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From Interpreter to Logic Engine

by Defunctionalization ∗

Dariusz Biernacki and Olivier Danvy

BRICS†

Department of Computer Science
University of Aarhus‡

March 1, 2004

Abstract

Starting from a continuation-based interpreter for a simple logic pro-
gramming language, propositional Prolog with cut, we derive the corre-
sponding logic engine in the form of an abstract machine. The derivation
originates in previous work (our article at PPDP 2003) where it was ap-
plied to the lambda-calculus. The key transformation here is Reynolds’s
defunctionalization that transforms a tail-recursive, continuation-passing
interpreter into a transition system, i.e., an abstract machine. Similar
denotational and operational semantics were studied by de Bruin and
de Vink (their article at TAPSOFT 1989), and we compare their study
with our derivation. Additionally, we present a direct-style interpreter of
propositional Prolog expressed with control operators for delimited con-
tinuations.

∗To appear in the proceedings of LOPSTR 2003.
†Basic Research in Computer Science (www.brics.dk),
funded by the Danish National Research Foundation.

‡IT-parken, Aabogade 34, DK-8200 Aarhus N, Denmark.
Email: {dabi,danvy}@brics.dk
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1 Introduction

In previous work [2], we presented a derivation from interpreter to abstract ma-
chine that makes it possible to connect known λ-calculus interpreters to known
abstract machines for the λ-calculus, as well as to discover new ones. The goal
of this work is to test this derivation on a programming language other than the
λ-calculus. Our pick here is a simple logic programming language, propositional
Prolog with cut (Section 2). We present its abstract syntax, informal semantics,
and computational model, which we base on success and failure continuations
(Section 3). We then specify an interpreter for propositional Prolog in a generic
and parameterized way that leads us to a logic engine. This logic engine is
a transition system that we obtain by defunctionalizing the success and failure
continuations (Section 4). We also present and analyze a direct-style interpreter
for propositional Prolog (Appendix A).

The abstract machines we consider are models of computation rather than
devices for high performance, and the transformations we consider are changes
of representation rather than optimizations.

Prerequisites: We expect a passing familiarity with the notions of success
and failure continuations as well as with Standard ML and its module language.

As for defunctionalization, it originates in Reynolds’s seminal article on defi-
nitional interpreters for higher-order programming languages [27]. The point of
defunctionalization is to transform a higher-order program into a first-order
program by replacing its function types by sum types. Before defunction-
alization, the inhabitants of each function type are instances of anonymous
lambda-abstractions. Defunctionalizing a program amounts to enumerating
these lambda-abstractions in a sum type: each function introduction (i.e., lambda-
abstraction) is replaced by the corresponding constructor holding the values of
the free variables of this lambda-abstraction, and each function elimination (i.e.,
application) is replaced by a case dispatch. After defunctionalization, the in-
habitants of each function type are represented by elements of a corresponding
sum type.

Danvy and Nielsen’s study of defunctionalization contains many examples [14],
but to make the present article self-contained, let us consider two concrete cases.

1.1 A simple example of defunctionalization

The following (trivial) program is higher-order because of the auxiliary function
aux, which is passed a function of type int -> int as argument:

(* aux : int * (int -> int) -> int *)

fun aux (x, f)

= (f 10) + (f x)

(* main : int * int * int -> int *)

fun main (a, b, c)

= (aux (a, fn x => x + b)) * (aux (c, fn x => x * x))
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The inhabitants of the function space int -> int are instances of the two anony-
mous lambda-abstractions declared in main, fn x => x + b and fn x => x * x.
The first one has one free variable (b, of type int), and the second one is closed,
i.e., it has no free variables.

To defunctionalize this program, we enumerate these lambda-abstractions
in a sum type lam, and we define the corresponding apply function to interpret
each of the summands:

datatype lam = LAM1 of int

| LAM2

(* apply_lam : lam * int -> int *)

fun apply_lam (LAM1 b, x)

= x + b

| apply_lam (LAM2, x)

= x * x

In the defunctionalized program, each lambda-abstraction is replaced by the
corresponding constructor, and each application is replaced by a call to the
apply function:

(* aux : int * lam -> int *)

fun aux (x, f)

= (apply_lam (f, 10)) + (apply_lam (f, x))

(* main : int * int * int -> int *)

fun main (a, b, c)

= (aux (a, LAM1 b)) * (aux (c, LAM2))

The resulting program is first order.

