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Bisimilarity is not Finitely Based over BPA with
Interrupt

Luca Aceto∗ † Wan Fokkink‡ Anna Ingolfsdottir∗§

Sumit Nain∗

Abstract

This paper shows that bisimulation equivalence does not afford a finite
equational axiomatization over the language obtained by enriching Bergstra
and Klop’s Basic Process Algebra with the interrupt operator. Moreover, it
is shown that the collection of closed equations over this language is also not
finitely based.

AMS SUBJECT CLASSIFICATION (1991): 68Q15, 68Q70.
CR SUBJECT CLASSIFICATION (1991): D.3.1, F.1.1, F.4.1.
KEYWORDS AND PHRASES: Concurrency, process algebra, Basic Process
Algebra (BPA), interrupt, bisimulation, equational logic, complete axiomati-
zations, non-finitely based algebras, expressiveness.

1 Introduction

Programming and specification languages often include constructs to specify mode
switches (see, e.g., [7, 10, 22, 23, 25]). Indeed, some form of mode transfer in
computation appears in the time-honoured theory of operating systems in the guise
of, e.g., interrupts, in programming languages as exceptions, and in the behaviour
of control programs and embedded systems as discrete “mode switches” triggered
by changes in the state of their environment.
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In light of the ubiquitous nature of mode changes in computation, it is not
surprising that classic process description languages either include primitive oper-
ators to describe mode changes—for instance, LOTOS [14, 22] offers the so-called
disruption operator—or have been extended with variations on mode transfer op-
erators. For instance, examples of such operators that may be added to CCS are
discussed by Milner in [24, pp. 192–193], and the reference [16] offers some dis-
cussion of the benefits of adding one of those, viz. thecheckpointing operator, to
that language.

In the setting of Basic Process Algebra (BPA), as introduced by Bergstra and
Klop in [11], some of these extensions, and their relative expressiveness, have been
discussed in the early paper [10]. That preprint of Bergstra’s has later been revised
and extended in [6].Ibidem, Baeten and Bergstra study the equational theory and
expressiveness of BPAδ (the extension of BPA with a constantδ to describe “dead-
lock”) enriched with two mode transfer operators, viz. thedisrupt and interrupt
operators. In particular, they offer an equational axiomatization of bisimulation
equivalence [24, 28] over the resulting extension of the language BPAδ. This ax-
iomatization is finite, if so is the underlying set of actions—a state of affairs that is
most pleasing for process algebraists.

However, the axiomatization of bisimulation equivalence offered by Baeten
and Bergstra inop. cit. relies on the use of four auxiliary operators—two per mode
transfer operator. Although the use of auxiliary operators in the axiomatization of
behavioral equivalences over process description languages has been well estab-
lished since Bergstra and Klop’s axiomatization of parallel composition using the
left and communication merge operators [12], to our mind, a result like the afore-
mentioned one always begs the question whether the use of auxiliary operators is
necessary to obtain a finite axiomatization of bisimulation equivalence.

For the case of parallel composition, Moller showed in [26, 27] that strong
bisimulation equivalence is not finitely based over CCS [24] and PA [12] without
the left merge operator. (The process algebra PA [12] contains a parallel composi-
tion operator based on pure interleaving without communication and the left merge
operator.) Thus auxiliary operators are necessary to obtain a finite axiomatization
of parallel composition. But, is the use of auxiliary operators necessary to give a
finite axiomatization of bisimulation equivalence over the language BPA enriched
with the mode transfer operators studied by Baeten and Bergstra in [6]?

We address the above natural question in this paper. In particular, we focus on
BPA enriched with the interrupt operator. Intuitively, “p interrupted byq” describes
a process that normally behaves likep. However, at each point of the computation
beforep terminates,q can interrupt it, and begin its execution. If this happens,p
resumes its computation upon termination ofq.

We show that, in the presence of two distinct actions, bisimulation equivalence
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is not finitely based over BPA with the interrupt operator. Moreover, we prove
that the collection of closed equations over this language is also not finitely based.
This result provides some evidence that the use of auxiliary operators in the tech-
nical developments presented in [6] is indeed necessary in order to obtain a finite
axiomatization of bisimulation equivalence.

Our main result adds the interrupt operator to the list of operators whose addi-
tion to a process algebra spoils finite axiomatizability modulo bisimulation equiva-
lence; see, e.g., [3, 5, 13, 15, 19, 29, 30] for other examples of non-finite axiomati-
zability results over process algebras, and some of their precursors in the setting of
formal language theory. Of special relevance for concurrency theory are the afore-
mentioned results of Moller’s to the effect that the process algebras CCS and PA
without the auxiliary left merge operator from [11] do not have a finite equational
axiomatization modulo bisimulation equivalence [26, 27]. Recently, in collabora-
tion with Luttik, the first three authors have shown in [4] that the process algebra
obtained by adding Hennessy’s merge operator from [21] to CCS does not have
a finite equational axiomatization modulo bisimulation equivalence. Fokkink and
Luttik have shown in [17] that the process algebra PA [12] affords anω-complete
axiomatization that is finite if so is the underlying set of actions. Aceto,Ésik and
Ingolfsdottir proved in [2] that there is no finite equational axiomatization that is
ω-complete for the max-plus algebra of the natural numbers, a result whose process
algebraic implications are discussed in [1]. Fokkink and Nain have shown in [18]
that no congruence over the language BCCSP, a basic formalism to express finite
process behaviour, that is included in possible worlds equivalence, and includes
ready trace equivalence, affords a finiteω-complete equational axiomatization.

The paper is organized as follows. We begin by presenting the language BPA
with the interrupt operator, its operational semantics and preliminaries on equa-
tional logic in Section 2.Ibidem we also show that the interrupt operator is not
definable in BPA modulo bisimilarity. The general structure of the proof of our
main result, to the effect that bisimilarity is not finitely based over the language
we consider in this paper, is presented in Section 3. There we also show how to
reduce the proof of our main result to that of a technical statement describing a key
property of closed instantiations of sound equations that is preserved under equa-
tional derivations (Proposition 3.2). We conclude the paper by offering a proof of
Proposition 3.2 in Section 4.

2 Preliminaries

We begin by introducing the basic definitions and results on which the technical
developments to follow are based. The interested reader is referred to [6, 11] for
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more information.

