
BRICS
Basic Research in Computer Science

Zero-Knowledge Proofs and
String Commitments Withstanding
Quantum Attacks

Ivan B. Damgård
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Abstract. The concept of zero-knowledge (ZK) has become of fundamental importance in
cryptography. However, in a setting where entities are modeled by quantum computers, clas-
sical arguments for proving ZK fail to hold since, in the quantum setting, the concept of
rewinding is not generally applicable. Moreover, known classical techniques that avoid rewind-
ing have various shortcomings in the quantum setting.
We propose new techniques for building quantum zero-knowledge (QZK) protocols, which re-
main secure even under (active) quantum attacks. We obtain computational QZK proofs and
perfect QZK arguments for any NP language in the common reference string model. This
is based on a general method converting an important class of classical honest-verifier ZK
(HVZK) proofs into QZK proofs. This leads to quite practical protocols if the underlying
HVZK proof is efficient. These are the first proof protocols enjoying these properties, in par-
ticular the first to achieve perfect QZK.
As part of our construction, we propose a general framework for building unconditionally hid-
ing (trapdoor) string commitment schemes, secure against quantum attacks, as well as concrete
instantiations based on specific (believed to be) hard problems. This is of independent interest,
as these are the first unconditionally hiding string commitment schemes withstanding quan-
tum attacks.
Finally, we give a partial answer to the question whether QZK is possible in the plain model.
We propose a new notion of QZK, non-oblivious verifier QZK, which is strictly stronger than
honest-verifier QZK but weaker than full QZK, and we show that this notion can be achieved
by means of efficient (quantum) protocols.

1 Introduction

Since its introduction by Goldwasser, Micali and Rackoff [16], the concept of zero-knowledge
(ZK) proof has become a fundamental tool in cryptography. Informally, in a ZK proof of a
statement, the verifier learns nothing beyond the validity of the statement. In particular,
everything the verifier can do as a result of the interaction with the prover during the ZK
proof, the verifier could also do “from scratch”, i.e., without interacting with the prover. This
is argued by the existence of an efficient simulator which produces a simulated transcript
of the execution, indistinguishable from a real transcript. ZK protocols exist for any NP
language if one-way functions exist [3, 4, 17], also more efficient solutions are known for
specific languages like Quadratic-Residuosity [16] or Graph-Isomorphism [17].

From a theoretical point of view, it is natural to ask whether such classical protocols
are still secure if cheating players are allowed to run (polynomial time bounded) quantum
? This is the full version of [12].
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computers. But the question also has some practical relevance: although quantum computers
may not be available to the general public in any foreseeable future, even a single large scale
quantum computer could be used to attack the security of existing protocols.

To study this question, two issues are important. First, the computational assumption
on which the protocol is based must remain true even if the adversary is quantum. This
rules out many assumptions such as hardness of factoring or extracting discrete logs [30],
but a few candidates still remain, for instance some problems related to lattices or error
correcting codes. In general, it is widely believed that quantum one-way functions exist,
i.e., functions that are easy to compute classically, but hard to invert, even on a quantum
computer.

A second and more difficult question is whether the proof of security remains valid
against a quantum adversary. A major problem in this context comes from the fact that
in the classical definition of ZK, the simulator is allowed to rewind the verifier in order to
generate a simulated transcript of the protocol execution. However, if prover and verifier are
allowed to run quantum computers, rewinding is not generally applicable, as it was originally
pointed out by Van de Graaf [34]. We discuss this in more detail later, but intuitively, the
reason is that when a quantum computer must produce a classical output, such as a message
to be sent, a (partial) measurement on its state must be done. This causes an irreversible
collapse of the state, so that it is not generally possible to reconstruct the original state.
Moreover, copying the verifier’s state before the measurement is forbidden by the no-cloning
theorem. Therefore, protocols that are proven ZK in the classical sense using rewinding of
the verifier may not be secure with respect to a quantum verifier. This severe breakdown of
the classical concept of ZK in a quantum world is the motivation of this work.

It is well known that rewinding can cause “problems” already in a classical setting. In
particular, it has been realized that rewinding the verifier limits the composability of ZK
protocols. As a result, techniques have been proposed that avoid rewinding the verifier, for
instance the non-black-box ZK technique from [2], or – in the common reference string model
– techniques providing concurrent ZK [15, 29, 11], non-interactive ZK [5] or universally-
composable (UC) ZK [6, 7, 13] and related models [27]. One might hope that some of these
ideas would translate easily to the quantum setting.

However, the non-black box technique from [2] is based on the simulator using the ver-
ifier’s program and current state to predict its reaction to a given message. Doing so for a
quantum verifier will collapse its state when a measurement is done to determine its next
message, so it is not clear that this technique will generalize to a quantum setting. The
known constructions of UCZK protocols and non-interactive ZK are all based on computa-
tional assumptions that are either false in a quantum setting or for which we have no good
candidate for concrete instantiations: the most general sufficient assumption is the existence
of one-way trapdoor permutations (i.e. as far as we know) but all known candidates are easy
to invert on a quantum computer. Regardless of this type of problem, great care has to be
taken with the security proof: despite the fact that the simulator in the UC model must not
use rewinding, it is not true that a security proof in the UC model automatically implies
security against quantum adversaries - we discuss this in more details later in the paper.
Finally, the technique for concurrent ZK from [11] avoids rewinding the verifier but instead
rewinds the prover to prove soundness, leading to similar problems.
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Before describing our results, we note that quantum zero-knowledge proof systems were
already studied from a complexity theoretic point of view by Watrous in [33]. The proof
systems considered there all assume the prover to be computationally unbounded and the
zero-knowledge condition is only enforced against honest verifiers. Clearly, these restrictions
make those proof systems unsuitable for cryptographic applications. In this paper, we focus
on efficient quantum zero-knowledge protocols in a cryptographic setting.

We propose three distinct techniques applicable to an important class of (classical)
honest-verifier ZK (HVZK) proofs (in which the verifier is guaranteed to follow the protocol),
namely so-called Σ-protocols (3-move public-coin protocols). We convert such protocols into
quantum zero-knowledge (QZK) proofs, which are ZK (as well as sound) even with respect to
(active) quantum attacks. In all cases, the new proof protocol proceeds in three moves like
the underlying Σ-protocol, and its overhead in terms of communication is reasonable. To
the best of our knowledge, these are the first (practical) zero-knowledge proofs withstanding
active quantum attacks.

The first technique assumes the existence of an unconditionally hiding trapdoor string
commitment scheme (secure against quantum attacks) and can be proven secure in the
common-reference-string (CRS) model. It requires only classical computation and com-
munication and achieves perfect or statistical QZK, assuming the underlying Σ-protocol
was perfect or statistical HVZK, and is an interactive argument (computationally sound).
The communication overhead of the new QZK protocol in comparison with the underlying
Σ-protocol is essentially given by communicating and opening one string commitment. The
technique directly implies perfect or statistical QZK arguments for NP.

This first approach requires addressing the problem of constructing unconditionally hid-
ing and computationally binding trapdoor string commitment schemes withstanding quan-
tum attacks. This is non-trivial since the classical definition of computational binding cannot
be used for a quantum adversary as it was pointed out in [14] with respect to bit commit-
ments and in [10] with respect to string commitments. In fact, it was not even clear how
computational binding for a string commitment should be defined. In [10], a computational
binding condition was introduced with their application in mind but no concrete instance
was proposed.

