expression. Therefore, we allocate the uplink nodes along with the parent, and thread
the doubly-linked uplink lists through these pre-allocated nodes.

An uplink doubly-linked list elementappearsin the uplink list of the child, but the
elementbelongsto the parent. For example, when we allocate a new application node, we
simultaneously allocate two uplink items: one for the function-child uplink to the applica-
tion, and one for the argument-child uplink to the application. These three data structures
have identical lifetimes; the uplinks live as long as the parent node they reference. We
stash them in fields of the application node for convenient retrieval as needed. When we
mutate the application node to change one of its children, we also shift the corresponding
uplink structure from the old child’s uplink list to the new child’s uplink list, thus keeping
the uplink pointer information consistent with the downlink pointer information.

The single-reference fast path Consider a redex(λx.b)n, where theλ-expression being
reduced has exactly one parent. We know what that parent must be: the redex application
itself. This application node is about to die, when all references to it in the term DAG are
replaced by references to the contractum. So theλ-expression itself is about to become
completely parentless—i.e., it, too, is about to die. This means that any node on a path
from x up to theλ-expression will also die. Again, this is the key invariant provided by
lexical scope: all paths from a variable reference upward to the rootmustencounter the
λ-expression binding that variable. So if theλ-expression has no parents, then all paths
upwards from its variable must terminate at theλ-expression itself.

This opens up the possibility of an alternate, fast way to produce the contractum: when
theλ-expression being reduced has only one parent, mutate theλ-expression’s body, alter-
ing all of x’s parents to refer instead ton. We do no copying at all, and may immediately
take theλ-expression’s body as our answer, discarding theλ-expression and its variablex
(in general, aλ-expression and its variable are always allocated and deallocated together).

Opportunistic iteration The algorithm can be implemented so that when a node is se-
quencing through its list of uplinks, performing a recursive upcopy on each one, the final
upcopy can be done with a tail recursion (or, if coded in a language like C, as a straight
iteration). This means that when there is no sharing of nodes by parents, the algorithm
tends to iteratively zip up chains of single-parent links without pushing stack frames.

7 Extended example
We can see the sequences of steps taken by the algorithm on a complete example in Fig. 4.
Part 4(a) shows the initial redex, which is(λx.(x(λy.x(uy)))(λy.x(uy))) t, where the
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Figure 4: A trace of a bottom-up reduction of term(λx.(x(λy.x(uy)))(λy.x(uy)))t, where
the(λy.x(uy)) term is shared, and sub-termst andu are not specified.

(λy.x(uy)) subterm is shared, andt andu are arbitrary, unspecified subterms with no free
occurrences ofx or y. To help motivate the point of the algorithm, imagine that the sub-
termst andu are enormous—things we’d like to avoid copying or searching—and that the
λx node has other parents besides application1, so we cannot blindly mutate it without
corrupting what the other parents see. (If theλx nodedoesn’thave other parents, then the
single-reference fast-path described in the previous section applies, and weare allowed to
mutate the term, for a very fast reduction.)

In the following subfigure, 4(b), we focus in on the body of theλ-expression being
reduced. We iterate over the parents of its variable referencex, doing anx 7→t upcopy; this
is the redex-mandated substitution that kicks off the entire reduction. The first parent ofx is
application 3, which is copied, producing application3′, which has function childt instead
of the variable referencex, but has the same argument child as the original application 3,
namely theλy term. Dotted lines show new DAG structure; arrowheads on old structure
indicate the recursive control flow of the algorithm’s upcopy steps. The copy3′ is saved
away in the cache slot of application 3, in case we upcopy into 3 from its argument child in
the future.

Once we’ve made a copy of a parent node, we must recursively perform an upcopy
for it. That is, we propagate a3 7→ 3′ upcopy to the parents of application3. There is
only one such parent, application 2. In subfigure 4(c), we see the result of this upcopy:
the application2′ is created, with function child3′ instead of3; the argument child,λy,
is carried over from the original application2. Again, application2′ is saved away in the
cache slot of application2.

Application 2 is the root of the upcopy DAG, so once it has been copied, control returns
to application3 and its3 7→ 3′ upcopy. Application 3 has only one parent, so it is done.
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Control returns tox and itsx 7→ t upcopy, which proceeds to propagate upwards to the
second parent ofx, application 4.

We see the result of copying application 4 in subfigure 4(d). The new node is4′,
which has function childt where4 hasx; 4′ shares its argument child, application 5, with
application4. Once again, the copy4′ is saved away in the cache slot of application4.

Having copied application4, we recursively trigger a4 7→ 4′ upcopy, which proceeds
upwards to the sole parent of application 4. We make a copy ofλy, allocating a fresh
variabley′, with the new body4′. This is shown in subfigure 4(e).

Since the newλy′ term binds a fresh variable, while processing theλy term we must
recursively trigger ay 7→y′ upcopy, which begins in subfigure 4(f). We iterate through the
parents of variable referencey, of which there is only one: application5. This is copied,
mapping childy to replacementy′ and sharing function childu. The result,5′, is saved
away in the cache slot of application5.

We then recursively trigger a5 7→5′ upcopy through the parents of application5; there
is only one, application4. Upon examining this parent (subfigure 4(g)), we discover that4
already has a copy,4′, occupying its cache slot. Rather than create a second, new copy of4,
we simply mutate the existing copy so that its argument child is the new term5′. Mutating
rather than freshly allocating means the upcopy proceeds no further; responsibility for pro-
ceeding upwards from4 was handled by the thread of computation that first encountered it
and created4′. So control returns to application5, which has no more parents, and then to
y, who also has no more parents, so control finally returns to theλy term that kicked off
they 7→y′ copy back in subfigure 4(f).

In subfigure 4(h), theλy term, having produced its copyλy′, continues the upcopy by
iterating across its parents, recursively doing aλy 7→ λy′ upcopy. The first such parent
is application3, which has already been copied, so it simply mutates its copy to have
argument childλy′ and returns immediately.

The second parent is application2, which is handled in exactly the same way in sub-
figure 4(i). Theλy term has no more parents, so it returns control to application4, who
has no more parents, and so returns control to variable referencex. Sincex has no more
parents, we are done. The answer is application2′, which is shown in subfigure 4(j). We
can change all references to application1 in the DAG to point, instead, to application2′,
and then deallocate1. Depending on whether or not the children of application1 have other
parents in the DAG, they may also be eligible for deallocation. This is easily performed
with a downwards deallocation pass, removing dead nodes from the parent lists of their
children, and then recursing if any child thus becomes completely parentless.

8 Formal specification and correctness
In this section, we will more formally specify the core of the bottom-up reduction algo-
rithm. A precise, fully-detailed argument establishing its correctness is beyond the scope
of this paper; we provide only the structural skeleton, eliding details and simplifying the
formalisations, and rely on the reader to interpolate where necessary.

We proceed by defining the essential core of the algorithm as a pair of math functions,
about which we can reason; this definition strips away details of the data-structures (such
as the use of doubly-linked lists,etc.) in favor of using simple mathematical structures
such as sets, graphs and partial functions. We will takeλ-terms to be graphs: a term is
a finite DAG with labelled edges and nodes. Every vertex is labelled as either aλ, an
application, or a variable-reference vertex. We will frequently usel for λ vertices,a for
applications,x, y for variable vertices, andn for general vertices. Edges are labelled with
one of{body, fun, arg, bvar}. We will frequently use a “dotted accessor” notation,e.g.,
writing l.body for the vertex at the end of the (presumed unique)body edge beginning
at nodel. A λ-node is connected to its body by abody edge; and to its bound variable
by abvar edge. An application node is connected to its function by afun edge; and to its
argument by anarg edge. We assume enough constraints on labelling and graph structure to
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preserve the syntactic structure of theλ calculus,e.g., the out-degree of a variable-reference
node is zero. We also assume a lexical-scoping resolution of variable reference,i.e., that
binding dominates reference: any path from the root to a variable vertex must go through
theλ vertex binding that variable.