2.1 The LanguageBPAint

We assume a non-empty alphabetA of atomic actions, with typical elementsa, b.
The language for processes we shall consider in this paper, henceforth referred to
as BPAint, is obtained by adding the interrupt operator from [6] to Bergstra and
Klop’s BPA [11]. This language is given by the following grammar:

t ::= x | a | t · t | t + t | t � t ,

wherex is a variable drawn from a countably infinite setV anda is an action. In
the above grammar, we use the symbol� for theinterrupt operator. We shall use
the meta-variablest, u, v, w to range over process terms, and writevar(t) for the
collection of variables occurring in the termt. Thesizeof a term is the number of
operator symbols in it. A process term isclosedif it does not contain any variables.
Closed terms will be typically denoted byp, q, r, s. As usual, we shall often write
tu in lieu of t · u, and we assume that· binds stronger than+.

A (closed) substitution is a mapping from process variables to (closed) BPAint

terms. For every termt and (closed) substitutionσ, the (closed) term obtained by
replacing every occurrence of a variablex in t with the (closed) termσ(x) will
be writtenσ(t). In what follows, we shall use the notationσ[x 7→ p], whereσ
is a closed substitution andp is a closed BPAint term, to stand for the substitution
mappingx to p, and acting likeσ on all of the other variables inV .

In the remainder of this paper, we leta1 denotea, andam+1 denotea(am),
and terms are considered modulo associativity and commutativity of+. In other
words, we do not distinguisht + u andu+ t, nor(t + u)+ v andt + (u+ v). This
is justified because+ is associative and commutative with respect to the notion
of equivalence we shall consider over BPAint. (See axioms A1, A2 in Table 3 on
page 11.) In what follows, the symbol= will denote equality modulo associativity
and commutativity of+.

We say that a termt has+ as head operatorif t = t1 + t2 for some termst1
andt2. For example,a + b has+ as head operator, but(a + b)a does not.

Fork ≥ 1, we use asummation
∑

i∈{1,...,k} ti to denotet1 + · · ·+ tk. It is easy
to see that every BPAint term t has the form

∑
i∈I ti, for some finite, non-empty

index setI, and termsti (i ∈ I) that do not have+ as head operator. The termsti
(i ∈ I) will be referred to as the(syntactic) summandsof t. For example, the term
(a + b)a has only itself as (syntactic) summand.

The following observation, whose simple proof is omitted, will find application
in the subsequent technical developments.
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Lemma 2.1 Let t be a BPAint term, and letσ be a substitution. Assume thatt is
neither a variable nor a term of the formt1 + t2 for somet1, t2. Thent andσ(t)
have the same number of summands.

The operational semantics for the language BPAint is given by the labelled transi-
tion system (

BPAint,
{

a→| a ∈ A
}

,
{

a→X | a ∈ A
})

,

where the transition relations
a→ and the unary predicates

a→X are, respectively,
the least subsets of BPAint × BPAint and BPAint satisfying the rules in Table 1.
Intuitively, a transitiont

a→ u means that the system represented by the termt can
perform the actiona, thereby evolving intou. The special symbolX stands for
(successful) termination; therefore the interpretation of the statementt

a→X is that
the process termt can terminate by performinga. Note that, for every closed term
p, there is some actiona for which eitherp

a→ p′ holds for somep′, or p
a→X does.

For termst, u, and actiona, we say thatu is ana-derivativeof t if t
a→ u.

a
a→X

t
a→X

t + u
a→X

u
a→X

t + u
a→X

t
a→ t′

t + u
a→ t′

u
a→ u′

t + u
a→ u′

t
a→X

t · u a→ u

t
a→ t′

t · u a→ t′ · u
t

a→X
t � u

a→X
t

a→ t′

t � u
a→ t′ � u

u
a→X

t � u
a→ t

u
a→ u′

t � u
a→ u′ · t

Table 1: Transition Rules for BPAint

The transition relations
a→ naturally compose to determine the possible effects

that performing a sequence of actions may have on a BPAint term.

Definition 2.1 For a sequence of actionsa1 · · · ak (k ≥ 0), and BPAint termst, t′,
we writet

a1···ak→ t′ iff there exists a sequence of transitions

t = t0
a1→ t1

a2→ · · · ak→ tk = t′ .

Similarly, we say thata1 · · · ak (k ≥ 1) is a termination trace of a BPAint termst
iff there exists a sequence of transitions

t = t0
a1→ t1

a2→ · · · ak→X .
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If t
a1···ak→ t′ holds for some BPAint term t′, or a1 · · · ak is a termination trace oft,

thena1 · · · ak is atraceof t.
The depthof a termt, written depth(t), is the length of the longest trace it

affords.
Thenormof a termt, denoted bynorm(t), is the length of its shortest termi-

nation trace; this notion stems from [8].

The depth and the norm of closed terms can also be characterized inductively thus:

depth(a) = 1
depth(p + q) = max{depth(p), depth(q)}

depth(pq) = depth(p) + depth(q)
depth(p � q) = depth(p) + depth(q)

norm(a) = 1
norm(p + q) = min{norm(p),norm(q)}

norm(pq) = norm(p) + norm(q)
norm(p � q) = norm(p) .

Note that the depth and the norm of each closed BPAint term are positive.
In what follows, we shall sometimes need to consider the possible origins of a

transition of the formσ(t) a→ p, for some actiona, closed substitutionσ, BPAint

term t and closed termp. Naturally enough, we expect thatσ(t) affords that tran-
sition if t

a→ t′, for somet′ such thatp = σ(t′). However, the above transition may
also derive from the initial behaviour of some closed termσ(x), provided that the
collection of initial moves ofσ(t) depends, in some formal sense, on that of the
closed term substituted for the variablex. Similarly, we shall sometimes need to
consider the possible origins of a transition of the formσ(t) a→X, for some action
a, closed substitutionσ and BPAint termt.

To fully describe these situations, we introduce the auxiliary notion of config-
uration of a BPAint term. To this end, we assume a set of symbols

Vd = {xd | x ∈ V }
disjoint fromV . Intuitively, the symbolxd (read “duringx”) will be used to denote
that the closed term substituted for variablex has begun executing, but has not yet
terminated.

Definition 2.2 The collection of BPAint configurationsis given by the following
grammar:

c ::= t | xd | c · t | c � t ,

wheret is a BPAint term, andxd ∈ Vd.
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x
xs→ xd x

x→X

t
x→ t′

t + u
x→ t′

t
xs→ c

t + u
xs→ c

t
x→X

t + u
x→X

u
x→ u′

t + u
x→ u′

u
xs→ c

t + u
xs→ c

u
x→X

t + u
x→X

t
x→ t′

tu
x→ t′u

t
xs→ c

tu
xs→ cu

t
x→X

tu
x→ u

t
x→ t′

t � u
x→ t′ � u

t
xs→ c

t � u
xs→ c � u

t
x→X

t � u
x→X

u
x→ u′

t � u
x→ u′t

u
xs→ c

t � u
xs→ ct

u
x→X

t � u
x→ t

Table 2: SOS Rules for the Auxiliary Transitions
x→,

xs→ and
x→X (x ∈ V )

For example, the configurationxd · (a � x) is meant to describe a state of the
computation of some term in which the (closed term substituted for the) occurrence
of variablex on the left-hand side of the· operator has begun its execution (and
has not terminated), but the one on the right-hand side has not. Note that each
configuration contains at most one occurrence of anxd ∈ Vd.

