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Abstract

Usually, the majority of language constructs found in a program-
ming language can also be found in many other languages, because
language design is based on reuse. This should be reflected in the
way we give semantics to programming languages. It can be achieved
by making a language description consist of a collection of modules,
each defining a single language construct. The description of a single
language construct should be language independent, so that it can be
reused in other descriptions without any changes. We call a language
description framework “constructive” when it supports independent
description of individual constructs.

We present a case study in constructive semantic description. The
case study is a description of Core ML, consisting of a mapping from
it to BAS (Basic Abstract Syntax) and action semantic descriptions of
the individual BAS constructs. The latter are written in ASDF (Ac-
tion Semantics Definition Formalism), a formalism specially designed
for writing action semantic descriptions of single language constructs.

*Basic Research in Computer Science (www.brics.dk), funded by the Danish National
Research Foundation.



Tool support is provided by the ASF+SDF Meta-Environment and by
the Action Environment, which is a new extension of the ASF+SDF
Meta-Environment.

1 Introduction

We will present a case study in the use of a recently-developed approach
to modular definition of programming languages, called Constructive Action
Semantics.t The case study consists of a description of the dynamic semantics
of Core ML (the sublanguage of Standard ML [2] obtained by removing the
constructs concerning modules). We have chosen Core ML for this case study
primarily because it is a cleanly-designed, medium-size language, and our
description of it provides substantial evidence that our approach is practical.

The main point of our approach, amply demonstrated by the case study,
is that a description of a complete language should be based on reusable
definitions of individual language features. This requires an extremely high
degree of modularity, and ensures extensibility and modifiability. Moreover,
it significantly lowers the investment of effort required to give a semantic
description of a new language, since no re-description of constructs taken from
previously-described languages is needed. We hope that this will encourage
language designers to use formal semantics for documentation purposes to a
much greater extent than at present [3, 4].

An important feature of our approach is the tool support available for it:
the so-called Action Environment, which is implemented as an extension of
the ASF+SDF Meta-Environment [5, 6]. The Action Environment is still at
an early stage of development, and it does not yet provide full functionality
regarding prototyping, nor other tool generation; nevertheless, we have found
the present version highly useful in connection with the case study, and we
include a brief description of the main features here.

The rest of this section explains and motivates Constructive Action Se-
mantics, mentions related work, and gives an overview of the rest of the

paper.

!Constructive Action Semantics was referred to as “Incremental” in [1], but a reviewer
found the terminology confusing.



Motivation

Although each programming language generally has some quite distinctive
features, it usually also has many features in common with other languages.
This is particularly true for languages in the same family (e.g., C, C++, and
Java), and those related as extensions (e.g., Standard ML and Concurrent
ML [7]). Moreover, some features seem to be almost ubiquitous: examples in-
clude sequencing, conditional, iteration, assignment, procedural abstraction,
and local declarations. There are sometimes differences regarding details of
both the form and intended interpretation of such a feature (e.g., how con-
ditional expressions are written, and whether the conditions are numerical
or boolean), but if we take a ‘feature’ to be an individual abstract construct
together with a particular intended interpretation for it, that exact feature
may often be found in a significant number of different languages.

Typically, a semantic description of a particular feature is given only in
connection with some complete language description, and common features
thus get re-described many times. In most semantic frameworks (includ-
ing the conventional styles of denotational and operational semantics, but
not action semantics) the description of each feature depends critically on
what other kinds of features are included in the described language. Even
when that is not the case, there may still be substantial notational varia-
tion between different descriptions of the same feature. In practice, semantic
descriptions of individual features have seldom been reused verbatim.

Let us call a framework constructive when it supports the independent
definition and use of named modules describing individual language features.
We insist on reuse by reference to names of modules, rather than by copy-
ing, since in the latter case the reader cannot easily see whether the copy
has subsequently been edited or not. Note however that merely introducing
explicit modular structure into a semantic description does not ensure that
it is constructive: the crucial question is whether the bodies of the modules
are independent.

The advantages of a constructive framework are both numerous and sig-
nificant:

e an expanding library of independent descriptions of individual language
constructs can be provided;

e when describing a new language, no time and effort is wasted on re-
describing familiar constructs;



e when the descriptions of two different languages refer to the same mod-
ule, it is immediately apparent that they give the same interpretation
of the construct that it describes;

e when a module is already familiar from its use in a previous description,
the reader can skip it;

e notational variations between different descriptions are minimised; and

e extensibility and modifiability are guaranteed.

Constructive Action Semantics is a constructive version of the original
Action Semantics framework [8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. Action
Semantics is a hybrid of denotational and operational semantics: semantic
functions map programs and their phrases compositionally to actions ex-
pressed in Action Notation, which is itself defined operationally. The origi-
nal modular structure of action semantic descriptions was quite conventional,
with top-level modules specifying abstract syntax, semantic entities, and se-
mantic functions. The modules for abstract syntax and semantic functions
were divided into modules for expressions, statements, declarations, etc., and
different sorts of semantic entities were specified in separate modules, in the
usual tradition of algebraic specifications of abstract datatypes. Although
the semantic equations defining the action semantics of individual constructs
were indeed independent of each other, they were not isolated as named
modules, and reuse of parts of action semantic descriptions was restricted to
copy-and-paste.

The modular structure of a constructive action semantic description is
essentially the conventional structure turned inside-out:

e a module for each sort of construct in the abstract syntax declares the
sort itself, variables ranging over that sort, and a semantic function
for that sort, referring to auxiliary modules for any generally-required
semantic entities;

e a module for each individual construct declares the abstract syntax
constructor function and gives the semantic equation defining its ac-
tion semantics, referring to auxiliary modules for any semantic entities
required for that construct.

The modules for the semantic entities are essentially as in the original version
of Action Semantics.



The aim of reusability has a significant impact on the specification of
abstract syntax. Regarding notation, the conventional style of abstract syn-
tax is strongly suggestive of the concrete syntax of the language being de-
scribed. This is clearly inappropriate for constructive action semantic de-
scriptions, where the module specifying the abstract syntax and semantics
of an individual construct is to be reusable in connection with languages
that have significantly different concrete syntax for the same abstract con-
structs. For example, consider the conditional expression: in ML it is written
as ‘if...then...else...’, but in Java as “*...7...:...". Not wishing to
bias our notation toward any particular family of languages, we are forced to
adopt prefix notation and use neutral words for abstract syntax constructor
functions, e.g., ‘cond’ for conditional expressions. (We still rely on positional
notation for components of constructs, although this might occasionally be
a source of potential confusion.)

Moreover, to maximise reusability, we take account of two deeper aspects
of the choice of abstract syntax:

e We limit ourselves to a fized set of sorts of constructs, corresponding to
the fundamental distinctions between expressions, statements, declara-
tions, parameters, etc. These distinctions reflect differences in the kinds
of values computed by constructs and whether or not the constructs
may depend on bindings and arguments (e.g., constants and opera-
tions are distinguished from expressions). Note that we allow subsort
inclusions to be specified in connection with particular languages.

e We include only constructs which are not easily derivable from other
constructs. For instance, the single-branch conditional statement can
be derived from the double-branch conditional one and the null state-
ment, so we omit it; similarly for conditional conjunction, which can
be derived from the conditional expression. However, we do not go
as far as The Definition of Standard ML [18], where for instance the
conditional expression is derived from a more general case construct,
and tuples are derived from records.

The above principles lead us to a Basic Abstract Syntax (BAS) with a fixed
set of sorts but an open-ended set of constructors. The mapping from con-
crete syntax to BAS is a significant and informative part of a complete lan-
guage description.



Overview

The rest of the paper proceeds as follows. Section 2 recalls the concrete syn-
tax of Core ML (mainly for the benefit of readers who are unfamiliar with
ML). Section 3 explains how the illustrated concrete syntax constructs are
mapped to BAS, introducing the sorts and constructs of BAS in the process.
Section 4 gives reusable action semantic definitions of the illustrated BAS
constructs, introducing the notation used in action semantics in the process.
The composition of the mapping from concrete ML syntax to BAS with the
action semantics of the BAS constructs provides our constructive action se-
mantics for the ML constructs. The full specifications on which Sects. 2—4
are based are provided in appendices. Section 5 discusses the reusability of
the specified modules. Section 6 presents the Action Environment which sup-
ported the development of the modules. Section 8 concludes by summarising
what has been achieved, and indicates topics for future work.

2 ML Syntax

ML [2] is a strict, functional, polymorphic programming language with ex-
ception handling, immutable data types, updatable references, abstract data
types, and parametric modules.

In this section we will introduce examples of the concrete syntax of Core
ML (i.e., Standard ML excluding modules), to familiarise the reader with the
language. We will not be very strict with our description of the ML syntax,
and we leave out details which are either irrelevant or excessively cumbersome
to describe. Appendix A contains an SDF? grammar of the whole Core ML
syntax, which is consistent with the grammar found in The Definition of
Standard ML [18]. In the next sections we will use the constructs introduced
in this section as examples when giving a semantics for ML.. Readers already
familiar with ML might prefer to take a quick look at Table 1 to get an idea
of the subset of Core ML whose abstract syntax and semantics we will be
describing in the following two sections, and then skip to the next section.

Table 1 is a grammar for the concrete syntax of the subset of Core ML we
will describe in this section. The nonterminal CON expands to constants like
integers or strings. Identifiers, consisting of either alphanumeric characters
or symbols like ‘:=") ‘+’  etc., are derived from the nonterminal IDFE.

2The Syntax Definition Formalism [19, 20].



EXP = CON | IDE | EXP EXP | EXP IDE EXP |
if EXP then EXP else EXP |
let DEC in EXP end | while EXP do EXP |

fn PAT => EXP | (EXP; ...; EXP) |

raise EXP | EXP handle PAT => EXP |

(EXP, ..., EXP) | (EXP) | [EXP, ..., EXP]
PAT == _| CON |IDE | (PAT, ..., PAT) |

(PAT, ..., PAT] | IDE PAT
DEC = wval PAT = EXP | fun IDE PAT = EXP |

DEC ; DEC | local DEC in DEC end |

datatype IDE = IDE of TYP | ... | IDE of TYP |

exception IDE of TYP

TYP == IDE|TYP->TYP | TYP * TYP

Table 1: ML Grammar

2.1 Expressions

ML doesn’t have statements: expressions are used to describe the behaviour
that we would use statements to describe in an imperative language.

In ML the atoms in expressions are constants, e.g., integers and strings,
and identifiers bound to values. From these atoms new expressions can be
formed, for instance by applying functions to expressions, written as ‘EXP
EXP’. As opposed to languages like C or Pascal, function application in ML
consists of two expressions: the first expression evaluates to the function (this
expression does not have to be an identifier) and the other to the argument.
Function application can also be written in infix form, like ‘EXP IDE EXP’,
where IDE is an identifier which has been declared infix, and bound to a
binary function.

In ML ‘if EXP then EXP else EXP’ expresses a choice between two
alternatives based on a condition, but be aware of the difference from Java
(and similar languages) where the if-then-else construct is a choice between
two statements, which means that it does not evaluate to a value. These
languages use the ‘?:’ operation to describe a choice between two expressions.



Most languages have a notion of different kinds of scope of declarations.
In C (and similar languages) the curly brackets delimit a local scope, where
the declarations given in the beginning are valid till the closing bracket. The
construct ‘let DEC in EXP end’is ML’s way of making declarations local
to an expression.

Describing a repetition of a computation can be obtained using the ‘while
EXP do EXP’ expression. This construct is similar to the iteration state-
ments found in many imperative languages. It is of course important that
the body of the expression (the second EXP) has side-effects if the evaluation
is ever to terminate.