We propose a new definition of computational binding that is strong enough for our
(and other) applications. On the other hand, we propose a generic construction for schemes
satisfying our definition based on special-sound Σ-protocols for hard-to-decide languages,
and we give examples based on concrete intractability assumptions. Our construction yields
the first unconditionally hiding string commitment schemes withstanding quantum attacks,
under concrete as well as under general intractability assumptions. Moreover, since our
definition implies the one from [10], our schemes can be used to provide secure quantum
oblivious transfer.

The second technique assumes the existence of any quantum one-way function and is
also secure in the CRS model. It requires classical communication and computation and
produces computational QZK interactive proofs for any NP language. It can be efficiently
instantiated under more specific complexity assumptions.

The last technique requires no computational assumption and is provably secure in the
plain model (no CRS). However, it requires quantum computation and communication and
does not achieve full QZK but what we call non-oblivious verifier QZK. This new notion is
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weaker than QZK but strictly stronger than honest-verifier QZK (as defined in [33]). Essen-
tially, a non-oblivious verifier may arbitrarily deviate from the protocol but still generates all
private and public classical random variables available to the honest verifier according the
same distribution. The (quantum) communication complexity of the non-oblivious verifier
QZK proof essentially equals the (classical) communication complexity of the underlying
Σ-protocol.

The paper is organized as follows. In Sect. 2, we introduce some relevant notations.
We also argue why rewinding causes a problem in a quantum setting and why UCZK does
not imply QZK. In Sect. 3, we define and construct the unconditionally hiding (trapdoor)
commitment schemes used in Sect. 4 for QZK proofs in the common-reference-string model.
Finally, the non-oblivious verifier QZK proof in the plain model is presented in Sect. 5.

2 Preliminaries

2.1 Zero-Knowledge Interactive Proofs

The Classical Case: Let R = {(x,w)} be a binary relation. Write LR = {x|∃w : (x,w) ∈ R}
for the language defined by R. For x ∈ LR, any w such that (x,w) ∈ R is called a witness
(for x ∈ L), and we write WR(x) = {w | (x,w) ∈ R} for the set of witnesses for x ∈ L. We
assume that the size of the witnesses for x ∈ L are polynomially bounded by the size of x,
and that R is poly-time testable.

An (interactive) proof for a language L = LR is a protocol (P,V) between a probabilistic
prover P and a probabilistic poly-time verifier V. Since we are mainly interested in efficient
protocols, we also require P to be poly-time. P and V have common input x, claimed to be
in L by P, and P has additional (private) input w ∈ WR(x). As result of the execution,
V outputs either accept or reject, respectively 0 or 1, indicating whether he accepts the
proof or not, such that the following two conditions hold. Completeness: if x ∈ L and the
protocol is correctly executed, then V outputs accept (respectively 0) with probability 1,
and soundness: if x 6∈ L then for any (not necessarily poly-time) P̃, V outputs accept with
probability at most ε < 1, called the soundness error. If P̃ is restricted to be poly-time, then
(P,V) is called an argument for L (or a computationally sound proof).

A Σ-protocol for a language L = LR is a three-move interactive proof (P,V) for L which
proceeds as follows: (1) P computes a first message a and sends it to V, (2) V chooses a
random challenge c and sends it to P, and (3) P computes an answer z and sends it to V, on
which V decides on whether to output accept or reject (respectively 0 or 1) by applying a
(deterministic) predicate verifyx to (a, c, z). Per default, we understand a Σ-protocol to be
unconditionally sound. Clearly, for a fixed x 6∈ L, the soundness error ε of such a Σ-protocol
is given by the maximum over all possible first messages a of the fraction of the possible
challenges c for a that allow an answer z which is accepted by V. A Σ-protocol is called
special sound if the soundness-error equals the inverse of the number of possible challenges
c, i.e., if for x 6∈ L any (valid) first message a uniquely defines a challenge c which allows an
answer z with verifyx(a, c, z) = accept.

We refer to a Σ-protocol (P,V) for a language L by a triple (a, c, z), where we understand
a, c and z as the processes of choosing/computing the first message a, the (random) challenge
c and the corresponding answer z, respectively, as specified by the protocol (with some input
x ∈ L), and we write a← a, c← c and z ← zx(a, c), respectively, for the execution of these
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processes. We stress that when considering a computationally bounded (honest) prover P
as we do here the answer z is typically not computed by P as a function of a, c and x (as
the notation z ← zx(a, c) might suggest), but rather as a function of the randomness used
to generate a, of the challenge c and of a witness w ∈WR(x).

An interactive proof (or argument) is called zero-knowledge (ZK) if for every poly-time
Ṽ there exists a (expected) poly-time simulator S, which takes as input x ∈ L and outputs
a simulated view of Ṽ in the execution of (P, Ṽ) on input x, indistinguishable from the
real view. Depending on the flavor of indistinguishability, ZK can be perfect, statistical or
computational. An interactive proof is called honest-verifier zero-knowledge (HVZK) if the
above holds for the given V (rather than any Ṽ).

It is known that statistical ZK Σ-protocols only exist for languages L ∈ co-AM. Most
of the well-known Σ-protocols are proof-system for languages that are trivial on a quantum
computers. However, some languages like graph isomorphism (i.e. GI) have special sound
Σ-protocols and are not known to be trivial on a quantum computer. This is also the case
for some recently proposed lattice problems [23]. It is not known whether co-AM can be
efficiently recognized by a quantum computer.

The Quantum Case: Quantum interactive proof systems are defined as a simple general-
ization of their classical counterpart. They were introduced and first studied by Watrous
in [31].

Definition 1. A pair (P,V) is said to be a quantum interactive proof for L with soundness
error ε if P = {P(x, i)}mi=1 and V = {V(x, i)}mi=1 are families of quantum circuits such that:

Circuit Representation: V(x, 1),P(x, 1),V(x, 2),P(x, 2), . . . ,V(x,m),P(x,m) is the cir-
cuit representing the interaction between P and V upon input x. Circuits V(x, i) and
P(x, i) act upon V’s and P’s ancilla qubits respectively together with message qubits.
V(x, i)’s message qubits are provided to P(x, i) (communication from V to P at round i)
and P(x, i)’s message qubits are provided to V(x, i+ 1) (communication from P to V at
round i).

Completeness: P is such that if x ∈ L then V accepts x with probability 1.
Soundness: For any P̃, if x /∈ L then V accepts x with probability at most ε. If P̃ is

restricted to be of polynomial size then the proof is called an argument instead.

In this paper we adapt the definition of honest-verifier quantum statistical zero-knowledge
introduced by Watrous [33] to the case where the verifier is any poly-time quantum algo-
rithm. In [33] and differently than for the classical case, the simulator was given as input
the round for which the honest-verifier’s view should be generated. The reason is that sim-
ulating the honest-verifier’s final view does not imply that intermediary views can also be
generated. This is a consequence of the no-cloning theorem. When zero-knowledge should
hold against any poly-time verifier, the difference between the classical and the quantum
cases disappears. The reason being that if for every Ṽ there exists a simulator that generates
Ṽ’s final view then there certainly exists a simulator Sk that generated Ṽk’s final view where
Ṽk behave like Ṽ up to round k before stopping. Sk is a simulator for Ṽ’s view immediately
after round k.

Let viewṼ,P(x) be the reduced state of Ṽ’s ancilla and message qubits at the end of
the interaction when (P, Ṽ) is run with input x. Similarly to the classical case, quantum
statistical zero-knowledge interactive proof systems are defined as follows:
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Definition 2. A (quantum) interactive proof (P,V) for a language L is called perfect quan-
tum zero-knowledge (QZK) if for any poly-time Ṽ, there exists a poly-time preparable state
σx such that

‖σx − viewṼ,P(x)‖tr = 0 ,

where ‖ · ‖tr denotes the trace-norm distance. If instead ‖σx − viewṼ,P(x)‖tr ≤ δ(|x|) for a
negligible function δ then (P,V) is called statistical QZK; and if σx is only indistinguishable
from viewṼ,P(x) by any poly-size quantum circuit then (P,V) is called computational QZK.