DefineΛdag to be the set of DAGs satisfying these constraints. The classicλ calculus is
defined in terms of trees; defineΛtree to be the standard realisation ofλ-terms as abstract-
grammar trees, with variables drawn from the variable-labelled vertices ofΛdag. The idea
behind our DAGs is that they are simply a compact representation for these trees, so we
should define the “meaning” of a DAG simply to be the tree to which it “unfolds.” We
specify this by defining a DAG-to-tree conversion function, unfold:

unfold(g, x) = x
unfold(g, a) = unfold(g, a.fun) @ unfold(g, a.arg)
unfold(g, l) = λx . unfold(g, l.body)

wherex = l.bvar

(Here, we take “n1 @ n2” to mean the tree whose root is an application node with function
child n1 and argument childn2.) This recursively-defined function is well-defined, as
unfold’s domain of finite DAGS is well ordered.

The unfold function helps makes precise the correctness requirement for our algorithm:
reducing a subterm in a DAG, and then unfolding the result, should be the same as unfolding
the original DAG and then reducing the corresponding subterms in the tree. Notice that if
a redex in a DAG has multiple parents (or, generally, multiple paths to the root), then there
will be multiple corresponding redexes in the unfolded tree; reducing this redex in the DAG
is equivalent to reducing all of the corresponding redexes in the tree.

In order to connect the state of the graph at intermediate points in the algorithm to the
hoped-for final result, we also need to define a “predictive unfold” function:

Punfold(g,n,σ) =
if new?(n) then
case n of
x => x
l => λ x . (Punfold(g,l.body,σ))

where x = l.bvar
a => (Punfold(g,a.fun,σ)) @ (Punfold(g,a.arg,σ))

else σ(unfold(g,n))

Punfold takes a graph, a root vertexn, and a substitutionσ. We model a substitution as a
partial function from (variable) nodes toΛtree terms:

σ ∈ Subst= Node ⇀ Λtree.

Punfold has two “modes,” depending on whether it is givenold graph structure (that is,
pre-reduction), ornewgraph structure (that is, created as part of the possibly on-going
reduction process). Punfold recursively unfolds new structure, but when it traces into old
structure, it unfoldsand then appliesσ to the old sub-DAG—that is, Punfold “predicts”
what the algorithm will do when it gets to that sub-DAG. We can answer Punfold’s old/new
question by assuming the original, pre-reduction graph is available; we’ll refer to this graph
asg0. (Note that Punfold passesσ down past binding occurrences as it recurses. This is
safe to do, as we will restrict the domain ofσ to be old structure, so that passing these
substitutions into the scope of forms that bind new variables cannot cause capture.)

With these descriptive tools in place, we can now analyse the algorithm’s execution.
Punfold(g0, b, [x 7→n]) produces the contractum for DAG-redex(λx.b)n. Further, the key
algorithmic invariant involves Punfold, which will produce the same result throughout the
processing of the reduction—the predictive part of Punfold covers parts of the DAG the
algorithm has not yet processed. But as the algorithm progresses, Punfold will do less and
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less prediction, and more and more simple unfolding. By the end of the algorithm, Punfold
will do no prediction at all (that is, no element of old structure will lay within the domain
of the initial substitution), so that Punfold will be equivalent to unfold on the final result.
So, we may conclude that unfolding the final result is what we wanted.

This, coupled with a progress result to guarantee termination on a finite DAG, provides
us a correctness claim for the algorithm.

Fig. 5 presents the core algorithm as a pair of mathematical functions: Sub, which
implements substitution, and uc, which implements the upcopy operation; they are defined
in the same sort of “pseudo functional programming language” style we used for Punfold.
(Note that the auxiliary function, iter, to be well-defined, must remove elements fromS in
some determined order.) We writeparlinks(old, g0) to mean the set of parent/edge-label
pairs describingold’s uplinks in the original graphg0. We use the expression “freshnode
label” to mean the selection of a fresh vertex, labelledlabel, that is not occurring in the
implied current graph.

The algorithm operates on graphsg that are represented by a quadruple(N, E, ρ, T )
of labelled nodes, labelled edges, cacheρ, and visited-edge setT ; the cache stores the
mapping from old, copied nodes to their new nodes, as they are created by the upcopy
steps. The cache represents the collective behaviour of the cache slot in the algorithm. We
model these with finite, partial functions from nodes to nodes:

ρ ∈ Cache = Node ⇀ Node.

Where the algorithm stores an itemn′ in the cache field of some noden, the mathematical
function adds an(n, n′) entry to the current cacheρ. (Note that the cache always maps old
nodes, fromg0, to new nodes.) To aid the statement of invariants, the abstract algorithm
caches theold 7→ newtranslations forall copied nodes, not just application nodes (as the
actual algorithm does). We use dotted-accessor notation,g.ρ, to write the cache of a given
graphg.

The functions modelling the algorithm track extra values (σ, ip, andg.T ) that are not
present in the algorithm. These extra values are needed to state the key pre- and post-
conditions of the functions; they do not contribute to the functions’ final value, and so can
be omitted from an actual implementation. The important pre- and post-conditions for Sub
and uc are:

• CG[σ, g]
“Cache is good.” Entries in the cache are related by Punfold: if we see an(n, n′)
entry in the cacheg.ρ, thenn′ represents a substitution that has been, or is in the midst
of being, performed onn. That is, Punfold(g, n′, σ) α= σ unfold(g, n). Because the
substitution may not be complete, we must unfoldn′ with the predictiveunfolder,
which will interpolate the uncompleted parts of the substitution into the result tree
for us. The reason this relation needs a general substitution is because of the extra
copying cascades triggered when the algorithm copies up through aλ-expression,
as described in Sec. 5. The extray 7→ y′ variable substitutions we must perform
get lumped into the substitution underneath the copiedλ-expression (but are not
neededabovethe copiedλ-expression). Again, the substitutions are passed around
the functions primarily as bookkeeping device that allows us to assert the necessary
invariants at different points in the function definition. CG is an invariant across both
Sub and uc.

• CMS[g]
“Cache mirrors structure.” That is, new graph structure “mirrors” old graph structure.

If two connected nodesn
lbl−→ m are both in the domain of the cache, then their

images in the cache are connected by the same kind of edge:(g.ρ n) lbl−→ (g.ρ m).
This means that if we start at a node ing0 and trace out a path downwards, always
confining ourselves to nodes in the domain of the current cache, then the image of
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Sub(g,old,new,top ,σ,ip ) =
iter λ(par,rel) g . uc(new,par,rel, top,σ,ip ′,g)

g
parlinks(old,g0)

where ip ′ = ip ∪ {old }
iter f g ∅ = g
iter f g ({x}∪S) = iter f (f x g) S

uc(new,l,body,top,σ,ip,g) =
(* Upcopy into λ node l along body edge *)

b = l.body be = l
body−→ b

y = l.bvar y’ = freshnode var
g += ({y′}, ∅, {(y, y′)}, {be})
g = Sub(g, y, y’, b, [y 7→y′]σ, ip )
l’ = freshnode λ

g += ({l′}, {l′ bvar−→y′, l′
body−→ new }, {(l, l′)}, ∅)

return Sub(g, l, l’, top, σ, ip )

uc(new, a, fun, top, σ, ip , g) =
(* Upcopy into app node a along fun edge *)

g.T += {a fun−→a.fun}
if (a,a’) ∈ g.ρ then

replace a′ fun−→n edge

with a′ fun−→new edge
in g

return g
else

a’ = freshnode app
g += ({a′}, {a′ fun−→new , a′ arg−→a.arg}, {(a, a′)}, ∅)
return Sub(g, a, a’, top , σ, ip )

uc(new, a, arg, top, σ, ip , g) =
(* Upcopy into app node a along arg edge *)
analogous tofun-edge case

Figure 5: The core substitution algorithm, in abstract form.
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this path in the cache traces out an identical path through new structure ing. CMS is
an invariant across both Sub and uc.