In ML, writing functions is not restricted to declarations: we can also
write anonymous functions, which are not bound to identifiers. These ex-
pressions evaluate to a function value and are written ‘fn PAT => EXP’
(the syntactic sort PAT is described in the next subsection).

As mentioned earlier, expressions replace statements when we compare
ML with many imperative languages. One important construct in imperative
languages is a sequence of statements, and since ML has expressions with side
effects (based on built-in datatypes and data operations) it is not surprising
that ML allows sequences of expressions, which are written ‘(EXP; ...;
EXP)’.

Exceptions are found in many languages, because they allow the program-
mer to describe a control flow that would otherwise be difficult to delineate.
ML has two constructs related to exceptions: ‘raise EXP’ throws an excep-
tion (comparable to the ‘throw’ keyword in Java), and ‘EXP handle PAT
=> EXP’ catches exceptions raised in the first expression (comparable to the
‘catch’ keyword in Java).

The set of expressible values in ML contains, among others, tuples and
lists. Expressions which evaluate to tuples look like ‘(EXP, ..., EXP)’,
and the syntax for lists is similar, but with square brackets instead of round
brackets. Notice that tuples of size one don’t exist in ML: ‘(EXP)’ is just
used for grouping expressions.

ML contains more expressions than those just mentioned; they can all be
found in App. A.1.

2.2 Patterns

An important construct used in both ML expressions and ML declarations
is the pattern. A pattern describes a set of values by combining constants,



data constructors, and variable identifiers. When matched with a value a
pattern generates bindings of the identifiers in the pattern to parts of the
value. We might say that whereas expressions construct new values, patterns
de-construct them.

In ML the simplest pattern is the wild-card pattern ‘_’, which matches
everything. Built-in constants (e.g., integers or strings), user defined data
constants and variable identifiers can also be used as patterns.

Bigger patterns, like tuples of patterns ‘(PAT, ..., PAT)’ are also a
part of ML, and often used to write a tuple of identifiers as the parameters
for a function. List patterns are similar, but use square brackets instead of
normal brackets.

ML allows users to define their own data types and data constructors,
and it includes corresponding patterns to match constructed data. Writing
‘IDE PAT’ matches data constructed by applying the constructor IDE to a
value which matches PAT.

Further details about the syntax of patterns are given in App. A.2.

2.3 Declarations

In ML, all expressible values can be bound to identifiers.

The construct ‘val PAT = EXP’ generates bindings of identifiers in the
pattern to values computed from the subexpressions of FXP; the case where
PAT is simply an identifier corresponds to a simple constant declaration in
other languages. It is not a variable declaration (like ‘int i;’ in C) because
the bindings cannot be updated. Furthermore, types are not mandatory in
ML value declarations, since the intended type can usually be inferred (from
EXP and the usage of the identifiers in the scope of the declaration).

Recursive functions can be declared by writing ‘fun IDE PAT = EXP’,
where PAT is a pattern describing the formal parameters used in the body
expression. In many other languages, the only way of defining parameters
for a function is a tuple of identifiers; ML is more general, allowing other
kinds of patterns as well (possibly nested).

ML allows sequences of declarations separated by ‘;’. In a previous sub-
section we introduced declarations which had a scope local to an expression.
In ML one can also write declarations which are local to declarations: ‘local
DEC in DEC end’.

ML has datatype declarations, where a new type with different construc-
tors is introduced. It looks like this:



datatype IDEy = IDE; of TYP,

...

| IDE, of TYP,

where IDFE| is the name of the new datatype and IDFE,, ..., IDE,, are the
names of the data constructors. The types TYP,, ..., TYP,, describe the
arguments of the data constructors; ‘of TYP;  is omitted when IDFE; has no
arguments.

As mentioned in a previous subsection, ML contains expressions which
can raise and handle exceptions. Writing ‘exception [DE of TYP’ de-
clares an exception named IDFE with an argument of type TYP. The type is
optional, so that one can also define exceptions without arguments.

A full description of the syntax of the declarations in Core ML is available
in App. A.3.

2.4 Types

ML is a strongly typed language. The type system consists of basic types
which are just type names (for instance declared using the datatype construct
from the previous subsection) and constructed types like function types ‘ T'YP
-> TYP’ and tuple types ‘TYP * TYP’. See App. A.4 for the full specification
of the syntax of types in Core ML.

2.5 Parsing peculiarities

ML is not a context-free language regarding grouping of expressions, because
the user can declare identifiers to be infix operations. The string ‘x y 2z’
illustrates the problem. It can be parsed in different ways depending on
whether y has been declared infix or not. If not, it is parsed as an application
of x to y and an application of this to z, where x must be bound to a function
taking one argument and giving a function which takes one argument. If on
the other hand y has been declared infix, it is parsed as an infix expression,
and y must be bound to a binary function. The problem of constructing the
right parse tree can be solved by always parsing ‘x y z’ initially as a double
function application, and subsequently traversing the parse tree, replacing
double applications with infix expressions, depending on the context.

There are other non-context free properties of ML, but they are not rel-
evant for the mapping of ML to BAS, and will therefore not be described
here.

10



3 Reduction to Basic Abstract Syntax

This section gives examples of a mapping from ML constructs to Basic Ab-
stract Syntax (BAS). BAS is an evolving selection of basic constructs from
different programming languages, to include all the commonly occurring con-
structs, as well as more specific ones. In the next section we will give an action
semantics of the BAS constructs, thus indirectly providing an action seman-
tics for the ML constructs. The mapping to BAS is described by recursive
functions which perform a traversal of the concrete syntax tree while building
the BAS tree. The syntax of the BAS constructs is given in App. B and the
mapping is described in App. C.

The alternative to mapping ML constructs to BAS constructs is to map
ML constructs directly to actions. We claim that introducing BAS as an
intermediate level is beneficial, because the BAS constructs can be reused not
only within the description of ML, but also in descriptions of other languages.

We are only concerned with the dynamic semantics of ML, and conse-
quently we will not describe a mapping of types to BAS: types are just
ignored when mapping the other ML constructs.

BAS is divided into a fixed set of syntactic sorts. Constructs describing
expressions belong to the sort Exp, common to them is that they evaluate
to values. Statements belong to Stm and these constructs evaluate to the
value null-val. Matching values against parameters is described with con-
structs from Par, which compute bindings. The syntactic sort Dec contains
declarations, which also compute bindings. BAS also contains constants Con
(included in both Exp and Par), and identifiers /de.

In this section we shall use meta-variables ranging over the syntactic sorts
of ML introduced in Table 1. The variables are C': CON, I : IDE, FE : EXP,
D :DEC, T:TYPand P : PAT. We will use the convention that a variable
with a superscript T means the translation to BAS of the variable without the
superscript, so for instance £ = exp2bas(E), where exp2bas is the function
mapping constructs in FXP to constructs in Exp.

Table 2 shows an example of how ML is mapped to BAS.

3.1 Expressions

The function exp2bas is fully described in App. C.1. In this section we shall
see some examples of this description. The examples are listed in Table 3.
Constants are included in Exp, so the result of applying exp2bas to a

11



exp2bas (
{et

exception Negative;
fun fac 0 =
| fac n =
if n > 0 then n * fac (n - 1)
else raise Negative
in
fac 5 handle Negative => 0
end

)
=

local(
accum(
bind-val(val-or-var(Negative), new-cons)

rec(bind-val (var(fac),
app-seq(abs(var(f), abs(var(vid_0),
app-seq(val(f), tuple-seq(val(vid_0))))),
alt-seq(
abs (tuple(0), 1)
abs(tuple(val-or-var(n)),
cond (app-seq(val(>), tuple-seq(val(n) 0)),
app-seq(val(*),
tuple-seq(val(n) app-seq(val(fac),
app-seq(val(-), tuple-seq(val(n) 1))))),

throw(val(Negative)))

))))

),
catch(app-seq(val(fac), 5), abs(val-or-var(Negative), 0))

Table 2: Mapping ML to BAS

12




C — C

I ~ val(l)

E, B, —  app-seq(E}, £, )

E, I E, — app-seq(val(l), tuple-seq(E| E))
if E), then FE, else E3 — cond(E|, E/, E])

let D in E end — local(D", ET)

while F; do Ej —  seq(while(E}, stm(E, )),null-val)
fn P => F — abs(P', ET)

(BEy; ... E.1;ED —  seq(seq(stm(E] )...stm(E! ,)), E!)
raise £ —  throw(ET)

E) handle P => Ej — catch(E], abs(PT, E; ))

(Ey, ..., E —  tuple-seq(E; ... E)

(E) — BT

(B, ..., E,] —  app(list, tuple-seq(E}, ..., E))

Table 3: ML expressions to BAS mapping

constant is the same constant. Less trivial is the mapping of identifiers,
since identifiers might be bound to different sorts in different languages.
In imperative languages, identifiers can usually be bound to procedures and
memory cells, and this requires a combination of two different interpretations
of the BAS construct, val(I), representing identifier expressions, depending
on what the identifier is bound to. In ML, identifiers can be bound to values,
which include integers, strings, functions etc., but they can also be bound to
data constructors, in which case the behaviour is a bit different (when used
in patterns).

Function application ‘F; F5y’, where F; evaluates to a function and Es is
the argument given to this function, is mapped to app-seq(E, , E, ), which in-
sists on left-to-right evaluation of the subexpressions. BAS also contains the
app construct, which allows interleaving the evaluation of the two subexpres-
sions, but the expressions in a function application are evaluated sequentially
in ML. The construct app-seq is also used to describe the infix version of
function application ‘E, I E,’, which becomes app-seq(val(I), tuple-seq(E;
E, )). Here we use the tuple-seq construct instead of the tuple construct for
the same reason that we choose the app-seq construct. For economy, BAS
provides only unary function application, using tuples to represent multiple
arguments—this is especially convenient for ML, but arguably appropriate

13



for other languages too.

ML’s conditional expression ‘if F; then FE, else FE3’ is mapped to
cond(E], Ey, EJ ). Since E is expected to evaluate to either true or false,
the mapping is trivial, whereas in languages where E| should evaluate to an
integer equal to zero or not, the mapping would have been a bit more com-
plicated; alternatively, we could use a variant of the cond construct where
the condition is always numerical.

The construct ‘let D in E end’ is mapped to local(D", E"), which is
overloaded because it can also combine two declarations, as we shall see in
Sect. 3.3.

ML'’s iterative expression, ‘while E; do FE,’, is mapped to seq(while(E],
stm(E, )), null-val). The reason that it is not just mapped to while(E,, E, )
is that it is an expression in ML, therefore it must compute a value (in
this case null-val, corresponding to ML’s ‘()’), so we wrap it in a construct
which follows a statement by an expression. Furthermore, the usual while
construct in BAS expects a statement as its second argument, so we use the
stm construct to get a statement from an expression by discarding the value.?

The anonymous function ‘fn P => E’is mapped to abs(P', E"), which
gives static scopes for free occurrences of identifiers.

BAS has various sequence constructs. In the mapping of ML expression
sequences, two different sequence constructs are used: a sequence of any
number of statements, and a sequence consisting of a statement followed by
an expression. ML’s sequence of expressions can be seen as a sequence of
statements followed by an expression, because the values computed in the
first expressions are thrown away and only their side effects are preserved.
Thus we can map the sequence ‘(Ey; ...; E,_1; E,)’ to seq(seq(stm(E] )

. stm(E]_,)), ET). Notice that seq is overloaded, and used in two different
ways in this example.

Raising an exception is mapped to throw(E"). Handling exceptions ‘E;
handle P => F, is mapped to catch(E], abs(P", E, )), where we have used
abs to describe the function on the right-hand side, which will be applied to
the exception raised by E| .