We shall consider the symbolsxd as variables, and use the notationσ[xd 7→ p],
whereσ is a closed substitution andp is a closed BPAint term, to stand for the
substitution mappingxd to p, and acting likeσ on all of the other variables.

The way in which the initial behaviour of a term may depend on that of the
variables that occur in it is formally described by three auxiliary transition relations
whose elements have the following forms:

• t
xs→ c (read “t can start executingx and becomec in doing so”), wheret is

a term,x is a variable, andc is a configuration,

• t
x→ t′, wheret andt′ are terms andx is a variable, or

• t
x→X, wheret is a term.

The first of these types of transitions will be used to account for those transitions
of the formσ(t) a→ p that are due toa-labelled transitions of the closed termσ(x)
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that do not lead to its termination. The second will describe the origin of transitions
of the formσ(t) a→ σ(t′) that are due toa-labelled transitions of the closed term
σ(x) that lead to its termination. Finally, transitions of the third kind will allow us
to describe the origin of termination transitions of the formσ(t) a→X that are due
to a-labelled termination transitions of the closed termσ(x).

The SOS rules defining these transitions are given in Table 2. In those rules, the
meta-variablest, u, t′ andu′ denote BPAint terms, andc ranges over the collection
of configurations that contain one occurrence of a symbol of the formxd. The
attentive reader might have already noticed that the left-hand sides of the rules in
Table 2 are always BPAint terms, and therefore that no (auxiliary) transitions are
possible from configurations that contain one occurrence of a symbol of the form
xd. This is in line with our aim in defining the auxiliary transition relations

x→,
xs→

and
x→X (x ∈ V ), viz. to describe the possible origins of theinitial transitions of a

term of the formσ(t), with t a BPAint term andσ a closed substitution.

Lemma 2.2 For each BPAint termt, configurationc and variablex, if t
xs→ c, then

xd occurs inc. Moreover, ifc = xd thenx is a summand oft.

The precise connection between the transitions of a termσ(t) and those oft is
expressed by the following lemma.

Lemma 2.3 [Operational Correspondence] Assume thatt is a BPAint term,σ is a
closed substitution anda is an action. Then the following statements hold:

1. If t
a→X, thenσ(t) a→X.

2. If t
x→X andσ(x) a→X, thenσ(t) a→X.

3. If t
x→ t′ andσ(x) a→X, thenσ(t) a→ σ(t′).

4. Assume thatt
xs→ c andσ(x) a→ p, for some closed termp. Thenσ(t) a→

σ[xd 7→ p](c).

5. If t
a→ t′, thenσ(t) a→ σ(t′).

6. Assume thatσ(t) a→X. Then eithert
a→X or there is a variablex such that

t
x→X andσ(x) a→X.

7. Assume thatσ(t) a→ p, for some closed termp. Then one of the following
possibilities applies:

• t
x→ t′, σ(x) a→X andp = σ(t′), for some termt′ and variablex,

• t
a→ t′ for somet′ such thatp = σ(t′), or
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• t
xs→ c andσ(x) a→ q, for some variablex, configurationc and closed

termq such thatσ[xd 7→ q](c) = p.

Proof: Statements 1–5 are proven by induction on the proof of the relevant transi-
tions. The proof of statement 3 uses statement 2. On the other hand, statements 6–7
are proven by induction on the structure of the termt. The proof of statement 7
uses statement 6.

The details are lengthy, but straightforward, and we therefore omit them.2

In this paper, we shall consider the language BPAint modulo bisimulation equiva-
lence [28].

Definition 2.3 Two closed BPAint termsp andq arebisimilar, denoted byp ↔ q,
if there exists a symmetric binary relationB over closed BPAint terms which relates
p andq, such that:

- if r B s andr
a→ r′, then there is a transitions

a→ s′ such thatr′ B s′,

- if r B s andr
a→X, thens

a→X.

Such a relationB will be called abisimulation. The relation↔ will be referred to
asbisimulation equivalenceor bisimilarity.

It is well known that↔ is an equivalence relation [28]. Moreover, the transition
rules in Table 1 are in the ‘path’ format of Baeten and Verhoef [9]. Hence, bisimu-
lation equivalence is a congruence with respect to all the operators in the signature
of BPAint.

Note that bisimilar closed BPAint terms afford the same finite non-empty col-
lection of (termination) traces, and therefore have the same norm and depth.

Bisimulation equivalence is extended to arbitrary BPAint terms thus:

Definition 2.4 Let t, u be BPAint terms. Thent ↔ u iff σ(t) ↔ σ(u) for every
closed substitutionσ.

For instance, we have that

x � y ↔ (x � y) + yx

because, as our readers can easily check, the termsp � q and(p � q) + qp have
the same set of initial “capabilities”, i.e.,

p � q
a→ r iff (p � q) + qp

a→ r , for eacha andr, and
p � q

a→X iff (p � q) + qp
a→X, for eacha .

It is natural to expect that the interrupt operator cannot be defined in the language
BPA modulo bisimulation equivalence. This expectation is confirmed by the fol-
lowing simple, but instructive, result:
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Proposition 2.1 There is no BPAint termt such thatt does not contain occurrences
of the interrupt operator, andt↔ x � y.

Proof: Assume, towards a contradiction, thatt is a BPAint term such thatt does
not contain occurrences of the interrupt operator, andt↔ x � y.

Consider the closed substitutionσa mapping each variable toa. Since

σa(t)↔ a � a anda � a
a→X ,

we have thatσa(t)
a→X. Lemma 2.3(6) yields that eithert

a→X or there is a
variablez such thatt

z→X andσa(z) a→X. We shall now argue that both of these
possibilities imply thatt↔/ x � y, contradicting our assumption.

Indeed, using the former possibility we may infer thatσa[x 7→ a2](t) a→X
(Lemma 2.3(1)). This implies thatt ↔/ x � y, becausea2 � a does not have
termination traces of length 1.

Assume now there is a variablez such thatt
z→X andσa(z) a→X. It is not hard

to see thatt ↔ z + u for some termu, sincet does not contain occurrences of the
interrupt operator andt

z→X. We claim that

σa[x 7→ a2](t) ↔/ a2 � a .

