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A Runtime System for XML Transformations in Java

Aske Simon Christensen, Christian Kirkegaard, and Anders Møller?

BRICS??, Department of Computer Science
University of Aarhus, Denmark

{aske,ck,amoeller}@brics.dk

Abstract. We show that it is possible to extend a general-purpose programming
language with a convenient high-level data-type for manipulating XML docu-
ments while permitting (1) precise static analysis for guaranteeing validity of
the constructed XML documents relative to the given DTD schemas, and (2) a
runtime system where the operations can be performed efficiently. The system,
named XACT, is based on a notion of immutable XML templates and uses XPath
for deconstructing documents. A companion paper presents the program analysis;
this paper focuses on the efficient runtime representation.

1 Introduction

There exists a variety of approaches for programming transformations of XML doc-
uments. Some work in the context of a general-purpose programming language; for
example, JDOM [17], which is a popular package for Java allowing XML documents
to be manipulated using a tree representation. A benefit of this approach is that the
full expressive power of the Java language is directly available for defining the trans-
formations. Another approach is to use domain-specific languages, such as XSLT [7],
which is based on notions of templates and pattern matching. This approach often al-
lows more concise programs that are easier to write and maintain, but it is difficult to
combine it with more general computations, access to databases, communication with
Web services, etc.

Our goal is to integrate XML into general-purpose programming languages to make
development of XML transformations easier and safer to construct. We propose XACT,
which integrates XML into Java through a high-level data-type representing immutable
XML fragments, a runtime system that supports a number of primitive operations on
such XML fragments, and a static analysis for detecting programming errors related to
the XML operations.

The XML fragments in XACT are immutable for two reasons: First, immutability is
always a judicious design choice (“I would use an immutable whenever I can”, James
Gosling [26]); and second, immutability is a necessity for devising precise and efficient
static analyses, in particular, of validity of dynamically constructed XML documents
relative to the DTD schemas. The XACT system consists of a simple preprocessor, a
runtime library, and a program analyzer. The main contribution of this paper is the

? Supported by the Carlsberg Foundation contract number ANS-1507/20.
?? Basic Research in Computer Science (www.brics.dk),

funded by the Danish National Research Foundation.



description of the XACT runtime system. We present a suitable runtime representation
for XML templates that efficiently supports the operations in the XACT API. This is
nontrivial mainly because of the immutability of the data type. The companion paper
[20] contains a description of the static analysis of XACT programs.

We first, in Section 2, describe the design of the XACT language and motivate our
design choices. Section 3 then gives a brief overview of the results from [20] about pro-
viding static guarantees for XML transformations written in XACT. Section 4 presents
our runtime system and discusses time complexity of the operations. Finally, in Sec-
tion 5, we evaluate the system by a number of experiments.

Related work The most closely related work is that on JDOM [17], XSLT [18],
XQuery [4], XDuce [16], Xtatic [10],CDuce [2], XOBE [19], XJ [14], Xen [22], and
HaXml [27]. In comparison, the XACT language is based on a combination of the fol-
lowing ideas:

– XACT integrates XML processing into ageneral-purpose language, rather than
being a domain-specific language as XSLT or XQuery.

– It applies atemplate-basedparadigm for constructing XML values (reminiscent of
that in XSLT but unlike the other systems mentioned above).

– XML values areimmutable(in stark contrast to JDOM, XJ, and Xen).
– Deconstruction of XML values is based on the XPath language [8] (which is also

used for similar purposes in XSLT, XQuery, XJ, and optionally also in JDOM).
– Static guarantees are provided throughdata-flow analysis, thereby avoiding the ex-

plicit type annotations that are required in approaches based on type systems. Such
explicit types can be cumbersome to write and read, and, as noted in [14], explicit
types for XML values can be too rigid since the individual steps in a sequence
of operations may temporarily invalidate the data unless permitting only bottom-
up construction. (JDOM and XSLT provide no similar static guarantees, and the
remaining alternatives mentioned above use type systems.)

