
B
R

IC
S

R
S

-04-4
P.B

ouyer
&

F.C
assez

&
E

.F
leury

&
K

.G
.Larsen:

O
ptim

alS
trategies

in
P

T
G

A

BRICS
Basic Research in Computer Science

Optimal Strategies in
Priced Timed Game Automata

Patricia Bouyer
Franck Cassez
Emmanuel Fleury
Kim G. Larsen

BRICS Report Series RS-04-4

ISSN 0909-0878 February 2004

Copyright c© 2004, Patricia Bouyer & Franck Cassez & Emmanuel
Fleury & Kim G. Larsen.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/04/4/

Optimal Strategies in Priced
Timed Game Automata

Patricia Bouyer
LSV – UMR 8643 CNRS & ENS de Cachan, France

Email: <bouyer@lsv.ens-cachan.fr>

Franck Cassez
IRCCyN – UMR CNRS 6597, Nantes, France
Email: <Franck.Cassez@irccyn.ec-nantes.fr>

Emmanuel Fleury
BRICS, Computer Science Dept., Aalborg University, Denmark

Email: <fleury@cs.auc.dk>

Kim G. Larsen
BRICS, Computer Science Dept., Aalborg University, Denmark

Email: <kgl@cs.auc.dk>

February 18, 2004

Abstract

Priced timed (game) automata extends timed (game) automata with costs
on both locations and transitions. In this paper we focus on reachability games
for priced timed game automata and prove that the optimal cost for winning
such a game is computable under conditions concerning the non-zenoness of cost.
Under stronger conditions (strictness of constraints) we prove in addition that
it is decidable whether there is an optimal strategy in which case an optimal
strategy can be computed. Our results extend previous decidability result which
requires the underlying game automata to be acyclic. Finally, our results are
encoded in a first prototype in HyTech which is applied on a small case-study.

Keywords: Optimality, Control, Controller Synthesis, Strategy, Priced Timed
Game.

1 Introduction
In recent years the application of model-checking techniques to scheduling problems
has become an established line of research. Static scheduling problems with timing
constraints may often be formulated as reachability problems or timed automata,
viz. as the possibility of reaching a given winning state. Real-time model checking

1

1 Introduction 2

tools such as Kronos and Uppaal have been applied on a number of industrial and
benchmark scheduling problems [Feh99, HLP00, NY01, BMF02, Abd02, Lar03].

Often the scheduling strategy needs to take into account uncertainty with respect
to the behavior of an environmental context. In such situations the scheduling problem
becomes a dynamic (timed) game between the controller and the environment, where
the objective for the controller is to find a dynamic strategy that will guarantee the
game to end in a winning state [MPS95, AMPS98, DAHM01].

Optimality of schedules may be obtained within the framework of timed automata
by associating with each run a performance measure. Thus it is possible to compare
runs and search for the optimal run from an initial configuration to a final (winning)
target. The most obvious performance measure for timed automata is clearly that of
time itself. Time-optimality for timed automata was first considered in [CY92] and
proved computable in [NTY00]. The related problem of synthesizing time-optimal
winning strategies for timed game automata was shown computable in [AM99].

More recently, the ability to consider more general performance measures has
been given. Priced extensions of timed automata have been introduced where a cost
c is associated with each location ` giving the cost of a unit of time spent in `. In
[ACH93] cost-bound reachability has been shown decidable. [BFH+01] and [ALTP01]
independently solve the cost-optimal reachability problem for priced timed automata
1. Efficient incorporation in Uppaal is provided by use of so-called priced zones
as a main data structure [LBB+01]. In [RLS04] the implementation of cost-optimal
reachability is improved considerably by exploiting duality between linear program-
ming problems over zones with min-cost flow problems. More recently [BBL04], the
problem of computing optimal infinite schedules (in terms of minimal limit-ratios) is
solved for the model of priced timed automata.

In this paper we combine the notions of game and price and solve the problem
of cost-optimal winning strategies for priced timed game automata under conditions
concerning the strictness of constraints and non-zenoness of cost. Our results extend
the previous result of [LTMM02] which requires the underlying game automata to
be acyclic. The existing results mentioned above related to timed game automata
and priced timed automata respectively, are all based on various extensions of the
so-called classical region- and zone-techniques. In the combined setting the solution
is obtained in a radically different way.

Consider the priced timed game automata in Fig. 1. Here the cost-rates in loca-
tions `0, `2 and `3 are 5, 10 and 1 respectively. In `1 the environment may choose
to move to either `2 or `3 (dashed arrows are uncontrollable). However, due to the
invariant y = 0 this choice must be made instantaneous. Obviously, once `2 or `3 has
been reached the optimal strategy for the controller is to move to Win immediately.
The crucial (and only remaining) question is how long the controller should wait in
`0 before taking the transition to `1. Obviously, in order for the controller to win this
duration must be no more than two time units. However, what is the optimal choice
for the duration in the sense that the overall cost of reaching Win is minimal? Denote
by t the chosen delay in `0. Then 5t + 10(2 − t) + 1 is the minimal cost through
`2 and 5t + (2 − t) + 7 is the minimal cost through `3. As the environment chooses
between these two transitions the best choice for the controller is to delay t ≤ 2 such

1In [BFH+01] the name linearly priced timed automata is used and in [ALTP01] the same model
is named weighted timed automata.

2 Reachability Timed Games (RTG) 3

`0

`1

`2 `3

Win

x ≤ 2,
y := 0

x ≥ 2

+1

x ≥ 2
+7

[ċ = 5]

[y = 0]

[ċ = 10] [ċ = 1]

Controllable

Uncontrollable

D
el
ay

`0→ `1

y

0 x
`0

4
3

4
3

2

2

y

0 x
`2

2

2

Delay

`2→Win

y

0 x
`3

2

2

Delay

`3→Win

Figure 1: A small Priced Time Game Automata. Optimal strategy has cost 141
3 .

that max(21− 5t, 9+4t) is minimum, which is t = 4
3 giving a minimal cost of 14 1

3 . In
Fig. 1 we illustrate the optimal strategy for all states reachable from the initial state.

The outline of the paper is as follows: in section 2 we recall some basics about
reachability timed games. Section 3 introduces priced timed games (PTG) where we
give a run-based definition of optimality. We also relate our run-based definition of
optimality to the recursive one previously given in [LTMM02]. Section 4 is the core
of the paper where we show how to compute the optimal cost of a PTG and optimal
strategies. Finally section 5 reports on preliminary implementation experiments of
our work in HyTech.