The construct ‘(Ey, ..., FE,)’ has a trivial mapping to tuple-seq(E] ...
E), which implies left-to-right evaluation of subexpressions. ML does not
have tuples of size one: brackets around a single expression merely indicates

3Tt is of course not possible to eliminate the while construct by syntactic unfolding, as
the unfolding process would never terminate.

14



grouping, and can just be removed in the translation to BAS.

When mapping ML lists ‘[F;, ..., E,] toBAS, we use the data opera-
tion /ist, which maps a tuple value to a list value with the same elements. The
result is app(list, tuple-seq(E} , ..., E|)). An alternative mapping would be to
use the fact that, according to The Definition of Standard ML, ‘[E;, -
E, ]’ is a shorthand for ‘Ey::...::E,::nil’, where :: is the infix list con-
structor. We have already seen how we translate infix function application,
so we could iterate that to get app-seq(val(::), tuple-seq(E, app-seq(val(::), ...
app-seq(val(::), tuple-seq(E, list()))...))). The empty list nil is represented
by the value list().

Expressions with side-effects can be written using the data constructor
‘ref’, which computes an updatable reference to a value, and the infix op-
eration ‘:=", which can be used to update references. Both of them are part
of the Initial Basis of ML [18, App. D]. It is also possible to give action
semantic descriptions of these operations, but we shall omit the details here.

3.2 Patterns

The function used for mapping ML patterns to BAS parameters is named
pat2bas. The complete definition of it can be found in App. C.1. In this
subsection we will only elaborate on the subset of the mapping displayed in
Table 4.

_ — anon

C — C

I —  val-or-var(I)

(P, ..., P)) — tuple(P' .. P)

IP — app(val(I), P")

(P, ..., Pl — app(list, tuple(P ... P]))

Table 4: ML patterns to BAS mapping

) )

The simplest pattern ‘.’ is mapped to anon. Since the meaning of ‘_ is
that it matches all values, one might think that we could regard it as an
identifier which also matches all values; but this would generate a binding
from ‘_’ to the value, which is not the intention of this pattern.

In BAS, the sort of constants is a subsort of patterns, so a constant in the
concrete syntax is just mapped to the same constant. The identifier pattern

15



can either be a data constant bound to a value (like true or nil) or it can
be an identifier matching any value. This context-dependent interpretation
is represented by the construct val-or-var(I).

BAS also contains a tuple pattern tuple(P; ... P, ), which matches tuple
values, by matching each component in the tuple value against the pattern at
the same position in the tuple pattern, and joining the computed bindings.
The BAS tuple pattern is the obvious target of the ML tuple pattern.

The ML pattern ‘I P’ is mapped to app(val(I), P"). The construct app(FE,
P) matches values that can be obtained by applying the function computed
by E to an argument that matches P. The expression val was explained in
a previous subsection.

List patterns (Table 4) are very similar to list expressions (Table 3) when
mapped to BAS, since expressions construct values and patterns de-construct
them.

In ML, the order in which subpatterns constituting a pattern are matched
doesn’t matter, and therefore none of the BAS constructs used in this sub-
section insist on sequential evaluation.

3.3 Declarations

Appendix C.3 defines the function dec2bas, which maps declarations to BAS.
In this section we will give some illustrations of its definition. The illustra-
tions are listed in Table 5

val [ = E —  bind-val(val(l), ET)

fun [P = F —  rec(bind-val(var(I), abs(P", E")))

Dy ; Dy — accum(D{, D] )

local D; in Dy end — local(D{, D, )

datatype [=I; of T} simult-seq( bind-val(val(I,), new-cons)
| ... —
| I,, of T, bind-val(val(l,,), new-cons))

exception [ of T —  bind-val(val(I), new-cons)

Table 5: ML declarations to BAS mapping

The simple binding of a value to an identifier is a special case of the
construct ‘val P = FE’, where P ranges over patterns. This is mapped to
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bind-val(P", ET) with the semantics that E' is evaluated and then matched
against P' to create bindings.

Recursive functions in ML have the most complicated mapping to BAS
that we have encountered; this is especially visible in the mapping described
in App. C.3. The mapping of ‘fun /P = E’ can be found in Table 5, and it
contains some of the BAS constructs introduced previously, but also the new
construct rec(D ), which ensures that the bindings given by D are recursive.

A sequence of declarations ‘Dj;D,’ is directly mapped to accum(D;,
DJ ), which accumulates declarations while allowing the declarations in D,
to override the declarations in Dy .

Local declarations ‘local D; in D, end’ can also be translated directly
to a single BAS construct, namely local(D;, D, ). The semantics of local(D;,
D,) is that first the declarations generated by D; together with the previ-
ous declarations can be used in Dy, but the result is only the declarations
generated by Ds.

With respect to datatype declarations we are only interested in the data
constructors. The name of the constructor is bound to a fresh constructor
(new-cons) using bind-val. The bindings are collected using simult-seq, which
reflects that the declarations are independent and an identifier is only bound
once in a datatype declaration.

Exception declaration is similar to datatype declaration in that we are
only interested in the name of the exception, which is bound to a fresh
constructor (new-cons). We don’t see any reason to distinguish between
exception constructors and data constructors.

4 Action Semantics for Basic Abstract
Syntax

In this section we will describe the semantics of selected BAS constructs using
Action Semantics (AS). The rest of the constructs used in the description of
Core ML can be found in App. D. Table 6 gives an example of a BAS
construct and its mapping to an action.

As we have seen in the previous section we can describe ML constructs
using BAS constructs in a relatively brief and precise way. This section will
show that we can also give semantics to the BAS constructs in an uncompli-
cated but still formal way, by using AS. Giving an AS of every ML construct
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directly would make the description much more complicated, because the
BAS constructs allow us to decompose the ML constructs into simpler con-
structs, which are then described individually.

evaluate
local(
bind-val(val-or-var(x), 3),
cond(true, val(x), 5)

=

((furthermore
give the val 3)
then
((maybe
(check not (def(the cons bound-to the token x))
then
bind (the token x, the val)))
else
((maybe
check (val(the cons bound-to the token x)
= the val))
then
give no-bindings)))
scope
((give the val true
then
((maybe
check the boolean)
then
((maybe
. give val (the cons bound-to the token x))
else
give the val bound-to the token x))
else
give the val 5)

Table 6: Mapping BAS to AS

4.1 Action Semantics

When giving an action semantic description of a BAS construct we shall
use the Action Semantics Definition Formalism (ASDF). An ASDF module
describes a single language construct and consists of different sections. The
syntax section contains the abstract syntax of the construct. The requires
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section contains description of the data, data operations, variables etc. used
to write the semantic function. The semantic function, which maps the
construct to an action, is defined in the semantics section.

The actions in AS are written using Action Notation (AN [16, 21]*), a
notation resembling English but still strictly formal. Actions are constructed
from yielders, action constants and action combinators, where yielders again
consist of data, data operations and predicates.

The performance of an action might be seen as evaluation of a function
from data and bindings to data, with side effects like changing storage and
sending messages. The action combinators are different ways of combining
functions to obtain different kinds of control and data flow in the evaluation.
The evaluation can terminate in three different ways: normally (the perfor-
mance of the enclosing action continues normally), abruptly (the enclosing
action is skipped until the exception is handled) or failing (corresponding
to abandoning the current alternative of a choice and trying alternative ac-
tions). AN has actions to represent evaluation of expressions, declarations,
abstractions, manipulation of storage and communication between agents.
The yielders can be used to inspect and create data and bindings. In the
following we will introduce a considerable subset of AN, giving examples of
its use.

4.2 Expressions

For every syntactic sort we have a module introducing a variable ranging
over this sort, the signature of the semantic function mapping the sort to an
action and other things which are common to all the modules defining the
constructs belonging to this syntactic sort. Below is shown the module for
Exp.

Module 1 Exp
requires

E: Exp

4The new version of AN proposed in the two referenced papers has not yet been frozen,
and is a bit different from the one used in this paper, but the exact details of AN are not
important here.
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Datum ::= Val
semantics evaluate: Exp — Action

The module defines the semantic function evaluate and variables starting with
E to range over expressions. Furthermore values in Val are injected into the
sort Datum which is the sort describing items of data in AN.

The simplest expressions are constant values. The following module de-
scribes values as expressions.

Module 2 Exp/Val
syntax  Exp ::= Val
semantics evaluate V = give the val V

Values are a subsort of expressions and have a very simple mapping to AN.

The variable V' ranging over values is declared in the module Val, which is

automatically imported because the syntactic sort Val is used in this module.

We use the action constant result V, which gives the value V as its result.
Notice that we use the same notation for injecting one sort into another,

regardless of whether the sorts concerned are for abstract syntax or data.
The following module defines the val(l) construct:

Module 3 Exp/Val-ld-Const
syntax Exp ::= val(/de)
requires  Val ::= Cons
Cons ::= cons(val: val)
Bindable ::= Val
semantics evaluate val(/) =
maybe give val(the cons bound-to the token /)

else give the val bound-to the token /

Constructed data belongs to the sort Cons. The data operation val is used
to construct a value from constructed data. In the action the yielder the
cons bound-to / is used, which looks up the constructed data bound to / in
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the current bindings. It is the data operation the cons, which ensures that
I is bound to constructed data. The action constant give applies a yielder
to the given data. If / was bound to something not of sort Cons the give
action would terminate exceptionally and maybe and else makes sure that an
alternative is tried. The alternative is to try to give the value bound to /,
which might also terminate exceptionally, depending on the context.

The action becomes more complicated when we look at the app-seq con-
struct defined in this module:

Module 4 Exp/App-Seq

syntax  Exp ::= app-seq(Exp, Exp)

requires  Val ::= Func
func-no-apply : Val

semantics evaluate app-seq(E1,E2) =
evaluate E1 and-then
evaluate E2 then
((apply (action(the func#1), the val#2) then give the val)
else (throw func-no-apply))

In the requires section we make sure that functions and the special exception
value func-no-apply are included in values. Informally, the action in the se-
mantic function starts by evaluating EI and then evaluates E2. The action
combinator and-then concatenates the results of evaluating the two subac-
tions and the then combinator gives this result to the next action. Again we
see the use of the data operation the ds, where ds identifies a data sort; in
this case the func is used to ensure that E1 evaluates to an element of Func,
the sort of data used to represent function abstractions. The data operation
#n selects the nth component of a sequence of data items. The operation
action is a selector on the datatype Func, selecting the action to be enacted
when applying a function. The action constant apply is given an action (as
data) and a value, and the given value is passed to the enaction of the given
action. If apply fails, the else action combinator ensures that the alternative
action throw func-no-apply is performed so that the whole action terminates
exceptionally. If the application doesn’t fail, the result of the whole action
is just the result of the application.
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The result of applying a data constructor cons to a value val is the tagged
value tag(cons, val).

The semantics of the conditional expression is that a boolean expression
is evaluated to decide which one of two expressions should be evaluated and
give the result of the whole expression. The definition looks as follows.

Module 5 Exp/Cond
syntax  Exp ::= cond(Exp, Exp, Exp)
requires  Val ::= Boolean

semantics evaluate cond(E1, E2, E3) =
evaluate E1 then
maybe check the boolean
then evaluate E2
else evaluate E3

The first expression must evaluate to a boolean, so booleans should be in-
cluded in values; this is described in the requires section. The action constant
check Y evaluates the yielder Y with the given data, and if it evaluates to true
the action terminates normally, giving the input data; otherwise it terminates
exceptionally, giving no data. Combined with the maybe action combinator,
which fails when the action it is combined with terminates exceptionally, we
get the effect of checking whether EI evaluates to true or false. Connected
with the now familiar else action combinator, the result is a choice between
the evaluation of E1 and that of E2.