If z 6= x, our claim follows, because, reasoning as above,

σa[x 7→ a2](t) ↔ a + σa[x 7→ a2](u) a→X

whereasa2 � a does not have termination traces of length 1.
If t↔ x + u, thenσa[x 7→ a2](t) a→ p for somep↔ a. On the other hand, the

two a-derivatives ofa2 � a, namelya � a anda2, have depth 2, and thus neither
of them is bisimilar toa. 2

2.2 Equational Logic

An axiom systemis a collection of equationst ≈ u over the language BPAint. An
equationt ≈ u is derivable from an axiom systemE, notationE ` t ≈ u, if it can
be proven from the axioms inE using the rules of equational logic (viz. reflexivity,
symmetry, transitivity, substitution and closure under BPAint contexts):

t ≈ t
t ≈ u

u ≈ t

t ≈ u u ≈ v

t ≈ v

t ≈ u

σ(t) ≈ σ(u)

t ≈ u t′ ≈ u′

t + t′ ≈ u + u′
t ≈ u t′ ≈ u′

tt′ ≈ uu′
t ≈ u t′ ≈ u′

t � t′ ≈ u � u′ .
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A1 x + y ≈ y + x
A2 (x + y) + z ≈ x + (y + z)
A3 x + x ≈ x
A4 (x + y)z ≈ (xz) + (yz)
A5 (xy)z ≈ x(yz)

Table 3: Some Axioms for BPAint

Without loss of generality one may assume that substitutions happen first in equa-
tional proofs, i.e., that the rule

t ≈ u

σ(t) ≈ σ(u)

may only be used when(t ≈ u) ∈ E. In this caseσ(t) ≈ σ(u) is called a
substitution instanceof an axiom inE.

Moreover, by postulating that for each axiom inE also its symmetric counter-
part is present inE, one may assume that applications of symmetry happen first in
equational proofs. In the remainder of this paper, we shall tacitly assume that our
equational axiom systems are closed with respect to symmetry.

It is well-known (cf., e.g., Sect. 2 in [20]) that if an equation relating two closed
terms can be proven from an axiom systemE, then there is a closed proof for it.

Definition 2.5 An equationt ≈ u over the language BPAint is soundwith respect
to ↔ iff t↔ u. An axiom system is sound with respect to↔ iff so is each of its
equations.

An example of a collection of equations over the language BPAint that are sound
with respect to↔ is given in Table 3. Those equations stem from [11]. Equations
dealing with the interrupt operator using two auxiliary operators are offered in [6].

3 Bisimilarity is not Finitely Based over BPAint

Our order of business in the remainder of this paper will be to show the following
theorem:

Theorem 3.1 Bisimilarity is not finitely based over the language BPAint—that is,
there is no finite axiom system that is sound with respect to↔, and proves all of
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the equationst ≈ u such thatt ↔ u. Moreover, the same holds true if we restrict
ourselves to the collection of closed equations over BPAint that hold modulo↔.

The above theorem is an immediate corollary of the following result:

Theorem 3.2 Let E be a finite collection of equations over the language BPAint

that hold modulo↔. Letn > 2 be larger than the size of each term in the equations
in E. ThenE 6` en, where the family of equationsen (n ≥ 1) is defined thus:

en :
(∑n

i=1 pi

)
� a ≈ b +

n∑
i=2

b((bi−1 + b) � a) + a

n∑
i=1

pi . (1)

In the above family,p1 = b andpi = b(bi−1 + b) for i > 1.

Observe that, for eachn ≥ 1, the closed equationen is sound modulo bisimilarity.
Indeed, the left-hand and right-hand sides of the equation have isomorphic labelled
transitions systems. Therefore, as claimed above, Theorem 3.1 is an immediate
consequence of Theorem 3.2.

The following simple properties of the closed terms mentioned in (1) will find
repeated application in what follows.

Lemma 3.1

1. Let n ≥ 1 andi ∈ {1, . . . , n}. Then, the norm ofpi is 1 if i = 1, and2
otherwise. The depth ofpi is i.

2. For eachn ≥ 1, the norm of
(∑n

i=1 pi

)
� a is 1, and its depth isn + 1.

In the remainder of this study, we shall offer a proof of Theorem 3.2. In order to
prove this theorem, it will be sufficient to establish the following technical result:

Proposition 3.1 Let E be a finite axiom system over the language BPAint that is
sound modulo bisimilarity. Letn > 2 be larger than the size of each term in the
equations inE. Assume, furthermore, that

• E ` p ≈ q,

• p↔ (∑n
i=1 pi

)
� a and

• p has a summand bisimilar to
(∑n

i=1 pi

)
� a.

Thenq has a summand bisimilar to
(∑n

i=1 pi

)
� a.

Indeed, assuming Proposition 3.1, we can prove Theorem 3.2, and therefore Theo-
rem 3.1, as follows.
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Proof of Theorem 3.2: Assume thatE is a finite axiom system over the language
BPAint that is sound modulo bisimilarity. Pickn > 2 and larger than the size of the
terms in the equations inE. Assume that, for some closed termq,

E ` (∑n
i=1 pi

)
� a ≈ q .

Using Proposition 3.1, we have thatq has a summand bisimilar to
(∑n

i=1 pi

)
� a.

Note now that the summands of the right-hand side of equationen, viz.

b +
n∑

i=2

b((bi−1 + b) � a) + a
n∑

i=1

pi ,

are the terms

• b,

• b((bi−1 + b) � a), for some2 ≤ i ≤ n, and

• a
∑n

i=1 pi.

Unlike
(∑n

i=1 pi

)
� a, none of these terms can initially perform both ana and

a b action. It follows that no summand of the right-hand side of equationen is
bisimilar to

(∑n
i=1 pi

)
� a, and thus that

q 6= b +
n∑

i=2

b((bi−1 + b) � a) + a
n∑

i=1

pi .

We may therefore conclude thatE does not prove equationen, which was to be
shown. 2

Our order of business will now be to provide a proof of Proposition 3.1. Our proof
of that result will be proof-theoretic in nature, and will proceed by induction on
the depth of equational derivations from a finite axiom systemE. The crux in
such an induction proof is given by the following proposition, to the effect that the
statement of Proposition 3.1 holds for closed instantiations of axioms inE.

Proposition 3.2 Let t ≈ u be an equation over the language BPAint that holds
modulo bisimilarity. Letσ be a closed substitution,p = σ(t) and q = σ(u).
Assume that

• n > 2 and the size oft is smaller thann,

• p↔ (∑n
i=1 pi

)
� a and

13



• p has a summand bisimilar to
(∑n

i=1 pi

)
� a.