• CPET[g, ip]
“Cached-node parent edges traced.” If we have visited (hence cached) a noden, then
all parent edgesp → n have been traced (that is, are ing.T ), unless (1)n is currently
“in-process (n ∈ ip), or (2) n = top0, the top value passed to the initial Sub call.
CPET is an invariant across both Sub and uc. Theip set is how we handle the fact
that an upcopy triggered by aλ cascade can terminate on an in-process node, who is
in the cache, but whose processing is currently unfinished.

• TPC[g, ip]
“Traced parents cached.” Furthermore, if we have traced up through ap → n edge
(that is, if the edge is in the graph’s traced setg.T ), then the parentp is in the cache.
TPC is an invariant across both Sub and uc.

• ANV[g, t, b, ip]
“All nodes visited.” Any noden on a patht−→∗ b from top nodet to bottom nodeb
in g0 must be in the cache, where we require that then−→∗ b suffix of the path beip-
free. (Note that whenip is empty, this simply says that all nodes on all paths fromt to
b are in the cache.)ANV[g, top, old, ip] andANV[g, top, par, ip] are post-conditions
of Sub and uc, respectively.

• Monotonicity
For both Sub and uc, all components of the input graph are preserved in the output
graph, except for the edge set:g.N ⊂ g′.N ∧ g.ρ ⊂ g′.ρ ∧ g.T ⊂ g′.T , where
g′ is the output graph. Also, we have the invariant that the graph always contains the
original graph:g0 ⊂ g.

These are not all the necessary pre- and post-conditions, but they are the major ones.
The main “entry point” for the reduction algorithm is the Sub(g, old, new, top, σ, ip)

function, which performs an[old 7→new] substitution ing, returning the augmented graph.
Consider the initial call to Sub, in response to a desire to reduce some redex(λx.n)m. Let
m̂ be the unfoldedΛtree term for m. Assume thattop is the topmost application under
n—if there is no such node, then simple special-cases apply, as discussed in Sec. 5. Let

top′ = a fresh node not ing0,

ρ′ = ρ ∪ {(x, m), (top, top′)}, and

e′ = {top′ fun−→ top.fun, top′
arg−→ top.arg}

g1 = g0 ∪ ({top′}, e′, ρ′, ∅).

Then Sub(g1, x, m, top, [x 7→m̂], ∅) satisfies the preconditions.
To see the rough picture of how the post-conditions give us the proper substitution,

consider that after Sub returns,ANV tells us that all nodes on the paths betweentop and
x are in the cache; this, together with the “cache mirrors structure” post-condition and the
fact thatg.ρ x = m, tells us the new term is what we wanted.

Sub is a fairly simple function; it just uses the uc function to initiateold 7→newupcopies
through every link fromold up to some parent. The presence oftop in the cache causes
all of these upcopies to terminate; the new graph structure they create is entered into the
cache. While the upcopies are being performed,old is kept in the in-process setip.

The uc function is defined in Fig. 5 in three cases: upcopying into aλ-expression,
upcopying through afun link into an application node, and upcopying through anarg link
into an application node (this last case is not given; it is entirely similar to thearg-link case).
Note how, in theλ case, the pre-Sub code sets up the preconditions for the first Sub call,
which triggers they 7→y′ variable-substitution cascade—in particular, the[y 7→y′] mapping
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must be added to the prediction substitutionσ. This step sets up the pre-conditions for the
upward continuation of the algorithm, which substitutesλy′.new for λy.old, completing
the upcopy.

9 Experiments
To gain experience with the algorithm, a pair of Georgia Tech undergraduates implemented
threeβ-reduction algorithms in SML: the bottom-up algorithm (BUBS), a reducer based
on the suspensionλ calculus (SLC, see Sec. 10.1), and a simple, base-line reducer, based
on the simple top-down, blind-search recursive procedure described in Sec. 1. They also
built a tool-chain that allowed us to convert between a concrete s-expression form for terms
and the particular representations required for the various algorithms. This allowed us to
test the algorithms by running all three on randomly constructed trees, and comparing the
results for discrepancies.

We then implemented two normalisers for each algorithm, one evaluating to normal
form; the other, to weak-head normal form. The normalisers are called with an integer
“reduction budget”—after performing that many reductions, they give up.

We first ran a few tests designed to show the bottom-up algorithm at its best and worst.
The first test reduced a “chain of pearls” stack of applications, 20 deep, with full sharing
and the identity combinatorI = λx.x at the leaf:

@

@

I

::

@

This set up the bottom-up algorithm to do very well, since it can exploit the sharing to
achieve exponential speedup. (Note, in particular, that the bottom-up algorithm is what the
graph-reduction community calls “fully lazy.” That is, reductions on dynamically-created
shared structure are seen by all parents of that structure.)

Second, we normalised a 40,000-long chain of the form(λy.λx.λx . . . λx.y) λz.z.
This is an example where even the na¨ıve algorithm can do well, as there is no search
involved—the branch factor of a chain of nestedλ-expressions is one. So this shows off
the “constant factors” of the algorithm.

Third, we normalised a full binary tree, 20 deep, of applications, with identity combi-
nators at the leaves. This is the same term as the one in the first test, but with no sharing of
structure. This is designed to show the algorithm at its worst, since there is no sharing at
all during the entire normalisation process.

All normalisations were executed with a budget of 1,000 reductions. Here are the tim-
ings from these runs:

20pearls 40kλ tree20
BU 0+0 15+0 9+84
BU-nocheck 0+0 318+1433 10+80
SLC N/A 70+73 16+72
Simple N/A 364+1536 1+3

The “BU-nocheck” entries are for the bottom-up algorithm with the fast-path single-parent
optimisation (described in Sec. 6) turned off. The tests were run using SML/NJ 110.42 on
a 667Mhz G4 Powerbook with 512MB of PC133 RAM under Mac OS X 10.2.2. The 20-
length chain-of-pearls entry could not be run for SLC or the simple algorithm, as it requires
a representation that can handle DAGs; the numbers for these algorithms are essentially
those for the equivalent, unfolded 20-deep full application tree in the third column. Each
pair of numberse + g is the time in millisecondse to execute the algorithm, and the time
g spent in garbage collection. Note that the bottom-up algorithm is able to polish off the
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CPU time (ms) # reductions
BUBS SLC Simple BUBS Tree

(fact 2) 0 10 10 123 180
(fact 3) 0 20 20 188 388
(fact 4) 0 40 ∞ 286 827
(fact 5) 0 160 ∞ 509 2045
(fact 6) 10 860 ∞ 1439 7082
(fact 7) 20 5620 ∞ 7300 36180
(fact 8) 190 48600 ∞ 52772 245469
nasty-I 30 740 ∞ 7300 8664
pearl10 0 N/A N/A 10 N/A
pearl18 0 N/A N/A 18 N/A
tree10 0 0 0 1023 1023
tree18 740 2530 1980 262143 262143

Figure 6: Timings for C implementations.

40,000-element chain of nestedλ-expressions easily, as this can be handled by the single-
parent fast path in constant time.

Experience with these runs, and others, led us to implement a tightly coded C imple-
mentation of the same three algorithms to get more accurate measurements. The SML
version had several issues that affected measurement. The implementation contains some
redundant safety tests that the type system is unable to eliminate. SML also limits our
ability to do detailed layout of the data structures. For example, by allocating the uplink
structure in the same block of storage as the parent node to which it refers, we can move
from the uplink to the referenced parent node with pointer arithmetic (i.e., on-processor),
instead of needing to do a slower memory load. Similarly, if we allocate aλ-expression
and its bound variable together, in a single memory block, we can move between these
two structures without doing memory traffic. Finally, C eliminated our dependence on the
garbage collector. The bottom-up algorithm intrinsically does its own storage management,
so we don’t need a GC. We get a fair amount of GC overhead in our SML implementation,
SML/NJ, as it allocates even procedure call frames in the heap.