2 Reachability Timed Games (RTG)
In this paper we focus on reachability games, where the control objective is to enforce
that the system eventually evolves into a particular state. It is classical in the litera-
ture to define reachability timed games (RTG) [MPS95, AMPS98, DAHM01] to model
control problems. In this section we recall some known general results about RTG
and we finally give an additional result about the controller (strategy) synthesis for
RTG. Indeed controller synthesis is well defined for safety games but some additional
care is needed for RTG as shown later in the section.

2.1 Timed Transition Systems and Games
Definition 1 (Timed Transition Systems). A timed transition system (TTS for
short) is a tuple S = (Q, Q0, Act,−→) with:

• Q is a set of states

• Q0 ⊆ Q is the set of initial states

2 Reachability Timed Games (RTG) 4

• Act is a finite set of actions, disjoint from R≥0. We denote Σ = Act ∪ R≥0

• −→⊆ Q× Σ×Q is a set of edges. If (q, e, q′) ∈−→, we also write q
e−→ q′.

We make the following common assumptions about TTSs:

• 0-delay: q
0−→ q′ if and only if q = q′,

• Additivity: if q
d−→ q′ and q′ d′−→ q′′ with d, d′ ∈ R≥0, then q

d+d′−−−→ q′′,

• Continuity: if q
d−→ q′, then for every d′ and d′′ in R≥0 such that d = d′ + d′′,

there exists q′′ such that q
d′−→ q′′ d′′−→ q′,

• Determinism2: if q
e−→ q′ and q

e−→ q′′ with e ∈ Σ, then q′ = q′′.

A run in S is a finite or infinite sequence ρ = q0
e1−→ q1

e2−→ . . .
en−→ qn · · · .

States(ρ) = {q0, q1, · · · , qn, · · · } is the set of states encountered on ρ. We denote by
first(ρ) = q0 and last(ρ) = qn if ρ is finite and ends in qn. Runs(q, S) is the set of
(finite and infinite) runs in S starting from q. The set of runs of S is Runs(S) =
∪q∈QRuns(q, S). We use q

e−→ as a shorthand for “∃q′ s.t. q
e−→ q′” and extends this

notation to finite runs ρ
e−→ whenever last(ρ) e−→.

Definition 2 (Timed Games (Adapted from [DAHM01])). A timed game (TG
for short) G = (Q, Q0, Act,−→) is a TTS such that Act is partitioned into controllable
actions Actc and uncontrollable actions Actu.

2.2 Strategies, Reachability Games
A strategy [MPS95] is a function that during the cause of the game constantly gives
information as to what the controller should do in order to win the game. In a
given situation the strategy could suggest the controller to either i) “do a particular
controllable action” or ii) “delay for some specific amount of time” which will be
denoted by the special symbol λ. For instance if one wants to delay until some clock
value x reaches 4

3 (as would be a good strategy in the location `0 of Fig. 1) then the
strategy would be: for x < 4

3 do λ and for x = 4
3 do the control action from `0 to `1.

Definition 3 (Strategy). Let G = (Q, Q0, Act,−→) be a TG. A strategy f over G
is a partial function from Runs(G) to Actc ∪ {λ}.

We denote Strat(G) the set of strategies over G. A strategy f is state-based when-
ever ∀ρ, ρ′ ∈ Runs(G), last(ρ) = last(ρ′) implies that f(ρ) = f(ρ′). State-based strate-
gies are also called memory-free strategies in game theory [Tho95, DAHM01]. The
possible runs that may be realized when the controller follows a particular strategy
is defined by the following notion of Outcome ([DAHM01]):

Definition 4 (Outcome). Let G = (Q, Q0, Act,−→) be a TG and f a strategy over
G. The outcome Outcome(q, f) of f from q in G is the subset of Runs(q, G) defined
inductively by:

• q ∈ Outcome(q, f),
2Determinism is not essential in our work but it simplifies proofs in the sequel.

2 Reachability Timed Games (RTG) 5

• if ρ ∈ Outcome(q, f) then ρ′ = ρ
e−→ q′ ∈ Outcome(q, f) if ρ′ ∈ Runs(q, G) and

one of the following three conditions hold:

1. e ∈ Actu,

2. e ∈ Actc and e = f(ρ),

3. e ∈ R≥0 and ∀0 ≤ e′ < e, ∃q′ ∈ Q s.t. last(ρ) e′−→ q′′ ∧ f(ρ e′−→ q′′) = λ.

• an infinite run ρ is in ∈ Outcome(q, f) if all the finite prefixes of ρ are in
Outcome(q, f).

A strategy is realizable, whenever for all ρ ∈ Outcome(q, f) such that f is defined
on ρ and f(ρ) = λ, there exists some δ > 0 such that for all 0 ≤ t < δ, there
exist q′ with ρ

t−→ q′ ∈ Outcome(q, f) and f(ρ t−→ q′) = λ. Strategies which are not
realizable are not interesting because they generate empty set of outcomes. Note
that realizability is a weaker notion than the one of implementability considered
in [CHR02, DDR04].

Consider the TTS induced by the timed au-

`0 Win
x > 1; c

Figure 2: A timed game automaton

tomaton of Fig. 2. The game is to enforce state
Win. The most natural strategy f would be to
do a c when x > 1 and to wait until x reaches
a value greater than 1. Formally this yields
f(`0, x ≤ 1) = λ and f(`0, x > 1) = c. This
strategy is not realizable. In the sequel, we
build a strategy which is f(`0, x < 2) = λ and f(`0, x ≥ 2) = c. Now assume the
constraint on the transition is 1 < x ≤ 2. In this case we start with the following
strategy (not realizable): f(`0, x ≤ 1) = λ and f(`0, 1 < x ≤ 2) = c. To make it
realizable we will take the first half of 1 < x ≤ 2 and have a delay action on it i.e.
f(`0, x < 3

2) = λ and f(`0,
3
2 ≤ x ≤ 2) = c.

In the following, we will restrict our attention to realizable strategies and simply
refer to them as strategies.

Definition 5 (Reachability Timed Games (RTG)). A reachability timed game
G = (Q, Q0, Win, Act,−→) is a timed game (Q, Q0, Act,−→) with a distinguished set
of winning states Win ⊆ Q such that for all q ∈ Win, q

e−→ q′ implies q′ ∈ Win.

If G is a RTG, a run ρ is a winning run if States(ρ) ∩ Win 6= ∅. We denote
WinRuns(q, G) the set of winning runs in G from q.