In the above definition, σx corresponds to the output of the poly-time quantum simulator.

2.2 The Problem with Quantum Rewinding

Rewinding a party to a previous state is a common proof technique for showing the security
of many different kinds of protocols in the computational model. In general, this technique
cannot be applied when the party is modeled by a quantum computer. Originally observed
by Van de Graaf [34], this implies that security proofs of many well-established classical
protocols do not hold if one party is running a quantum computer even if the underlying
assumption under which the security proof holds withstands quantum attacks. As we shall
discuss in Sect. 2.3, it also applies to security proofs taking place in models that explicitly
prohibit rewinding of the adversary.

Rewinding is in general not possible since taking a snapshot of a quantum memory is
tantamount to quantum cloning. Unlike in the classical case, there is no way to copy a
quantum memory regardless of what the memory contains. The only generic way to restore
a quantum memory requires to re-generate it from scratch. Proceeding that way may not
be possible efficiently.

One consequence of the no quantum rewinding paradigm is particularly relevant to us.
Sequential repetitions of an HVZK Σ-protocol for a language L results in a ZK protocol for
L with negligible soundness error. This straightforward construction is not guaranteed to
be secure against quantum verifiers as we discuss next.

Let Πn be n sequential repetitions of a Σ-protocol Π with one-bit challenges. Let S be
the HVZK simulator for Π. The simulator Sn for Πn works as follows:

For i = 1..n do
1. Take a snapshot ρi of Ṽ’s internal state,
2. Run S to obtain (ai, ci, zi), send ai to Ṽ,
3. Get c̃i from Ṽ, If c̃i 6= ci Then return Ṽ to state ρi and return to Step 2 Else output

(ai, ci, zi).

Clearly, challenges of small size make sure that Sn will stop in expected poly-time. More-
over, the final transcript {(ai, ci, zi)}ni=1 together with Ṽ’s randomness is produced with
the same probability distribution than when interaction with the real prover takes place.
However, if Ṽ is a quantum machine then the simulator Sn is not a well-defined procedure.
Taking a snapshot(i.e. cloning) of Ṽ’s internal memory cannot be performed unitarily and
independently of ρi as in the classical case. It means that for some ρi, taking snapshot might
not be doable efficiently.

Is it then possible to return Ṽ to a previous state ρi without having to take a snapshot?
This is not possible even if the challenge space is 1 bit and the initial state of the verifier
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ρ1 can be generated by a constant size quantum circuit. Even though Ṽ’s behavior can be
modeled by unitary transform during computation and is thus reversible, this is no more
the case after c̃i is announced. A classical announcement is the outcome of a measurement
applied to ρi. It maps ρi 7→ Pc̃UiρiU

†
i Pc̃/pc̃ = ρi(c̃) with probability pc̃ = tr(Pc̃ρi) where Ui

is unitary and Pc̃ = |c̃〉〈c̃| is a projector in the computational basis. This mapping is not
unitary in general and hence not necessarily reversible. Running Ui backward from state
ρi(c̃) will only produce an approximation of ρi. As the number of rounds increases, quantum
rewinding produces states with lower and lower fidelity to the original state.

Rewinding is also often used when proving the computational binding property of com-
mitments as for example the NOVY scheme [25]. The no quantum rewinding paradigm also
applies in this situation as discussed in [14, 10]. To see why, suppose a string commitment
is such that if an adversary can produce two different openings of a commitment then a
computational assumption does not hold. This guarantees that a classical committer can-
not “change its mind” after having produced a commitment, meaning that there is only
one string to which it can open the commitment, since otherwise, by rewinding it, such a
committer can be used to produce two different openings of one commitment, which con-
tradicts the computational assumption. If the committer is quantum however, the ability
to open a commitment to a string of its choice does not necessarily imply that two different
openings can be produced side by side. The problem is similar to the one the simulator
is facing in the previous example. Opening a commitment can be seen as the result of a
measurement performed by the committer. After one opening has been obtained, rewinding
the committer to its state before the opening cannot be done perfectly.

2.3 UCZK Does Not Imply QZK

In [6], Canetti proposes a new framework for defining and proving cryptographic protocols
secure: the universal composability (UC) framework. This framework allows to define and
prove secure cryptographic protocols as stand-alone protocols, while at the same time guar-
anteeing security in any application by means of a general composition theorem. The UC
security definition essentially requires that the view of any adversary attacking the protocol
can be simulated while in fact running an idealized version of the protocol, which essentially
consists of a trusted party called ideal functionality. The simulation should be indistinguish-
able for any distinguisher, called environment, which may be on-line, and provides the inputs
and receives the outputs. Furthermore, the UC definition explicitly prohibits rewinding of
the environment and thus of the adversary (as it may communicate with the environment).
This restriction is crucial for the proof of the composition theorem. We refer to [6] for more
details.

Since the UC framework forbids rewinding the adversary, it seems that UCZK implies
QZK, assuming the underlying computational assumption withstands quantum attacks.
This intuition is false in general. The reason being that even though the UC framework does
not allow the simulator to rewind the adversary, it is still allowed to use rewinding as a proof-
technique in order to show that the simulator produces a “good” simulation. For instance,
it is allowed to argue that if an environment can distinguish the simulation from a real
protocol execution, then by rewinding the environment together with the adversary one can
solve efficiently a problem assumed to be hard. We illustrate this on a concrete example: the
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UCZK argument in the common reference string (CRS) model3 proposed in [18]. Roughly,
the construction works as follows. Consider a language L = LR. The CRS consist of two
public-keys pkS and pkE, the first for a signature scheme S (secure against chosen message
attack) and the second for a (semantically secure) encryption scheme E. Furthermore, a one-
time signature scheme S1 is fixed. Now, to prove x ∈ LR, the prover computes an encryption
e of a witness w ∈WR(x) and generates a public-key secret-key pair (pkS1 , skS1) for the one-
time signature scheme. Then, using a standard witness-indistinguishable interactive proof,
he proves that e indeed contains a witness for x or that he knows a signature on pkS1 under
pkS . Finally, he signs the transcript of the above proof using the secret-key skS1 of the
one-time signature scheme.

It is proven in [18] that this argument is secure in the UC sense (against a static adver-
sary). In fact it is proven secure in the UC framework with joint state [8]. This allows to
reuse the CRS but it requires to prove secure (in the UC sense) a multiple execution of the
protocol (using the same CRS). We briefly recall the security proof. The simulator chooses
pkS and pkE such that it knows the corresponding secret keys. If for some execution the
player acting as verifier is corrupted, then the simulator can simulate the corresponding
prover (if not corrupted) without knowing w and without rewinding: he encrypts a default
message w′ and uses the fact that he can produce a signature on pkS1 under pkS to do the
interactive proof of the or-statement. On the other hand if in some execution the player
acting as prover is corrupted and makes the verifier accept the proof for some x, then the
simulator (now simulating the corresponding verifier) can extract w from the proof and
send it to the ideal functionality without rewinding by decrypting e. This is necessary since
otherwise the ideal functionality will not accept the proof (by its specification) and thus
the environment can distinguish. It remains to argue that e indeed decrypts to a witness
w for x. First note that by the security of the one-time signature scheme, the secret key
for the public-key pkS1 used by the corrupted prover must have been generated by the
adversary, otherwise the adversary (acting for the corrupted prover) could not have signed
the transcript. In particular, pkS1 has not been generated and signed (under pkS) by the
simulator while simulating a prover during some earlier execution. It follows that rewinding
the adversary’s execution of the interactive proof (together with the environment) produces
either a (non-interactive) proof that e decrypts to a witness for x or a signature (under pkS)
on pkS1, which has not been signed previously. The latter, however, contradicts the security
of the signature scheme S. It follows e indeed decrypts to a witness w for x.