The SLC and simple reducers written in C managed storage with the Boehm-Demers-
Weiser garbage collector, version 6.2. We compiled the code with gcc 2.95.4 -g -O2 -Wall
and performed the test runs on an 800 MHz PIII (256 KB cache), 128 MB RAM, Debian
GNU/Linux 3.0 system. The timings for these runs are shown in Fig. 6. The system gave
us a measurement precision of 10 ms; an entry of 0ms means below the resolution of the
timer—i.e., less than 10ms; a measurement of∞ means the measurement was halted at 10
cpu-minutes (or, in one case, at 2min 20sec due to severe page thrashing).

Fact entries are factorial terms, with Church-numeral encodings. Nasty-I is a complex,
hand-generated, tree of K and S combinators that reduces to I; the tree contains 20,152
nodes. The “pearli” and “treei” terms are as described for the SML timings.

We caution the reader from drawing too much from these timings. They are fairly
preliminary. We are undertaking to perform a larger series of tests, in order to get a better
understanding of the algorithm’s performance.

We also do not wish to claim that the bottom-up algorithm is a competitive stand-
alone graph-reduction system. Modern graph-reducers are highly-engineered systems that
employ a battery of static analyses and run-time optimisations to gain performance. The
bottom-up reducer, in contrast, embodies a single idea. Perhaps this idea could be applied
to the production of a competitive graph-reducer; we chose term normalisation simply as a
generic task that would thoroughly exercise the reduction engines. We are also quite willing
to believe that a complex algorithm such as the read phase of the suspensionλ calculus has
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opportunities for clever speedups that our simple implementation did not implement. Fur-
ther, the experiments we performed do not show the SLC algorithm at its best—it is specif-
ically tuned to provide an extra capability that, for applications such as theorem provers,
can provide tremendous “application-level” speedups: laziness. Normalisation examines
the entire final term, thus eliminating some of the benefit of SLC’s laziness.

That all said, the bottom-up algorithm is obviously very fast. Part of this speed comes
from “full laziness:” a reduction of a shared redex is shared by all the parents of the redex.
But this is not the whole story—the (fact 8) case does 1/5 of the reductions, but gets a
speedup of 256x, and the tree18 case has no sharing at all, but still manages a speedup of
3.4x (over SLC, that is; the speedups over the simple reducer are different, but the general
picture is similar). This is primarily due to the elimination of blind search, and consequent
ability to share structureacrossa reduction step (as opposed towithin a term).

One of the striking characteristics of the bottom-up algorithm is not only how fast it is,
but how well-behaved it seems to be. The other algorithms we’ve tried have fast cases, but
also other cases that cause them to blow up fairly badly. The bottom-up algorithm reliably
turns in good numbers. We conjecture this is the benefit of being able to exploit both sharing
and non-sharing as they arise in the DAG. If there’s sharing, we benefit from re-using work.
If there’s no sharing, we can exploit the single-parent fast path. These complementary
techniques may combine to help protect the algorithm from being susceptible to particular
inputs.

10 Related work
A tremendous amount of prior work has been carried out exploring different ways to im-
plementβ-reduction efficiently. In large part, this is due toβ-reduction lying at the heart
of the graph-reduction engines that are used to execute lazy functional languages. The text
by Peyton Joneset al. [13] summarises this whole area very well.

However, the focus of the lazy-language community is on representations tuned for
execution, and the technology they have developed is cleverly specialised to serve this
need. This means, for example, that it’s fair game to fix on a particular reduction order.
For example, graph reducers that overwrite nodes rely on their normalisation order to keep
the necessary indirection nodes from stacking up pathologically. A compiler, in contrast,
is aλ-calculus client that makes reductions in a less predictable order, as analyses reveal
opportunities for transformation.

Also, an implementation tuned for execution has license to encode terms, or parts of
terms, in a form not available for examination, but, rather, purely for execution. This is
precisely what the technique of supercombinator compilation does. Our primary interest at
the beginning of this whole effort was instead to work in a setting where the term being re-
duced is always directly available for examination—again, serving the needs of a compiler,
which wants to manipulate and examine terms, not execute them.

10.1 Explicit-substitution calculi
One approach to constructing efficientλ-term manipulators is to shift to a language that
syntactically encodes environments. The “suspensionλ calculus” developed by Nadathur
et al.[12] is one such example that has been used with success in theorem provers and com-
pilers. Being able to syntactically represent environments allow us to syntactically encode
term/environment pairs to represent closures. This meansβ-reduction can be done in con-
stant time, by simply producing a closure over theλ-expression’s body in an environment
mapping its variable to the redex’s argument term.

The point of doing so is laziness, of two particular forms. First, we can reduce a closure
term incrementally, doing only enough work to resolve whether its top-level is a variable
reference, an application or aλ-expression, while leaving any child terms (such as the body
of aλ-expression) suspended,i.e., explicit closures. Thus the work of completely resolving
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a closure created by a reduction into a tree composed of simple variable/application/λ-
expression terms can be done on a pay-as-you-go basis. For example, a theorem prover
that wishes to compare two terms for equality can recursively explore the terms, resolving
on the fly, but abandon the recursive comparison as soon as two subterms fail to match. By
lazily resolving the tree, no work is done to resolve parts that are not needed.

Second, the reduction system for the expanded language includes rules for merging two
substitution environments together before applying the single compound substitution to a
term. This converts a double pass over the term into a single pass.

The great payoff for using a term-manipulation engine based on the SLC comes for
systems that can exploit laziness. A program that examines the entire tree produced by a
given reduction, however, is not going to benefit as much from the laziness. A compiler,
for example, is a program that typically “walks” the entire program structure given to it,
performing analyses and transforms on the structure.

SLC reduction, in the terms we’ve defined, uses “blind search” to find the variables
being substituted. This cost is mitigated by its ability to merge environments—it increases
the odds that searching down a particular link will turn up some variable that needs to
be replaced. On the other hand, this is, to some degree, just shifting work back to the
environment-merging calculations, which are not trivial.

The SLC also has strong barriers to sharing internal structure as a DAG. This is a conse-
quence of its representation of terms using de Bruijn indices, which are context-dependent:
a term with free variable references will have two distinct forms at two different places
in the tree. Again, this is somewhat mitigated by the SLC’s ability to place a term in an
environment and then produce a simple closure (which might contain multiple references
to the bound term) with that environment. However, by the time a final, base term has been
completely produced, all environments must be removed, and so the replication has to be
performed at some point.

On the other hand, if SLC terms are not resolved but instead left suspended, then a
different space issue arises: redundantly bound and unreferenced variable bindings can
persist in suspensions, causing space leaks. Eliminating these leaks requires trimming
environments, which is a time cost of its own.

The uplinkedλ-DAG representation explicitly provides for sharing, and does so in a
way that allows clients of the data structure to operate on the entire structurewithout having
to unfold it into its equivalent tree, an operation that could induce exponential blowup in
space. The issue of leaks due to unreferenced or redundant bindings does not arise at all.

Finally, the SLC is a quite sophisticated algorithm. The fine details of its reduction rules
are fairly subtle and non-obvious. It requires transforming the term structure into a related,
but very distinct form: nameless terms, with new and complex non-terminals expressing
suspended reductions and their environments, in various states of merging.

SLC has been successfully employed inside a compiler to represent Shao’s FLINT typed
intermediate language, but the report on this work [15] makes clear the impressive, if not
heroic, degree of engineering required to exploit this technology for compiler internals—
the path to good performance couples the core SLC representation with hash consing as
well as memoisation of term reductions.

The charm of the bottom-up technique presented here is its simplicity. The data struc-
ture is essentially just a simple description of the basic syntax as a datatype, with the single
addition of child→parent backpointers. It generalises easily to the richer languages used by
real compilers and other language-manipulation systems. It’s very simple to examine this
data structure during processing; very easy to debug the reduction engine itself. In contrast
to more sophisticated and complex representations such as SLC, there are really only two
important invariants on the structure: (1) all variables are in scope (any path upwards from
a variable reference to the root must go through the variable’s bindingλ-expression), and
(2) uplink backpointers mirror downlink references.
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10.2 Director strings
Director strings [7] are a representation driven by the same core issue that motivates our
uplinked-DAG representation: they provide a way to guide search when we perform aβ-
reduction. In the case of director strings, however, one can do the search top-down.