In the literature one can find (at least) two definitions of the meaning of uncon-
trollable actions: i) in [MPS95, AMPS98] uncontrollable actions can be used to win
the game whereas ii) in [LTMM02] they cannot help to win the game. As an example,
consider the game of Fig. 3. In case i) u is bound to happen before x reaches 1 and
in this case we win the game from `0. In case ii) u cannot be forced to happen and
thus we cannot win the game.

We follow the framework used by La Torre et al in [LTMM02] where uncontrollable
actions cannot help to win. This choice is made for the sake of simplicity (mainly for

2 Reachability Timed Games (RTG) 6

the proof of theorem 3.) However, we can handle the semantics of [MPS95] (case i)
as well but the proofs are more involved3.

We now formalize the previous notions. A

`0

x ≤ 1

Win
x ≤ 1; u

Figure 3: Winning or not winning?

maximal run ρ is either an infinite run or a
finite run that satisfies: ∀t ≥ 0, ρ

t−→ q′ a−→ im-
plies a ∈ Actu, thus the next discrete actions
from last(ρ), if any, are uncontrollable actions.
A strategy f is winning from q if all maximal
runs in Outcome(q, f) are in WinRuns(q, G).

Note that f must be realizable. A state q in a RTG G is winning if there exists
a winning strategy f from q in G. We denote by W(G) the set of winning states in
G. We note WinStrat(q, G) the set of winning (and realizable) strategies from q over
G.

2.3 Computation of Winning Strategies
In this section we summarize previous results obtained for particular classes of RTG:
Linear Hybrid Games (LHG). Due to lack of space we will not define this model here
but refer to [Hen96] for details.

The computation of the winning states is based on the definition of a controllable
predecessors operator [MPS95, DAHM01]. Let G = (Q, Q0, Win, Act,−→) be a RTG.
For a subset X ⊆ Q and a ∈ Act we define Preda(X) = {q ∈ Q | q

a−→ q′, q′ ∈ X}.
Now the controllable and uncontrollable discrete predecessors of X are defined by
cPred(X) =

⋃
c∈Actc

Predc(X), respectively uPred(X) =
⋃

u∈Actu
Predu(X). We also

need a notion of safe timed predecessors of a set X w.r.t. a set Y . Intuitively a state
q is in Predt(X, Y) if from q we can reach q′ ∈ X by time elapsing and along the path
from q to q′ we avoid Y . Formally this is defined by:

Predt(X, Y) = {q ∈ Q | ∃δ ∈ R≥0, q
δ−→ q′, q′ ∈ X and Post [0,δ](q) ⊆ Y }

where Post [0,δ](q) = {q′ ∈ Q | ∃t ∈ [0, δ] s.t. q
t−→ q′}. Now we are able to define the

controllable predecessors operator π as follows:

π(X) = Predt

(
X ∪ cPred(X), uPred(X)

)
(1)

Note that this definition of π captures the choice that uncontrollable actions cannot
be used to win. We denote by CompWin the semi-algorithm which computes the least
fixed point of λX.{Win}∪π(X) as the limit of an increasing sequence of sets of states
(starting with the initial set Win). If G is a LHG, the result of the computation
µX.{Win} ∪ π(X) is denoted CompWin(G).

Theorem 1 (Symbolic Algorithm for LHG [HHM99, DAHM01]). W(G) =
CompWin(G) for a LHG G and hence CompWin is a symbolic semi-algorithm for com-
puting the winning states of a LHG. Moreover CompWin terminates for the subclass
of Initialized Rectangular Games [HHM99].

As for controller synthesis the previous algorithms allow us to compute the win-
ning states of a game but the strategy synthesis extraction is not much detailed.

3The definition of π later on must be patched as well as the definition of the O function in Def. 10.
Theorem 2 still holds for this case as it only depends on the winning set of states.

2 Reachability Timed Games (RTG) 7

Although this is not the point of the paper we provide a symbolic algorithm (as-
suming time determinism) that synthesizes realizable strategies and thus have the
following theorem:

Theorem 2 (Synthesis of Realizable Strategies). Let G be a time determin-
istic LHG. If the semi-algorithm CompWin terminates for G, then we can compute
a polyhedral4 strategy which is: winning (and realizable) in each state of W(G) and
state-based.

Proof. The proof of this theorem is quite technical. A state predicate for G is a finite
union of regions of the form (`, R) where ` is a location of the LHG and R a convex
polyhedron. We assume that Win is a state predicate. We note W0 = Win and
for each i, Wi+1 = π(Wi) (it contains Wi due to Predt). As the symbolic versions
of cPred, uPred, Predt compute state predicates (if applied to a state predicate), π
iteratively computes state predicates and all the Wi are state predicates.

As CompWin terminates we denote W? = CompWin(G) and W? is the least fixed
point of λX.{Win} ∪ π(X). We define the mapping ι : W? −→ N by: ι(q) = min{k |
q ∈ Wk}. Notice that if q ∈ Wi+1 \Wi then ι(q) = i + 1.

Let P = {P1, P2, · · · , Pn} be a finite partition of W? viewed as a state predicate
s.t. (l, P), (l, P ′) ∈ P implies P ∩ P ′ = ∅.We say that a mapping h : W? −→ Y is
P-definable if q, q′ ∈ Pi implies h(q) = h(q′).

Theorem 2 is a consequence of the following proposition.

Proposition 1. If Pi is a finite partition of Wi viewed as a state predicate, if ι is
Pi-definable, if fi is a Pi-definable state-based realizable winning strategy on Wi, then
we can build a Pi+1-definable state-based realizable winning strategy fi+1 on Wi+1 s.t.
i) Pi+1 is a finite partition of Wi+1 that refines Pi on Wi and ii) ι is Pi+1-definable.

f0 needs not to be defined as we have already won the game.

Proof. First we assume the set of controllable events in Actc is totally ordered by v.
Secondly remark that π can be rewritten as π(X) = Predt(X, uPred(X))∪(cPred(X) \
uPred(X)). This does not affect the result of CompWin, but just computes interme-
diary sets of states Wi that are a bit different. We use this version of π in this
proof. Let Pi = {P1, P2, · · · , Pn} be the finite partition of Wi viewed as a state
predicate (in particular we assume each Pk is convex). For X ∈ Pi denote A(X) =
Predt(X, uPred(Wi)) and Bc(X) = Predc(X)\uPred(Wi) and B(X) =

⋃
c∈Actc

Bc(X).
Now π(Wi) =

⋃
Pi∈Pi

A(Pi) ∪B(Pi). Let P be the (finite) partition of Wi+1 defined
by:

1. Pi (for Wi); on Wi define fi+1 to be fi.

2. on B(Pi) define the following partition induced by v: let αi,j = B(Pi) ∩
Predcj (Pi) with cj a controllable event. As the set of events is totally ordered
we can order the nonempty state predicates αi,j accordingly: αi,j v αi,k if
cj v ck. Thus we have an ordered set of state predicates αi,j . Assume those
sets are ordered from n (larger one) to 1 (note they must be at least one such
set if B(Pi) 6= ∅). Now we partition B(Pi) into ui,n = B(Pi) ∩ αi,n, and

4A strategy f is polyhedral if for all a ∈ Actc ∪ {λ}, f−1(a) is a finite union of convex polyhedra
for each location of the LHG.