Note that it is not the simulator who rewinds the adversary, rewinding is only used to
show that the simulator works properly. Namely if not, then there exists an algorithm which
breaks the signature scheme — by using and rewinding the assumed adversary (and the
environment) from the UC framework, which though is completely legitimate in a classical
setting. However it is not if the adversary is allowed to be quantum. Therefore, the above
UCZK argument is not necessarily QZK.

3 Unconditionally Hiding (Trapdoor) Commitment Schemes

In this section we study and construct classical (trapdoor) commitment schemes secure
against quantum attacks. In contrast to quantum commitment schemes, such schemes do
3 We refer to Sect. 4.1 or the literature for a description of the CRS model.
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not require quantum computation (in order to compute, open or verify commitments), but
they are guaranteed to remain secure even under quantum attacks. Our construction, which
is based on hard-to-decide languages with special-sound Σ-protocols, yields the first uncon-
ditionally hiding string commitment schemes withstanding quantum attacks. In Sect. 4, we
use these commitments to construct QZK proofs. A further application of our commitment
schemes is given in Appendix A, where we show how they give rise to quantumly secure
oblivious transfer.

3.1 Defining Security in a Quantum Setting

Informally, by publishing a commitment C = commitpk(s, ρ) for a random ρ, a commitment
scheme allows a party to commit to a secret s, such that the commitment C reveals nothing
about the secret s (hiding property) while on the other hand the committed party can open
C to s by publishing (s, ρ) but only to s (binding property).

Formally, a commitment scheme (of the kind we consider) consists of two poly-time
algorithms: A key-generation algorithm G which takes as input the security parameter `
and specifies an instance of the scheme by generating a public-key pk, and an algorithm
commit which allows to compute C = commitpk(s, ρ) given a public-key pk as well as s and
ρ chosen from appropriate finite sets S and R (specified by pk). S is called the domain of
the commitment scheme. Classically, the hiding property is formalized by the non-existence
of a distinguisher which is able to distinguish C = commitpk(s, ρ) from C = commitpk(s′, ρ′)
with non-negligible advantage, where s, s′ ∈ S are chosen by the distinguisher and ρ, ρ′ ∈ R
are random. On the other hand, the binding property is formalized by the non-existence
of a forger able to compute s, s′ ∈ S and ρ, ρ′ ∈ R such that s 6= s′ but commitpk(s, ρ) =
commitpk(s, ρ′). If the distinguisher respectively the forger is restricted to be poly-time,
then the scheme is said to be computationally hiding respectively binding, while without
restriction on the distinguisher respectively the forger, it is said to be unconditionally hiding
respectively binding.

In order to define security of such a commitment scheme (G, commit) in a quantum
setting, the (computational or unconditional) hiding property can be adapted in a straight-
forward manner by allowing the distinguisher to be quantum. The same holds for the un-
conditional binding property, which is equivalent to requiring that every C uniquely defines
s such that C = commitpk(s, ρ) for some ρ. However, adapting the computational binding
property in a similar manner simply by allowing the forger to be quantum results in a too
weak definition. The reason being that in order to prove secure an application of a com-
mitment scheme, which is done by showing that an attacker that breaks the application
can be transformed in a black-box manner into a forger that violates the binding property,
the attacker typically needs to be rewound, which cannot be justified in a quantum setting
by the no-quantum-rewinding paradigm as discussed in Sect. 2.2. The following definition
for the computational binding property of a commitment scheme with respect to quantum
attacks is strong enough to prove secure applications (as in Sect. 4 and Appendix A) based
on the security of the underlying commitment scheme, but it is still weak enough in order
to prove the binding property for concrete commitment schemes (see Sect. 3.2 and 3.3).

Let (G, commit) be a commitment scheme as introduced above, and let S denote its
domain. Informally, we require that it is infeasible to produce a list of commitments and
then open (a subset of) them in a certain specified way with a probability significantly

9



greater than expected. We formalize this as follows. Let Q be a predicate of the following
form. Q takes three inputs: (1) a non-empty set A ⊆ {1, . . . ,N} where N is upper bounded
by a polynomial in `, (2) a tuple sA = (si)i∈A with si ∈ S, and (3) an element u ∈ U where
U is some finite set; and it outputsQ(A, sA, u) ∈ {0, 1}. We do not require Q to be efficiently
computable. Consider a polynomially bounded quantum forger F in the following game: F
takes as input pk, generated by G, and announces commitments C1, . . . , CN . Then, it is given
a random u ∈ U , and it outputs A, sA = (si)i∈A and ρA = (ρi)i∈A. F is said to win the game
if Q(A, sA, u) = 1 and Ci = commitpk(si, ρi) for every i ∈ A. We require that every forger has
essentially the same success probability in winning the game as when using an ideal (meaning
unconditionally binding) commitment scheme (where every Ci uniquely defines si). In the
latter case, the success probability is obviously given by p

ideal
= maxs∈SN |satQ(s)|/|U| with

satQ(s) = {u ∈ U | ∃ A : Q(A, sA, u) = 1}, where sA stands for the restriction of s to its
coordinates si with i ∈ A. In this definition, Q models a condition that must be satisfied
by the opened value in order for the opening to be useful for the committer. For each
application scenario, such a predicate can be defined.

Definition 3. A commitment scheme (G, commit) is called computational Q-binding if for
every predicate Q, every polynomially bounded quantum forger F wins the above game with
probability p

real
= p

ideal
+ adv, where adv, the advantage of F , is (negative or) negligible

(in `).

It is not hard to verify that in a classical setting (where F is allowed to be rewound), the
classical computational binding property is equivalent to the above computational Q-binding
property. Furthermore, it is rather obvious that the computational Q-binding property for a
commitment scheme with domain S implies the computational Q-binding property for the
natural extension of the scheme to the domain Sk (for any k) by committing componentwise.
Note that this desirable preservation of the binding property does not hold for the binding
property introduced in [10].

Finally, we define a trapdoor commitment scheme4 as a commitment scheme in the above
sense with the following additional property. Besides the public-key pk, the generator G also
outputs a trapdoor τ which allows to break either the hiding or the binding property.
Specifically, if the scheme is unconditionally binding, then τ allows to efficiently compute
s from C = commitpk(s, ρ), and if it is unconditionally hiding, then τ allows to efficiently
compute commitments C and correctly open them to any s.

3.2 A General Framework

In this section, we propose a general framework for constructing unconditionally hiding
and computationally Q-binding (trapdoor) string commitment schemes. For that, consider
a language L = LR and assume that

1. L admits a (statistical) HVZK special-sound Σ-protocol Π = (a, c, z), 5

4 Depending on its flavor, a trapdoor commitment scheme is also known as an extractable respectively as
an equivocable or a chameleon commitment scheme.

5 As will become clear, the prover’s efficiency in the Σ-protocol does not influence the efficiency of the
resulting commitment scheme as far as the committer and the receiver are concerned. An efficient prover
is only required if one wants to take advantage of the trapdoor.
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2. there exists a poly-time generator Gyes generating x ∈ L together with witness w ∈WR(x)
(more precisely, Gyes takes as input security parameter ` and outputs x ∈ L of bit size `
and w ∈WR(x)), and

3. for all poly-size quantum circuits D and polynomials p(`) > 0, if ` is large enough then
there exists xno 6∈ L of bit size ` such that for xyes generated by Gyes (on input `)

∣∣ Pr (D(xyes) = yes)− Pr (D(xno) = yes)
∣∣ < 1/p(`). (1)

Note that 3. only requires that for every distinguisher D it is hard to distinguish a randomly
generated yes-instance x ∈ L from some no-instance x 6∈ L, which in particular may depend
on D.