We refer to the paper [20] for a comprehensive survey of the relation between the
language design of XACT and other systems. In the present paper, we focus on the re-
lation to the runtime model of a few representative alternatives: (1) JDOM is generally
considered an efficient but rather low-level platform for manipulating XML documents
in Java. It provides an explicit tree representation of XML documents where nodes in-
clude parent pointers, which permits upwards traversal but prohibits sharing. (2) XSLT
is a widely used XML transformation language and many implementations exist. A
central part of XSLT is the use of XPath for selection and pattern matching, and much
effort has been put into optimizing XPath processors for use in XSLT and other sys-
tems [12]. Our implementation of XACT uses an off-the-shelf XPath processor [21] and
can hence benefit directly from such work. (3) Both Xtatic andCDuce inherit their key
features—tree processing in a declarative style with regular types and patterns—from
XDuce. Xtatic works in the context of C# whereasCDuce is a functional language. The
paper [11] describes runtime representations for Xtatic, where the main challenges are
immutability (as for XACT), efficient pattern matching (where we apply XPath instead),
and DOM interoperability (using techniques that we could also apply). Since no imple-
mentation of Xtatic has been available to us, we choose the tuned implementation of
CDuce as a representative for these systems for quantitative comparisons.
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2 The XACT Language

Compared to other XML transformation languages, XACT is designed to be a small
sublanguage that can be described in just a few pages. The XACT language introduces
XML transformation facilities into the Java programming language such that XML doc-
uments, from a programmer’s perspective, are first-class values on equal terms with ba-
sic values, such as booleans, integers, and strings. Programmers can thereby combine
the flexibility and power of a general-purpose programming language with the abil-
ity to express XML manipulations at a high level of abstraction. This combination is
convenient for many typical transformation tasks. Examples are transformations that
rely on communication with databases and complex transformation tasks, which may
involve advanced control-flow depending on the document structure. In these cases,
one can apply XACT operations while utilizing Java libraries, for example, the sorting
facilities, string manipulations, and HTTP communication. We choose to build upon
Java because it is widely used and a good representative for the capabilities of modern
general-purpose programming languages. Additionally, it is often used as a foundation
for Web services, using for example Servlets or SOAP, which involve dynamic con-
struction of XHTML documents or manipulation of SOAP messages.

We build XML documents fromtemplatesas known from the JWIG language [6].
This approach originates from MAWL [1] and<bigwig> [5], and was later refined in
JWIG, where it has shown to be a powerful formalism for XHTML document con-
struction in Web services. Our aim has been to extend the formalism to general XML
transformations where both construction and deconstruction are supported.

A template is a well-formed XML fragment containing named gaps:template gaps
occur in place of elements, andattribute gapsoccur in place of attributes. The core
notation for templates is given byxml in the following grammar:

xml := str (character data)
| <name atts>xml</name> (element)
| <[g]> (template gap)
| xml xml (template sequencing)

atts := name="value" (attribute)
| name=[g] (attribute gap)
| ε (empty sequence)
| atts atts (attribute sequencing)

Here,str denotes a string of XML character data,name denotes a qualified XML name,
g denotes a gap name, andvalue denotes an XML attribute value. As an example, the
following XML template, which can be useful when constructing XHTML documents,
contains two template gaps namedTITLE andMAIN and one attribute gap namedCOL:

<html>

<head><title><[TITLE]></title></head>

<body bgcolor=[COL]><[MAIN]></body>

</html>

Construction of a larger template from a smaller one is accomplished byplugging
values into its gaps. The result is the template with all gaps of a given name replaced by
values. This mechanism is flexible because complex templates can be built and reused
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static XML constant(String s) – creates a template from the constant strings
String toString() – returns the textual representation of this template
boolean equals(Object o) – determines equality of this template ando
int hashCode() – returns the hash code of this template
XML plug(Gap g, XML x) – insertsx into all g gaps in this template
XML plug(Gap g, String s) – as the previous operation, but for string
XML plug(Gap g, XML[] xs) – inserts the entries inxs into theg gaps in this template
XML plug(Gap g, String[] ss) – as the previous operation, but for string entries
XML[] select(XPath p) – returns the array of subtemplates hit byp
XML gapify(XPath p, Gap g) – replaces all subtemplates hit byp by g gaps
XML close() – returns this template with all gaps removed
XML cast(DTD d) – runtime check for validity
XML analyze(DTD d) – compile-time check for validity
static XML smash(XML[] xs) – merges the entries ofxs into a single template
static XML get(String s, DTD d) – creates a template from a non-constant string

Table 1.The central methods in theXML class of XACT.

many times. Gaps can be plugged in any order; construction is not restricted to be
bottom-up, in contrast to, for example, XDuce and XOBE.