2 Reachability Timed Games (RTG) 8

ui,k−1 = (B(Pi) \ ui,k) ∩ αi,k−1 for 2 ≤ k ≤ n. On each non empty set ui,k we
define fi+1(q) = c if c is the controllable event that corresponds to ui,k.

3. on the set Vi+1 = (Wi+1 \Wi) \B(Pi) (note that q ∈ Vi+1 implies q ∈ A(Pj) for
some j) define fi+1(q) = λ.

P is a finite partition of Wi+1 and refines Pi on Wi. It is easy to see that ι is P-
definable. fi+1 is state-based and P-definable. We now show how to build a realizable
winning strategy from fi+1.

To be convinced there might be a problem with fi+1 just remind the example
of Fig. 2. On this example we get the following sets Wi and fi: on W1 = (`0, x >
1) ∪ {Win}, f1(`0, x > 1) = c and W2 = (`0, x ≥ 0) ∪ {Win}, f2(`0, x > 1) = c and
f2(`0, x ≤ 1) = λ. This strategy is not realizable. To our knowledge, it is not stated in
the literature how to overcome this problem and build a realizable winning strategy.
To do this we need to alter f2 a little bit on the border of (`, x = 1). This is what is
described hereafter.

Now given Vi+1 we can compute the set of states that are on the border of Vi+1

w.r.t. time-elapsing:

Border(Vi+1) = Vi+1 \ Predt>0(Vi+1, Vi+1)

If Border(Vi+1) is empty then the strategy fi+1 is realizable. If not we can split
Border(Vi+1) into two sets: 1) the set of states from which time elapsing leads to
a convex polyhedra on which fi+1 is a delay action 2) the set of states from which
time elapsing leads to convex polyhedra on which fi+1 tells us to do a controllable
action. The set of states that corresponds to 1) can be defined by Z = Border(Vi+1)∩
Predt>0(f−1

i+1(λ), f−1
i+1(λ)) and 2) by J = Vi+1 \ Z. The states in Z lead to a state

where λ is defined and can be done because those are states on Wi and fi is realizable
on Wi by induction hypothesis. It remains to update the strategy fi+1 on the closest
time successor polyhedra of J . The closest time successors polyhedra D of q can be
defined by “∃t > 0 s.t. Post]0,t](q) ⊆ D”. We thus get a finite set of convex polyhedra
D1, · · · , Dk of the partition P of Wi+1. By definition they all contain states that can
let time t > 0 elapse. Take one such Dj.

• Either Dj is such that: ∀q ∈ Dj , ∀t ≥ 0, q
t−→ q′ implies q′ ∈ Dj. Then we just

split Dj into D1
j = {q ∈ Dj | ∃0 < t < 1, ∃q′ ∈ J s.t. q′ t−→ q} (i.e. the set of

states of Dj that are within 1 time unit range of J) and D2
j = Dj \D1

j . On D1
j

define fi+1 = λ and on D2
j fi+1 is unchanged.

• or Dj is bounded (in the future; as Dj is a time convex polyhedra it cannot be
the case that some states of Dj can let an infinite amount of time elapse and
some other cannot). In this case we split Dj into two parts.
Define the set

Dj

2
= {q′ ∈ Dj | ∃q ∈ J, ∃δ > 0 s.t. q

δ−→ q′ and q′ δ−→ q′′ =⇒ q′′ ∈ Dj}

Note that by choice of Dj (as an adjacent part of an element in J), we have
that Dj

2 ⊆ Dj .

2 Reachability Timed Games (RTG) 9

Now we change the value of fi+1 on

D′
j =

Dj

2
∩ Predt>0

(
Dj

2
, ∅

)

by defining fi+1(q′) = λ if q′ ∈ D′
j. We refine the partitioning P of Wi+1 by

replacing the part Dj by D′
j and a convex decomposition of Dj \ D′

j . We do
this for all possible Dj ’s. The new partitioning P (of Wi+1) refines Pi (on Wi)
and ι is P-definable as well as fi+1.

We now prove that fi+1 is a winning realizable strategy over Wi+1, that is for
every q ∈ Wi+1, fi+1 ∈ WinStrat(q, Wi+1).

Lemma 1. For every q ∈ Wi+1 such that fi+1(q) = λ, there exists δ > 0 such that
Post [0,δ[(q) ⊆ f−1

i+1(λ).

This comes from the construction above. The strategy fi+1 is thus realizable.

Lemma 2. 1. If fi+1(q) = c with c a controllable action, then q
c−→ q′ implies

ι(q′) < ι(q).

2. If u is an uncontrollable action and q
u−→ q′ then ι(q′) < ι(q).

3. If fi+1(q) = λ, for every t > 0, if ∀0 ≤ t′ ≤ t, q
t′−→ q′′ implies fi+1(q′′) = λ,

then if q
t−→ q′ implies ι(q′) ≤ ι(q).

4. If fi+1(q) = λ, there exists ∆ > 0 such that ∀0 ≤ t′ ≤ ∆, q
t′−→ q′′ implies

fi+1(q′′) = λ and if q
∆−→ q′, then either ι(q′) < ι(q) or fi+1(q′) 6= λ, in which

case q′
fi+1(q

′)−−−−−→ q′′′ implies ι(q′′′) < ι(q).

Proof. 1. Assume fi+1(q) = c with c a controllable action. There are two possible
cases. Either q ∈ Wi+1 \Wi, or q ∈ Wi, in which case the value of fi(q) was
already c. The second case is easy, it is by induction hypothesis. Assume then
that q ∈ Wi+1 \Wi and fi+1(q) = c. Then q ∈ cPred(Wi) \ uPred(Wi). There
exists q

c−→ q′ with q′ ∈ Wi. Thus ι(q′) ≤ i < i + 1 = ι(q).