Given such L, the construction in Fig. 1 provides an unconditionally hiding trapdoor
commitment scheme. We assume that c samples challenge c randomly from {0, 1}t for some t.

G is given by Gyes, where the generated x ∈ L is parsed as public key pk and w ∈ WR(x) as trapdoor
τ . The domain S is defined to be S = {0, 1}t.
commitpk: To commit to s ∈ S = {0, 1}t, use the HVZK simulator for Π to generate (a, c, z). Set
C = (a, s⊕ c) to be the commitment for s.

A commitment C = (a, d) is opened to s by announcing the corresponding values c and z, and such
an opening is accepted if and only if s⊕ c = d and verifyx(a, c, z) = accept.

Fig. 1. Trapdoor commitment scheme (G, commit).

If Π is special HVZK, meaning that (a, c, z) can be simulated for a given c, then the
commitment scheme can be slightly simplified: (a, c, z) is generated such that c = s and C
is simply set to be C = a.

Theorem 1. Under assumption 3., (G, commit) in Fig. 1 is an unconditionally hiding and
computationally Q-binding trapdoor commitment scheme.

As will become clear from the proof below, if the underlying Σ-protocol Π is perfect
HVZK, then (G, commit) is perfectly binding in the sense that there exists no distinguisher
with non-zero advantage, meaning that a commitment C for s is statistically independent
of s.

Proof. It is clear that a correct opening is accepted. It is also rather obvious that the scheme
is unconditionally hiding: The distribution of (a, c, z) generated by the HVZK simulator is
statistically close to the distribution of (a, c, z) generated by the protocol. There, however,
c is chosen independently of a. Therefore, a gives essentially no information on c and thus
C = (a, s ⊕ c) gives essentially no information on s (as s ⊕ c acts as a one-time pad). The
trapdoor property can be seen as follows. Knowing the trapdoor τ = w, put C = (a, d)
where a← a and d is randomly sampled from {0, 1}t. Given arbitrary s ∈ {0, 1}t, compute
c = d ⊕ s and z ← zx(a, c) using the witness w (and the randomness for the generation of
a). It is obvious that (s, c, z) opens C correctly to s.

It remains to show the computational Q-binding property. We show that if there exists
a forger F that can break the Q-binding property of the commitment scheme (without
knowing the trapdoor) for some predicate Q according to Definition 3, then there exists a
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D: The input is x, either in L or not in L.

1. Invoke F with public-key pk = x in order to get commitments C1, . . . , CN ,
2. Pick random u ∈ U and announce it to F ,
3. F announces A ⊆ {1, . . . , N} and, for i ∈ A, tries to open Ci to si such that Q(A, sA, u) = 1

for sA = (si)i∈A,
4. Verify the openings and whether indeed Q(A,sA, u) = 1, if successful then output yes and

otherwise no.

Fig. 2. Distinguisher D for x ∈ L versus x 6∈ L.

circuit D that contradicts assumption 3. D is illustrated in Figure 2 and is quantum if and
only if F is.

Clearly, if x is generated by Gyes then pk = x is a valid public-key for the commitment
scheme with the right distribution and hence Pr (D(x) = yes) = p

real
= p

ideal
+ adv where

adv is F ’s advantage. On the other hand, if x 6∈ L, then by the special soundness property
of Π, given a there is only one c that allows an answer z such that verifyx(a, c, z) = accept.
Hence, for any Ci there is only one si ∈ S to which Ci can be successfully opened. Therefore,
Pr (D(x) = yes) ≤ p

ideal
. If adv is (positive and) non-negligible, then this contradicts 3. ut

We would like to point out once more that our definition of the (computational) binding
property inherits the following feature. If a commitment scheme with domain S is compu-
tational Q-binding, then its natural extension to a commitment scheme with domain Sk by
committing componentwise (with the same pk) is also computational Q-binding. In partic-
ular, any computational Q-binding bit commitment scheme gives rise to a computational
Q-binding string commitment scheme.

3.3 Concrete Instantiations

We propose three concrete languages L which are believed to satisfy requirements 1. to 3.
posed in Sect. 3.2 above and which admit HVZK special-sound Σ-protocols. The first is
based on a problem from coding theory.

Code-Equivalence Problem LCE: The yes-instances of LCE are pairs of equally-dimensional
matrices (G0, G1) over a finite field Fq such that G0 and G1 are generator matrices of
the same linear code over Fq, up to a permutation of the coordinates. In other words,
(G0, G1) ∈ LCE if there exists a permutation matrix P and an invertible matrix S (both
of suitable dimension) such that G1 = SG0P .

It has been shown in [26] that deciding membership for LCE is at least as hard as
solving the Graph-Isomorphism problem which is believed to be hard in the worst case
(even allowing quantum computation), and that there exists an interactive proof for Code-
Nonequivalence (requiring a computationally unbounded prover). We sketch a special-sound
perfect HVZKΣ-protocol for Code-Equivalence LCE: The strategy is the same as in the well-
known interactive proof for Graph-Isomorphism [17]. The prover computes as first message
a random generator matrix H which is code-equivalent to G0 (and G1), and answers the
random challenge c ∈ {0, 1} by providing P and S such that H = SGcP .

Concerning the generation of yes-instances, it is believed that random self-dual or
weakly-self-dual codes give rise to yes-instances which are hard to distinguish from no-
instances as required. In combination with Theorem 1, this results in unconditionally (in
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fact perfectly) hiding and computationally Q-binding trapdoor bit respectively string com-
mitment schemes based on the Code-Equivalence problem. We stress however that this
problem is not (yet) very well studied and thus this scheme should be used with caution.

Next, we consider two languages based on lattice problems: the Gap Shortest-Vector
problem and the Gap Closest-Vector problem. These problems are so called promise prob-
lems, in that the no-instances are promised to be “not too close” to the yes-instances.

Gap Shortest-Vector Problem LGapSV Pγ : For fixed γ > 1, yes-instances of LGapSV Pγ are
tuples (B, δ), where B ⊂ Z

m is an integer lattice basis and δ > 0 such that there exists
a lattice vector v 6= 0 with ||v|| ≤ δ. On the other hand, no-instances are guaranteed
to satisfy ||v|| > γδ. A witness for a yes-instance (B, δ) is a vector x 6= 0 such that
||Bx|| ≤ δ (viewing B as matrix).

Gap Closest-Vector Problem LGapCV Pγ : Yes-instances of LGapCV Pγ are triples (B,y, δ),
where B ⊂ Z

m is an integer lattice basis, y ∈ Z
m and δ > 0 such that there exists

a lattice vector v with ||v − y|| ≤ δ. On the other hand, no-instances are guaranteed
to satisfy ||v − y|| > γδ. A witness for a yes-instance (B,y, δ) is a vector x such that
||Bx− y|| ≤ δ (viewing B as matrix).