Deconstruction of XML data is also supported in XACT. An off-the-shelf language
for addressing nodes within XML trees is available, namely W3C’s XPath language [8].
XPath is widely used and has despite its simplicity shown to be versatile in existing
technologies, such as XSLT and XQuery. The XACT deconstruction mechanism is also
based on XPath. We have identified two basic deconstruction operations, which are
powerful in combination with plugging. The first isselect, which returns the subtem-
plates addressed by an XPath expression. The second isgapify, which replaces the sub-
templates addressed by an XPath expression with gaps. Select is convenient because it
permits us to pick subtemplates for further processing. Gapify permits us to dynamically
introduce gaps, which is important for a task such as performing minor modifications in
an XML tree. Altogether, this constitute an algebra over templates, which allows typical
XML manipulations to be expressed at a high level of abstraction.

We have chosen a value-based programming model as in pure functional languages.
In this model, XML templates are unchangeable values and operations have no side-
effects. A Java class that implements the value-based model is said to beimmutable.
Such classes are favored because their instances are safe to share, value factories can
safely return the same instances multiple times, and thread-safety is guaranteed [3]. All
Java value classes, such asInteger andString, are for these reasons immutable. Our
templates inherit the properties and benefit by being easier to use and less prone to error
than mutable frameworks, such as JDOM. Furthermore, immutability is a necessity for
useful analysis, as described in Section 3.

The immutable Java classXML, which represents templates, has the methods shown
in Table 1. All parameters of typeGap, XPath, andDTD are assumed to be constants and
may be written as strings. TheDTD parameters are URIs of DTDs.

XACT distinguishes between two different sources of XML data: constant templates
and input data. Constant templates are part of the transformation program and are con-

4



structed using theconstantmethod. The syntax for these templates is the one given by
the grammar above. Input to the program is read using thegetmethod, which constructs
a gap-free template from a non-constant string and checks the result for validity with
respect to the given DTD schema. Output from the transformation is achieved through
thetoString method, which returns the string representation of the XML template.

Templates can be combined by theplug method, which is overloaded to accept
a template, a string, or arrays of these as second parameter. Invoking the non-array
variants will plug the given string or template into all occurrences of the given gap
name. The array variants will, in document order, plug all occurrences of the given gap
name with entries from the given array. If the array has superfluous entries these will
be ignored, and conversely, the empty string will be plugged into superfluous gaps. An
exception is thrown if one attempts to plug a template into an attribute gap.

Template deconstruction is provided by theselect andgapify methods. Both
methods take an XPath expression as parameter, which on evaluation returns a set of
nodes within the given template1. Invoking theselect method gives an array contain-
ing all the subtemplates rooted at nodes in the XPath evaluation result. Thegapify
method returns a template where all subtemplates rooted at nodes in the XPath evalua-
tion result have been replaced by gaps of the given name.

Theclose method eliminates all gaps in a template and is commonly used in com-
bination withtoString. The result will by construction represent a well-formed XML
document. Invoking the staticsmash method concatenates the entries of the given tem-
plate array into a single template2. The equals method determines equality ofXML
instances, and thehashCode method returns a consistent hash code for anXML in-
stance. The ability to compare entire XML templates for equality permits templates to
be stored in containers as values rather than as objects and can also be useful in the
decision logic of transformations. In comparison, other systems either do not have an
equality primitive or compare by reference instead of by value.

By placing specialanalyzemethods in the code, the compile-time analyzer can be
instructed to check for validity relative to the given DTDs. This is usually used in con-
nection with thetoString method to analyze validity of the output data. Additionally,
runtime validation of a template according to a given DTD schema is provided by the
cast method, which serves a similar purpose for the XACT analysis as the usual cast
operation does for the type system of Java.

In order to integrate XACT tightly with the Java language, we provide special syntax
for template constants. This relieves programmers from tedious and error-prone charac-
ter escaping. A templatexml may be written[[xml]], which after character escaping is
equivalent toXML.constant("xml"). Transformations that use this syntax are desug-
ared by a simple preprocessor. Also, a number of useful macros, presented in [20],
for commonly occurring tasks are provided. For example, thedelete macro effec-
tively deletes the subtrees addressed by an XPath expression by performing agapify

1 All XPath axes are supported by XACT. Although the paper [20] focuses on the downwards
axes, the program analyzer is capable of handling all axes.

2 The paper [20] describes a more powerful operationgroup and definessmash as syntactic
sugar. We now treatsmash as the primitive and expressgroup in terms ofsmash, select,
andequals instead.
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operation with a fresh gap name. Our implementation also contains a mechanism for
declaring XML namespaces for constant templates and XPath expressions.