2. direct from the definition of π.

3. Assume that fi+1(q) = λ. There are several cases: if q ∈ Wi and fi(q) = λ, then
we can apply the induction hypothesis. If q ∈ Wi but fi(q) 6= fi+1(q), it means
that the value of the strategy has been changed during the construction for the
realizability. With what precedes, there exists δ > 0 such that Post [0,δ](q) ⊆
Wι(q), and if q

δ−→ q′, then fi+1(q′) 6= λ. Moreover, for every intermediate states
q′′ between q and q′, ι(q′′) = ι(q′) ≤ ι(q) because q ∈ Predt(Wi, uPred(Wi)). If
q ∈ Wi+1 \Wi, then ι(q) = i + 1, and thus, for every q′ such that q

t−→ q′ is a
transition allowed by fi+1, then q′ ∈ Wi+1 and thus ι(q′) ≤ i + 1 = ι(q).

3 Priced Timed Games (PTG) 10

4. Assume fi+1(q) = λ. If q ∈ Wi and fi(q) = λ use the induction hypothesis.
If q ∈ Wi but fi(q) 6= λ (which means that the value of the strategy in q has
been changed during the construction for the realizability), by some bounded
delay ∆, a state q′ ∈ Wi for which fi+1(q′) = fi(q′) 6= λ can be reached. We
then apply point 1. of the lemma. Otherwise, by construction of fi+1 we must
reach a state in Wi and there is ∆ > 0 such that q

∆−→ q′ and q′ ∈ Wi. As
q ∈ Wi+1 \Wi we get ι(q) < ι(q′).

Now we can conclude that fi+1 is winning. Let’s take a maximal run ρ ∈
fi+1(q, Wi+1). Applying the previous lemma and as ι(q) = 0 =⇒ q ∈ Win, we
get that ρ is a winning run, and thus fi+1 is a winning realizable strategy. Also fi+1

is polyhedral (and thus state-based).

This concludes the proof.

3 Priced Timed Games (PTG)
In this section we define Priced Timed Games (PTG). We focus on reachability PTG
(RPTG) where the aim is to reach a particular state of the game at the lowest possible
cost. We give a run-based definition of the optimal cost. Then we review some
previous work [LTMM02] on acyclic weighted timed automata by Salvatore La Torre
et al where a definition of optimal cost is given as a state-based optimal cost function.
We conclude this section by relating the two definitions and proving their equivalence.

3.1 Priced Timed Games
Definition 6 (Priced Timed Transition Systems). A priced timed transition
system (PTTS) is a pair (S, Cost) where S = (Q, Q0, Act,−→) is a TTS and Cost is
a cost function i.e. a mapping from −→ to R≥0 that satisfies:

• Price Additivity: if q
d−→ q′ and q′ d′−→ q′′ with d, d′ ∈ R≥0, then Cost(q d+d′−−−→

q′′) = Cost(q d−→ q′) + Cost(q′ d′−→ q′′).

• Bounded Cost Rate: there exists K ∈ N such that for every q
d−→ q′ where

d ∈ R≥0, Cost(q d−→ q′) ≤ d.K

For a transition q
e−→ q′, Cost(q e−→ q′) is the cost of the transition and we note q

e,p−−→ q′

if p is the cost of q
e−→ q′.

All notions concerning runs on TTS extend straightforwardly to PTTS. Let S be
a PTTS and ρ = q0

e1−→ q1
e2−→ . . .

en−→ qn a finite run5 of S. The cost of ρ is defined
by Cost(ρ) =

∑n−1
i=0 Cost(qi

ei+1−−−→ qi+1).

5We are not interested in defining the cost of an infinite run as we will only use costs of winning
runs which must be finite in the games we play.

3 Priced Timed Games (PTG) 11

Definition 7 (Priced Timed Games). A priced timed game (PTG) (resp. Reach-
ability PTG) is a pair G = (S, Cost) such that S is a TG (resp. RTG) and Cost is a
cost function.

All the notions like strategies, outcomes, winning states are already defined for
(R)TG and carry over in a natural way to (R)PTG. The cost Cost(q, f) of a winning
strategy f ∈ WinStrat(q, G) is defined by:

Cost(q, f) = sup {Cost(ρ) | ρ ∈ Outcome(q, f)} (2)

Definition 8 (Optimal Cost for a RPTG). Let G be a RPTG and q be a state
in G. The reachable costs set Cost(q) from q in G is defined by:

Cost(q) = {Cost(q, f) | f ∈ WinStrat(q, G)}

The optimal cost from q in G is OptCost(q) = inf Cost(q). The optimal cost in G is
supq∈Q0

OptCost(q) where Q0 denotes the set of initial states6.

Definition 9 (Optimal Strategies for a RPTG). Let G be a RPTG and q a
state in G. A winning strategy f ∈ WinStrat(q, G) is said to be optimal whenever
Cost(q, f) = OptCost(q).

As the example below shows there are RPTG with no optimal winning strategies.

Example 2 (No optimal strategy). Figure 4 gives a RPTG described by a priced
timed automaton as introduced in [BFH+01]. The meaning of this automaton is the
following: the cost of staying in `0 is 1 per time unit and in `1 it is 2. Also c is
a controllable action. In this example, we can define a family of strategies fε with
0 < ε ≤ 1 by: f(`0, x < 1 − ε) = λ, f(`0, x = 1 − ε) = c and f(`1, x ≤ 1) = c. The
cost of such a strategy is 1 + ε. So we can get as close as we want to 1 but there is
no optimal winning strategy.

`0

cost(`0) = 1

`1

cost(`1) = 2

Win
x < 1; c x = 1; c

x < 1 x ≤ 1

Figure 4: A PTG with no reachable optimal cost.

Our aim is many-fold. We want to 1) compute the optimal cost of winning, 2)
decide whether there is an optimal strategy, and 3) in case there is an optimal strategy
compute one such strategy.

3.2 Recursive Definition of the Optimal Cost
In [LTMM02] Salvatore La Torre et al introduced a method for computing the optimal
cost in acyclic priced timed game. In this paper the authors define the optimal cost

6An alternative definition would be to take the min if we consider that the initial state is “con-
trollable”.

3 Priced Timed Games (PTG) 12

one can expect from a state by a function satisfying a set of recursive equations, and
not using a run-based definition as we did in the last subsection. We give hereafter
the definition of the function used in [LTMM02] and prove that it does correspond to
our run-based definition of optimal cost.