1.2 A more advanced example: the factorial function

Let us defunctionalize the following continuation-passing version of the factorial
function:

(* fac_c : int * (int -> ’a) -> ’a *)

fun fac_c (0, k)

= k 1

| fac_c (n, k)

= fac_c (n - 1, fn v => k (n * v))

(* main : int -> int *)

fun main n

= fac_c (n, fn v => v)

We consider the whole program (i.e., both main and fac c). Therefore the
polymorphic type ’a, i.e., the domain of answers, is instantiated to int. The
candidate function space for defunctionalization is that of the continuation,
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int -> int. Its inhabitants are instances of two lambda-abstractions: the initial
continuation in main with no free variables, and the intermediate continuation in
the induction case of fac c with two free variables: n and k. The corresponding
data type has therefore two constructors:

datatype cont = CONT0

| CONT1 of int * cont

(* apply_cont : cont * int -> int *)

fun apply_cont (CONT0, v)

= v

| apply_cont (CONT1 (n, k), v)

= apply_cont (k, n * v)

Correspondingly, the apply function associated to the data type interprets each
of these constructors according to the initial continuation and the intermediate
continuation.

We observe that cont is isomorphic to the data type of lists of integers. We
therefore adopt this simpler representation of defunctionalized continuations:

type cont = int list

(* apply_cont : cont * int -> int *)

fun apply_cont (nil, v)

= v

| apply_cont (n :: k, v)

= apply_cont (k, n * v)

In the defunctionalized program, the continuations are replaced by the con-
structors, and the applications of the continuations are replaced by a call to
apply cont:

(* fac_c : int * cont -> int *)

fun fac_c (0, k)

= apply_cont (k, 1)

| fac_c (n, k)

= fac_c (n - 1, n :: k)

(* main : int -> int *)

fun main n

= fac_c (n, nil)

The resulting program is first-order, all its calls are tail calls, and all compu-
tations in the actual parameters are elementary. It is therefore a transition
system in the sense of automata and formal languages [23]. Both main and
fac c, together with their actual parameters, form configurations and their ML
definitions specify a transition relation, as expressed in the following table. The
top transition specifies the initial state and the bottom transition specifies the
terminating configurations. The machine consists of two mutually recursive
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transition functions; the first one operates over pairs of integers, and the second
one operates over a stack of integers and an integer:

n ⇒ 〈n, nil〉fac
〈0, k〉fac ⇒ 〈k, 1〉app
〈n, k〉fac ⇒ 〈n− 1, n :: k〉fac

〈n :: k, v〉app ⇒ 〈k, n× v〉app
〈nil , v〉app ⇒ v

Accordingly, the result of defunctionalizing a continuation-passing interpreter is
also a transition system, i.e., an abstract machine in the sense of automata and
formal languages [23]. We used this property in our work on the λ-calculus [2],
and we use it here for propositional Prolog.

2 Propositional Prolog

The abstract syntax of propositional Prolog reads as follows:

structure Source

= struct

type ide = string

datatype atom = IDE of ide

| OR of goal * goal

| CUT

| FAIL

withtype goal = atom list

type clause = ide * goal

datatype program = PROGRAM of clause list

datatype top_level_goal = GOAL of goal

end

A program consists of a list of clauses. A clause consists of an identifier (the
head of the clause) and a goal (the body of the clause). A goal is a list of atoms;
an empty list represents the logical value ‘true’ and a non-empty list of atoms
represents their conjunction. Each atom is either an identifier, the disjunction
of two goals, the cut operator, or the fail operator.