Example We now consider a simple example, originating from [15], where an ad-
dress book is filtered in order to produce a phone list. An address book here consists
of anaddrbook root element that contains a sequence ofperson elements, each hav-
ing a name, anaddr, and an optionaltel element as children. The filtration outputs
a phonelist root element that contains a sequence ofperson elements, where only
those having atel child remains, and with alladdr elements eliminated. The following
method shows how this can be implemented with XACT:

XML phonelist(XML book) {

XML[] persons = book.select("/addrbook/person[tel]");

XML list = XML.smash(persons).delete("//addr");

return [[<phonelist><[LIST]></phonelist>]].plug("LIST",list);

}

We use theselect operation to build an array of allperson elements that have atel
child. Then, the array entries are combined into a single template, alladdr elements are
deleted, and the result is wrapped into aphonelist element3.

One may additionally wish to sort the phone list alphabetically by name. Java
has built-in sorting facilities for arrays, so this is accomplished by implementing a
Comparator class, calledPersonComparator, with the followingcompare method:

int compare(Object o1, Object o2) {

XML x1 = (XML)o1, x2 = (XML)o2;

String s1 = XML.smash(x1.select("/person/name/text()")).toString();

String s2 = XML.smash(x2.select("/person/name/text()")).toString();

return s1.compareTo(s2);

}

The XACT operations here simply extract the character data to be used in the com-
parison. The phone list can then be sorted by inserting the following line into the
phonelist method (after theselect operation):

Arrays.sort(persons, new PersonComparator());

The example shows how XACT integrates XML processing into Java and how a nontriv-
ial transformation task can be intuitive to express using XACT. More example programs
can be found athttp://www.brics.dk/Xact/.

3 Static Guarantees

Transforming data from one XML language to another can be a quite intricate task,
even if a high-level programming language is being used. In particular, it can be dif-
ficult to ensure at compile-time that the output is always valid with respect to a given

3 With the notion ofcode gaps, which is included in the syntactic sugar mentioned in [20], the
last operation can be written more concisely:
return [[<phonelist><{list}></phonelist>]];
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DTD schema. A special property of the design of XACT is that it enables precise static
analysis for guaranteeing absence of certain programming errors related to XML docu-
ment manipulation. In the companion paper [20], we present a data-flow analysis that,
at compile-time, checks the following correctness properties of an XACT program:

output validity — that eachanalyze operation is valid in the sense that the XML
template at this point is guaranteed to be valid relative to the DTD schema; and

plug consistency— that eachplug operation is guaranteed to succeed, that is, tem-
plates are never plugged into attribute gaps.

Additionally, the analysis can detect and warn the programmer if the specified gap for
a plug operation is never present and if an XPath expression in aselect or gapify
operation will never address any nodes.

Notice that XACT, in contrast to other XML transformation systems that permit
static guarantees, does not require every XML variable to be explicitly typed with
schema information.

The crucial property of XACT that makes the analysis feasible is that the XML
templates are immutable. Analyzing programs that manipulate mutable data structures
is known to be difficult [24,23], and the absence of side-effects means that we do not
have to model the complex aliasing relations that otherwise may arise.

The analysis is conservative in the sense that it never misses an error, but it might
report false errors. Our experiments in [20] indicate that the analysis is both precise and
efficient enough to be practically useful, and that it produces helpful error messages if
potential errors are detected.

4 Runtime System

We have now presented a high-level language for expressing XML transformations and
briefly explained that the design permits precise static analysis. However, such a frame-
work would be of little practical value if the operations could not be performed effi-
ciently at runtime. In this section, we present a data structure in the form of a Java
library addressing this issue.

To qualify as a suitable representation for XML templates in the XACT framework,
our data structure must support the following operations:

– Creation: Given the textual representation of an XML template, we must build the
structure representing the template.

– Combination: Theplug, close, andsmash operations operate directly on XML
templates and must be supported directly by the data structure.

– Navigation: The tasks of converting a template to its textual representation, check-
ing the template for validity according to a given schema, and evaluating an XPath
expression on a template all require means for traversing the XML data in vari-
ous ways. In general, we need a mechanism for pointing at a specific node in the
XML tree. We call such an XML pointer anavigator. It must support operations
for moving this pointer around the tree. To support all XPath axis evaluations, we
must be able to move to thefirst child andfirst attributeof an element node, the
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parentandnext/previous siblingof any tree node, and thenext/previous attributeof
an attribute node. We assume that this is sufficient for the XPath engine being used
(for example, Jaxen [21] satisfies this).