Declarations local to an expression are described using the local construct:

Module 6 Exp/Local
syntax  Exp ::= local(Dec, Exp)

semantics evaluate local(D, E) =
furthermore declare D scope evaluate E

Two new action combinators are introduced above. The prefix combinator
furthermore A performs the action A, which is supposed to compute bindings;
the result is the current bindings overridden by the computed bindings.> The

5The result of overriding bindings B; with bindings Bs is the union of By and the
bindings occurring in B; but not in Bs.
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infix combinator Al scope A2 performs Al, which is supposed to compute
bindings, and these are the bindings current when performing A2.

Abstractions involve two facets of AS: actions as data, and scopes of
bindings.

Module 7 Exp/Abs
syntax  Exp ::= abs(Par, Exp)
requires  Val ::= Func

semantics evaluate abs(P, E) =
give func(closure(furthermore match P scope evaluate E))

The abs construct uses functions so again they are required to be included in
values. When matching a parameter, bindings are generated and the action
combinator furthermore makes sure that they override the current bindings.
The resulting bindings become the current bindings when evaluating the ex-
pression because of the behaviour of the scope action combinator. This action
is used as data when a closure is computed and then the data constructor
func is applied to get a function before the result is given. We see that a
function consists of an action, which is the action being applied in the de-
scription of the app-seq expression. The use of furthermore and scope here
is similar to the way they are used in the description of the local construct,
which seems natural since the bindings generated by the parameters have
local scope.

We will skip the module defining the construct throw, because it doesn’t
introduce any new AN, and instead we will take a look at another module
concerned with exceptions.

Module 8 Exp/Catch
syntax  Exp ::= catch(Exp, Exp)
requires  Val ::= Func

semantics evaluate catch(El, E2) =
evaluate EI catch
(evaluate EZ and give the val
then apply (action(the func#1), the val#2)
else throw the val)
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The catch construct first evaluates the expression E1. If the evaluation ter-
minates exceptionally, the catch action combinator ensures that the data
thrown by EI is given to the function to which expression E2 evaluates. If
the function cannot be applied to the result, the result is thrown again.

4.3 Statements

Although ML doesn’t contain statements as such, some of its constructs
correspond closely to familiar kinds of statements, and we can define their
semantics by mapping them to BAS statement constructs such as the while
construct:

Module 9 Stm/While
syntax Stm ::= while(Exp, Stm)
requires  Val ::= Boolean

semantics execute while(E, S) =
unfolding (evaluate E then
maybe check the boolean then
execute S then unfold
else skip)

The iteration in the while construct is performed by the unfolding A and
unfold actions. The action constant unfold performs the action A of the
smallest enclosing occurrence of unfolding A.

4.4 Parameters

In ML patterns, an identifier can have two meanings: it can either be a
data constructor, which matches only the same constant value; or it can be
an ordinary identifier, which matches every value. The parameter construct
val-or-var catches both meanings, by simply trying each one of them.

Module 10 Par/Val-Or-Var
syntax Par ::= val-or-var(/de)

requires Val ::= Cons
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Cons ::= cons(val: val)
Bindable ::= Val

semantics match val-or-var(/) =
(given val(the cons bound-to the token /)
then give no-bindings)
else
bind(the token /, the val)

Constructed data belongs to the sort Cons, but we can construct a value
from constructed data using the data operation val. The construct val-or-
var(l) is mapped to an action that first checks whether / is not bound to a
data constructor and then binds / to the given value. Otherwise it compares
the given value with the constructor bound to I, using the action constant
given Y, which checks that the received data is equal to the data computed
by the yielder.

The following module contains the definition of the parameter construct
app which matches constructed values.

Module 11 Par/App
syntax Par ::= app(Exp, Par)
requires
Val ::= Func
PrefixDataOp ::= invert
semantics match app(E, P) =
give the val and
evaluate E then
maybe give invert(the func#2, the val#1)
then match P

The technique here is to use the data operation invert, which takes an invert-
ible function (such as a data constructor) and a value, and applies the inverse
of the function to the value. The result of this is then matched against the
parameter.
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4.5 Declarations

The simplest way of binding is matching a value against a parameter which
computes a set of bindings. This is described by the bind-val construct shown
below.

Module 12 Dec/Bind-Val
syntax Dec ::= bind-val(Par, Exp)

semantics declare bind-val(P, E) = evaluate E then match P

The construct is mapped to an action which first evaluates the expression
and then matches the parameter with the result.

More interesting is the construct simult-seq which describes simultaneous
sequential declarations.

Module 13 Dec/Simult-Seq
syntax Dec ::= simult-seq(Dec+)
semantics

declare simult-seq(D) = declare D

declare simult-seq(D D+) =
declare D and-then
declare simult-seq(D+) then
give disj-union

Two equations are used to define the semantics of the simult-seq construct. If
the sequence just consists of a single declaration, it just declares it, otherwise
it declares the first declaration in the sequence and then declares simultane-
ously the rest. Finally it computes the disjoint union of the bindings resulting
from the two recursive applications of the semantic function.

The construct rec(D) allows recursive declarations where the bindings
computed from D can be used in the functions and procedures declared in D.

Module 14 Dec/Rec
syntax Dec ::= rec(Dec)

semantics declare rec(D) = recursively declare D
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AN contains an action combinator that does exactly this, it is called recur-
sively.

When a sequence of declarations accumulates bindings while letting a
declaration redefine the previous declarations, one uses the accum construct
shown below.

Module 15 Dec/Accum
syntax Dec ::= accum(Dec+)
semantics

declare accum(D) = declare D

declare accum(D D+) = declare D before declare accum(D+)

The interesting part here is the new action combinator before, which takes the
bindings computed by the action on the left-hand side and lets the right-hand
side action use them before it overrides them with the bindings computed by
the right-hand side action.

5 Reusability

The foregoing sections have explained the overall organisation of a construc-
tive action semantics of Core ML, and illustrated the various parts of it. Let
us now assess the degree of reusability that we have obtained in the various
parts of it.

5.1 The Syntax of Core ML

We have chosen to start from the syntax for Core ML given in The Defini-
tion [18, App. B], reformulated as a grammar in SDF as shown in App. A.
Although The Definition interprets the grammar as abstract syntax in con-
nection with specifying the semantics of ML, the grammar is also used to
define the concrete syntax of ML, and involves not only (relative) priori-
ties but also rather more nonterminal symbols than one would expect in an
abstract syntax.

Starting from this grammar has both advantages and disadvantages. On
the positive side, we can give semantics directly to real program texts, parsed
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exactly as they would be by (conforming) implementations of ML. The
reformulation in SDF was not entirely trivial, but a lot less effort than it
would be to develop an alternative grammar for ML from scratch. One
drawback is that the grammar is somewhat larger than a typical grammar
for abstract syntax would be; another is that the various parts of it cannot
easily be reused in descriptions of other languages.

It is also worth noting that complete descriptions of languages inherently
involve concrete syntax, but are seldom given in connection with semantic
descriptions.

5.2 Mapping from Core ML to BAS

The complete mapping is specified in App. C, in ASF. Clearly, we need at
least one rule per Core ML construct, which almost entirely accounts for
the length of the specification. The individual rules are mostly very simple,
mapping an ML construct either directly to a BAS construct, or to a simple
combination of BAS constructs. We found the expansion of ‘fun’ declaration
given in The Definition [18, App. A] somewhat clumsy, so we use a simpler
translation, totally avoiding the need for creating ‘fresh’ variable identifiers.
The basic idea is illustrated in Table 7.

fun IPH...le = E1
| I Py...P = E,
=
val rec I = curry,, (fn (Pu, ..., Pin) => E

.
| (Pa, ..., Pun) => B,

where

curryy, = In f =>fnuv =>...=>fnv, => f(v,...,0)

Table 7: Expansion of ‘fun’ declarations

Although some of the rules look as if they could be reusable, it appears
to be more trouble than it is worth to make a separate module for each Core
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ML construct and the rule translating it to BAS.

It might be preferable to integrate the specification of the translation from
Core ML to BAS with that of the concrete syntax of Core ML, as can be
done using logic grammars in Prolog, and (less elegantly) in yacc grammars.
The simple translation from mixfix to prefix constructors available in SDF
grammars is clearly inadequate for our purposes, but we do not need the full
generality provided by ASF.

5.3 Action Semantics of BAS

The basis for our constructive action semantics of Core ML is the collection
of modules defining the action semantics of the individual BAS constructs.
Since each BAS construct has been designed to represent a single program-
ming feature, its action semantics is often significantly simpler than that
of typical Core ML constructs. Almost all the BAS constructs are highly
reusable, and not biased or specific to representation of Core ML constructs.
In particular, we are able to reuse constructs concerning statements in con-
nection with describing ML’s sequencing and while-expressions (by exploiting
constructs for obtaining statements from expressions and vice versa).

The main exception concerns nested parameters, used to represent ML’s
patterns: other languages will most likely involve tuples only of variable
identifiers, rather than the tuples of arbitrary parameters provided here.
However, inspection of the module concerned indicates that little would be
gained by specialising it: the recursive call of the semantic function ‘match’
on a sub-parameter, together with the separate definition of ‘match’ on a
single identifier, are just as simple (if not simpler) than combining them
both in the same equation.

One construct that has been added to BAS specifically in connection
with ML is the parameter ‘val-or-var(/)’. An occurrence of an identifier as
a parameter of a function abstraction is interpreted as a constant if the
identifier is itself a data constructor (such as ‘nil’), otherwise it is interpreted
as a variable — even if it is already bound as a variable to the value of a
data constructor. The (context-free) concrete syntax gives no hint about
which interpretation is intended, so we are forced to map the identifier to
a construct which admits both interpretations. We are not aware of other
languages that would require use of this BAS construct. The need to extend
BAS with a construct to be used only in connection with one language (or
family of related languages) indicates that the language concerned has an
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unusual feature; whether that feature represents an unusually clever bit of
language design, or an atypically poor one, is left open.

It should be stressed that BAS is at an early stage of development, and
that the notation used for sorts and constructors may not become stable
until further major case studies have been completed (e.g., significant sub-
languages of C and Java, and the extension of the present case study to ML
modules and to Concurrent ML). However, our translation from Core ML
to BAS does not appear to be particularly sensitive to minor adjustments in
the intended interpretation of BAS constructs. Changes to the spelling of
symbols would of course require global editing, but that can be automated.
More work might be required in connection with the introduction of subsorts
or supersorts of the existing sorts of constructs. For instance, a potential
refinement of BAS would be to take account of whether the execution of a
construct might ‘fail’ or not (where failure is always to lead to an alternative,
and ultimately to an infallible alternative). This would allow the description
of the ‘alt-seq’ construct to be simplified, but it might also require changes
to some of the other rules in the translation.

6 Environment

The ASF+SDF specification of Core ML found in Apps. A, B, and C has
been developed using the ASF+SDF Meta-Environment (ME) [5, 6]. Among
some of the key features of the ME are:

e visualisation of the import relation between the open modules as a
graph;

e visualisation of the hierarchical structure of the module names as an
expandable tree;

e syntax directed editing of ASF+SDF modules and terms;
e parsing and rewriting terms over modules;
e the ability to export parse tables and equation files; and

e representing the syntax and semantics of the specified language for use
with command line tools.
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In Sect. 4 we have seen examples of BAS constructs defined using ASDF,
our Action Semantics Definition Formalism. For working with the ASDF
modules we used the Action Environment (AE) [1], a new extension of the
ME, which was developed by Iversen.