The intuitive semantics of the language is standard. Given a Prolog program
and a goal, we try to verify whether the goal follows from the program in
the sense of propositional logic, i.e., in terms of logic programming, whether
the SLD-resolution algorithm for this goal and this program stops with the
empty clause. If it does, then the answer is positive; if it stops with one or
more subgoals still waiting resolution, then the answer is negative. Here the
unification algorithm consists in looking up the clause with a specified head in
the program.
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An atom can be a disjunction of two goals, and therefore if a chosen body
does not lead to the positive answer, the other disjunct is tried, using back-
tracking. Backtracking can also be used to find all possible solutions in the
resolution tree, which in case of propositional Prolog amounts to counting the
positive answers. Two operators provide additional control over the traversal of
the resolution tree: the cut operator removes some of the potential paths and the
fail operator makes the current goal unsatisfiable, which triggers backtracking.

3 A generic interpreter for propositional Prolog

To account for the backtracking necessary to implement resolution, we use suc-
cess and failure continuations [13]. A failure continuation is a parameterless
function (i.e., a thunk) yielding a final answer. A success continuation maps
a failure continuation to a final answer. The initial success continuation is ap-
plied if a solution has been found. The initial failure continuation is applied
if no solution has been found. In addition, to account for the cut operator,
we pass a cut continuation, i.e., a cached failure continuation. As usual with
continuations, the domain of answers is left unspecified.

3.1 A generic notion of answers and results

We specify answers with an ML signature. The type of answers comes together
with an initial success continuation and an initial failure continuation. The
signature also declares a type of results and an extraction function mapping a
(generic) answer to a (specific) result.

signature ANSWER

= sig

type answer

val sc_init : (unit -> answer) -> answer

val fc_init : unit -> answer

type result

val extract : answer -> result

end

3.2 Specific answers and results

We consider two kinds of answers: the first solution, if any, and the total number
of solutions.

3.2.1 The first solution

This notion of answer is the simplest to define. Both answer and result are
defined as the type of booleans and extract is the identity function. The initial
success continuation ignores the failure continuation and yields true, whereas
the initial failure continuation yields false.
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structure Answer_first : ANSWER

= struct

type answer = bool

fun sc_init fc = true

fun fc_init () = false

type result = bool

fun extract a = a

end

3.2.2 The number of solutions

This notion of answer is more delicate. One could be tempted to define answer

as the type of integers, but the resulting implementation would no longer be
tail recursive.1 Instead, we use an extra layer of continuations: We define
answer as the type of functions from integers to integers, result as the type of
integers, and extract as a function triggering the whole resolution by applying
an answer to the initial count, 0. The initial success continuation takes note of
an intermediate success by incrementing the current count and activating the
failure continuation. The initial failure continuation is passed the final count
and returns it.

structure Answer_how_many : ANSWER

= struct

type answer = int -> int

fun sc_init fc = (fn m => fc () (m+1))

fun fc_init () = (fn m => m)

type result = int

fun extract a = a 0

end

3.3 The generic interpreter, semi-compositionally

We define a generic interpreter for propositional Prolog, displayed in Figure 1,
as a recursive descent over the source syntax, parameterized by a notion of
answers, and implementing the following signature:

signature INTERPRETER

= sig

type result

val main : Source.top_level_goal * Source.program -> result

end

In run goal, an empty list of atoms is interpreted as ‘true’, and accordingly,
the success continuation is activated. A non-empty list of atoms is sequentially
interpreted by run seq by extending the success continuation; this interpretation

1In “fun sc init fc = 1 + (fc ())”, the call to fc is not a tail call.
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functor mkInterpreter (structure A : ANSWER) : INTERPRETER

= struct

open Source

type result = A.result

type fcont = unit -> A.answer

type scont = fcont -> A.answer

type ccont = fcont

(* run_goal : goal * clause list * scont * fcont * ccont -> A.answer *)

fun run_goal (nil, p, sc, fc, cc)

= sc fc

| run_goal (a :: g, p, sc, fc, cc)

= run_seq (a, g, p, sc, fc, cc)

(* run_seq : atom * goal * clause list * scont * fcont * ccont

-> A.answer *)

and run_seq (a, nil, p, sc, fc, cc)

= run_atom (a, p, sc, fc, cc)

| run_seq (a, a’ :: g, p, sc, fc, cc)

= run_atom (a, p, fn fc’ => run_seq (a’, g, p, sc, fc’, cc), fc, cc)