– Extraction: The result of evaluating an XPath expression on the structure, using its
navigation mechanism, is a set of navigators. From this set of navigators, we must
be able to obtain the result of theselect andgapify operations.

A naive data structure that trivially supports all of these operations is an explicit XML
tree with nextsibling, previoussibling, first child and parent pointers in all nodes
(where we encode attributes in the contents sequences). If such a data structure is used,
we are forced to copy all parts of the operand structures that constitute parts of the re-
sult in order to adhere to the immutability constraint. The doubly-linked nature of the
structure prohibits any sharing between individual XML values. The running times for
the XACT operations on such a structure would thus be at least linear in the size of
the result for each operation. As we show in the following, we can do better using a
specialized data structure.

4.1 The basic approach

The main problem with the doubly-linked tree structure is that it prevents sharing
between templates. To enable sharing, we use a singly-linked binary tree, that is, a
tree with onlyfirst child andnextsibling pointers but without theparentand previ-
oussibling pointers. This structure permits sharing as follows: whenever a subtree of
an operand occurs as a subtree of the result, the corresponding pointer in the result
simply points to the original operand subtree and thus avoids copying that subtree.

Recall that, unlike complete XML documents, an XML template does not neces-
sarily have a single root element; rather, it can have an arbitrary sequence of elements,
character data and template gaps, which we will refer to as thetop-level nodes.

To perform a non-arrayplug operation,a.plug(g, b), we copy just the portion of
a that is not part of a subtree that will occur unmodified in the result. More precisely,
this is the tree consisting of the paths from the root ofa to all g gaps ina. Any pointer
that branches out of these paths in the result points back to the corresponding subtree
of a. If the gap has a next sibling, we will also need to copy the top-level nodes ofb,
since the list of successors for these nodes changes. This representation is depicted in
Part (iii) of Figure 1. Note that, in general, this operation will create a DAG rather than a
tree, since multiple occurrences ofg in a will result in multiple pointers from the result
to the root ofb. The arrayplug operation is performed similarly, except that the path
end pointers point to distinct templates. Theclose operation duplicates the paths to all
gaps and removes the gaps from the duplicate.

To be able to find the paths to theg gaps efficiently, we must have additional in-
formation in the graph. In each node, we keep a record of which gap names occur in
the subtree represented by that node. Since typical templates contain only few distinct
gap names, thisgap presenceinformation can often be shared between many nodes
and will not constitute a large overhead. Combining this information when constructing
new templates is also straightforward. Now, when aplug operation intog traverses the
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Fig. 1.The effect of performing the non-arrayplug operation,c = a.plug(g, b). Part (i) shows
the two templates,a and b, wherea contains twog gaps. Part (ii) shows the naive approach
for representingc, where everything has been copied. Part (iii) shows the basic approach from
Section 4.1 where only the paths ina that lead tog gaps are copied and new edges are added
pointing to the root ofb. Part (iv) shows the lazy approach from Section 4.2 where a plug node is
generated for recording the fact thatb has been plugged into theg gaps ofa. When the structure
in (iv) is later normalized, the one in (iii) is obtained.

graph looking forg gaps, it simply skips any branch where the gap presence informa-
tion indicates that nog gaps exist. This narrows the search down to the paths from the
root to theg gaps. Thus, the execution time for aplug operation is proportional to the
number of nodes that are ancestors ofg gaps ina (including preceding siblings because
of our use offirst child andnextsibling pointers), plus the number of top-level nodes
in b times the number ofg gaps ina. For the arrayplug operation, the last term simply
becomes the total number of top-level nodes in the plugged templates.

Constructing the representation of a tree from its textual representation using the
constant operation takes time proportional to the size of the tree plus, for each node,
the number of different gap names that appear in its subtree. The time for converting a
template to text usingtoString is proportional to the template size.

Navigation in this structure is not as straightforward as in the doubly-linked case,
since navigating backwards withparentor previous siblingrequires information that
is not available in the tree. We can support these directions by letting the navigators
remember the entire path back to the root, and then backtrack along this path when-
ever a backward step is requested. In other words, we let the navigators contain all the
backward pointers that the XML structure itself omits. Since navigators are always spe-
cific to one XML value, we do not restrict sharing by keeping these pointers while the
navigator is used. Taking any navigator step still takes constant time.