The extensibility of the ME allowed us to add an extra layer that supports
ASDF modules on top of the ME. This layer provides a mapping from ASDF
modules to ASF+SDF modules. By using this approach, it was easy for us to
implement most of the functionality of the ME (including the features men-
tioned in the list above). For the user, the only visible difference between the
two environments is the meta-notation used to define the language modules,
and minor changes to the menus.

The ME is a set of tools connected using the ToolBus. Connecting a
tool to the ToolBus is done using ToolBus scripts, and the ME consists
of approximately 6800 lines of ToolBus scripts. The ASDF layer in the AE
consists of approximately 1400 lines of ToolBus scripts, an extension of about
20 % measured in lines of ToolBus script. But the ASDF layer also consists
of an ASDF parse-table and various tools.

A screen dump of the AE is shown in Fig. 1. Notice the graph illus-
trating the import relations between the modules on the right side, and the
expandable tree of hierarchical module names on the left side.

When giving a semantic description of a language, the user would typi-
cally start by deciding which language constructs are present in the core of
the language, and which BAS modules can be used to describe these con-
structs. The designer then creates a new module in the AE that imports all
of these modules from the library. Now he can work with terms composed
of the BAS constructs by parsing them and mapping them into actions, by
opening a term editor over the new module. The mapping is described in the
semantic sections of the imported modules. In the near future he will also be
able to evaluate the terms when we integrate an existing action evaluator [22]
into the AE. Incrementally the language designer will add more constructs
to the language, and perhaps even need to design new BAS constructs. He
does so by creating a new module in the AE and use the syntax directed
editor to write the new BAS construct and immediately have the ASDF syn-
tax checked. Using the integrated type checker, he can also check that the
semantic function has the expected type (the type checker is very liberal but
gives the designer valuable hints about the validity of the semantic function).
As the language grows the graph over the imported modules, and the tree
containing the hierarchically structured module names, helps the language
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designer to retain an overview of the description.

Combining the ME and the AE gives us tool support for mapping the con-
crete syntax of a language (for instance ML) to actions. Future plans involves
improving the AE such that one can also work with ASF+SDF modules in it,
thereby providing support for both the description of the concrete syntax and
the semantics in the environment. We also plan to integrate different tools
into the AE. An action compiler will turn the environment into a compiler
generator. All in all, the AE combined with other tools will surely provide
a particularly useful environment for developing semantic descriptions and
documenting the design of programming languages.

7 Related Work

Watt [23] reported on a previous case study concerning the use of Action
Semantics to describe ML, covering both the static and dynamic semantics
of Core ML, and the dynamic semantics of MLL modules. He also compared
his description with The Definition of Standard ML [18]. One of the con-
tributions of our present case study is to show how part of his description
might look when refactored in the constructive style.

We have not attempted to give a reformulation of Watt’s static semantics
of Core ML in our constructive style. This is partly because the use of action
semantics for specifying static semantics is unorthodox, and not well-known.
In general, we would expect to be able to use the same expansion to BAS
for both the static and the dynamic semantics, except that types have to
be retained in the former, which necessitates a few extra BAS constructs.
Of course, the action semantics of most BAS constructs is quite different for
their static and dynamic semantics; but their overall organisation is identical.

To extend our dynamic action semantics of Core ML to describe also the
semantics of ML modules would require augmenting BAS with constructs
that represent the visibility of bindings in signature and structure declara-
tions, as well as sharing relationships. This is left as an interesting topic for
future work, since our aim here is not to cover a full-scale language in full
detail, but rather to illustrate our basic approach on a sizable collection of
realistic constructs.

In Table 8 we have illustrated the parts of Watts description that de-
scribe the semantics of the ‘if-then-else’ expression and compared it to the
Exp/Cond BAS module. The main difference is the syntax part of the de-
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scriptions and the overall structure of the descriptions. It is clear that Watts
description does not have the same degree of modularity as ours.

Grammar

Expression = ...
| “if” Expression “then” Expression “else” Expression

Semantic functions

evaluate (“if" E1 : Expression “then” E2 : Expression “else” E3 : Expression) =
evaluate E1 then
( (check (the given value is the boolean of true)
then evaluate E2)
or
(check (the given value is the boolean of false)
then evaluate E3)

)

Semantic entities

value =... | boolean | ...

Module 16 Exp/Cond
syntax  Exp ::= cond(Exp, Exp, Exp)
requires  Val ::= Boolean

semantics evaluate cond(E1, E2, E3) =
evaluate E1 then
maybe check the boolean
then evaluate E2
else evaluate E3

Table 8: Watts and our description of the conditional expression

It is difficult to compare the size of Watts ML description [23] and our
description due to the structural differences. Watts description has a direct
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mapping from ML syntax to AS, whereas ours contains both a mapping
from ML syntax to BAS and from BAS to AS. This increases the size of
our description. On the other hand reusing the BAS constructs many times
reduces the size of our description.

Doh and Mosses [21] introduced the main ideas of constructive action
semantics, and proposed changing the modular structure of action seman-
tic descriptions accordingly. They gave illustrations of descriptions of fa-
miliar individual constructs, and showed how some idealised programming
languages could be composed by importing the modules for the required con-
structs; here, we illustrate the composition of a real language, Core ML. The
modules that they gave were written directly in ASF+SDF [19, 20]; in con-
trast, we provide ASDF an Action Semantics Definition Formalism, designed
specifically for use in giving action semantic descriptions of individual con-
structs, avoiding the many tedious keywords, tiresome definition of variables
and lists of ‘obvious’ imports that were required when using ASF+SDF| and
we have implemented our meta-notation in the Action Environment, built
on the ASF+SDF Meta-Environment [5, 6]. The modules in Table 9 shows
ASDF and ASF+SDF modules used to specify the same construct.

In both the studies cited above, abstract syntax was deliberately very
close to concrete syntax, using keywords and symbols from programs in the
described language to distinguish between abstract constructs. Here, we
propose a neutral Basic Abstract Syntax, BAS, and specify a mapping from
concrete syntax to BAS, in the interests of increased reusability when de-
scribing languages having significantly different concrete syntax for the same
abstract constructs.

8 Conclusion

In this paper, we have presented a case study of the use of Constructive Ac-
tion Semantics. The case study demonstrates that an action semantics for a
real language, Core ML, can be based on reusable action semantic descrip-
tions of individual language features. The language features were taken from
BAS, our Basic Abstract Syntax, but our approach is quite general, and does
not depend on the exact choice of BAS constructs, nor on the details of their
action semantics.

We have used SDF to specify the syntax of Core ML and BAS, and ASF
to specify the translation from Core ML to BAS. We have introduced a new
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Type of ASDF ASF+SDF
module
module M
imports S1 S2 S3
module M
exports
requires
sorts S2
. vV :Ss1
Semantic context-free syntax
. S2 ::= 83
function ] s3 -> 82
semantics f S1 -> Action
f: S1 -> Action variables
"y"[1-9]7 -> S1
llvll [1_9]?"*" _> Sl*
module M
module M
imports S1 82 ... Sk Sm Sn
syntax
exports
S1 ::= c(82,
. . context-free syntax
Semantlc requires
t. s g c(s2, ..., Sk) -> S1
m ::= n
equations n > sn
semantics
equations
[T £fc(Vl, ..., Vk) = A
[T fc(Vl, ..., Vk) = A

Table 9: Comparing ASDF with ASF+SDF modules
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formalism, ASDF (Action Semantics Definition Formalism), to eliminate the
many tedious keywords and imports that are needed when using ASF+SDF
directly for the specification of the action semantics of the individual BAS
constructs.

Our long-term goals are to provide:

e a stable (but open-ended) library of reusable action semantic descrip-
tions of BAS constructs, supporting constructive action semantics of
all major programming languages, and

e an enhanced Action Environment, supporting realistic compiler gen-
eration from constructive action semantic descriptions, as well as the
development, checking, and prototyping of the latter.

In the short-term, we will develop further case studies, extending and refining
BAS as required.

Much work will be needed to accomplish the above goals. Readers in-
terested in particular topics are invited to contact the authors regarding
possibilities for cooperation.

References

[1] M. G. J. van den Brand, J. Iversen, and P. D. Mosses. An action
environment. In LDTA 2004, 2004.

[2] The SML/NJ Fellowship. Standard ML. http://www.smlnj.org/sml.
html.

[3] Jan Heering and Paul Klint. Semantics of programming languages: A
tool-oriented approach. ACM SIGPLAN Notices, March 2000.

[4] David A. Watt. Why don’t programming language designers use formal
methods? In R. Barros, editor, Anais XXIII Semindrio Integrado de
Software e Hardware, pages 1-16. Universidade Federal de Pernambuco,
Recife, Brazil, 1996.

[5] M. G. J. van den Brand, A. van Deursen, J. Heering, H. A. de Jong,
M. de Jonge, T. Kuipers, P. Klint, L. Moonen, P. A. Olivier,
J. Scheerder, J. J. Vinju, E. Visser, and J. Visser. The ASF+SDF Meta-
Environment: A component-based language development environment.

37



[13]

[14]

In R. Wilhelm, editor, Compiler Construction, 10th International Con-
ference, C'C 2001, Genova, Italy, Proceedings, LNCS Vol. 2027, pages
365-370. Springer, 2001.

Mark G. J. van den Brand and Paul Klint. ASF+SDF Meta-Environment
User Manual, 2003. http://www.cwi.nl/projects/MetaEnv/meta/
doc/manual.ps.gz.

John H. Reppy. Concurrent Programming in ML. Cambridge University
Press, 1999.

Peter D. Mosses and David A. Watt. The use of action semantics.
In Formal Description of Programming Concepts III, Proc. IFIP TC2
Working Conference, GI. Avernes, 1986, pages 135-166. North-Holland,
1987.

David A. Watt. Programming Language Syntax and Semantics. Prentice-
Hall, 1991.

Peter D. Mosses. Action Semantics. Cambridge Tracts in Theoretical
Computer Science 26. Cambridge University Press, 1992.

Peter D. Mosses, editor. AS’9/, 1st Intl. Workshop on Action Semantics,
Edinburgh, Proceedings, BRICS NS-94-1. Dept. of Computer Science,
Univ. of Aarhus, 1994.

Peter D. Mosses. A tutorial on action semantics. Technical Report
BRICS NS-96-14, Dept. of Computer Science, Univ. of Aarhus, 1996.
Tutorial notes for FME’94 (Formal Methods Europe, Barcelona, 1994)
and FME’96 (Formal Methods Europe, Oxford, 1996).

Peter D. Mosses. Theory and practice of action semantics. In MFCS
96, 21st Int. Symp. on Mathematical Foundations of Computer Science,
Cracow, Poland, Proceedings, LNCS Vol. 1113, pages 37—61. Springer,
1996.

Peter D. Mosses and David A. Watt, editors. AS799, 2nd International
Workshop on Action Semantics, Amsterdam, The Netherlands, Proceed-
ings, BRICS NS-99-3. Dept. of Computer Science, Univ. of Aarhus, 1999.

38



[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Peter D. Mosses and Hermano Moura, editors. AS 2000, 3rd Inter-
national Workshop on Action Semantics, Recife, Brazil, Proceedings,
BRICS NS-00-6. Dept. of Computer Science, Univ. of Aarhus, 2000.

Sgren B. Lassen, Peter D. Mosses, and David A. Watt. An introduction
to AN-2, the proposed new version of Action Notation. In Mosses and
Moura [15], pages 19-36.