(* run_atom : atom * clause list * scont * fcont * ccont -> A.answer *)

and run_atom (IDE i, p, sc, fc, cc)

= (case lookup (i, p)

of NONE

=> fc ()

| (SOME g)

=> run_goal (g, p, sc, fc, fc))

| run_atom (OR (g1, g2), p, sc, fc, cc)

= run_goal (g1, p, sc, fn () => run_goal (g2, p, sc, fc, cc), cc)

| run_atom (CUT, p, sc, fc, cc)

= sc cc

| run_atom (FAIL, p, sc, fc, cc)

= fc ()

(* main : top_level_goal * program -> A.result *)

fun main (GOAL g, PROGRAM p)

= let val a = run_goal (g, p, A.sc_init, A.fc_init, A.fc_init)

in A.extract a

end

end

Figure 1: A generic interpreter for propositional Prolog
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singles out the last atom in a properly tail-recursive manner. An identifier is
interpreted either by failing if it is not the head of any clause in the program, or
by resolving the corresponding goal with the cut continuation replaced with the
current failure continuation. The function lookup searching for a clause with a
given head reads as follows:

(* lookup : Source.ide * Source.clause list -> Source.goal option *)

fun lookup (i, p)

= let fun walk nil

= NONE

| walk ((i’, g) :: p)

= if i = i’

then SOME g

else walk p

in walk p

end

A disjunction of two goals is interpreted by extending the failure continuation.
The cut operator is interpreted by replacing the failure continuation with the
cut continuation. The fail operator is interpreted as ‘false’, and accordingly, the
failure continuation is activated.

This interpreter is not compositional (in the sense of denotational semantics)
because g, in the interpretation of identifiers, does not denote a proper subpart of
the denotation of l. The interpreter, however, is semi-compositional in Jones’s
sense [19, 20], i.e., g denotes a proper subpart of the source program. (To
make the interpreter compositional, one can follow the tradition of denotational
semantics and use an environment mapping an identifier to a function that either
evaluates the goal denoted by the identifier or calls the failure continuation. The
environment is threaded in the interpreter instead of the program. The resulting
ML interpreter represents the valuation function of a denotational semantics of
propositional Prolog.)

3.4 Specific interpreters

3.4.1 A specific interpreter computing the first solution

A specific interpreter computing the first solution, if any, is obtained by instan-
tiating mkInterpreter with the corresponding notion of answers:

structure Prolog first = mkInterpreter (structure A = Answer first)

3.4.2 A specific interpreter computing the number of solutions

A specific interpreter computing the number of solutions is also obtained by
instantiating mkInterpreter with the corresponding notion of answers:

structure Prolog how many = mkInterpreter (structure A = Answer how many)

Appendix A contains a direct-style counterpart of the interpreter (uncurried
and without cut) computing the number of solutions.
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4 Two abstract machines for propositional Pro-
log

We successively consider each of the specific Prolog interpreters of Section 3.4
and we defunctionalize their continuations. As already illustrated in Section 1
with the factorial program, in each case, the result is an abstract machine.
Indeed the interpreters are in continuation-passing style, and thus:

• all their calls are tail calls, and therefore they can run iteratively; and

• all their subcomputations (i.e., the computation of their actual parame-
ters) are elementary.

In both cases the types of the defunctionalized success and failure continu-
ations read as follows:

datatype scont = SCONT0

| SCONT1 of atom * goal * clause list * scont * ccont

and fcont = FCONT0

| FCONT1 of goal * clause list * scont * fcont * ccont

withtype ccont = fcont

As in Section 1.2, since both data types are isomorphic to the data type of lists,
we represent them as such when presenting the abstract machines.

4.1 The first solution

The abstract machine is defined as the transition system shown in Figure 2. The
top part specifies the initial state and the bottom part specifies the terminating
configurations. The machine consists of three mutually recursive transition func-
tions, two of which operate over a quintuple and one over a six-element tuple.
The quintuple consists of the goal, the program, the (defunctionalized) success
continuation, the (defunctionalized) failure continuation and the cut continua-
tion (a register caching a previous failure continuation). The six-element tuple
additionally has the first atom of the goal as its first element.