Theselect operation simply returns a set of pointers to the nodes pointed to by the
navigators that result from the XPath evaluation. Only the nodes pointed to are copied
to make sure that theirnextsiblingpointers are empty. The total time for performing the
select operation is proportional to the XPath evaluation time. Thegapify operation
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first evaluates the XPath expression, resulting in a set of navigators that represent the
addressed nodes. The tree from the root to these nodes is then copied, as for theplug
operation. After that, the gap information in the nodes of the new tree is updated in a
bottom-up traversal to include the new gaps. The total time for performing thegapify
operation is proportional to the XPath evaluation time, which dominates the time for the
other steps. Finally, thesmash operation can be simulated by making a sequence of gap
nodes with a fresh gap name and performing an array plug operation into these. This
takes time proportional to the total number of top-level nodes in the smashed templates.

These figures may seem satisfactory; however, it turns out that this approach has
some drawbacks as the following observations reveal.

– In a sequence of plug operations, each individual plug may create many nodes that
will be replaced in a subsequent plug operation. If the intermediate results are not
needed except as arguments for the subsequent plug operations (which is usually
the case), constructing these nodes is unnecessary and wasteful. For example, a
common idiom is to use a template<li><[item]></li><[more]> to build a list
of li elements by repeatedly plugging the template itself into themore gap. Such
a construction would take quadratic time in the length of the constructed list, since
all preceding siblings need to be copied each time.

– Traversing the structure recursively when looking for gaps can lead to unwieldy
stack sizes, since the ancestor nodes of the gaps include all preceding siblings.
This problem clearly shows up in practice—the algorithm is unable to handle XML
documents with more than a few thousand mutual siblings.

These observations lead us to a further refinement, as explained in the following section.

4.2 A lazy data structure

We now present a modification of the basic structure that allows the operations to be
performed lazily without any reconstruction taking place until explicit traversal of the
tree is required. This effectively groups plug operations together in a way that permits
list structures to be built in linear time.

To accomplish this, we introduce specialoperation nodesin the graph, each rep-
resenting aplug or close operation (withsmash being simulated by arrayplug as
before). We call all other nodesconcrete nodes. An operation node has one designated
child node, which represents thethis operand. There are three variants of operation
nodes, corresponding to the two variants of theplug operation and theclose oper-
ation, respectively: thenon-array plug nodeis labeled with a gap name and has one
extra edge corresponding to the value being plugged in; similarly, thearray plug node
is labeled with a gap name and an array of extra edges; and theclose nodehas no extra
information. Intuitively, an operation node merely records the fact that aplug orclose
operation has occurred without actually performing it. Part (iv) of Figure 1 illustrates
this lazy variant of the plug operation.

As long as onlyplug, close andsmash operations are performed, the resulting
template will be represented by a DAG of operation nodes and concrete nodes, where
all ancestors of operation nodes are themselves operation nodes. When the actual tree
is needed, we need to unfold this structure into a DAG of only concrete nodes, so that
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the previously described navigation mechanism can be used. We refer to this process of
eliminating operation nodes asnormalization.

To perform normalization, we traverse the DAG depth-first while keeping track of
the currentplug context. A plug context is a map from gap names to nodes, defined by a
list of operation nodes. The current plug context is always defined by the list of ancestor
operation nodes of the current node. A non-array plug node maps its corresponding gap
name to the root of the plugged template; an array plug node initially maps its gap
name to the root of the first plugged template; and a close node maps all gap names to a
special valueremove. When more than one operation node mapping from the same gap
name exist among the ancestors, the one furthest down in the DAG has precedence as it
corresponds to an earlier plug operation.

Whenever we encounter a gap node with a name for which there is a mapping in the
current plug context, we recursively traverse the template rooted at the node targeted
by the mapping—or remove the gap node in case of the valueremove. If the operation
node is an array plug node, its mapping is changed to the next node on its list, or to
the empty template if the list is exhausted. Note that the plug context in this traversal
of the plugged template is defined by the operation node ancestors in the complete
DAG, which includes the ones in the plugged template plus the ones created after it was
plugged.

Just as for the plug operation in the basic approach, we only traverse the part of
the DAG which actually needs to be duplicated. That is, we skip any branch where the
gap presence information indicates that no gap exist for which there is a mapping in
the current plug context. The only exception to this is the top-level nodes of plugged
templates, which in general need to be duplicated, as before.