Peter D. Mosses, editor. AS 2002, 4th International Workshop on Action
Semantics, Copenhagen, Denmark, Proceedings, BRICS NS-02-8. Dept.
of Computer Science, Univ. of Aarhus, 2002.

Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The
Definition of Standard ML (Revised). The MIT Press, 1997.

Jan A. Bergstra, Jan Heering, and Paul Klint, editors. Algebraic Speci-
fication. ACM Press Frontier Series. Addison-Wesley, 1989.

Arie van Deursen, Jan Heering, and Paul Klint, editors. Language Pro-
totyping: An Algebraic Specification Approach. AMAST Series in Com-
puting Vol. 5. World Scientific, 1996.

Kyung-Goo Doh and Peter D. Mosses. Composing programming lan-
guages by combining action-semantics modules. Science of Computer
Programming, 47(1):3-36, 2003.

Tijs van der Storm. An-2 tools. In AS 2002, pages 23-42. BRICS,
December 2002.

David A. Watt. The static and dynamic semantics of SML. In Mosses
and Watt [14].

39



A The syntax of core ML

SDF, the Syntax Definition Formalism [19, 20] is developed at CWI® and it
allows all context-free grammars. An SDF specification consists of a set of
modules, each defining parts of the full syntax. A module can use syntactic
sorts (nonterminals) defined in other modules by importing these modules.
In SDF context-free and lexical syntax is mixed. Table 10 shows an example
of a small module named FEzpressions, which imports the modules Integers
and Identifiers and defines the syntactic sort Fxp. Notice that SDF uses an
uncommon notation in production rules: instead of the usual ::= operation
it uses — with the sort being defined on the right-hand side. The defining
part of a production rule can contain lexical syntax ("+"), sorts (Fzp) and
regular expressions ({Ezp "," }*, a comma separated sequence of Fzp’s).
To resolve ambiguities, SDF lets the user define associativity after production
rules ({left}) and priorities in the “context-free priorities” section (examples
of this can be found in App. A.1).

module Fzxpressions
imports Integers Identifiers
exports

sorts Fxp

context-free syntax

Identifier — Ezxpression

Integer — FExpression

Ezpression "+" Expression — FExpression {left}
" (" {Expression "," }x ")" — Expression

Table 10: SDF example

For readability we have used longer names in this appendix for the syn-
tactic sorts introduced in Sect. 2. We use Valueld instead of IDE, Constant
instead of CON, FExpression instead of EXP, Pattern instead of PAT, Dec-
laration instead of DEC and Type instead of T'YP.

Shttp://www.cwi.nl
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A.1 Expressions
module Ezxpressions
imports

Constants
Identifiers
Patterns
Declarations

exports
sorts

Ezxpression AtomicExp InfitExp ApplicationExp ErpRow
SingleExpRow Match MatchRule

context-free syntax

%% Atomic Expressions

Constant —  AtomicExp
“op”? LongValueld —  AtomicExp
“{” EzpRow? “}Y  —  AtomicExp
“#” Label —  AtomicExp
“(77 “)77 — AtOmZCEZEp
“(” Expression “)"  —  AtomicExp

“(” Ezpression “)” { Expression ) }+ )7 —  AtomicExp
“[” { Expression “ }* «]” —  AtomicEzp
“(” Ezpression “” { Expression “ }+ )7 —  AtomicExp
“let” Declaration “in” { Ezpression “;” }+ “end” —  AtomicExp

Label “=" FExpression —  SingleErpRow
{ SingleExpRow “)” }+ — EzpRow

%% Application Expression

AtomicExp —  ApplicationExp
ApplicationExp AtomicExp —  ApplicationExp

%% Infix Expression
ApplicationExp —  InfixExp
%% Expressions
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InfixExp

FExpression “” Type

FEzxpression “andalso” Ezxpression
FExpression “orelse” Expression
Expression “handle” Maitch

“raise” FExpression

“if” Expression “then” Fxpression “else” FExpression

“while” Fzxpression “do” Ezxpression
“case” Expression “of” Match
“fn” Match

%% Match
{ MatchRule “|” }+

Pattern “=>” Expression
context-free priorities

{InfizExp

FExpression Type

{ Ezxpression “andalso” Expression

{ Expression “orelse” Ezpression

{ Expression “handle” Match

{“raise” Expression

“if” Expression “then” FExpression
“else” Expression

“while” FExpression “do” FEzxpression

“case” FExpression “of” Match

“fn” Match

(1%

hiddens sorts

W

{ Expression *,

@,

+ { Expression

L Ll

—  Match
—  MatchRule

FExpression
FExpression

Expression {left}
Ezpression {left}

FExpression
Expression

A A A

Ll

H
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Ezpression} >
Ezxpression} >
Ezpression} >
Ezpression} >

Expression

Expression
FExpression
Expression
Ezxpression}

FExpression
FExpression
Expression
FExpression



A.2 Patterns

module Patterns
imports

Types
Identifiers
Constants

exports
sorts

Pattern AtomicPattern SinglePatternRow PatternRow
context-free syntax

%% Atomic pattern

“r —  AtomicPattern
Constant —  AtomicPattern
“op”? LongValueld —  AtomicPattern
“{” PatternRow? “}" —  AtomicPattern
“r oy —  AtomicPattern

“(” Pattern “) { Pattern “” }+ “)” —  AtomicPattern
“I” { Pattern “ }* «]” —  AtomicPattern
“(” Pattern “)” —  AtomicPattern

%% Pattern row

“. —  SinglePatternRow
Label “=" Pattern —  SinglePatternRow
Valueld (“7 Type)? (“as” Pattern)? —  SinglePatternRow
{ SinglePatternRow “)” }+ —  PatternRow
%% Pattern
AtomicPattern —  Pattern
“op”? LongValueld AtomicPattern —  Pattern
Pattern Valueld Pattern —  Pattern
Pattern " Type —  Pattern
“op”? Valueld (*" Type)? “as” Pattern —  Pattern
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A.3 Declarations
module Declarations
imports

FExpressions
Patterns

exports
sorts

Declaration SingleFExrcBinding FxcBinding SingleConsBinding
ConsBinding SingleDataBinding DataBinding Single Type Binding
TypeBinding SingleFun ValueBindingBar SingleFun ValueBinding
FunValueBinding Single ValueBinding ValueBinding

Type VarSequence

context-free syntax

%% Declarations

“val” TypeVarSequence ValueBinding —  Declaration
“fun” TypeVarSequence FunValueBinding —  Declaration
“type” TypeBinding —  Declaration

“datatype” DataBinding ( “withtype” TypeBinding )7 —  Declaration

[43 7

“datatype” TypeConstructor “=

“datatype” LongTypeConstructor —  Declaration
“abstype” DataBinding ( “withtype” TypeBinding )?

“with” Declaration “end” —  Declaration
“exception” EzcBinding —  Declaration
“local” Declaration “in” Declaration “end” —  Declaration
“open” LongStringld* —  Declaration
Declaration “”? Declaration —  Declaration {left}
“infix” Digit? Valueld+ —  Declaration
“infixr” Digit? Valueld+ —  Declaration
“nonfix” Valueld+ —  Declaration

%% Value Binding

Pattern “=" Expression —  SingleValueBinding
Single Value Binding —  ValueBinding
Single ValueBinding “and” ValueBinding —  ValueBinding
“rec” ValueBinding —  ValueBinding
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%% Function Value Binding

“op”? Valueld AtomicPattern+
(“” Type)? “=" Expression —  SingleFunValueBinding

SingleFun ValueBinding —  SingleFunValueBindingBar
SingleFun ValueBinding “|”

SingleFun ValueBindingBar —  SingleFunValueBindingBar
SingleFun ValueBindingBar —  FunValueBinding

SingleFun ValueBindingBar “and”
FunValueBinding —  FunValueBinding

%% Type Binding

Type VarSequence TypeConstructor “=" Type —  SingleTypeBinding
{ SingleTypeBinding “and” }+ —  TypeBinding

%% Data Binding

Type VarSequence TypeConstructor

“=" ConsBinding —  SingleDataBinding
SingleDataBinding —  DataBinding
SingleDataBinding “and” DataBinding —  DataBinding

%% Constructor Binding

“op”? Valueld (“of” Type)? —  SingleConsBinding
SingleConsBinding —  ConsBinding
SingleConsBinding “|” ConsBinding —  ConsBinding

%% Exception Binding

“op”? Valueld (“of” Type)? —  SingleFEzcBinding
“op”? Valueld “=" “op”? LongValueld — SingleExcBinding
SingleErcBinding —  FExcBinding
SingleBrcBinding “and” ExcBinding —  FExcBinding

%% Type variable sequence
Type Variable? —  TypeVarSequence

“” { TypeVariable “” }+ “)”  —  TypeVarSequence
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A.4 Types
module Types

imports
Identifiers
exports
sorts
Type TypeRow SingleTypeRow TypeSequence

context-free syntax

%% Types
Type Variable —  Type
“{” TypeRow? “}” —  Type
TypeSequence LongTypeConstructor —  Type {avoid}
Type “*” Type —  Type {left}
Type “->" Type —  Type {left}
“(77 Type “)77 — CZ"?Jp6

%% Type row
Label " Type —  SingleTypeRow

{ SingleTypeRow “) }+ — TypeRow
%% Type sequence

Type? —  TypeSequence
“" { Type « Y+ )"  —  TypeSequence

context-free priorities
%% Priorities

{ TypeSequence LongTypeConstructor —  Type } >
{ Type “*” Type —  Type } >
{ Type “->" Type —  Type }
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B SDF specification of BAS constructs

module BAS

imports
Layout
Identifiers
Constants

exports
sorts

Val Exp Stm Dec Pat
context-free syntax

%% Values

Con —  Val
label —  Val
list() —  Val
list —  Val
false —  Val
true —  Val
null-val —  Val
new-cons —  Val

%% Expressions

Val —  Exp
val(Ide) —  Exp
app-seq(Ezp, Exp) —  Exp
tuple-seq( Exp*) —  FExp
cond(Exp, Exp, Exp) — Exp
abs(Par, Exp) —  FExp
alt-seq( Exp™*) —  FExp
seq(Stm, Exp) —  FEmp
throw (Exp) —  Exp
catch(Ezxp, Exp) —  Emp
local(Dec, Exp) —  FExp
%% Statements
stm(Exp) —  Stm

while(Exp, Stm) —  Stm

%% Parameters
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Val

anon
val-or-var(Ide)
var(Ide)
app(Ezp, Par)
tuple(Par*)
simult(Par*)

I

%% Declarations

bind-val(Par, Exp)
simult-seq( Dec™*)
rec(Dec)
local(Dec, Dec)
accum(Dec*)
“ignore”

Par
Par
Par
Par
Par
Par
Par

Ll

Dec
Dec
Dec
Dec
Dec
Dec

48



C Mapping ML to BAS

ASF [19, 20] is essentially rewrite rules. The rules are defined using condi-
tional equations as illustrated here

[if-true] eval(EX1) = true
eval(if EX1 then EX2 else EX3) = eval(EX2)

In the example we describe a function eval that evaluates expressions,
in this case the conditional expression. The equation starts with a tag
[if-true] naming the equation. If the tag starts with default it means
that the ASF evaluator should try all non-default rules before trying this
one. Above the line we have a condition, so in the case where eval(EX1)
can be rewritten to true we can rewrite the conditional to the evaluation
of the expression in the left branch. Notice that the equations can contain
variables (in this case they are capitalised) ranging over syntax trees (in this
case Expressions). Sometimes one also use the keyword when to separate
the condition from the rule in conditional equations.