Thenq has a summand bisimilar to
(∑n

i=1 pi

)
� a.

Indeed, let us assume for the moment that the above result holds. Using it, we can
prove Proposition 3.1 thus:

Proof of Proposition 3.1: Assume thatE is a finite axiom system over the lan-
guage BPAint that is sound with respect to bisimulation equivalence, and that the
following hold, for some closed termsp andq and positive integern > 2 that is
larger than the size of each term in the equations inE:

1. E ` p ≈ q,

2. p↔ (∑n
i=1 pi

)
� a, and

3. p has a summand bisimilar to(
∑n

i=1 pi) � a.

We prove thatq also has a summand bisimilar to
(∑n

i=1 pi

)
� a by induction on

the depth of the closed proof of the equationp ≈ q from E. Recall that, without
loss of generality, we may assume that applications of symmetry happen first in
equational proofs (that is,E is closed with respect to symmetry).

We proceed by a case analysis on the last rule used in the proof ofp ≈ q from
E. The case of reflexivity is trivial, and that of transitivity follows immediately by
using the inductive hypothesis twice. Below we only consider the other possibili-
ties.

• CASE E ` p ≈ q, BECAUSEσ(t) = p AND σ(u) = q FOR SOME EQUATION

(t ≈ u) ∈ E AND CLOSED SUBSTITUTIONσ. Sincen > 2 is larger than
the size of each term mentioned in equations inE, the claim follows by
Proposition 3.2.

• CASE E ` p ≈ q, BECAUSE p = p′ + p′′ AND q = q′ + q′′ FOR SOME

p′, q′, p′′, q′′ SUCH THAT E ` p′ ≈ q′ AND E ` p′′ ≈ q′′. Sincep has
a summand bisimilar to

(∑n
i=1 pi

)
� a, we have that so does eitherp′

or p′′. Assume, without loss of generality, thatp′ has a summand bisim-
ilar to

(∑n
i=1 pi

)
� a. Sincep is bisimilar to

(∑n
i=1 pi

)
� a, so isp′.

The inductive hypothesis now yields thatq′ has a summand bisimilar to(∑n
i=1 pi

)
� a. Hence,q has a summand bisimilar to

(∑n
i=1 pi

)
� a,

which was to be shown.

• CASE E ` p ≈ q, BECAUSEp = p′p′′ AND q = q′q′′ FOR SOMEp′, q′, p′′, q′′

SUCH THAT E ` p′ ≈ q′ AND E ` p′′ ≈ q′′. This case is vacuous. In fact,
norm(p) = 1 by our assumption thatp ↔ (∑n

i=1 pi

)
� a, whereas the

norm of a closed term of the formp′p′′ is at least 2.
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• CASE E ` p ≈ q, BECAUSE p = p′ � p′′ AND q = q′ � q′′ FOR SOME

p′, q′, p′′, q′′ SUCH THAT E ` p′ ≈ q′ AND E ` p′′ ≈ q′′. The claim is
immediate becausep andq are their only summands, andE is sound modulo
bisimilarity.

This completes the proof. 2

In light of our previous discussion, all that we are left to do to complete our proof
of Theorem 3.1 is to show Proposition 3.2. The remainder of this paper will be
entirely devoted to a proof of that result.

4 Proof of Proposition 3.2

We begin our proof of Proposition 3.2 by stating a few auxiliary results that will
find application in the technical developments to follow.

Lemma 4.1 Assume thatn > 2 andp � q ↔ (∑n
i=1 pi

)
� a, for closed BPAint

termsp andq. Thenp↔∑n
i=1 pi andq ↔ a.

Proof: Sincep � q ↔ (∑n
i=1 pi

)
� a and

(∑n
i=1 pi

)
� a

a→
n∑

i=1

pi ,

there is a closed termr such thatp � q
a→ r andr ↔ ∑n

i=1 pi.
We proceed by examining the possible origins of the transitionp � q

a→ r.
There are three possibilities to consider, viz.

1. q
a→ q′ andr = q′p, for someq′,

2. q
a→X andr = p, or

3. p
a→ p′ andr = p′ � q.

The first case is impossible because the norm ofr = q′p is at least 2, whereas the
norm of

∑n
i=1 pi is 1. This contradictsr ↔ ∑n

i=1 pi.
In the second case, we have thatp↔ ∑n

i=1 pi. Therefore

p � q ↔ (∑n
i=1 pi

)
� q ↔ (∑n

i=1 pi

)
� a .

We claim thatq ↔ a, which was to be shown. In fact, observe that the depth of
q is 1 (Lemma 3.1(2)). Moreover,q can only perform actiona, or else the terms
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(
∑n

i=1 pi) � q and
(∑n

i=1 pi

)
� a would not afford the same traces. It follows

thatq ↔ a as claimed.
Finally, assume that the third case applies. We shall show that this leads to a

contradiction. Observe, first of all, that, since

p′ � q ↔
n∑

i=1

pi ,

b is the only actionq can perform. We claim thatq ↔ b. To see that this claim

holds, assume thatq
b→ q′ for someq′. Then

p′ � q
b→ q′p′ andnorm(q′p′) ≥ 2 .

On the other hand, eachb-derivative of the term
∑n

i=1 pi has the formbj−1 + b for
somej ∈ {2, . . . , n}, and thus has norm 1. This contradicts

p′ � q ↔
n∑

i=1

pi .

Thusq ↔ b and, using congruence of↔,

p′ � b↔
n∑

i=1

pi . (2)

It follows thatdepth(p′) = n− 1. Sincep′ � b
b→ p′, and the onlyb-derivative of∑n

i=1 pi whose depth isn− 1 is bn−1 + b, we may infer that

p′ ↔ bn−1 + b . (3)

Using congruence of↔ again, together with (2)–(3), yields that

(
bn−1 + b

)
� b↔

n∑
i=1

pi . (4)

Sincen > 2 by one of the assumptions of the lemma, we have thatn− 1 6= 1, and
thereforeb(bn−2 + b) is a summand of

∑n
i=1 pi. Consider now the transition

n∑
i=1

pi
b→ bn−2 + b .

Observe that the depth of the target of that transition isn− 2. It is now easy to see
that nob-derivative of

(
bn−1 + b

)
� b has depthn− 2, contradicting (4).

The proof of the lemma is now complete. 2
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Remark 4.1 The proviso thatn be larger than 2 in the statement of the above result
is necessary. In fact, ifn = 2 then

(b � a) � b↔ (b + b2) � a↔ (p1 + p2) � a ,

but b↔/ a andb � a↔/ b + b2.

The following observations will be used repeatedly in the proof of Proposition 3.2.