Following this strategy, we essentially perform a single traversal of the part of the
final result which could not be shared with any of the constituent templates. Thus, as-
suming that the context lookup operations can be performed in amortized constant time
(which can be accomplished by caching lookups), and assuming a constant number of
distinct gap names, the running time for the entire normalization process is proportional
to the number of newly created nodes. Since this is bounded by the size of the result
and the result is typically traversed completely anyway, this is a satisfactory result.

To alleviate the stack requirement of the traversal, we use pointer reversal [25],
which in essence uses the newly generated nodes as an explicit recursion stack. The
recursion involved in the recursive unfolding of plugged templates mentioned above is
done using a separate, explicit stack. Thus, with this strategy, the call stack usage is
bounded by a constant, and the overall memory requirements are significantly reduced,
compared to the purely recursive approach.

4.3 Java issues

One of the prominent features of immutable data manipulation is that it works fluently
in a multi-threaded environment. For this to work properly in the Java implementation,
care must be taken when the internal state of a representation changes. This happens
when the result of a normalization replaces the operation nodes—and this is of course
properly synchronized in the implementation so that no thread will see the data struc-
ture in an inconsistent state, and no two threads will perform the same normalization

11



simultaneously. Note also that the pointer reversal only changes newly created nodes,
so another thread can traverse (and even normalize) a template sharing parts with the
one being normalized without causing any problems.

A ubiquitous Java feature is the ability to compare objects using theequalsmethod.
This is easily (albeit not very efficiently) done for XML templates by a simple, parallel,
recursive traversal. To conform to the Java guidelines, any implementation ofequals
must be consistent with the corresponding implementation of thehashCode method.
To provide this consistency, each node includes a hash code representing the XML tree
rooted at the node (including following siblings). The hash code for the entire template
is then the hash code of the leftmost top-level node. This also enables a more efficient
implementation ofequals: whenever two compared subtemplates have different hash
codes, their equality can be rejected right away. Furthermore, whenever two subtem-
plates originate from the same original subtemplate unmodified, their object identity
verifies their equality.

5 Evaluation

This section describes experiments with our prototype implementation of the XACT

runtime system. The main goal is to gather runtime performance measurements for a
range of typical XML transformations in order to compare the performance of XACT

with that of related systems. Due to the limited space, we can only provide a brief report
on our evaluation results.

We have collected a suite of benchmark programs, most of which are inspired by
XML transformations developed in other languages. A few programs have been devel-
oped to specifically test the worst-case behavior of our implementation. Altogether the
suite covers a broad spectrum of typical XML transformation tasks.

Most of the related technologies mentioned in Section 1 are currently being devel-
oped by other research teams. Unfortunately, only a few have wished to provide an
implementation, making it impossible to do a complete performance comparison of all
the systems. Instead we have picked JDOM, XSLT andCDuce—for which optimized
runtime systems are available—as good representatives for the different approaches.
The JDOM andCDuce measurements are obtained using the latest releases (JDOM
Beta 10, andCDuce 0.1.1.) The XSLT measurements are obtained using Apache Xalan
2.6, which supports the complete XSLT 1.0 language and is among the fastest Java-
based implementations. For XACT, we use the lazy approach described in Section 4.2.
All experiments have been executed on an 3.0 GHz Intel Pentium 4 machine with 1 GB
RAM running Red Hat Linux 9.0 with Sun’s Java 2 SE 1.4.2 and O’Caml 3.0.7. Since
the focus of this paper is runtime performance we do not measure compilation and type
checking. Furthermore, the price of parsing input XML documents says little about the
relative strengths of the implementations, so this cost is excluded from measurements
in order to give a fair comparison.

We start by comparing XACT with XSLT using four typical XML transforma-
tion tasks. Two transformations originate from the XSLTMark benchmark suite [9]:
Backwards mirrors its input document by reversing the order of all node sequences;
DBOnerow queries a person database for a single entry and transforms it into XHTML.
Performance on mixed content documents is compared byUppercase, which trans-
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forms all names in an address book into uppercase characters.Phonelist is the exam-
ple from Section 2 transforming an address book into a sorted phone list. The transfor-
mations are executed on input XML documents of size 100 KB, 1 MB, and 10 MB.