At each application node, the term’s free variables are sorted by lexical height. Then,
each application node is annotated with a string of symbols drawn from the set{/, \,∧, 0},
one symbol for each free variable. The symbol used for a given variable tells if the variable
occurs in the left child only, the right child only, both children, or neither child, respec-
tively. (The0 symbol is only used in degenerate cases.) These strings provide the informa-
tion needed to do top-down guided search, in a fashion similar to the binary-tree insertion
algorithm of Sec. 2.

Director strings, however, can impose a quadratic space penalty on our trees. The
standard example showing this is the termλx1 . . . λxn.(xn . . . x1). Uplinkedλ-DAGs are
guaranteed to have linear space requirements. Whether or not the space requirements for
a director-strings representation will blow up in practice depends, of course, on the terms
being manipulated. But the attraction of a linear-space representation is knowing that blow-
up is completely impossible.

Like the suspensionλ calculus, director strings have the disadvantage of not being a
direct representation of the original term; there is some translation involved in converting a
λ-calculus term into a director-strings form.

Director strings can be an excellent representation choice for graph-reducing normal-
ising engines. Again, we are instead primarily focussed on applications that require fine-
grained inter-reduction access to the term structure, such as compilers.

10.3 Optimalλ reduction
The theory of “optimalλ reduction” [10, 9, 6] (or, OLR), originated by L´evy and Lamping,
and developed by Abadi, Asperti, Gonthier, Guerrini, Lawall, Mairsonet al., is a body of
work that shares much with bottom-upβ-reduction. Both representλ-terms using graph
structure, and the key idea of connecting variable-binders directly to value-consumers of
the bound variable is present in both frameworks—and for the same reason, namely, from
a desire that substitution should be proportional to the number of references to the bound
variable, removing the need to blindly search a term looking for these references.

However, the two systems are quite different in their details, in fairly deep ways. The
“Lamping graphs” of optimalλ reduction add extra structure to the graph, in the form
of “croissants,” “brackets,” and “fan” nodes, to allow a novel capability:incrementalβ-
reduction. Reduction is not an atomic operation in OLR. It can be performed in multiple
steps; intermediate stages of the reduction are valid graphs. (The croissant and bracket
marks delimit the boundaries of a reduction step as they propagate through the graph.)
This is an enormous difference with our simple bottom-upβ-reduction system—it is, es-
sentially, an exciting and different model of computation from the one based on the classical
λ calculus. However, it comes with a cost: the greatly increased complexity of the graph
structure and its associated operations. As Gonthier, Abadi and L´evy state [6], “it seems
fair to say that Lamping’s algorithm is rather complicated and obscure.”

The details of this complexity have prevented OLR-based systems from being used in
practice. We note that it has been fourteen years since the original innovation of Lamping
graphs, and no compiler or theorem prover has adopted the technology, despite the lure
of guaranteed optimality and the very real need [15] of these systems for efficient repre-
sentations. (The OLR researchers themselves have implemented a graph-reduction engine
using the OLR algorithm, but, as we’ve stated, this application is not our main concern,
here.) In particular, in actual use, the croissant and bracket marks can frequently pile up
uselessly along an edge, tying up storage and processing steps. It also makes it difficult to
“read” information from the graph structure. In this respect, OLR remains the province of
theoreticians, not implementors.
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Optimalλ reduction comes with a great deal of theoretical underpinnings. Of partic-
ular note is that it makes a claim to optimality, in terms of using sharing to guarantee the
minimal number of reductions. We make no such claim; it is clear that the bottom-up algo-
rithm is not optimal, in the narrow technical sense that it will replicate someλ-terms that
would not be replicated by an OLR reducer. Again, the OLR reducer would achieve this
sharing by inserting fan, bracket and croissant nodes into the graph—greatly complicating
the graph structure and readback problem. Asperti and Guerrini’s comprehensive text [1]
devotes fifty pages to the topic of readback; it is not a trivial issue. Further, the accumu-
lation of croissant and bracket nodes during reduction is not currently well understood or
characterised, so OLR’s optimality of reductions must be offset by this accompanying cost.

OLR work may yet well lead to the development of practical reduction techniques that
exploit the sharing of Lamping graphs, but we are not there yet. A weaker engineering goal
is to relax notions of sharing, and develop functionally correct algorithms that still have
good performance behavior, more in the pragmatic style of the classic graph-reduction
community [13, 17]. Our research is better appreciated in that context.

10.4 Two key issues: persistence and readback
Our comparisons with other techniques have repeatedly invoked the key issues of persis-
tence and readback. Our data structure is not a “persistent” one—performing a reduction
inside a term changes the term. If an application needs to keep the old term around, then
our algorithm is not a candidate (or, at least, not without some serious surgery). So perhaps
it is unfair to compare our algorithm’s run times to those of persistent algorithms, such as
SLC or director strings.

However, we can turn this around, and claim that the interesting feature of our algo-
rithm is that itexploitslack of persistence. Applications that need persistence are rare in
practice—and if an application doesn’t need persistence, it shouldn’t have to pay for it.
The standard set of technology choices are invariably persistent; our algorithm provides
an alternative design point. (Note that reduction on Lamping graphs is also not persistent,
which is, again, either a limitation or a source of efficiency, depending on your point of
view.)

The other key, cross-cutting issue is readback. An application that doesn’t need to
examine term structure in-between reductions has greater flexibility in its requirements.
If readback is a requirement, however, then Lamping graphs and the SLC are much less
attractive. Readback with our representation is free: one of the pleasant properties of a
DAG is that it can be viewed just as easily as a tree; there is no need to convert it.

Thus, bottom-upβ-reduction is a technology which is well suited to applications which
(1) don’t need persistence, but (2) do need fine-grained readback.

11 Other operations: cloning, equality and hashing
β-reduction is, of course, not the only operation one might wish to perform on terms of
theλ calculus. In a DAG representation, we also might wish to provide a parent-splitting
operation, to unshare a node that has multiple parents. This means cloning the child node,
and dividing the parents between the original child and its copy as indicated by some parti-
tion. This operation, which is easy to implement, would be useful for a compiler that made
reduction (aka “inlining”) decisions based on context. If we want to contract a redex in one
context, but leave it as-is in another, we must first replicate the node, so the two contexts
have distinct redexes. Note that only the top of the redex needs to be replicated; the two
redex copies can share children, so this operation is fast. (Cloning aλ-expression is more
work than cloning an application, however: theλ’s bound variable must also be replicated
to preserveα-uniqueness. This kicks off an up-copy along the paths from the variable up
to theλ-expression being cloned, just as in theβ-reduction case. However, applications,
notλ-expressions, are the nodes one typically wishes to clone in order to perform context-
sensitive reductions.)
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Comparing terms for equality brings up the question of which definition of equality
we mean. The spectrum runs from complete textual equality, to tree equality modulo
α-conversion, to extensional equality in the model of a denotational semantics. The pres-
ence of sharing in our DAG representation raises new distinctions, as well. One useful
definition of equality for DAGs is: if we expanded term DAGst1 andt2 into their equiv-
alent trees, would these trees be structurally equal, that is, equal moduloα-conversion?
Implementing this efficiently is a nice puzzle. Note that wecan’t use the usual trick of con-
verting to de Bruijn indices and comparing the results—the DAG representation completely
rules out the use of de Bruijn indices, as there may be two paths from a variable up to its
bindingλ-expression that run through different numbers of intermediateλ-expressions!

We have designed and implemented an algorithm for this equality test that is “almost
linear” (in the sense of the inverse Ackermann function) in the sizes of the DAGs; the
algorithm uses the fast amortised union-find algorithm for its speed. A detailed discussion
of theα-DAG equality algorithm is beyond the scope of this article; we expect to describe
it fully in another report.