Micciancio and Vadhan recently presented special-sound statistical HVZK Σ-protocols
for LGapSV Pγ and for LGapCV Pγ for reasonable values of γ’s, both with a 1-bit challenge.
They also give some proposals of how to generate yes-instances which seem to be hard to
distinguish from no-instances. For instance, using results from [1], one can construct lattices
such that breaking the computational assumption is at least as hard as solving some lattice
problem in the worst-case. In combination with Theorem 1, this results in unconditionally
hiding and computationally Q-binding trapdoor bit or string commitment schemes based on
the Gap Shortest-Vector or Gap Closest-Vector problem. Though also here one should take
care: Regev [28] has shown a quantum reduction from f(n)-unique-SVP (i.e. unique-SVP
with the promise that the shortest vector is shorter by a factor of at least f(n) from all
other non-parallel vectors) to the average case subset sum problem where f(n) = Θ̃(n2.5).
Classically, the best known reduction of that type requires f(n) = Θ̃(n3.5) [21]. This might
indicate that lattice problems are easier to solve on a quantum computer.

4 Quantum Zero-Knowledge Proofs

4.1 Common-Reference-String Model

The common-reference-string (CRS) model assumes that there is a string σ (honestly) gener-
ated according to some distribution and available to all parties from the start of the protocol.
In the CRS model, an interactive proof (or argument) is (Q)ZK if there exists a simulator
which can simulate the (possibly dishonest) verifier’s view of the protocol execution together
with a CRS σ having correct joint distribution as in a real execution.

4.2 Efficient QZK Arguments

We show how to convert any HVZK Σ-protocol into a quantum zero-knowledge (QZK)
argument. The construction is based on a trapdoor commitment scheme and can be proven
secure in the CRS model.
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It is actually very simple. P and V simply execute the Σ-protocol, but instead of sending
message a in the first move, P sends a commitment to a, which he then opens when he sends
the answer z to the challenge c in the third move. The zero-knowledge property then follows
essentially by observing that the simulator (who knows the trapdoor of the commitment
scheme) can cheat in the opening of the commitment. So far, the strategy for the QZK proof
is the same as in Damg̊ard’s concurrent ZK proof [11]; the proof of soundness however will
be different since [11] requires to rewind the prover, which cannot be justified in our case by
the no-quantum-rewinding paradigm. In order not to rely on the special HVZK property (as
introduced and explained in Sect. 3.2), the protocol is slightly more involved than sketched
here, though the idea remains.

Let a HVZK Σ-protocol Π = (a, c, z) for a language L = LR be given. Let ε denote its
soundness error. We assume without loss of generality that a and c sample first messages a
and challenges c of fixed bit lengths r and t, respectively. Furthermore, let an unconditionally
hiding and computationally Q-binding trapdoor commitment scheme (G, commit) be given
(where the knowledge of the trapdoor allows to break the binding property of the scheme).
We assume that its domain S contains {0, 1}r+t. Consider Protocol 1 illustrated in Fig. 3.

Protocol 1: V has input x, claimed to be in L; P has input x and w ∈ WR(x).
The CRS is set to be pk where pk is generated by G.

1. P computes a ← a and chooses cP ← c. Then it commits to the concatenation a‖cP of a and
cP by C = commitpk(a‖cP , ρ), and sends C to V.

2. V chooses cV ← c and sends it to P.
3. P computes z ← zx(a, c) for c = cP ⊕ cV and sends (a, cP , ρ) and z to V.
4. V accepts iff C = commit(a‖cP , ρ) and verifyx(a, cP ⊕ cV , z) = accept.

Fig. 3. QZK proof protocol in the CRS model.

As mentioned above, Protocol 1 can be slightly simplified in case Π is special HVZK in
that P commits to a (rather than to a‖cP ) and computes z with respect to the challenge
c = cV provided by V.

Theorem 2. Under the assumption that (G, commit) is an unconditionally hiding and com-
putationally Q-binding trapdoor commitment scheme, Protocol 2 is a QZK (quantum) argu-
ment for L in the CRS model. Its soundness error is ε′ = ε+ negl where negl is negligible
(in the security parameter).

Concerning the flavor of QZK, Protocol 2 is computational QZK if the underlying Σ-
protocol Π is computational HVZK, and it is statistical QZK provided that Π is statistical
or perfect HVZK. In case (G, commit) is perfectly (rather than unconditionally) hiding, the
flavor of QZK of Protocol 2 is exactly given by the flavor of HVZK of Π.

Proof. As mentioned above, the zero-knowledge property is rather straight forward: The
simulator generates a public-key for the commitment scheme together with a trapdoor and
outputs the public-key as CRS. Then, on input x ∈ L, it generates a commitment C (which
he can open to an arbitrary value using the trapdoor) and sends it to Ṽ. On receiving cV
from Ṽ, the simulator simulates an accepting conversation (a, c, z) for the original Σ-protocol
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using the HVZK property, it sets cP = c⊕cV and computes ρ such that C = commit(a‖cP , ρ)
using the trapdoor, and it sends (a, cP , ρ) and z to Ṽ.

For the soundness property, it has to be shown that given a (quantum) prover P̃, which
succeeds in making (honest) V accept the proof for an x 6∈ L with a probability exceeding ε by
a non-negligible amount, P̃ can be used to break the Q-binding property of the commitment
scheme for some predicate Q. Fix x 6∈ L. We define Q as follows. N = 1, and U is given
by the set of all possible challenges cV sampled by c. For s ∈ S and u = cV ∈ U , where
s is parsed as s = a‖cP with a ∈ {0, 1}r and cP ∈ {0, 1}t, we set Q({1}, s, u) = 1 if
and only if the challenge c = cP ⊕ cV for the first message a allows an answer z such
that verifyx(a, c, z) = accept. Note that A = {1} is the only legitimate choice for A. By
construction of Q, making V accept the proof means that P̃ opens C (correctly) to a‖cP such
that Q({1}, a‖cP , cV ) = 1. Furthermore, p

ideal
= ε. It follows that if P̃ succeeds in making

V accept the proof with probability greater that ε by a non-negligible amount, then P̃ is a
forger F that breaks the Q-binding property of (G, commit). This completes the proof. ut

4.3 QZK Arguments for all of NP

Consider a (generic) ZK argument for an NP -complete language using (ordinary) uncon-
ditionally hiding commitments. For instance, consider the classical interactive proof for
Circuit-Satisfiability due to Brassard, Chaum and Crépeau [4]: the prover “scrambles” the
wires and the gates’ truth tables of the circuit and commits upon it, and he answers the
challenge c = 0 by opening all commitments and showing that the scrambling is done cor-
rectly and the challenge c = 1 by opening the (scrambled) wires and rows of the gates’
truth tables that are activated by the satisfying input. Following the lines of the proof of
Theorem 2 above, it is straightforward to prove that replacing the commitment scheme in
this construction by an unconditionally hiding and computationally Q-binding commitment
scheme results in a QZK argument in the CRS model for Circuit-Satisfiability, and thus for
all languages in NP .

4.4 Computational QZK Proofs

We sketch how to construct rather efficient computational QZK proofs for languages that
allow (computational) HVZK Σ-protocols based on specific intractability assumptions, as
well as computational QZK proofs for all of NP based on any quantum one-way function.

Consider any of the languages L = LR with HVZK Σ-protocol on which the commitment
construction from Sect. 3.2 is based, except that we allow the Σ-protocol to be computational
HVZK. Assume in addition that there is also a generator Gno that produces no-instances
that cannot be distinguished from the yes-instances produced by Gyes.

Then, put a no-instance xno in the reference string. The prover can now prove any
statement S that can be proved by an HVZK Σ-protocol Π by using a standard witness-
indistinguishable HVZK proof for proving that S is true or xno ∈ L [9]. Here, we allow
the Σ-protocol Π to be computational HVZK, in particular Π might be the Σ-protocol for
Circuit-Satisfiability sketched in Sect. 4.3 above but based on an unconditionally binding
and computationally hiding commitment scheme (secure against quantum attacks), which
can be constructed from any (quantum) one-way function (see below).
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This is clearly unconditionally sound, and can be simulated, where the simulator uses a
yes-instance xyes in place of xno and uses its witness w ∈WR(xyes) to complete the protocol
without rewinding. A distinguisher would have to contradict the HVZK property of one of
the underlying Σ-protocols, or the indistinguishability of yes- and no-instances.