100 KB 1 MB 10 MB
XSLT XACT XSLT XACT XSLT XACT

Backwards 551 ms 421 ms 1,615 ms 1,513 ms 15,373 ms11,599 ms
DBOnerow 279 ms 160 ms 754 ms 274 ms 4,048 ms 994 ms
Uppercase 431 ms 246 ms 1,234 ms 634 ms 8,810 ms 5,365 ms
Phonelist 494 ms 423 ms 1,351 ms 1,799 ms 8,029 ms 21,834 ms

These figures indicate that the performances of the two are roughly similar. The main
benefits of XACT compared to XSLT are the static guarantees and the possibility of
applying the full Java language. For example, theUppercase benchmark is only ex-
pressible in XSLT because this language contains a built-in function (translate) for
mapping individual characters to other characters; more advanced character data trans-
formations are not possible in XSLT without implementation dependent extension func-
tions.

Next, we compare XACT with JDOM using theLinkset transformation (Example
15.8 in [13]), which extracts a set of links from an RDF feed, and thePhonelist
transformation, which is described above.

100 KB 1 MB 10 MB
JDOM XACT JDOM XACT JDOM XACT

Linkset 23 ms 146 ms 128 ms 316 ms 304 ms 1,837 ms
Phonelist 80 ms 422 ms 408 ms 1,799 ms 3,212 ms 21,834 ms

These experiments indicate that the JDOM approach with mutable tree updates and
purely navigational access, as one would expect, performs better than the immutable
XACT approach based on XPath. However, this should be contrasted by the fact that the
the XACT transformations are both shorter and more readable than the JDOM transfor-
mations. Furthermore, the XACT transformations are statically type safe in contrast to
those written with JDOM.

For the comparison of XACT andCDuce we use ourPhonelist transformation
and theSplit transformation, which is a benchmark program developed by theCDuce
team and used in their performance comparisons.

100 KB 1 MB 10 MB
CDuce XACT CDuce XACT CDuce XACT

Phonelist 156 ms 422 ms 1,747 ms 1,799 ms 21,579 ms21,834 ms
Split 94 ms 496 ms 496 ms 1,729 ms error 12,897 ms

Since XACT uses Java andCDuce uses O’Caml, the performance is difficult to com-
pare4, but on these few benchmarks there seems to be no significant time difference
for larger data sets. When running theCDuceSplit transformation on the 10MB doc-
ument, it runs out of memory, indicating that that the internal XML representation in
XACT is more compact than the one inCDuce.

4 To exclude parsing time forCDuce, we measured the full time including parsing and then
subtracted the time for performing the identity transformation.
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To demonstrate that the lazy approach is preferable to the basic one, we compare
the two using a benchmarkLogging, which extracts statistical information from a web
server log file and exhibits the quadratic blowup for the basic approach:

XACT (basic) XACT (lazy)
Logging (100 KB) 709 ms 639 ms
Logging (1 MB) 3,189 ms 1,926 ms
Logging (3 MB) 11,227 ms 3,836 ms
Logging (10 MB) stack overflow 9,011 ms

These figures show that the lazy approach can lead to significant saving in practice and
how it scales smoothly to large documents.

In general, we conclude that the runtime system is sufficiently efficient. Our goal
has not been to outperform the alternative XML transformation systems, but rather to be
comparable in runtime performance and scalability, which complements the convenient
language design and static analysis that XACT also provides.

Obviously, there are ways to improve performance further. We plan to experiment
with caching of XPath parse trees, handling simple XPath expressions without involving
the general XPath engine, and compiling XPath expression to basic navigation steps (as
also done in the XJ project). Also, we believe that it is possible to exploit the knowledge
gained from the static analysis for optimizing the evaluation of XPath expressions.

6 Conclusion
We have presented an overview of the XACT language, focusing on the runtime system.
The design of XACT provides high-level primitives for programming XML transforma-
tions in the context of a general-purpose language, and, as shown in [20], it permits a
precise static analysis. A special feature of the design is that the data-type is immutable,
which at the same time is convenient to the programmer and a necessity for precise anal-
ysis. However, it also makes it nontrivial to construct a runtime system that efficiently
supports all the XACT operations, which is the main problem being addressed in this
paper. Our experiments indicate that the runtime system being proposed is sufficiently
efficient to be practically useful.

Our prototype implementation, which consists of the runtime system, the desugarer,
and the static analyzer supporting the full Java language, is available on the XACT home
page:http://www.brics.dk/Xact/.
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