4.2 The number of solutions

This abstract machine is displayed in Figure 3 and is similar to the previous
one, but operates over a six- and seven-element tuples. The extra component is
the counter.

Both machines are deterministic because they were derived from (determin-
istic) functions.
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• Atoms, goals and programs:

a ::= IDE i | OR (g1 , g2 ) | CUT | FAIL
g ::= a∗

p ::= (i, g)∗

• Control stacks:

sc ::= nil | (a, g, p, cc) :: sc
fc ::= nil | (g, p, sc, cc) :: fc
cc ::= fc

• Initial transition, transition rules and final transition:

〈g, p〉 ⇒ 〈g, p, nil , nil , nil〉goal
〈nil , p, (a, g, p′, cc′) :: sc, fc, cc〉goal ⇒ 〈a, g, p′, sc, fc, cc′〉seq

〈a :: g, p, sc, fc, cc〉goal ⇒ 〈a, g, p, sc, fc, cc〉seq
〈a, nil , p, sc, fc, cc〉seq ⇒ 〈a, p, sc, fc, cc〉atom

〈a, a′ :: g, p, sc, fc, cc〉seq ⇒ 〈a, p, (a′, g, p, cc) :: sc, fc, cc〉atom
〈IDE i, p, sc, fc, cc〉atom ⇒ 〈g, p, sc, fc, fc〉goal

if lookup (i) succeeds with g

〈IDE i, p, sc, (g, p, sc′, cc′) :: fc, cc〉atom ⇒ 〈g, p′, sc′, fc, cc′〉goal
if lookup (i) fails

〈OR (g1 , g2 ), p, sc, fc, cc〉atom ⇒ 〈g1 , p, sc, (g2 , p, sc, cc) :: fc, cc〉goal
〈CUT, p, (a, g, p′, cc′) :: sc, fc, cc〉atom ⇒ 〈a, g, p′, sc, fc, cc′〉seq

〈FAIL, p, sc, (g, p′, sc′, cc′) :: fc, cc〉atom ⇒ 〈g, p′, sc′, fc, cc′〉goal
〈nil , p, nil , fc, cc〉goal ⇒ true

〈IDE i, p, sc, nil , cc〉atom ⇒ false, if lookup (i) fails

〈FAIL, p, sc, nil , cc〉atom ⇒ false

〈CUT, p, nil , fc, cc〉atom ⇒ true

Figure 2: An abstract machine computing the first solution
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• Atoms, goals and programs:

a ::= IDE i | OR (g1 , g2 ) | CUT | FAIL
g ::= a∗

p ::= (i, g)∗

• Control stacks:

sc ::= nil | (a, g, p, cc) :: sc
fc ::= nil | (g, p, sc, cc) :: fc
cc ::= fc

• Initial transition, transition rules and final transition:

〈g, p〉 ⇒ 〈g, p, nil , nil , nil , 0〉goal
〈nil , p, nil , (g, p′, sc, cc′) :: fc, cc, m〉goal ⇒ 〈g, p′, sc, fc, cc′, m + 1〉goal
〈nil , p, (a, g, p′, cc′) :: sc, fc, cc, m〉goal ⇒ 〈a, g, p′, sc, fc, cc′, m〉seq

〈a :: g, p, sc, fc, cc, m〉goal ⇒ 〈a, g, p, sc, fc, cc, m〉seq
〈a, nil , p, sc, fc, cc, m〉seq ⇒ 〈a, p, sc, fc, cc, m〉atom

〈a, a′ :: g, p, sc, fc, cc, m〉seq ⇒ 〈a, p, (a′, g, p, cc) :: sc, fc, cc, m〉atom
〈IDE i, p, sc, fc, cc, m〉atom ⇒ 〈g, p, sc, fc, fc, m〉goal

if lookup (i) succeeds with g

〈IDE i, p, sc, (g, p, sc′, cc′) :: fc, cc, m〉atom ⇒ 〈g, p′, sc′, fc, cc′, m〉goal
if lookup (i) fails