Definition 10 (The O function (Adapted from [LTMM02])). Let G be a
RPTG. Let O be the function from Q to R≥0 ∪ {+∞} that is the least fixed point7 of
the following functional:

O(q) = inf
q

t,p−−→q′
t∈R≥0

max




min





 min

q′
c,p′−−→q′′

c∈Actc

p + p′ + O(q′′)


 , p + O(q′)


 (1)

sup
q

t′,p′−−−→q′′
t′≤t

max
q′′

u,p′′−−−→q′′′
u∈Actu

p′ + p′′ + O(q′′′) (2)
(♦)

This definition can be justified by the following arguments: item (2) of Def. 10
gives the maximum cost that an uncontrollable action can lead to if it is taken before t;
note that by definition sup ∅ = −∞ and that (2) is always defined and the outermost
max is thus always defined; item (1) gives the best you can expect if a controllable
can be fired; if from q′ no controllable action can be taken, then either (i) there is a
time step leading to some q′ with O(q′) finite or (ii) no such state q′ is reachable from
q: as our semantics specify that no uncontrollable action can be used to win, we can
not win from q (except if q ∈ Win) and the optimal cost will be +∞. We have the
following theorem that relates the two definitions:

Theorem 3. Let G = (S, Cost) be a RPTG induced by a LHG and Q its set of states.
Then O(q) = OptCost(q) for all q ∈ Q.8

In the paper [LTMM02] by La Torre et al the authors use the fact that the defi-
nition of the optimal cost they give corresponds to a least fixed point of a functional
and can be computed iteratively from O(0) defined by: if q ∈ Win, then O(0)(q) = 0
otherwise O(0)(q) = +∞. For i ≥ 0 we define

O(i+1)(q) = inf
q

t,p−−→q′
t∈R≥0

max




min





 min

q′
c,p′−−→q′′

c∈Actc

p + p′ + O(i)(q′′)


 , p + O(i)(q′)


 (1)

sup
q

t′,p′−−−→q′′
t′≤t

max
q′′

u,p′′−−−→q′′′
u∈Actu

p′ + p′′ + O(i)(q′′′) (2)

(?)
Note that our definition slightly differs from the one given in [LTMM02] as we add
the p + O(i)(q′) in term (1). Indeed it can be the case that we can win only by time

7The righthand-sides of the equations for O(q) defines a functional F on (Q −→ R≥0 ∪ {+∞}).
(Q −→ R≥0 ∪ {+∞}) equipped with the natural lifting of ≤ on R≥0 ∪{+∞} constitutes a complete
lattice. Also F can be quite easily seen to be a monotonic functional on this lattice. It follows from
Tarski’s fixed point theory that the least fix point of F exists.

8Note that if a state q ∈ Q is not winning, both O(q) and OptCost(q) are +∞.

3 Priced Timed Games (PTG) 13

elapsing from a given state and this term is needed in our framework. In the sequel
we denote9 C(i)(q, t) = max

(
C

(i)
(1)(q, t), C

(i)
(2)(q, t)

)
where we assume that q

t,p−−→ q′ and
where:



C
(i)
(1)(q, t) = min





 min

q′
c,p′−−→q′′

c∈Actc

p + p′ + O(i)(q′′)


 , p + O(i)(q′)




C
(i)
(2)(q, t) = sup

q
t′,p′−−−→q′′
t′≤t

max
q′′

u,p′′−−−→q′′′
u∈Actu

p′ + p′′ + O(i)(q′′′)

Proof. We recall the definition of π as done in section 2:

π(X) = Predt

(
X ∪ cPred(X), uPred(X)

)
= Predt

(
X, uPred(X)

) ∪ Predt

(
cPred(X), uPred(X)

)
We define inductively W0 = Win and Wi+1 = π(Wi) and we first prove:

Lemma 3. q ∈ Wi ⇐⇒ 0 ≤ O(i)(q) < +∞.

Proof. If i = 0 then 0 ≤ O(0)(q) < +∞ ⇐⇒ q = Win ⇐⇒ q ∈ W0.

Now for the induction step assume that q ∈ Wi ⇐⇒ 0 ≤ O(i)(q) < +∞.

First we prove that: q ∈ Wi+1 =⇒ 0 ≤ O(i+1)(q) < +∞. Take q ∈ Wi+1. Note
that O(i+1)(q) ≥ 0 as it cannot be that all future states of q give −∞ as the maximum
of terms (1) and (2) in equation (?): this would mean that no uncontrollable action
can be taken in the future but also that no states in cPred(Wi) ∪Wi can be reached
and contradict the fact that q ∈ Wi+1. Now as q is either in Predt(Wi, uPred(Wi)) or
Predt(cPred(Wi), uPred(Wi)), using the induction hypothesis we get that there exists
t ≥ 0 such that q

t,p−−→ q′ and term (1) of equation (?) is finite. Now term (2) is either
−∞ (if no uncontrollable action can be taken before t) or finite as all intermediary
states are outside uPred(Wi)) and the cost due to time elapsing is bounded by some
K.t for some K ∈ N (this is the assumption of bounded cost rate of Def. 6). In any
case, we get that O(i+1)(q) < +∞.

Now the Converse: 0 ≤ O(i+1)(q) < +∞ =⇒ q ∈ Wi+1. In this case there
is t ≥ 0 such that q

t,p−−→ q′, and term (1) of equation (?) is finite (term (1) is
always defined). Then using the induction hypothesis we get that either q′ ∈ Wi or
q′ ∈ cPred(Wi) and term (2) is either −∞ or a finite value, which means that all
intermediary states are in uPred(Wi). Hence q ∈ Wi+1.

We can now prove the following result:

Lemma 4. For each i ≥ 0, for each q ∈ Wi,

O(i)(q) = inf{Cost(q, f) | f ∈ WinStrat(q, Wi)} .

9As we assume time-determinism (Cf. Def. 1) we only need (q, t) to determine the state reached
after t units of time from q.

3 Priced Timed Games (PTG) 14

Actually we can restrict to realizable strategies as shown by the proof of the this
lemma.

Proof. We will prove the result by induction on i ≥ 0.

Base case: case i = 0. O(0)(Win) = 0. We can take whatever we want for a strategy
from Win as any run starting from a state in Win is winning.

Induction step: Assume the proof is done for i. We want to prove the result for
i + 1.

• proof of O(i+1)(q) ≥ inf{Cost(q, f) | f ∈ WinStrat(q, Wi+1)}. Let us fix ε > 0
and q ∈ Wi+1. We want to prove that there exists f ∈ WinStrat(q, Wi+1) such
that Cost(q, f) ≤ O(i+1)(q) + ε. Note that the strategy we build may be
non state-based but we do not need to find a state-based strategy to
prove this lemma.