This can be instantiated efficiently if we are willing to assume about the coding or lattice
problem or some other candidate problem that it also satisfies this stronger version of indis-
tinguishability of yes- and no-instances. But it can also be instantiated in a version that can
be be based on any one-way function: First, the (unconditionally binding and computation-
ally hiding) commitment scheme of Naor [24] is also secure against quantum adversaries,
and exists if any one-way function exists. So consider the language of pairs (pk,O) where pk
is a public-key for the commitment scheme and O is a commitment of 0. This language has
a computational HVZK Σ-protocol using generic ZK techniques, driven by Naor’s commit-
ments. Furthermore, the set of no-instances (pk,E) where E is a commitment to 1 is easy
to generate and hard to distinguish from the yes-instances.

5 Relaxed Honest-Verifier Quantum Proofs

It is a natural question whether QZK proof systems exist without having to rely upon
common reference strings. In this section, we answer this question partially. We define a
quantum interactive proof system associated to any Σ-protocol. Our scheme is QZK against
a relaxed version of honest verifiers that we call non-oblivious. Intuitively, a non-oblivious
verifier is a verifier having access to the same classical variables than the honest verifier.
We show that any HVZK Σ-protocol can be turned into a non-oblivious verifier QZK proof
using quantum communication.

5.1 Quantum Circuits for Σ-Protocols

Assume L = LR has a classical HVZK Σ-protocol Π = (a, c, z). We specify unitary trans-
forms Zx(a), and Tx(a), depending on a ← a, which implement quantum versions of the
computations specified by z and verify. Throughout, we assume without loss of generality
that c samples c uniformly from {0, 1}t for some t.

The answer z ← zx(a, c) to challenge c when a was announced during the first round can
be computed quantumly through some unitary transform Zx(a) depending upon the initial
announcement a. That is, provided quantum registers P and X, we have:

Zx(a) : |c〉P |y〉X 7→ |c〉P |y ⊕ zx(a, c)〉X .

Similarly, the testing process performed by V can also be executed by a quantum circuit
Tx(a) depending on the announcement of a. Transformation Tx(a) stores the output of the
verification process in an extra one-qubit register T :

Tx(a) : |z〉X |c〉V |t〉T 7→ |z〉X |c〉V |t⊕ verifyx(a, c, z)〉T .

If z ← zx(a, c) and verifyx(a, c, z) can be classically computed in polynomial time (given
the randomness of the computation of a and a witness w ∈WR(x) for the former), circuits
Zx(a) and Tx(a) can be implemented by poly-size quantum circuits.
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5.2 EPR-pairs Based Proofs

The idea behind the protocol is as follows. P chooses a ← a and sends the answer to
all possible challenges in quantum superposition to V. V then verifies quantumly that all
answers in the superposition are correct. In a further step, P convinces V that the state
contains the answer to more than one challenge. Since Π is assumed to be special sound, it
follows that x ∈ L.

Concretely, P starts by choosing a← a and by preparing t EPR pairs in state:

|Ωt〉P,V = 2−t/2
∑

c∈{0,1}t

|c〉P |c〉V = 2−t/2
∑

c∈{0,1}t

|c〉P× |c〉V×. (2)

The two equivalent ways of writing |Ωt〉 shows that it exhibits the same correlation between
registers P and V in both the computational and the diagonal bases. This property will be
used later in the protocol. Now, P adds an extra register X initially in state |0〉X before
applying Zx(a) upon registers P and X. This results in state,

|ψa〉= 2−t/2
∑

c∈{0,1}t

Zx(a) |c〉P |0〉X ⊗ |c〉V = 2−t/2
∑

c∈{0,1}t

|c〉P |z〉X ⊗ |c〉V , (3)

where every z in the superposition is computed as z ← zx(a, c). P then announces a and
sends registers V and X to V allowing him to apply the verification quantum circuit Tx(a)
after adding an extra register T initially in state |0〉T . That is,

|ψT
a 〉 =

(
IP ⊗ Tx(a)

)|ψa〉|0〉T = 2−t/2
∑

c∈{0,1}t

|c〉P ⊗ Tx(a)|z〉X |c〉V |0〉T

= 2−t/2
∑

c∈{0,1}t

|c〉P ⊗ |z〉X |c〉V |verifyx(a, c, z)〉T = |ψa〉 ⊗ |0〉T .

V then measures register T in the computational basis and rejects if |0〉T is not observed.
Provided P was honest, the test will always be successful by assumption on the original
Σ-protocol Π, and the verification process does not affect the state |ψa〉. V then returns
register X back to P, who can recover t shared EPR pairs by running Zx(a)†, the inverse
of Zx(a). Finally, P measures register P in the diagonal basis and announces the outcome
to V. V does the same to register V and verifies that the same outcome is obtained. By
the properties of EPR pairs (2), it follows that the measurements coincide provided P was
honest. A compact description of the protocol is given by Protocol 2 in Fig. 4.

Protocol 2: V has input x, claimed to be in L; P has input x and w ∈ WR(x).

1. P computes a← a and prepares the quantum state |ψa〉P,X,V = 2−t/2 P
c|c〉P |z〉X |c〉V as in (3)

where z ← zx(a, c), and he sends a and the registers X and V to V,
2. V runs the verification circuit Tx(a) and rejects if a non-zero outcome is obtained. If the test

was successful then V returns register X to P,
3. P runs (Zx(a)† ⊗ IV )|ψa〉 = |Ωt〉P,V ⊗ |0〉X , measures the P register in the diagonal basis and

announces the outcome cP ∈ {0, 1}t to V.
4. V accepts iff register V measured in the diagonal basis produces outcome cV = cP .

Fig. 4. Non-oblivious verifier QZK proof.
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5.3 Soundness

Consider x /∈ L. We show that in Protocol 2, any prover P̃ has probability at most 2−t to
convince V, given that Π is special sound. Let a be announced by P̃ at step 1. By the special
soundness property of Π, if P̃ passes the test at step 2. then the state shared between P̃
and V is of the following form: |ψ̃a〉 = |γa,x〉P,X ⊗ |c〉V |0〉T , where c is the unique challenge
that can be answered given the announcement of a. Since after register X has been sent
back to P̃, register V is in pure state, it follows that only one answer is possible when
V is measured in the computational basis. That is, |c〉 is guaranteed to be observed. In
other words, P̃ has no Shannon uncertainty about the outcome obtained when register V
is measured in the computational basis. However, V’s final test involves a measurement of
that same register in the diagonal basis. The following theorem, proven in [22], allows for
a simple proof of soundness of our protocol. It gives a tight lower bound on the Shannon
uncertainty about the outcome of two measurements in mutually unbiased bases applied to
any state. Note, two bases B0 and B1 of a 2t-dimensional Hilbert space H2t are said to be
mutually unbiased if |〈v0|v1〉| = 2−t/2 for all |v0〉 ∈ B0 and |v1〉 ∈ B1, and it is easy to verify
that the computational and the diagonal bases are indeed mutually unbiased.

Theorem ([22]). Let |ψ〉 be any quantum state in H2t and let B0 and B1 be two mutually
unbiased bases for H2t. For i ∈ {0, 1}, write pi(|ψ〉) for the probability distribution of the
observation when measuring |ψ〉 in basis Bi. Then, H

(
p0(|ψ〉)

)
+H

(
p1(|ψ〉)

) ≥ t.
In the following, let B0 be the computational basis and let B1 be the diagonal basis. Since
H

(
p0(|c〉)

)
= 0, the above theorem implies that H

(
p1(|c〉)

)
= t, as t maximizes the entropy.