〈OR (g1 , g2 ), p, sc, fc, cc, m〉atom ⇒ 〈g1 , p, sc, (g2 , p, sc, cc) :: fc, cc, m〉goal
〈CUT, p, (a, g, p′, cc′) :: sc, fc, cc, m〉atom ⇒ 〈a, g, p′, sc, fc, cc′, m〉seq

〈CUT, p, nil , (g, p′, sc, cc′) :: fc, cc, m〉atom ⇒ 〈g, p′, sc, fc, cc′, m + 1〉goal
〈FAIL, p, sc, (g, p′, sc′, cc′) :: fc, cc, m〉atom ⇒ 〈g, p′, sc′, fc, cc′, m〉goal

〈nil , p, nil , nil , cc, m〉goal ⇒ m + 1

〈FAIL, p, sc, nil , cc, m〉atom ⇒ m

〈CUT, p, nil , nil , cc, m〉atom ⇒ m + 1

〈IDE i, p, sc, nil , cc, m〉atom ⇒ m, if lookup (i) fails

Figure 3: An abstract machine computing the number of solutions
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5 Related work and conclusion

In previous work [2, 3, 10], we presented a derivation from interpreter to ab-
stract machine, and we were curious to see it applied to something else than
a functional programming language. The present paper reports its applica-
tion to a logic programming language, propositional Prolog. In its entirety,
the derivation consists of closure conversion, transformation into continuation-
passing style (CPS), and defunctionalization. Closure conversion ensures that
any higher-order values are made first-order.2 The CPS transformation makes
the flow of control of the interpreter manifest as a continuation. Defunction-
alization materializes the flow of control as a first-order data structure. In the
present case, propositional Prolog is a first-order language and the interpreter
we consider is already in continuation-passing style (cf. Appendix A). Therefore
the derivation reduces to defunctionalization. The result is a simple logic en-
gine, i.e., mutually recursive and first-order transition functions. It was derived,
not invented, and so, for example, its two stacks arise as defunctionalized con-
tinuations. Similarly, it is properly tail recursive since the interpreter is already
properly tail recursive.

Since the correctness of defunctionalization has been established [5, 26], the
correctness of the logic engine is a corollary of the correctness of the original
interpreter.

Prolog has both been specified and formalized functionally. For example,
Carlsson has shown how to implement Prolog in a functional language [7].
Continuation-based semantics of Prolog have been studied by de Bruin and
de Vink [15] as well as by Nicholson and Foo [25]. Our closest related work is
de Bruin and de Vink’s continuation semantics for Prolog with cut:

• de Bruin and de Vink present a denotational semantics with success and
failure continuations; their semantics is (of course) compositional, and
comparable to the compositional interpreter outlined in Section 3.3. The
only difference is that their success continuations expect both a failure
continuation and a cut continuation, whereas our success continuations
expect only a failure continuation. Analyzing the control flow of the cor-
responding interpreter, we have observed that the cut continuation is the
same at the definition point and at the use point of a success continuation.
Therefore, there is actually no need to pass cut continuations to success
continuations.

• de Bruin and de Vink also present an operational semantics, and prove
it equivalent to their denotational semantics. In contrast, we defunction-
alized the interpreter corresponding to a denotational semantics into an
interpreter corresponding to an operational semantics. We also “refunc-
tionalized” the interpreter corresponding to de Bruin and de Vink’s opera-
tional semantics, and we observed that in the resulting interpreter (which

2Closures, for example, are used to implement higher-order logic programming [8].
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corresponds to a denotational semantics), success continuations are not
passed cut continuations.

Designing abstract machines is a favorite among functional programmers [16].
Unsurprisingly, this is also the case among logic programmers, for example, with
Warren’s abstract machine [4], which incidentally is more of a device for high
performance than a model of computation. Just as unsurprisingly, functional
programmers use functional programming languages as their meta-language and
logic programmers use logic programming languages as their meta-language.
For example, Kursawe showed how to “invent” Prolog machines out of logic-
programming considerations [22]. The goal of our work here was more mod-
est: we simply aimed to test an interpreter-to-abstract-machine derivation that
works well for the λ-calculus. The logic engine we obtained is basic but plausible.
Its chief illustrative virtue is to show that the representation of a denotational
semantics can be mechanically defunctionalized into the representation of an
operational semantics (and, actually, vice versa). It also shows that proper tail
recursion and the two control stacks did not need to be invented—they were
already present in the original interpreter.