It is also important for many potential uses ofλ-terms to have a hash function that is in-
sensitive to sharing andα-conversion,i.e., one that respects the equality test outlined above.
Such a facility has, in fact, been universally requested by colleagues who are beginning to
use our technology for their own projects. In particular, it enables “hash cons” construc-
tion of λ-terms, reducing the cost ofα-equivalence tests to a single pointer comparison. A
further criteria for a good hash function is that it should be “incrementally” computable,
that is, we would like to be able to compute efficiently the hash value for aλ or application
node from the hash values for its children. Similar considerations of incrementality apply
to rehashing term structure as needed across aβ-reduction.

We have designed and implemented three different hash functions for bubs terms, and
are currently engaged in evaluating them in support of hash-consing terms in a compiler
based on a three-level/kinded typed-intermediate language. We should note that, despite
our colleague’s entreaties, it is not a given that hash-consing will provide much improve-
ment in our setting. Hash-consing provides a fast-path forα-equality, but our equality
function is already fairly fast. When we say that it is almost linear, we mean almost linear
in the size of the DAGs, not their unfolded trees, so the structure-sharing enabled by the
representation can potentially provide tremendous speedups—and it is only linear when the
terms turn out to be equal; it can quit lazily as soon as it encounters a structural difference
between the terms. Hash consing also provides for space savings due to sharing; again, our
basic representation already picks up sharing that occurs due to reduction. We await tests
on real data to see how things will measure.

12 Possible variants and applications
12.1 Cyclic graph structure
It would be interesting to see if the algorithm could be adapted to operate on general graph
structure, as opposed to DAGs. This would permit recursion to be captured with circular
structure, as opposed to encoding it using syntactic devices such as the Y combinator.

The basic marking-based search&copy technique is one that works on general graphs
with no trouble. However, one complication in such a framework is that a reduction that
unrolls a recursion can cause uplinks to become downlinks. This perturbs some of the
fundamental invariants on which the algorithm is based, and so affects much of the code.
Altering the algorithm to properly account for this behavior would require careful thought.

12.2 Integrating with orthogonal implementation techniques
As we’ve noted already, there is a tremendous body of work on the high-performance graph
reduction ofλ-calculus terms. The uplinkedλ-DAG representation is not mutually exclu-
sive with many of these techniques. It would be worth investigating to discover how much

20



of the “classical” graph-reduction technology could be applied in this DAG framework.
For example, could supercombinators be compiled into native code to operate on uplinked
λ-DAG representations?

We have claimed in the past that every interesting programming language comes from
an interesting model of computation. One of our colleagues has suggested the possibility
that the model of computation embodied by theβ-reduction of uplinkedλ-DAGs might
make for an interesting interpreted programming language.

12.3 DAG-based compiler
We are very interested in trying to put the bottom-up representation to use in a real compiler,
to represent both program terms and sophisticated types. Type-based compilers [16, 14],
in particular, are notorious for term explosion in the intermediate type terms; the sharing
introduced by the bottom-up algorithm has potential to help here.

A compiler is an application that typically produces output proportional to the size of
the intermediate code tree, which, in our case, is really theunfoldedintermediate code tree.
So perhaps there is less sharing payoff in representing program terms with aλ-DAG (as
opposed to the type terms). However, this is only true of thefinal program term—program
transforms and analyses could well benefit from sharing-based compression of the pro-
gram term, avoiding term explosion in the intermediate stages. Further, even if the target
language (i.e., assembler) doesn’t allow sharing, we can still benefit from generating code
from a DAG by caching the program-term-to-assembler translations. Finally, as we’ve de-
scribed earlier, the bottom-up reduction algorithm gets time and space savings not only
from sharingwithin aλ-term, but also from the elimination of blind search and the associ-
ated sharing of structureacrossa reduction—i.e., the reduction algorithm tries to copy as
little graph structure as possible when reducing.

It is intriguing to consider what a compiler would be like that was more fundamentally
based on representing program structure as a DAG (as opposed to using the bottom-up rep-
resentation essentially as a short-hand for a tree). Costs and benefits are not always what
they seem in this setting. For example, inlining a procedure definition by replacing the
procedure’s name with itsλ-expression has no space cost in a DAG representation, even if
the procedure is invoked at multiple call sites. Specialising such an application by subse-
quently contracting theλ-expression’s application to a particular set of arguments is what
causes code replication—although, even in this case, the bottom-up reduction algorithm
attempts to share common structure.

12.4 Graph-based compiler
Even more intriguing and exotic is the possibility of allowing general graph structure for
our compiler’s internal structures. The question of variable scope (a tree notion), for exam-
ple, becomes the more general question of binders dominating references (a graph-theoretic
notion). We begin to verge, at this point, from the realm ofλ calculus to the realm of “flat”
SSA representations [8]. The challenge is to do so, and yet retain theideas—in their suit-
ably generalised form—of scope and closure and higher-order functional values from the
λ-calculus setting. At least one such compiler has been written, by Bawden [3], though the
effort was never written up and published.

We do not claim that some sort of general-graph/circular-structure variant of theλ
calculus is a better way to build compilers. We do think it is an interesting idea to consider.

13 Conclusion
We certainly are not the first to consider using graph structure to represent terms of theλ
calculus; the ideas go back at least to 1954 [4, 17]. The key point we are making is that
two of these ideas work together:

• representingλ-terms as DAGS to allow sharing induced byβ-reduction, and
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• introducing child→parent backpointers andλ→variable links to efficiently direct
search and construction.

The first idea allows sharingwithin a term, while the second allows sharingacrossa reduc-
tion, but they are, in fact, mutually enabling: in order to exploit the backpointers, we need
the DAG representation to allow us to build terms without having to replicate the subterm
being substituted for the variable. This is the source of speed and space efficiency.

The algorithm is simple and directly represents the term without any obscuring trans-
form, such as combinators, de Bruijn indices or suspensions, a pleasant feature forλ-
calculus clients who need to examine the terms. It is also, in the parlance of the graph-
reduction community, fully lazy.
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A BetaSub.sml
Not including comments, blank lines, or a simple doubly-linked list library, the source
code for the core data structures andβ-reduction algorithm is 180 lines of SML code; this
includes the full set of optimisations discussed in Sections 5 and 6. Here is a complete
listing, liberally commented.

(* Bottom-up Beta Substitution *)

structure DL = DoubleLists

(* Core datatype definitions

******************************************************************************

* There are three kinds of nodes: lambdas, var refs and applications.

* Each kind gets its own ML datatype, instead of having a single,

* three-constructor datatype. Why? It allows us to encode more structure

* in the ML type system. E.g., the *parent* of a node can only be a lambda

* or an app; not a var-ref. So we can define a two-constructor node-parent

* type, ruling out the var-ref possibility. And so forth.

*

* Note, also, that some of these "foo option ref" record fields are because we

* are constructing circular structure. Backpointers are initialised to

* "ref NONE," then we slam in "SOME <node>" after we have later created <node>.

*)

(* bodyRef is the parent record belonging to our child node (our body) that

* points back to us. I.e., suppose our body node N has three parents, of

* which we are one. Then N has a three-element doubly-linked list (DLL)

* of parent records, one for each parent. The one that points back to us

* is the record sitting in *our* "bodyRef" field. This allows us to delink

* ourselves from the child’s parent list & detach the child in constant time

* when copying up through the lambda node.

*)

datatype LambdaType = Lambda of {var: VarType, body: Term option ref,

bodyRef: ChildCell DL.dl option ref,

parents: ChildCell DL.dl ref,

uniq: int}

(* funcRef and argRef are similar to the bodyRef field

* of the LambdaType record above.