Lemma 4.2 Let t be a BPAint term,x be a variable, andσ be a closed substitution.
Assume thatx ∈ var (t). Then the following statements hold:

1. depth(σ(t)) ≥ depth(σ(x)), and

2. if depth(σ(t)) = depth(σ(x)), then eithert ↔ x or t ↔ x + u for some
BPAint termu that does not contain occurrences ofx.

Proof: Both statements are shown by induction on the structure oft. Here we
limit ourselves to presenting a proof for statement 2. The caset = x is trivial, and
those wheret = t1t2 or t = t1 � t2, for some termst1, t2 are vacuous, because
depth(σ(t)) is larger thandepth(σ(x)) for termst of those forms. We are thus left
to examine the caset = t1 + t2 for some termst1, t2.

Sincex ∈ var(t), we have that eitherx ∈ var (t1) ∩ var(t2) or x occurs in
exactly one oft1 andt2. We examine these two possibilities in turn.

Assume thatx ∈ var (t1) ∩ var(t2). We claim that, fori ∈ {1, 2},
depth(σ(x)) = depth(σ(ti)) .

Indeed, by statement 1 of the lemma, we have thatdepth(σ(x)) ≤ depth(σ(ti))
for i ∈ {1, 2}. Moreover, fori ∈ {1, 2},

depth(σ(ti)) ≤ max{depth(σ(t1)), depth(σ(t2))}
= depth(σ(t1 + t2)) = depth(σ(x)) .

Therefore, by the induction hypothesis, fori ∈ {1, 2}, we may infer that either
ti ↔ x or ti ↔ x + ui for some BPAint termui that does not contain occurrences
of x.

If both t1 ↔ x andt2 ↔ x, thent1 + t2 ↔ x. Otherwise,t = t1 + t2 ↔ x + u
for some BPAint termu that does not contain occurrences ofx.

Assume now, without loss of generality, thatx ∈ var (t1) andx 6∈ var(t2).
Reasoning as above, we may apply the inductive hypothesis tot1 to obtain that
either t1 ↔ x or t1 ↔ x + u1 for some BPAint term u1 that does not contain
occurrences ofx. In both cases, it follows thatt = t1 + t2 ↔ x + u for some
BPAint termu that does not contain occurrences ofx. 2
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Lemma 4.3 Let t ≈ u be an equation over the language BPAint that is sound
with respect to bisimulation equivalence. Assume that some variablex occurs as a
summand int. Thenx also occurs as a summand inu.

Proof: Recall that, for some finite index setI, we can write

t =
∑
i∈I

ti ,

where none of theti (i ∈ I) has+ as head operator. Assume that variablex occurs
as a summand int—i.e., there is ani ∈ I with ti = x. We shall argue thatx also
occurs as a summand inu.

Consider the substitutionσa mapping each variable toa. As t ≈ u is sound
with respect to bisimulation equivalence, we have that

σa(t)↔ σa(u) .

Pick an integerm larger than the depth ofσa(t) and ofσa(u). Let σ be the substi-
tution mappingx to the termam+1 and agreeing withσa on all the other variables.

As t ≈ u is sound with respect to bisimulation equivalence, we have that

σ(t)↔ σ(u) .

Moreover, the termσ(t) affords the transitionσ(t) a→ am, for ti = x andσ(x) =
am+1 a→ am. Hence, for some closed termp,

σ(u) a→ p↔ am .

By Lemma 2.3(7) and the definition ofσ, we have that one of the following holds:

• u
y→ u′, σ(y) a→X andp = σ(u′), for some termu′ and variabley 6= x,

• u
a→ u′ for someu′ such thatp = σ(u′), or

• u
xs→ c for some configurationc such thatσ[xd 7→ am](c) = p.

In the first two cases, we have that eitherdepth(p) ≥ m + 1, if x ∈ var (u′), or
depth(p) < m, otherwise. This contradictsp ↔ am. In the third case, we claim
that c = xd and thatx is a summand ofu. In fact, xd occurs inc (Lemma 2.2).
Moreover, ifc 6= xd then it is easy to see thatdepth(σ[xd 7→ q](c)) > m, again
contradictingp ↔ am. Hencec = xd as claimed. Since,u

xs→ c = xd, it follows
thatx is a summand ofu (Lemma 2.2), which was to be shown. 2

We are finally in a position to conclude our technical developments by offering a
proof of Proposition 3.2.
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Proof of Proposition 3.2: Recall that, by the proviso of the proposition,

1. t ≈ u is an equation over the language BPAint that holds modulo bisimilarity,

2. n > 2 and the size oft is smaller thann,

3. σ is a closed substitution,p = σ(t) andq = σ(u),

4. p↔ (∑n
i=1 pi

)
� a and

5. p has a summand bisimilar to(
∑n

i=1 pi) � a.

We shall prove thatq also has a summand bisimilar to
(∑n

i=1 pi

)
� a.

We can assume that, for some finite non-empty index setsI, J ,

t =
∑
i∈I

ti and (5)

u =
∑
j∈J

uj , (6)

where none of theti (i ∈ I) anduj (j ∈ J) has+ as its head operator.
Sincep = σ(t) has a summand bisimilar to

(∑n
i=1 pi

)
� a, then so doesσ(ti)

for some indexi ∈ I. Our aim is now to show that there is an indexj ∈ J such that
σ(uj) has a summand bisimilar to

(∑n
i=1 pi

)
� a, proving thatq = σ(u) also has

a summand bisimilar to
(∑n

i=1 pi

)
� a. This we proceed to do by a case analysis

on the formti may have.

1. CASE ti = x FOR SOME VARIABLE x. In this case, we have thatσ(x) has a
summand bisimilar to

(∑n
i=1 pi

)
� a, andt hasx as a summand. Ast ≈ u

is sound with respect to bisimulation equivalence, it follows thatu also hasx
as a summand (Lemma 4.3). Thus there is an indexj ∈ J such thatuj = x,
and, modulo bisimulation,σ(u) has

(∑n
i=1 pi

)
� a as a summand, which

was to be shown.

2. CASE ti = t′t′′ FOR SOME TERMSt′, t′′. This case is vacuous. Indeed, note,
first of all, thatσ(ti) = σ(t′)σ(t′′) is its only summand. Therefore,

σ(ti) = σ(t′)σ(t′′)↔ (∑n
i=1 pi

)
� a .

This is a contradiction because

norm
((∑n

i=1 pi

)
� a
)

= 1 < 2 ≤ norm(σ(t′)σ(t′′)) = norm(σ(ti)) .
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3. CASE ti = t′ � t′′ FOR SOME TERMSt′, t′′. The analysis of this case is the
crux of the proof, and we present the argument in considerable detail.