It follows:

Theorem 3. If Π = (a, c, z) is a special-sound HVZK Σ-protocol for language L = LR

where c samples in {0, 1}t, then Protocol 2 is a quantum interactive proof for L with sound-
ness error 2−t.

It should be mentioned that Π being special sound is not a strict necessary condition for
Protocol 2 to be sound. A more careful analysis can handle the case where Π is “not too far
away” from special sound. For simplicity, in this paper we only address the case of special
sound Σ-protocols.

5.4 Non-Oblivious Verifier Quantum Zero-Knowledge

Classical Σ-protocols with large challenges are not known to be ZK against a dishonest
verifier. This is due to the fact that rewinding allows the simulator to succeed only if it
has a non-negligible probability to guess the challenge that the verifier will pick. This is
true even with respect to verifiers that submit a uniformly distributed challenge c ∈ {0, 1}t
and are able to do the verification test as prescribed. To see this, let σ : {0, 1}` → {0, 1}`
be a one-way permutation and let us assume for simplicity that t = ` and a samples a
from {0, 1}t. If Ṽ announces challenge c = a ⊕ σ(m) for random m ∈ {0, 1}` and a ← a
announced by P as first message, then the simulator must generate (a, c, z,m) since it is
part of Ṽ’s view. However, the simulator typically can compute a only after having picked
c, which means that it has to compute m as m = σ−1(c⊕a). Note that even though c⊕a is
not necessarily uniformly distributed, it seems that the simulator has typically not enough
control over the value c⊕ a in order to compute m.
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Notice that a verifier Ṽ acting as described above rejects a false statement with the same
probability and chooses the challenge c with the same distribution as an honest verifier, yet
there is no known efficient simulator for Ṽ. In this section we show that Protocol 2 is
quantum zero-knowledge provided that Ṽ is non-oblivious of the value cV needed for the
verification at step 4. More generally, we define non-oblivious verifiers the following way:

Definition 4. A verifier Ṽ is said to be non-oblivious if it produces the same (public and
private) variables as honest V according the same distribution.

As illustrated above, in contrast to an honest verifier a non-oblivious verifier can produce
his variables in an arbitrary manner, as long as they are correctly distributed.

In Protocol 2, a non-oblivious verifier Ṽ has access to the string cV so it can be made
available to the simulator. Indeed, this allows to produce a simulation of the interaction
between P and Ṽ.

Simulator: Input is x ∈ L.

1. Run the honest verifier simulator for Π in order to get triplet (a, c, z), and send a together with
the quantum state |c〉|z〉 to Ṽ,

2. If Ṽ rejects P then halt, otherwise throw away the state sent by Ṽ,
3. Extract cV using the non-obliviousness of Ṽ and announce cP = cV .

Fig. 5. Simulator for Protocol 2.

Theorem 4. Protocol 2 built from a special-sound (statistical/perfect) HVZK Σ-protocol
Π is (statistical/perfect) QZK provided Ṽ is non-oblivious.

Proof. Consider the simulator illustrated in Figure 5. Since Π is HVZK it follows that
(a, c, z) generated at step 1. has the same probability distribution than selecting a ← a,
c ← c, and z ← zx(a, c). Because Ṽ does not have access to register P , its view after
step 1. in Protocol 2 is ρ =

∑
a,c,z p(a, c, z)|a〉|c〉|z〉〈z|〈c|〈a| where p(a, c, z) is the probability

distribution induced by a, c, and verifyx(a, c). The simulator sends (a, |c〉|z〉) with probability
p(a, c, z) which results in the same mixed state ρ. This is a perfect simulation of step 1. The
simulation of step 2. is also perfect since during this step only Ṽ sends something back which
results in the same state for both the simulation and the protocol since the state prior to
this step was simulated perfectly. The simulation for the last step is clearly perfect since Ṽ
is non-oblivious. ut

A weaker assumption about Ṽ’s behavior would be obtained if the only constraint was
that Ṽ detects false statements with the same probability as the honest verifier V. Let
us say that such a verifier is verification-enabled. In general, a verification-enabled verifier
Ṽ is not necessarily non-oblivious since in order to verify P̃’s announcement, cP does not
necessarily have to be determined by Ṽ without P’s help. However, it can be shown that for
Σ-protocols with challenges of polylogarithmic size, any verification-enabled Ṽ in Protocol 2
is also non-oblivious.
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A Application of our Commitment Schemes to Oblivious Transfer

In [10], oblivious transfer is shown to be reducible to any (string) commitment scheme with
domain {0, 1}2n satisfying what was introduced as the Gn

m-binding criteria for Gn
m a class

of functions g : {0, 1}2n → {0, 1}m. The reduction works for any m ≥ f∗(n) where f∗(n) is
some (specific) function in O(log n). A Gn

m-binding commitment scheme is such that for all
g ∈ Gn

m and all polynomial size in n committer A,
∑

y∈{0,1}m

∑

s∈g−1({y})
Pr (OpenA(s) = ok) < 1 + 1/p(n) (4)

for any positive polynomial p(·), where Pr (OpenA(s) = ok) is the probability that after the
committing phase, A succeeds in opening the commitment to s ∈ {0, 1}2n. The class of
functions Gn

m contains all g : {0, 1}n × {0, 1}n → {0, 1}m such that for x, y ∈ {0, 1}n, each
output bit of g(x, y) is either a bit in x, or in y, or in x⊕ y (see [10] for more details).

In order to show that secure OT can be reduced to the security of Q-binding string
commitments, it suffices to show that Q-binding implies Gn

m-binding for some m ≥ f∗(n),
e.g. for m = f∗(n). We show the contrapositive of that statement. We assume that we have
a string commitment scheme that is not Gn

m-binding for m = f∗(n) where n is polynomial
in the security parameter `. Let g ∈ Gn

m be such that the security criteria expressed in (4)
is not satisfied: ∑

y∈{0,1}m

∑

s∈g−1({y})
Pr (OpenA(s) = ok) ≥ 1 + 1/p(n)
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for some positive polynomial p(·). Define Q as follows: N = 1, U = {0, 1}m, and Q({1}, s, u)
equals 1 if and only if g(s) = u. (Note that A = {1} is the only legitimate choice for A.)
Then, |satQ(s)| = 1 for all s ∈ {0, 1}2n and therefore p

ideal
= 1/2m. On the other hand,

p
real

= 2−m
∑

y∈{0,1}m

∑

s∈g−1({y})
Pr (OpenA(s) = ok) ≥ 2−m(1 + 1/p(n)),

which exceeds p
ideal

by 2−m/p(n), which is not negligible since m ∈ O(log n). So the com-
mitment scheme is not Q-binding.

Notice that nothing in the above argument depends upon Gn
m except for the fact that

m ∈ O(log n). In fact, Q-binding implies Gn
m-binding according (4) for any class of functions

Gn
m provided m ∈ O(log n) and n polynomial in `.

Classically, it is unlikely that one can reduce OT to the existence of HVZK Σ-protocols
for languages with efficient hard instance generators. The reason being that OT implies
secret-key agreement which is unlikely to have its security reduced to such assumption.
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RS-04-8 Petr Jaňcar and Jiř ı́ Srba. Highly Undecidable Questions for
Process Algebras. April 2004. 25 pp. To appear in Lévy, Mayr
and Mitchell, editors, 3rd IFIP International Conference on
Theoretical Computer Science, TCS ’04 Proceedings, 2004.
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