*)

and AppType = App of {func: Term option ref, arg: Term option ref,

funcRef : ChildCell DL.dl option ref,

argRef : ChildCell DL.dl option ref,

copy: AppType option ref,

parents: ChildCell DL.dl ref,

uniq:int}

and VarType = Var of {name: string,

parents: ChildCell DL.dl ref,

uniq:int}

and Term = LambdaT of LambdaType (* Type of a general LC node. *)

| AppT of AppType

| VarT of VarType

(* This tells us what our relationship to our parents is. *)

and ChildCell = AppFunc of AppType
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| AppArg of AppType

| LambdaBody of LambdaType

(* Get the parents of a Term. *)

fun termParRef(LambdaT(Lambda{parents, ...})) = parents

| termParRef(AppT(App{parents, ...})) = parents

| termParRef(VarT(Var{parents, ...})) = parents

(* A rather subtle point:

*******************************************************************************

* When we do upsearch/copying, we chase uplinks/backpointers, copying old tree

* structure, creating new tree structure as we go. But we don’t want to search

* up through *new* structure by accident -- that might induce an infinite

* search/copy. Now, the the only way we can have a link from an old node up to

* a new parent is by cloning an app node -- when we create a new app, it has

* one new child NC and one old child OC. So our new app node will be added to

* the parent list of the old child -- and if we should later copy up through

* the old child, OC, we’d copy up through the new app node -- that is, we’d

* copy the copy. This could get us into an infinite loop. (Consider reducing

* (\x. x x) y

* for example. Infinite-loop city.)

*

* We eliminate this problem in the following way: we don’t install *up* links

* to app nodes when we copy. We just make the downlinks from the new app node

* to its two children. So the upcopy search won’t ever chase links from old

* structure up to new structure; it will only see old structure.

*

* We *do* install uplinks from a lambda’s body to a newly created lambda node,

* but this link always goes from new structure up to new structure, so it will

* never affect the our search through old structure. The only way we can have a

* new parent with an old child is when the parent is an app node.

*

* When we are done, we then make a pass over the new structure, installing the

* func->app-node or arg->app-node uplinks. We do this in the copy-clearing

* pass -- as we wander the old app nodes, clearing their cache slots, we take

* the corresponding new app node and install backpointers from its children

* up to it.

*

* In other words, for app nodes, we only create downlinks, and later bring the

* backpointer uplinks into sync with them.

*)

(* Given a term and a ChildCell, add the childcell to term’s parents. *)

fun addToParents(node, cclink) = let val p = termParRef node

in p := DL.add_before(!p, cclink)

end

(* Is dll exactly one elt in length? *)

(* ML pattern matching rules. *)

fun len1 (DL.Node(_,_,ref DL.NIL)) = true

| len1 _ = false

(* clearCopies(redlam, topapp)

******************************************************************************

* When we’re finished constructing the contractum, we must clean out the

* app nodes’ copy slots (reset them to NONE) to reset everything for the next
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* reduction.

* - REDLAM is the lambda we reduced.

*

* - TOPAPP is the highest app node under the reduced lambda -- it holds

* the highest copy slot we have to clear out. If we clear it first, then

* we are guaranteed that any upwards copy-clearing search started below it

* will terminate upon finding an app w/an empty copy slot.

*

* Every lambda from REDLAM down to TOPAPP had its var as the origin of an

* upcopy:

* - For REDLAM, the upcopy mapped its var to the redex’s argument term.

* - The other, intermediate lambdas *between* REDLAM & TOPAPP (might be zero

* of these) were copied to fresh lambdas, so their vars were mapped to

* fresh vars, too.

* So, now, for each lambda, we must search upwards from the lambda’s var,

* clearing cached copies at app nodes, stopping when we run into an

* already-cleared app node.

*

* This cache-clearing upsearch is performed by the internal proc cleanUp.

* (Get it?)

*

* When we created fresh app nodes during the upcopy phase, we *didn’t*

* install uplinks from their children up to the app nodes -- this ensures

* the upcopy doesn’t copy copies. So we do it now.

*)

fun clearCopies(redlam, topapp) =

let val App{copy=topcopy,...} = topapp (* Clear out top*)

val ref(SOME(App{arg,argRef, func, funcRef,...})) = topcopy

val _ = topcopy := NONE (* app & install*)

val _ = addToParents(valOf(!arg), valOf(!argRef)); (* uplinks to *)

val _ = addToParents(valOf(!func), valOf(!funcRef)); (* its copy. *)

fun cleanUp(AppFunc(App{copy=ref NONE,...})) = ()

| cleanUp(AppFunc(App{copy as ref(SOME(App{arg, argRef,

func, funcRef,...})),

parents,...})) =

(copy := NONE;

addToParents(valOf(!arg), valOf(!argRef)); (* Add uplinks *)

addToParents(valOf(!func), valOf(!funcRef)); (* to copy. *)

DL.app cleanUp (!parents))

| cleanUp(AppArg(App{copy=ref NONE,...})) = ()

| cleanUp(AppArg(App{copy as ref(SOME(App{arg, argRef,

func, funcRef,...})),

parents,...})) =

(copy := NONE;

addToParents(valOf(!arg), valOf(!argRef)); (* Add uplinks *)

addToParents(valOf(!func), valOf(!funcRef)); (* to copy. *)

DL.app cleanUp (!parents))

| cleanUp(LambdaBody(Lambda{parents,var,...})) =

(varClean var; DL.app cleanUp (!parents))

and varClean(Var{parents=varpars,...}) = DL.app cleanUp (!varpars)
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fun lambdascan(Lambda{var, body=ref(SOME b),...}) =

(varClean var;

case b of LambdaT l => lambdascan l | _ => ())

in lambdascan redlam

end

(* freeDeadNode term -> unit

***************************************************************************

* Precondition: (termParents term) is empty -- term has no parents.

*

* A node with no parents can be freed. Furthermore, freeing a node

* means we can remove it from the parent list of its children... and

* should such a child thus become parentless, it, too can be freed.

* So we have a recursive/DAG-walking/ref-counting sort of GC algo here.

*

* IMPORTANT: In this SML implementation, we don’t actually *do* anything

* with the freed nodes -- we don’t, for instance, put them onto a free

* list for later re-allocation. We just drop them on the floor and let

* SML’s GC collect them. But it doesn’t matter -- this GC algo is *not

* optional*. We *must* (recursively) delink dead nodes. Why? Because

* we don’t want subsequent up-copies to spend time copying up into dead

* node subtrees. So we remove them as soon as a beta-reduction makes

* them dead.

*

* So this procedure keeps the upwards back-pointer picture consistent with

* the "ground truth" down-pointer picture.

*)

fun freeDeadNode node =

let

fun free(AppT(App{func=ref(SOME functerm), funcRef,

arg=ref(SOME argterm), argRef,

parents, ...})) =

(delPar(functerm, valOf(!funcRef)); (* Node no longer parent *)

delPar(argterm, valOf(!argRef))) (* of func or arg children. *)

| free(LambdaT(Lambda{body=ref(SOME bodyterm), (* Lambda no longer *)

bodyRef, parents, ...})) = (* parent of body. *)

delPar(bodyterm, valOf(!bodyRef))

(* We wouldn’t actually want to dealloc a parentless var node, because

* its binding lambda still retains a ref to it. Responsibility for

* freeing a var node should be given to the code (just above) that

* freed its lambda.

*)

| free(VarT _) = ()

(* Remove CCLINK from TERM’s parent’s dll.

* If TERM’s parent list becomes empty, it’s dead, too, so free it.

*)

and delPar(term, cclink) =

case DL.remove cclink of (* Returns the dll elts before & after cclink. *)

(DL.NIL, after) => let val parref = termParRef term

in parref := after;

case after of DL.NIL => free term

| DL.Node _ => ()

end

| _ => ()
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in free node

end

(* Replace one child w/another in the tree.

* - OLDPREF is the parent dll for some term -- the old term.

* - NEW is the replacement term.

* Add each element of the dll !OLDPREF to NEW’s parent list. Each such

* element indicates some parental downlink; install NEW in the right slot

* of the indicated parent. When done, set OLDPREF := NIL.

*

* Actually, we don’t move the dll elements over to NEW’s parent list one at

* a time -- that involves redundant writes. E.g., if !OLDPREF is 23 elements

* long, don’t move the elements over one at a time -- they are already nicely

* linked up. Just connect the last elt of !OLDPREF & the first element of

* NEW’s existing parent list, saving 22*2=44 writes. Because it physically

* hurts to waste cycles.