C.1 Expressions

In the mapping of expressions to BAS some auxiliary functions are used.
getlabels and getexps are used to construct a tuple of labels and a tuple of
expressions from a ML record. label is a data operation used to construct
record values, it is applied to a tuple of labels and result is then applied
to a tuple of expressions. When mapping the operation ‘#" an identifier not
included in the set of ML identifiers but included in the set of BAS identifiers
is needed, special provides this identifier. The function expcast is used when
an expression is injected into some syntactic sort, for instance the singleton
comma separated expression list.

The following list shows the signatures of the functions used in the map-
ping to BAS.

exp2bas : Ezpression — Fxp

exp2bas . { Expression”) }+ — Erp*
explist2bas: { Expression ”) }+ — Exp
expcast . Fapression — Fxp

expbas . { Expression”;’ }+ — Exp
getlabels :  { SingleExpRow 7, }+ — Exp*
getexps :  { SingleExpRow 7, }+ — Exp*

match2bas: Match — FExp
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The following list shows the variables used in the mapping to BAS and
the syntactic sorts they range over. A number can be appended to a variable
to distinguish between several occurrences of the same syntactic sort in a
construct.

c : Constant op? . Top’?
I . LongValueld AE :  AtomicExp
EX : [Ezpression ER : { SingleExpRow ") }+
SER : SingleExpRow EC . { Ezpression”,) }+
ES . { Expression”;” }+ L . Label
D . Declaration EF . ApplicationEzp
T : Type M . Match
MR : MatchRule MP . { MatchRule”|” }+
P . Pattern
equations

[constant-1] exp2bas(C) = C
[value-id-1] exp2bas(op? I) = val(I)
[record-1] exp2bas({ }) = app-seq(app-seq(label, null-val), null-val)

[record-2] ezp2bas({ ER }) =
app-seq(app-seq(label, tuple-seq(getlabels (ER))), tuple-seq(getezps (ER)))

[get-labels-1] getlabels(L = EX) = val(L)

[get-labels-2] getlabels(SER, ER) = getlabels (SER) getlabels (ER)
[get-exps-1] getexps(L = EX) = exp2bas(EX)

[get-exps-2] getexps(SER, ER) = getexps(SER) getexps(ER)

[klaf-label-1] exzpZbas(# L) =
abs (pat2bas ({L = newid, ...}), val(newid))

[tuple-11 exp2bas((EX, EC)) = tuple-seq(exp2bas(EX, EC))
[tuple-2] exp2bas(()) = null-val
[tuple-3] explbas(EX, EC) = exp2bas(EX) exp2bas(EC)

[tuple-4] exp2bas(EC) = expcast(EX) when EX = EC
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[tuple-5] expcast(EX) = exp2bas(EX)

[bracket-1] exp2bas((EX)) = exp2bas(EX)

[1ist-1] ezp2bas([1) = list()

[1ist-2] exp2bas([EC]) = app-seq(list, tuple-seq(exp2bas(EC)))
[seq-1] exp2bas((EX ; ES)) = seq(stm(exp2bas(EX)), exp2bas(ES))
[seq-2]1 expZbas(EX ; ES) = seq(stm(exp2bas(EX)), exp2bas(ES))
[seq-3] exp2bas(ES) = expcast(EX) when ES = EX

[let-1] exp2bas(let D in ES end) = local (dec2bas(D), exp2bas(ES))
[app-seq-1] exp2bas(EF AE) = app-seq(exp2bas(EF), exp2bas(AE))
[type-1] exp2bas(EX : T) = exp2bas(EX)

[andalso-1] exp2bas(FEX1 andalso FX2) =
cond Cexp2bas (EX1), exp2bas(EX2), false)

[orelse-1] exp2bas(EX1 orelse EX2) =
cond Cexp2bas (EX1), true, exp2bas(EX2))

[handle-1] exp2bas(EX handle M) = catch(exp2bas(EX), match2bas(M))
[raise-1] expZbas(raise EX) = throw (exp2bas(EX))

[if-1] exp2bas(if EX1 then EX2 else EX3) =
cond Cexp2bas (EX1), exp2bas(EX2), exp2bas(EXS3))

[while-1] exp2bas(while EXI1 do EX2) =
seq (while (exp2bas (EX1), stm(exp2bas(EX2))), null-val)

[case-1] exp2bas(case EX of M) = app-seq(match2bas(M), exp2bas(EX))
[fn-1] exp2bas(fn M) = match2bas (M)
[match-1] match2bas(P => EX) = abs(pat2bas(P), exp2bas(FEX))

[match-2] match2bas(MR | MP) = alt-seq(match2bas(MR) match2bas(MP))
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C.2 Patterns

As in the translation of record expressions we also use auxiliary functions
when mapping ML record patterns.

The following list shows the signatures of the functions used in the map-
ping to BAS.

pat2bas :  Pattern — Par

getlabels:  { SinglePatternRow 7 }+ — Exp*
getpatts . { SinglePatternRow ”)” }4+ — Par*
pat2bas = { Pattern”) }+ — Par*

pat2bas :  AtomicPattern+ — Par*

patcast :  Pattern — Par

The following list shows the variables used in the mapping to BAS and
the syntactic sorts they range over.

PA : Pattern c . Constant
LI . LongValueld I : Valueld
PR . { SinglePatternRow “” }+ SPR  : SinglePatternRow
L . Label T i Type
pPC . { Pattern “) }+ "op?” : Top”’?
AP . AtomicPattern APS : AtomicPattern+
CTY? . (%7 Type)?
equations

[anon-1] pat2bas(_) = anon

[constant-1] pat2bas(C) = C

[id-1] pat2bas(op? LI) = val-or-var(LI)

[record-1] pat2bas({ }) = app(app-seq(label, null-val), null-val)

[record-2] pat2bas({ PR }) =
app (app-seq (label, tuple-seq(getlabels (PR))), tuple(getpatts (PR)))

[get-labels-1] getlabels(L = PA) = val(L)
[get-labels-2] getlabels(...) = val(label(".""."". "))
[get-labels-3al getlabels(I CTY? as PA) = val(I)

[get-labels-3bl getlabels(I CTY?) = val(l)
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[get-labels-4] getlabels (SPR, PR) = getlabels (SPR) getlabels (PR)
[get-patts-1] getpatts(L = PA) = pat2bas(PA)
[get-patts-2] getpatts(...) = anon

[get-patts-3al] getpatts(I CTY? as PA) = patlbas(I CTY? as PA)

[get-patts-3b] getpatts(I CTY?) val-or-var (I)

[get-patts-4] getpatts(SPR, PR)

getpatts (SPR) getpatts (PR)
[tuple-1] pat2bas(()) = null-val

[tuple-2] pat2bas((PA, PC)) =
tuple (pat2bas (PA, PC))

[tuple-3] pat2bas(PA, PC) = pat2bas(PA) pat2bas(PC)

[tuple-4] pat2bas(PC) = patcast(PA) when PC = PA

[tuple-5] patcast (PA) = pat2bas(PA)

[1ist-1] patlist2bas() = list()

[1ist-2] pat2bas([PC1) = app(list, tuple(pat2bas(PC)))
[brackets-1] pat2bas((PA)) = pat2bas(PA)

[constructor-11 pat2bas(op? LI AP1) = app(val(LI), pat2bas(AP1))

[infix-1] pat2bas(PA1 I PA2) =
app(val (I), tuple(pat2bas(PA1) pat2bas(PA2)))

[type-1] pat2bas(PA : T) = pat2bas(PA)

[as-1] pat2bas(op? I CTY? as PA) =
simult Cval-or-var (I) pat2bas (PA))

[pat-seq-1] pat2bas(AP1 APS) = pat2bas(AP1) pat2bas(APS)
[pat-seq-2] pat2bas(APS) = patcast(AP1) when APS = API

[cast-1] patcast (PA) = pat2bas(PA)
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C.3 Declarations

In connection with the mapping of function declarations a lot of auxiliary
functions are used to make a tuple of fresh identifiers (make-id-tuple), a chain
of anonymous functions (make-fn-chain) and constructing the right match
(get-match and set-match). The lexical constructors valueid and natcon
are used to construct identifiers named ‘vid_i’, where ¢ is a positive integer.
For more information about the mapping of function declarations consult
Sect. 3.3

The following list shows the signatures of the functions used in the map-
ping to BAS.

dec2bas : Declaration — Dec

dec2bas : ValueBinding — Dec

dec2bas :  SingleFunValueBinding — Dec
dec2bas . SingleFunValueBindingBar — Dec
dec2bas : FunValueBinding — Dec

deccast :  SingleFunValueBindingBar — Dec
deccast :  SingleFunValueBinding — Dec
dec2bas : TypeBinding — Dec

dec2bas : SingleTypeBinding — Dec

deccast .  SingleTypeBinding — Dec

dec2bas : DataBinding — Dec

dec2bas . ConsBinding — Dec

deccast . SingleDataBinding — Dec

dec2bas : SingleConsBinding — Dec

deccast . SingleConsBinding — Dec
dec2bas : EzcBinding — Dec

dec2bas : SingleErcBinding — Dec

deccast . SingleErcBinding — Dec
numofargs:  SingleFunValueBindingBar — Integer
length . AtomicPattern+ — Integer

curry . Ezp, Integer — Ezxp

The following list shows the variables used in the mapping to BAS and
the syntactic sorts they range over.
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D : Declaration TVS . TypeVarSequence

TV . TypeVariable TV* . TypeVariable*

TVC . { TypeVariable ) }+ EX :  Ezpression

P :  Pattern VB : ValueBinding

SVB . SingleValueBinding AD* : Dec*

AE* . Ezp* AE . FExp

FVB . FunValueBinding SFVB : SingleFunValueBinding

SFVBB : SingleFunValueBindingBar I : Valueld

I+ : Valueld+ LI . LongValueld

ATP+ . AtomicPattern+ ATP* .  AtomicPattern*

ATP : AtomicPattern AP . Par

CTY? : (77 Type)? OTY? : (7of” Type)?

TY : Type Pop?”  : Top’?