By definition of O(i+1)(q) there is some q
t,p−−→ q′ s.t. C(i+1)(q, t) ≤ O(i+1)(q)+ ε

2 .

Now define the strategy f by f(q
t′,p′−−−→ q′′) = λ for 0 ≤ t′ < t. Also in case

some uncontrollable action u can be taken at some time δ ≤ t it must lead
to a state qδ,u ∈ Wi. Then by induction hypothesis we know that there is a
strategy fδ,u ∈ WinStrat(qδ,u, Wi) s.t. Cost(qδ,u, fδ,u) ≤ O(i)(qδ,u)+ ε

2 . We define

f(q
δ,p′−−→ q′′

u,p′′−−−→ ρ) = fδ,u(ρ) for all runs ρ such that first(ρ) = qδ,u.

Now two cases arise:

– either the minimum of C
(i+1)
(1) (q, t) is given by p + O(i)(q′): then it must

be the case that q′ ∈ Wi by lemma 3. As q′ ∈ Wi we use the induction
hypothesis: there is a strategy gq,t ∈ WinStrat(q′, Wi,) with Cost(q′, gq,t) ≤
O(i)(q′) + ε

2 . Also we define f(q
t,p−−→ ρ) = gq,t(ρ) for all runs ρ with

first(ρ) = q′. Now the cost of f from q is the supremum of (i) the costs
of runs beginning with q

t,p−−→ q′ which are bounded by p + Cost(q′, gq,t)
and (ii) the costs of the runs with uncontrollable actions taken before t
which is bounded by p′ + p′′ + Cost(qδ,u, fδ,u). This last term is bounded
by the supremum of p + O(i)(q′) + ε

2 and p′ + p′′ + O(i)(qδ,u) + ε
2 . As

C(i+1)(q, t) ≤ O(i+1)(q) + ε
2 we get that p + O(i)(q′) ≤ O(i+1)(q) + ε and

p′ + p′′ + O(i)(qδ,u) ≤ O(i+1)(q) + ε for all possible u before t. Hence,
Cost(q, f) ≤ O(i+1)(q) + ε.

– the minimum of term (1) is given by some controllable action c. We define

f(q
t,p−−→ q′) = c and we know from lemma 3 that q

t,p−−→ q′
c,p′−−→ q′′ with q′′ ∈

Wi. Again there must be a suitable strategy g′′ from q′′ s.t. Cost(q′′, g′′) ≤
O(i)(q′′) + ε

2 . We define f(q
t,p−−→ q′

c,p′−−→ ρ) = g′′(ρ) for all runs ρ with
first(ρ) = q′′. The same argument as the one given for the first case
applies and can prove that Cost(q, f) ≤ O(i+1)(q) + ε.

Now note that f is in WinStrat(q, Wi+1) as applying f will force the state in
Wi within less than t time units. We have thus proved that for all ε > 0 there

4 Reducing Priced Timed Games to Timed Games 15

is winning strategy f ∈ WinStrat(q, Wi+1) s.t. Cost(q, f) ≤ O(i+1)(q) + ε. It is
also easy to see that by construction f is realizable.

• proof of O(i+1)(q) ≤ inf{Cost(q, f) | f ∈ WinStrat(q, Wi+1)}. We prove that
for all f ∈ WinStrat(q, Wi+1), O(i+1)(q) ≤ Cost(q, f). Take some q ∈ Wi+1

and f ∈ WinStrat(q, Wi+1). Then applying f we must reach Wi within a finite
amount of time (and avoid bad states on the way):

– either f is “delay until reaching Wi”: q
t,p−−→ q′ with q′ ∈ Wi. In this case

Cost(q, f) ≥ p + Cost(q′, f) (they may be uncontrollable actions before we
reach q′ leading a to larger cost). Now f is also a winning strategy10 from
q′ ∈ Wi and we can apply the induction hypothesis: Cost(q′, f,) ≥ O(i)(q′).
So term C

(i+1)
(1) (q, t) is lower than Cost(q, f), i.e. C

(i+1)
(1) (q, t) ≤ Cost(q, f).

– or f is “delay for t time units and do a c”: in this case again we have

q
t,p−−→ q′

c,p′−−→ q′′ with q′′ ∈ Wi and using the induction hypothesis we get
the same result: C

(i+1)
(1) (q, t) ≤ Cost(q, f)

Now, if there is any uncontrollable action enabled before t, i.e. q
t′,p′−−−→q′

u,p′′−−−→q′′

for 0 ≤ t′ ≤ t we also have Cost(q, f) ≥ p′ + p′′ + Cost(q′′, f) for all such q′′.
Again q′′ must be in Wi and applying the induction hypothesis we get that
C

(i+1)
(2) (q, t) ≤ Cost(q, f). It follows that C(i+1)(q, t) ≤ Cost(q, f) and so is

O(i+1)(q). So O(i+1)(q) is a lower bound of {Cost(q, f) | f ∈ WinStrat(q, Wi+1)}
and consequently O(i+1(q) ≤ inf{Cost(q, f) | f ∈ WinStrat(q, Wi+1)}.

This completes the proof.

Proof of Theorem 3: As π is continuous (the RPTG G is induced by a LHG),
there exists i such that q ∈ Wi and for every k ≥ i, q ∈ Wk and O(k)(q) is defined.
Thus O(q) is defined. Fix ε > 0. By definition of O(q), there exists k ≥ i such that
O(q) ≤ O(k)(q) ≤ O(q)+ ε

2 . Applying lemma 4, we get that there exists a strategy f ∈
WinStrat(q, Wk) such that O(k)(q) ≤ Cost(q, f) ≤ O(k) + ε

2 . Thus we get that O(q) ≤
Cost(q, f) + ε and f ∈ WinStrat(q, W). Hence O(q) ≥ inff∈WinStrat(q,W) Cost(q, f).

Conversely, take a strategy f ∈ WinStrat(q, W). We note O the functional defined
by equation (♦). We have that O = O(O). The function Ω : q 7−→ Cost(q, f) satisfies
that Ω ≥ O(Ω). Thus, as O is the least fix point of O, we get that for every q,
O(q) ≤ Ω(q).

4 Reducing Priced Timed Games to Timed Games
In this section we show that computing the optimal cost to win a priced timed game
amounts to solving a control problem (without cost). The idea is the following:

10Note that f is defined for runs starting in q but as q′ is obtained from q by applying f it is
possible to view f as a winning strategy from q′.