Sinceσ(ti) = σ(t′) � σ(t′′) is its only summand, we have that

σ(ti) = σ(t′) � σ(t′′)↔ (∑n
i=1 pi

)
� a .

By Lemma 4.1, this yields that

σ(t′) ↔
n∑

i=1

pi and (7)

σ(t′′) ↔ a . (8)

Now, t′ can be written thus:

t′ = w1 + · · ·+ wk (k ≥ 1) ,

where none of the summandswh has+ as head operator. Observe that, since
n is larger than the size oft, we have thatk < n. Hence, since

σ(t′)↔
n∑

i=1

pi ,

there must be someh ∈ {1, . . . , k} such that

σ(wh)↔ pi1 + · · · + pim

for somem > 1 and1 ≤ i1 < . . . < im ≤ n. By Lemma 2.1, it follows that
wh can only be a variablex and thus that

σ(x) ↔ pi1 + · · ·+ pim . (9)

Note that, asx is a summand oft′,

t′ = x + t′′′ , for some termt′′′ .

Moreover, we have thatx 6∈ var (t′′), or elseσ(t′′)↔/ a, contradicting (8).

Our order of business will now be to use the information collected so far
in this case of the proof to argue thatσ(u) has a summand bisimilar to(∑n

i=1 pi

)
� a. To this end, consider the substitution

σ′ = σ[x 7→ a(
(∑n

i=1 pi

)
� a)] .
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We have that

σ′(ti) = σ′(t′) � σ′(t′′)
= (σ′(x) + σ′(t′′′)) � σ′(t′′) (As t′ = x + t′′′)
= (σ′(x) + σ′(t′′′)) � σ(t′′) (As x 6∈ var(t′′))

↔
(
a
((∑n

i=1 pi

)
� a
)

+ σ′(t′′′)
)

� a (As σ(t′′)↔ a) .

Thus, for somep′,

σ′(ti)
a→ p′ ↔ ((∑n

i=1 pi

)
� a
)

� a .

By (5), we have thatσ′(t) a→ p′ also holds. Sincet ≈ u is sound with
respect to↔ , it follows thatσ′(t) ↔ σ′(u). Hence, by (6), there exist an
indexj ∈ J and aq′ such that

σ′(uj)
a→ q′ ↔ ((∑n

i=1 pi

)
� a
)

� a . (10)

Recall that, by one of the assumptions of the proposition,

σ(u) ↔ (∑n
i=1 pi

)
� a ,

and thusσ(u) has depthn + 1. On the other hand, by (10),

depth(σ′(uj)) ≥ n + 2 .

Sinceσ andσ′ differ only in the closed term they map variablex to, it follows
that

x ∈ var(uj) . (11)

We shall now argue thatσ(uj) ↔ (
∑n

i=1 pi) � a by a further case analysis
on the form a termuj satisfying (10) and (11) may have.

(a) CASE uj = x. This case is vacuous because

σ′(uj) = σ′(x) = a(
(∑n

i=1 pi

)
� a) a→ (∑n

i=1 pi

)
� a = q′

is the only initial transition afforded byσ′(uj). This contradicts (10)
because

depth(q′) = n + 1
< n + 2

= depth(((
n∑

i=1

pi) � a) � a) .
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(b) CASE uj = u′u′′ FOR SOME TERMSu′, u′′. We show that this case
also leads to a contradiction.
Recall that

σ′(uj) = σ′(u′)σ′(u′′) a→ q′ ↔ (
(∑n

i=1 pi

)
� a) � a .

We proceed by a case analysis on the possible origin of this transition.
There are two possibilities, viz.

i. σ′(u′) a→ r andq′ = rσ′(u′′), for somer, or
ii. σ′(u′) a→X andq′ = σ′(u′′).

The former case is vacuous because, by (10),norm(q′) = 1, whereas
norm(rσ′(u′′)) ≥ 2.
In the latter case, we claim thatx ∈ var (u′′). In fact, if x 6∈ var(u′′),
then we obtain a contradiction thus:

n + 2 = depth(σ′(u′′)) (By (10))

= depth(σ(u′′)) (As x 6∈ var(u′′))
< depth(σ(uj)) (As uj = u′u′′)
≤ depth(σ(u))

= n + 1

(
As σ(u) ↔

(
n∑

i=1

pi

)
� a

)
.

Thusx ∈ var (u′′), as claimed.
Observe now that, in light of (10),u′′↔/ x. Indeed, ifu′′ were bisimilar
to x, then we could infer that

q′ = σ′(u′′)↔ σ′(x) = a(
(∑n

i=1 pi

)
� a) .

Thusq′ b
9, contradicting (10). Since, by (10),

depth(σ′(x)) = n + 2 = depth(q′) = depth(σ′(u′′)) ,

Lemma 4.2(2) thus yields that

u′′ ↔ x + u′′′ ,

for someu′′′ that does not containx. Hence,

q′ = σ′(u′′)
↔ σ′(x) + σ′(u′′′)
= a(

(∑n
i=1 pi

)
� a) + σ(u′′′) (As x 6∈ var (u′′′))

↔ ((∑n
i=1 pi

)
� a
)

� a (By (10)) .
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Since the transition((∑n
i=1 pi

)
� a
)

� a
b→ (

(bn−1 + b) � a
)

� a

can only be matched by a transition of the form

σ(u′′′) b→ r ↔ (
(bn−1 + b) � a

)
� a ,

for somer, we may infer that

depth(σ(u′′′)) ≥ n + 1 .

We can finally derive a contradiction as follows:

n + 1 = depth(q)
= depth(σ(u))
≥ depth(σ(uj))
= depth(σ(u′)) + depth(σ(u′′))
= depth(σ(u′)) + depth(σ(x) + σ(u′′′))
> n + 1 .

This completes the proof for the caseuj = u′u′′.
(c) CASE uj = u′ � u′′ FOR SOME TERMSu′, u′′. This is the lengthiest

sub-case of case 3 of the proof, and its analysis will occupy us for the
next few pages.

Recall that, by (10),

σ′(uj) = σ′(u′) � σ′(u′′) a→ q′ ↔ (
(∑n

i=1 pi

)
� a) � a .

We proceed by a case analysis on the possible origin of this transition.
There are three possibilities, namely

i. σ′(u′′) a→ q′′ andq′ = q′′σ′(u′), for someq′′,
ii. σ′(u′) a→ q′′ andq′ = q′′ � σ′(u′′), for someq′′, or

iii. σ′(u′′) a→X andq′ = σ′(u′).
We examine these sub-cases in turn.