*)

fun replaceChild(oldpref, new) =

let val cclinks = !oldpref

val newparref = termParRef new

fun installChild(LambdaBody(Lambda{body,...})) = body := SOME new

| installChild(AppFunc(App{func,...})) = func := SOME new

| installChild(AppArg(App{arg,...})) = arg := SOME new

fun lp(prev, prevnext, DL.NIL) =

(prevnext := !newparref ;

case !newparref of DL.NIL => ()

| DL.Node(p, _, _) => p := prev)

| lp(prev, prevnext, node as DL.Node(_,cc, n as ref next)) =

(installChild cc; lp(node, n, next))

in case cclinks of DL.NIL => ()

| node as DL.Node(_,cc,n as ref next) =>

(oldpref := DL.NIL; installChild cc;

lp(node, n,next); newparref := cclinks)

end

(* Allocate a fresh lambda L and a fresh var V. Install BODY as the body of

* the lambda -- L points down to BODY, and L is added to BODY’s parent list.

* The fresh var’s name (semantically irrelevant, but handy for humans) is

* copied from oldvar’s name.

*

* Once this is done, kick off an OLDVAR->V upcopy to fix up BODY should it

* contain any OLDVAR refs.

*)

fun newLambda(oldvar, body) =

let val Var{name, parents = varparents, ...} = oldvar

val var = Var{name = name,

uniq = newUniq(),

parents = ref DL.NIL}

val bodyRefCell = ref NONE

val ans = Lambda{var = var,

body = ref(SOME body),

bodyRef = bodyRefCell,

uniq = newUniq(),
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parents = ref DL.NIL}

val cclink = DL.new(LambdaBody ans)

in bodyRefCell := SOME cclink;

addToParents(body, cclink);

(* Propagate the new var up through the lambda’s body. *)

DL.app (upcopy (VarT var)) (!varparents);

LambdaT ans

end

(* Allocate a fresh app node, with the two given params as its children.

* DON’T install this node on the children’s parent lists -- see "a subtle

* point" above for the reason this would get us into trouble.

*)

and newApp(func, arg) =

let val funcRef = ref NONE

val argRef = ref NONE

val app = App{func = ref(SOME func),

arg = ref(SOME arg),

funcRef = funcRef,

argRef = argRef,

copy = ref NONE,

parents = ref DL.NIL,

uniq = newUniq()}

in funcRef := SOME( DL.new(AppFunc app) );

argRef := SOME( DL.new(AppArg app) );

app

end

(* upcopy newChild parRef -> unit

******************************************************************************

* The core up-copy function.

* parRef represents a downlink dangling from some parent node.

* - If the parent node is a previously-copied app node, mutate the

* copy to connect it to newChild via the indicated downlink, and quit

* - If the parent is an app node that hasn’t been copied yet, then

* make a copy of it, identical to parent except that the indicated downlink

* points to newChild. Stash the new copy away inside the parent. Then take

* the new copy and recursively upcopy it to all the parents of the parent.

* - If the parent is a lambda node L (and, hence, the downlink is the

* "body-of-a-lambda" connection), make a new lambda with newChild as

* its body and a fresh var for its var. Then kick off an upcopy from

* L’s var’s parents upwards, replacing L’s var with the fresh var.

* (These upcopies will guaranteed terminate on a previously-replicated

* app node somewhere below L.) Then continue upwards, upcopying the fresh

* lambda to all the parents of L.

*)

and upcopy newChild (LambdaBody(Lambda{var, parents,...})) =

DL.app (upcopy (newLambda(var, newChild))) (!parents)

(* Cloning an app from the func side *)

| upcopy new_child (AppFunc(App{copy as ref NONE, arg, parents, ...})) =

let val new_app = newApp(new_child, valOf(!arg))

in copy := SOME new_app;

DL.app (upcopy (AppT new_app)) (!parents)

end

(* Copied up into an already-copied app node. Mutate the existing copy & quit. *)
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| upcopy newChild (AppFunc(App{copy = ref(SOME(App{func,...})), ...})) =

func := SOME newChild

(* Cloning an app from the arg side *)

| upcopy new_child (AppArg(App{copy as ref NONE, func, parents, ...})) =

let val new_app = newApp(valOf(!func), new_child)

in copy := SOME new_app;

DL.app (upcopy (AppT new_app)) (!parents)

end

(* Copied up into an already-copied app node. Mutate the existing copy & quit. *)

| upcopy newChild (AppArg(App{copy = ref(SOME(App{arg,...})),...})) =

arg := SOME newChild

(* Contract a redex; raise an exception if the term isn’t a redex. *)

fun reduce(a as App{funcRef, func = ref(SOME(LambdaT l)),

argRef, arg = ref(SOME argterm),

parents, ...}) =

let val Lambda {var, body, bodyRef, parents = lampars, ...} = l

val Var{parents = vpars as ref varpars, ...} = var

val ans = if len1(!lampars)

(* The lambda has only one parent -- the app node we’re

* reducing, which is about to die. So we can mutate the

* lambda. Just alter all parents of the lambda’s vars to

* point to ARGTERM instead of the var, and we’re done!

*)

then (replaceChild(vpars, argterm);

valOf(!body))

(* Fast path: If lambda’s var has no refs,

* the answer is just the lambda’s body, as-is.

*)

else if varpars = DL.NIL then valOf(!body)

(* The standard case. We know two things:

* 1. The lambda has multiple pars, so it will survive the

* reduction, and so its body be copied, not altered.

* 2. The var has refs, so we’ll have to do some substitution.

* First, start at BODY, and recursively search down

* through as many lambdas as possible.

*

* - If we terminate on a var, the var is our lambda’s var,

* for sure. (OTW, #2 wouldn’t be true.) So just return

* BODY back up through all these down-search lambda-

* skipping calls, copying the initial lambdas as we go.

* - If we terminate on an app, clone the app & stick the

* clone in the app’s copy slot. Now we can do our VAR->ARG

* up-copy stuff knowing that all upcopying will guaranteed

* terminate on a cached app node.

*

* When we return up through the initial-lambda-skipping

* recursion, we add on copies of the lambdas through

* which we are returning, *and* we also pass up that top

* app node we discovered. We will need it in the

* subsequent copy-clearing phase.
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*)

else let fun scandown(v as VarT _) = (argterm,NONE) (* No app! *)

| scandown(l as LambdaT(Lambda{body,var,...})) =

let val (body’,topapp) = scandown(valOf(!body))

val l’ = newLambda(var, body’)

in (l’, topapp)

end

| scandown(AppT(a as App{arg,func,copy,...})) =

(* Found it -- the top app. *)

(* Clone & cache it, then kick off a *)

(* var->arg upcopy. *)

let val a’ = newApp(valOf(!func), valOf(!arg))

in copy := SOME a’;

DL.app (upcopy argterm) varpars;

(AppT a’, SOME a)

end

val (ans, maybeTopApp) = scandown (valOf(!body))

(* Clear out the copy slots of the app nodes. *)

in case maybeTopApp of

NONE => ()

| SOME app => clearCopies(l,app);

ans

end

(* We’ve constructed the contractum & reset all the copy slots. *)

in replaceChild(parents, ans); (* Replace redex w/the contractrum. *)

freeDeadNode (AppT a); (* Dealloc the redex. *)

ans (* Done. *)

end

(* Call-by-name reduction to weak head-normal form. *)

fun normaliseWeakHead(AppT(app as App{func, arg, ...})) =

(normaliseWeakHead(valOf(!func));

case valOf(!func) of LambdaT _ => normaliseWeakHead(reduce app)

| _ => ())

| normaliseWeakHead _ = ()

(* Normal-order reduction to normal form. *)

fun normalise(AppT(app as App{func, arg, uniq,...})) =

(normaliseWeakHead(valOf(!func));

case valOf(!func) of LambdaT _ => normalise(reduce app)

| VarT _ => normalise(valOf(!arg))

| app’ => (normalise app’;

normalise(valOf(!arg))))

| normalise(LambdaT(Lambda{body,...})) = normalise(valOf(!body))

| normalise _ = ()
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