An alternative to deriving an abstract machine from an interpreter is to fac-
tor this interpreter into a compiler and a virtual machine, using, e.g., Wand’s
combinator-based compiler derivation [29], Jørring and Scherlis’s staging trans-
formations [21], Hannan’s pass-separation approach [18], or more generally the
binding-time separation techniques of partial evaluation [20, 24]. We are cur-
rently experimenting with a such a factorization to stage our Prolog interpreter
into a byte-code compiler and a virtual machine executing this byte code [1].

Acknowledgments: We are grateful to Mads Sig Ager, Ma lgorzata Bier-
nacka, Jan Midtgaard, and the anonymous referees for their comments. This
work is supported by the ESPRIT Working Group APPSEM II (http://www.
appsem.org) and by the Danish Natural Science Research Council, Grant no. 21-
03-0545.

A A direct-style interpreter for Prolog

The interpreter of Section 3 is in continuation-passing style to account for
the backtracking necessary to implement resolution. Therefore, our derivation
method which in its entirety consists of three steps—closure conversion, CPS
transformation, and defunctionalization [2]—was reduced to only the last step.
Less natural, but making the derivation closer to its original specification, would
be to start it with an interpreter in direct style. The failure continuation could be
eliminated by transforming the interpreter into direct style [9]. The success con-
tinuation, however, would remain. Because it is used non tail-recursively in the
clause for disjunctions, it is what is technically called a delimited continuation
(in contrast to the usual unlimited continuations of denotational semantics [28]).
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structure Prolog_how_many_DS : INTERPRETER

= struct

open Source

type result = int

(* run_goal : goal * clause list * int -> int *)

fun run_goal (nil, p, m)

= m

| run_goal (a :: g, p, m)

= run_seq (a, g, p, m)

(* run_seq : atom * goal * clause list * int -> int *)

and run_seq (a, nil, p, m)

= run_atom (a, p, m)

| run_seq (a, a’ :: g, p, m)

= let val m’ = run_atom (a, p, m)

in run_seq (a’, g, p, m’)

end

(* run_atom : atom * clause list * int -> int *)

and run_atom (FAIL, p, m)

= shift (fn sc => m)

| run_atom (IDE i, p, m)

= (case lookup (i, p)

of NONE

=> shift (fn sc => m)

| (SOME g)

=> run_goal (g, p, m))

| run_atom (OR (g1, g2), p, m)

= shift (fn sc => let val m’ = sc (run_goal (g1, p, m))

in sc (run_goal (g2, p, m’))

end)

(* main : top_level_goal * program -> int *)

fun main (GOAL g, PROGRAM p)

= reset (fn () => let val m = run_goal (g, p, 0)

in m + 1

end)

end

Figure 4: A direct-style interpreter for propositional Prolog
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Transforming the interpreter into direct style requires control operators for de-
limited continuations that are compatible with continuation-passing style, e.g.,
shift and reset [11, 12, 17].

Figure 4 presents such a direct-style interpreter for Propositional Prolog
without cut, counting the number of solutions. CPS-transforming this inter-
preter once makes the success continuation appear. CPS-transforming the result
makes the failure continuation appear, and yields the interpreter of Section 3.4.2
(minus cut). Defunctionalizing this interpreter yields the abstract machine of
Section 4.2 (minus cut).

The reset control operator delimits control. Any subsequent use of the shift
control operator will capture a delimited continuation that can be composed;
this delimited continuation is the success continuation. Conjunction, in run seq,
is implemented by function composition. Failure, in run atom, is implemented
by capturing the current success continuation and not applying it. Disjunction,
in run atom, is implemented by capturing the current success continuation and
applying it twice. This interpreter is properly tail recursive, which is achieved
by the two functions run goal and run seq that single out the last atom in a
goal.

The interpreter is a new example of nondeterministic programming in direct
style with control operators for the first level of the CPS hierarchy [6, 11]. In
order to interpret the cut operator we would have to use the control operators
of the second level, shift2 and reset2.
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