TB . TypeBinding STB . Single TypeBinding

STBS : { SingleTypeBinding "and” }+ TC : TypeConstructor

LTC . LongTypeConstructor LS . LongStringld*

a? . Digit? DB . DataBinding

WTB? : (withtype TypeBinding)? SDB . SingleDataBinding

CB . ConsBinding SCB . SingleConsBinding

EB . ExcBinding SEB . SingleExcBinding

N : NatCon CH+ : CHAR+
equations

[val-1] dec2bas(val TVS VB) = dec2bas(VB)
[val-2] dec2bas(P = EX) = bind-val (pat2bas(P), exp2bas(EX))

[val-3] dec2bas(SVB and VB) = simult-seq(dec2bas(SVB) AD*)
when dec2bas(VB) = simult-seq(AD*)

[val-4] dec2bas(rec VB) = rec(dec2bas(VB))
[default-vall] dec2bas(SVB and VB) = simult-seq(dec2bas(SVB) dec2bas(VB))

[fun-1] SFVBB = FVB,
bind-val (AP, AE1) = dec2bas(FVB),
N = numofargs (SFVBB) ,
AE2 = app-seq(abs(val(valueid("f")), curry(tuple-seq(), N)), AFE1)
dec2bas (fun TVS FVB) = rec(bind-val(AP, AE2))

[default-fun-1] dec2bas(fun TVS FVB) = rec(dec2bas(FVB))

[fun-2] AFE1 = abs(tuple(pat2bas(ATP+)), exp2bas(EX))
dec2bas(op? I ATP+ CTY? = EX) = bind-val(var(I), AE1)
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[fun-3] dec2bas(SFVB) = bind-val(AP1, AFE1),
dec2bas (SFVBB) = bind-val(AP1, AE2)
dec2bas(SFVB | SFVBB) = bind-val(AP1, alt-seq(AE1 AE2))

[fun-5] bind-val(AP, AE1) = dec2bas(SFVBB),
N = numofargs(SFVBB) ,

AE2 = app-seq(abs(val (valueid("f")), curry(tuple-seq(), N)), AFE1)

simult-seq(AD*) = dec2bas(FVB)
dec2bas (SFVBB and FVB) = simult-seq(bind-val (AP, AE2) AD*)

[default-fun-5] bind-val (AP1, AE1) = dec2bas(SFVBB),
N1 = numofargs (SFVBB),
AE2 = app-seq(abs(val(valueid("f")),
curry (tuple-seq(), N1)), AE1)
bind-val (AP2, AE3) = dec2bas(FVB),
SFVBB2 = FVB,
N2 = numofargs (SFVBB2) ,
AE4 = app-seq(abs(val(valueid("f")),
curry (tuple-seq() , N2)), AES3)
dec2bas (SFVBB and FVB) =

simult-seq (bind-val (AP1, AE2) bind-val(AP2, AE}))

[fun-6] dec2bas(SFVBB) = deccast(SFVB) when SFVBB = SFVB

[fun-7] dec2bas(FVB) = deccast(SFVBB) when SFVBB = FVB

[numofargs-1] numofargs(op? I ATP+ CTY? = EX | SFVBB) = length(ATP+)

[numofargs-2] numofargs(op? I ATP+ CTY? = EX) = length(ATP+)
[length-1] length(ATP1 ATP+) = 1 + length(ATP+)
[length-2] length(ATP1) = 1
[default-curry-1] N = natcon(CH+),
val(I) = val(valueid("v""i""d""_"CH+))

curry (tuple-seq(AE*), N) =
abs(var(I), curry(tuple-seq(AE* val(I)), N-1))

[curry-2] curry(AE, 0) = app-seq(val(valueid("£f")), AE)
[cast-1] deccast (SFVB) = dec2bas(SFVB)

[cast-2] deccast (SFVBB) = dec2bas(SFVBB)
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[type-1] dec2bas(type TB) = ignore
[datatype-1] dec2bas(datatype DB WTB?) = dec2bas(DB)

[datatype-3] dec2bas(TVS TC = CB) = dec2bas(CB)

[datatype-4]1 dec2bas(SDB and DB)
when dec2bas(DB)

simult-seq (dec2bas (SDB) AD*)
simult-seq(AD*)

[default-datatype-4] dec2bas(SDB and DB) =
simult-seq (dec2bas (SDB) dec2bas(DB))

[datatype-5] dec2bas(DB) = deccast(SDB) when SDB = DB
[cast-4] deccast (SDB) = dec2bas(SDB)

[cons-bind-1] dec2bas(SCB) = bind-val (pat2bas(I), new-cons)
when SCB = op? I OTY?

[cons-bind-3] dec2bas(SCB | CB) = simult-seq(dec2bas(SCB) AD*)
when dec2bas(CB) = simult-seq(AD*)

[default-cons-bind-3] dec2bas(SCB | CB) =
simult-seq (dec2bas (SCB) dec2bas(CB))

[cons-bind-4] dec2bas(CB) = deccast(SCB) when CB = SCB
[cast-5] deccast (SCB) = dec2bas(SCB)
[datatype-6] decZbas(datatype TC = datatype LTC) = ignore

[abstype-1] dec2bas(abstype DB WTB? with DI end) =
local (dec2bas(DB), dec2bas(D1))

[exception-1] dec2bas(exception EB) = dec2bas(EB)

[exception-2] dec2bas(SEB) = bind-val (pat2bas(l), new-cons)
when op? I OTY? = SEB

[exception-4] dec2bas(op? I = op? LI) =
bind-val (pat2bas (1), exp2bas(LI))

[exception-5] dec2bas(SEB and EB) = simult-seq(dec2bas (SEB) AD¥*)
when dec2bas (EB) = simult-seq(AD*)
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[default-exception-5] dec2bas(SEB and EB) =
simult-seq(dec2bas (SEB) dec2bas(EB))

[exception-6] dec2bas(EB) = deccast(SEB) when SEB = EB

[cast-6] deccast(SEB) = dec2bas(SEB)

[local-1] dec2bas(local DI in D2 end) = local (dec2bas(D1), dec2bas(D2))
[open-1] dec2bas(open LS) = ignore

[seq-11 dec2bas(D1 ; D2) = accum(dec2bas(D1) dec2bas(D2))

[seq-2] dec2bas(D1 D2) = accum(dec2bas(D1) dec2bas(D2))

[infix-1] dec2bas(infix d? I+) = ignore

[infix-2] dec2bas(infixr d? I+) = ignore

[infix-2] dec2bas(nonfix I+) = ignore
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D Action semantic descriptions of BAS
constructs
Module 1 CoreML
imports

Exp

Exp/Val
Exp/Val-1d-Const
Exp/App-Seq
Exp/Tuple-Seq
Exp/Cond
Exp/Abs
Exp/Alt-Seq
Exp/Seq-Stm-Exp
Exp/Throw
Exp/Catch
Exp/Local

Stm
Stm/Exp
Stm/While

Par

Par/Val
Par/Val-Or-Var
Par/Anon
Par/Var
Par/App
Par/Tuple
Par/Simult

Dec
Dec/Bind-Val
Dec/Simult-Seq
Dec/Rec
Dec/Local
Dec/Accum
Dec/Ignore
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D.1 Expressions

Module 2 Exp
requires
E: Exp
Datum ::= Val

semantics evaluate: Exp — Action

Module 3 Exp/Val
syntax  Exp ::= Val

semantics evaluate V = give the val V

Module 4 Exp/Val-Id-Const
syntax  Exp ::= val(/de)
requires  Val ::= Cons
Cons ::= cons(val: val)
Bindable ::= Val
semantics evaluate val(/) =

maybe give val(the cons bound-to the token /)
else give the val bound-to the token /

Module 5 Exp/App-Seq
syntax  Exp ::= app-seq(Exp, Exp)
requires  Val ::= Func
func-no-apply : Val
semantics evaluate app-seq(E1,E2) =
evaluate E1 and-then
evaluate E2 then

((apply (action(the func#1), the val#2) then give the val)
else (throw func-no-apply))
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Module 6 Exp/Tuple-Seq
syntax  Exp ::= tuple-seq(Exp+)
requires  Val ::= Tuple
semantics
evaluate tuple-seq(E) = evaluate E then give tuple(the val)
evaluate tuple-seq(E E+) =
evaluate E and-then
evaluate tuple-seq(E+) then

give tuple(the val#1,
components(the tuple#2))

Module 7 Exp/Cond
syntax  Exp ::= cond(Exp, Exp, Exp)
requires  Val ::= Boolean
semantics evaluate cond(E1, E2, E3) =
evaluate E1 then
maybe check the boolean

then evaluate E2
else evaluate E3

Module 8 Exp/Abs
syntax  Exp ::= abs(Par, Exp)
requires  Val ::= Func

semantics evaluate abs(P, E) =
give func(closure(furthermore match P scope evaluate E))
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Module 9 Exp/Alt-Seq
syntax  Exp ::= alt-seq(Exp+)
requires  Val ::= Func
semantics
evaluate alt-seq(E) = evaluate E then give the func
evaluate alt-seq(E E+) =
evaluate E and-then
evaluate alt-seq(E+) then
give func(action(the func#1l) else action(the func#2))
Module 10 Exp/Seq-Stm-Exp
syntax  Exp ::= seq(Stm, Exp)

semantics evaluate seq(S, E) = execute S and-then evaluate E

Module 11 Exp/Throw
syntax  Exp ::= throw(Exp)

semantics evaluate throw(E) = evaluate E then throw it

Module 12 Exp/Catch
syntax  Exp ::= catch(Exp, Exp)
requires  Val ::= Func
semantics evaluate catch(E1, E2) =
evaluate E1 catch
(evaluate EZ and give the val
then apply (action(the func#1), the val#2)
else throw the val)
Module 13 Exp/Local
syntax  Exp ::= local(Dec, Exp)

semantics evaluate local(D, E) =
furthermore declare D scope evaluate E
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D.2 Statements
Module 14 Stm

requires S: Stm

semantics execute : Stm — Action

Module 15 Stm/Exp
syntax Stm ::= stm(Exp)

semantics execute stm(E) = evaluate E then skip

Module 16 Stm/While
syntax Stm ::= while(Exp, Stm)
requires  Val ::= Boolean
semantics execute while(E, S) =
unfolding (evaluate E then
maybe check the boolean then

execute S then unfold
else skip)

D.3 Parameters
Module 17 Par

requires P : Par

semantics match : Par — Action

Module 18 Par/Val
syntax  Par ::= Val

semantics match V = maybe check (the val = V) then give no-bindings
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Module 19 Par/Anon
syntax  Par ::= anon

semantics match anon = give no-bindings

Module 20 Par/Val-Or-Var
syntax Par ::= val-or-var(Ilde)
requires  Val ::= Cons

Cons ::= cons(val: Vval)

Bindable ::= Val
semantics match val-or-var(/) =

(given val(the cons bound-to the token /)
then give no-bindings)

else
bind(the token /, the val)

Module 21 Par/Var
syntax Par ::= var(lde)
requires  Bindable ::= Val

semantics match var(/) = bind(the token /, the val)

Module 22 Par/App
syntax Par ::= app(Exp, Par)
requires
Val ::= Func
PrefixDataOp ::= invert
semantics match app(E, P) =
give the val and
evaluate E then

maybe give invert(the func#2, the val#1)
then match P
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Module 23 Par/Tuple
syntax Par ::= tuple(Par+)
requires  Val ::= Tuple
semantics
match tuple(P) =
maybe give components(the tuple) then
give the val then match P
match tuple(P P+) =
maybe give components(the tuple) then
((give the val#1 then match P) and

(give tuple(#-1) then match tuple(P+)))
then give disj-union

Module 24 Par/Simult
syntax Par ::= simult(Par+)
semantics

match simult(P) = match P

match simult(P P+) = match P and match simult(P+) then give disj-union

D.4 Declarations
Module 25 Dec

requires D : Dec

semantics declare : Dec — Action

Module 26 Dec/Bind-Val
syntax Dec ::= bind-val(Par, Exp)

semantics declare bind-val(P, E) = evaluate E then match P
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Module 27 Dec/Simult-Seq
syntax Dec ::= simult-seq(Dec+)
semantics
declare simult-seq(D) = declare D
declare simult-seq(D D+) =
declare D and-then

declare simult-seq(D+) then
give disj-union

Module 28 Dec/Rec
syntax Dec ::= rec(Dec)

semantics declare rec(D) = recursively declare D

Module 29 Dec/Local
syntax Dec ::= local(Dec, Dec)

semantics declare local(D1, D2) =
furthermore declare D1 scope declare D2

Module 30 Dec/Accum
syntax Dec ::= accum(Dec+)
semantics

declare accum(D) = declare D

declare accum(D D+) = declare D before declare accum(D+)

Module 31 Dec/Ignore

syntax Dec ::= ignore

semantics declare ignore = give no-bindings
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D.5 Data
Module 32 Data/Bindings

requires  Sort ::= bindings | token | bindable

Module 33 Data/Boolean
requires

true : Boolean

false : Boolean

Sort ::= boolean

Module 34 Data/Cons
requires
Sort ::= cons

Val ::= new-cons

Module 35 Data/Func

requires  Func ::= func(action: Action & using val & giving val)

Module 36 Data/Tuple

requires  Tuple ::= tuple(components : Data)
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