• Case 3(c)i. This case is vacuous because, since

q′ ↔ (
(∑n

i=1 pi

)
� a) � a ,

we have thatnorm(q′) = 1. On the other-hand, the norm of a
closed term of the formq′′σ′(u′), for someq′′, is at least 2.
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• Case 3(c)ii. Note, first of all, that, since

q′ = q′′ � σ′(u′′)↔ (
(∑n

i=1 pi

)
� a) � a ,

we have thatx 6∈ var(u′′). In fact, if x ∈ var (u′′), then we would
be able to infer that

depth(q′) = depth(q′′) + depth(σ′(u′′))
> depth(σ′(u′′))
≥ n + 2 (By Lemma 4.2(1)),

contradicting the above equivalence. Sincex 6∈ var(u′′) andx ∈
var(uj) by (11), we may infer that

x ∈ var (u′) . (12)

Recall that, by the assumptions for this sub-case,σ′(u′) a→ q′′ and
q′ = q′′ � σ′(u′′). Using Lemma 2.3(7), we have that one of the
following possibilities arises:

i. u′ y→ w, σ′(y) a→X andq′′ = σ′(w), for some termw and
variabley,

ii. u′ a→ w for somew such thatq′′ = σ′(w), or

iii. u′ ys→ c andσ′(y) a→ r, for some variabley, configurationc
and closed termr such thatσ′[yd 7→ r](c) = q′′.

We consider these possibilities in turn.
The first of these cases is vacuous. In fact, using the assumptions
for this case, we can derive a contradiction as follows. Note, first
of all, thaty 6= x becauseσ′(y) a→X. Therefore

σ(y) = σ′(y) a→X .

Hence, by Lemma 2.3(3), we have thatσ(u′) a→ σ(w). So

σ(uj) = σ(u′) � σ(u′′) a→ σ(w) � σ(u′′) .

Note thatdepth(σ(w) � σ(u′′)) ≤ n. This implies thatx ∈
var(w), or else

q′ = σ′(w) � σ′(u′′) = σ(w) � σ(u′′)

would have depth at mostn, contradicting (10). But, sincex ∈
var(w), Lemma 4.2(1) yields that

depth(q′) > depth(σ′(w)) ≥ depth(σ′(x)) = n + 2 ,
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again contradicting (10).
The second case is also vacuous because, exactly as in the first
case, we can show thatdepth(q′) ≤ n, if x 6∈ var(w), and
depth(q′) > n + 2, otherwise. This contradicts (10).
We are therefore left to examine the third possibility. Recall, for
the sake of clarity, that, for some variabley, configurationc and
closed termr,

– u′ ys→ c,

– σ′(y) a→ r,

– σ′[yd 7→ r](c) = q′′,
– x 6∈ var (u′′), and

– q′ = q′′ � σ′(u′′) = q′′ � σ(u′′)↔ (
(∑n

i=1 pi

)
� a) � a by

(10).

Note thatx 6∈ var (c), or else

depth(q′) > depth(q′′) ≥ n + 2 ,

contradicting (10). We claim thaty = x. To see that this does
hold, assume, towards a contradiction, thaty 6= x. Then

σ(y) = σ′(y) a→ r .

Statement 4 in Lemma 2.3 now yields that

σ(u′) a→ σ[yd 7→ r](c) = σ′[yd 7→ r](c) = q′′ .

(The first equality holds becausex 6∈ var(c).) Hence,

σ(uj)
a→ q′′ � σ(u′′) = q′ .

This implies thatdepth(q′) ≤ n, contradicting (10).
To sum up, we have thaty = x, r =

(∑n
i=1 pi

)
� a, and

q′ = σ′[xd 7→ r](c) � σ(u′′) .

Sincedepth(q′) = n + 2 by (10),xd occurs inc, anddepth(r) =
n + 1, this is only possible if

– c = xd and

– σ(u′′)↔ a.
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We shall now argue that

σ(uj)↔
(∑n

i=1 pi

)
� a , (13)

proving thatq = σ(u) has a summand bisimilar to
(∑n

i=1 pi

)
� a,

which was to be shown.
In fact,

σ(uj) = σ(u′) � σ(u′′)
↔ σ(u′) � a .

We claim thatσ(u′)↔ ∑n
i=1 pi, and thus that (13) holds. Indeed,

sinceσ(u′′) a→X, we have that

σ(uj)
a→ σ(u′) .

As σ(uj) is a summand ofσ(u), we obtain that

σ(u) a→ σ(u′)

also holds. Recall thatσ(u) ↔ (∑n
i=1 pi

)
� a. The onlya-

labelled transition out of
(∑n

i=1 pi

)
� a is

(∑n
i=1 pi

)
� a

a→
n∑

i=1

pi .

Therefore,σ(u′)↔ ∑n
i=1 pi, as claimed.

The proof for case 3(c)ii is now complete.

• Case 3(c)iii. Recall, for the sake of clarity, that

i. σ′(u′′) a→X and

ii. q′ = σ′(u′)↔ ((
∑n

i=1 pi) � a) � a.

Our order of business will be to show that, under these assump-
tions,

σ(uj) ↔ (
n∑

i=1

pi) � a , (14)

and thus thatσ(u) has a summand bisimilar to
(∑n

i=1 pi

)
� a,

which was to be shown. Sinceσ′(u′′) a→X, using statement 6 in
Lemma 2.3 we may infer that

– u′′ a→X or
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– u′′ y→X andσ′(y) a→X, for some variabley.

In the latter case, asσ′(x) a→ X does not hold, we have that
y 6= x, and soσ(y) = σ′(y) a→X. Using statements 1 and 2
of Lemma 2.3, we therefore have that

σ(u′′) a→X .

This yields thatσ(uj) = σ(u′) � σ(u′′) a→ σ(u′). As σ(uj) is a
summand ofσ(u), andσ(u)↔ (∑n

i=1 pi

)
� a, we may therefore

infer as above thatσ(u′) ↔ ∑n
i=1 pi. Hence

σ(uj)↔
(∑n

i=1 pi

)
� σ(u′′) .

This equivalence yields thatdepth(σ(uj)) = depth(σ(u)) = n +
1, and that the depth ofσ(u′′) is 1. We claim thatσ(u′′) ↔ a,

proving that (14) holds as claimed. In fact, ifσ(u′′) b→X, then
σ(uj) would afford the tracebn+1, contradicting our assumption
thatσ(u) is bisimilar to

(∑n
i=1 pi

)
� a.

This completes the proof of case 3c, and thus that of case 3.

Since we have examined all the possible forms thatti can take, the proof of the
proposition is now complete. 2
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Sumit Nain. Bisimilarity is not Finitely Based over BPA with
Interrupt. October 2004. 30 pp.
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