4 Reducing Priced Timed Games to Timed Games 16

4.1 From Optimal Reachability Game to Reachability Game
Assume we want to compute the optimal cost to win a priced timed gameA. We define
a (usual and unpriced) timed game AC as follows: we use a variable cost to stand
for the cost value. We build AC with the same discrete structure as A and specify a
rate for cost in each location: if the cost increases with a rate of +k per unit of time
in A, then we set the derivative of cost to be −k in AC . Now we solve the following
control problem: can we win in AC with the winning states being Win ∧ cost ≥ 0 ?
Note that if A is a priced timed automaton [BFH+01, ALTP01] (game) then AC is
a (simple) linear hybrid automaton [Hen96]. Intuitively speaking we want to solve
a control game with a distinguished variable cost that decreases when time elapses
and when a discrete transition is fired according to what it costs in the priced timed
game. So we are asking the question: ”what is the minimal amount of resource (cost)
needed to win the control game AC?” In the case of A we can compute the winning
states of AC (with an algorithm for solving hybrid games [WT97, DAHM01]) and
if it terminates we have the answer to the optimal reachability game: we intersect
the set of initial states with the set of winning states, and in case it is not empty,
the projection on the cost axis we obtain a constraint on the cost like cost > 1. By
definition of winning set of states in reachability games, i.e. this is the largest set
from which we can win, no cost lower than 1 is winning and we can deduce that 1
is the optimal cost. Also we can deduce there is no optimal strategy because of the
strict inequality.

The rest of this section is devoted to formalizing this reduction and to proving
that this reduction is correct. Then we focus on the computation of optimal strategies
and we investigate conditions under which we can compute the optimal cost, (i.e. a
termination criterion).

Definition 11 (RTG associated to a RPTG). Let G = ((Q, Q0, Win, Act, −→G

), Cost) be a RPTG. We associate to G the RTG Cont(G) = (Q×R≥0, Q0×R≥0, Win×
R≥0, Act,−→Cont(G)) where (q, c) e−→Cont(G) (q′, c′) ⇐⇒ q

e,c−c′−−−−→G q′. In the sequel we
abstract away the subscript of −→ as it will be clear from the context which transition
relation is referred to.

Note that with our reduction, the cost information becomes part of the state and
that the runs in G and Cont(G) are closely related. Now we focus on subclasses of
reachability timed games, namely those obtained by enriching timed automata [AD94]
with costs (Priced or Weighted Timed Automata [BFH+01, ALTP01]). This enables
us to rely on symbolic algorithms and to have computability results.

4.2 Priced Timed Game Automata
Let X be a finite set of real-valued variables called clocks. We denote B(X) the set of
constraints ϕ generated by the grammar: ϕ ::= x ∼ k | x−y ∼ k | ϕ∧ϕ where k ∈ Z,
x, y ∈ X and ∼∈ {<,≤, =, >,≥ }. A valuation of the variables in X is a mapping
from X to R≥0 (thus an element of RX

≥0). For a valuation v and a set R ⊆ X we
denote v[R] the valuation that agrees with v on X \ R and is zero on R. We denote
v + δ for δ ∈ R≥0 the valuation s.t. for all x ∈ X , (v + δ)(x) = v(x) + δ.

Definition 12 (PTGA). A Priced Timed Game Automaton A = (L, `0, Act, X,
E, inv, f) is a tuple where:

4 Reducing Priced Timed Games to Timed Games 17

• L is a finite set of locations,

• `0 ∈ L is the initial location,

• Act = Actc ∪Actu is the set of actions (partitioned into controllable and uncon-
trollable actions),

• X is a finite set of real-valued clocks,

• E ⊆ L× B(X)× Act× 2X × L is a finite set of transitions,

• inv : L −→ B(X) associates to each location its invariant,

• f : L ∪ E −→ N associates to each location a cost rate and to each discrete
transition a cost.

A reachability PTGA (RPTGA) is a PTGA with a distinguished set of locations
Win ⊆ L. It defines the winning set of states Win× RX

≥0.

The semantics of a PTGA A = (L, `0, Act, X, E, inv, f) is a PTG GA = ((L ×
RX
≥0, (`0,~0), Act,−→), Cost) where −→ consists of: i) discrete steps: (`, v) e−→ (`′, v′)

if there exists (`, g, e, R, `′) ∈ E s.t. v |= g and v′ = v[R]; Cost((`, v) e−→ (`′, v′)) =
f(`, g, e, R, `′) ; ii) time steps: (`, v) δ−→ (`, v′) if δ ∈ R≥0, v′ = v + δ and v, v′ ∈ inv(`);
and Cost((`, v) δ−→ (`, v′)) = δ · f(`). Note that this definition of Cost gives a cost
function as defined in Def. 6.

Lemma 5 (PTGA to LHG). Let A be a PTGA. There exists a LHG H with a
distinguished extra variable cost such that Cont(GA) = GH

11.

Proof. Let A = (L, `0, Act, X, E, inv, f) be a PTGA. We associate to A a LHG H with
the same set of locations, the same set of actions, the same invariants and an extra
variable cost which is not a clock but a special analog variable. The transitions of H
are given by:

• if `
g,a,Y−−−→ `′ is a transition of A and f(`

g,a,Y−−−→ `′) = p then there is a transition
`

g,a,Y :=0,cost:=cost−p−−−−−−−−−−−−−−−→ `′ in H ,

• in each location ` the derivative of cost is given by: ˙cost = −f(`),

• we add a global invariant in H which is that cost ≥ 0.

By construction of H we have Cont(GA) = GH .

The correctness of the reduction is given by the following theorem:

Theorem 4. Let A be a RPTGA and H its corresponding LHG (as given by lemma 5).
If the semi-algorithm CompWin terminates for GH and if WH = CompWin(GH),
then: 1) CompWin terminates for GA and WA

def= CompWin(GA) = ∃cost.WH ; and
2) (q, c) ∈ WH ⇐⇒ ∃f ∈ WinStrat(q, WA) with Cost(q, f) ≤ c.

11Note that GH is the TG that gives the semantics of H.

4 Reducing Priced Timed Games to Timed Games 18

Proof. For item 1) of theorem 4, denote V
(i)
H respectively V

(i)
A the sets obtained after

i iterations of the semi-algorithm CompWin. By induction, one can prove that for
each i, q ∈ V

(i)
A ⇐⇒ ∃c ≥ 0 s.t. (q, c) ∈ V

(i)
H because the variable cost does not

constrain the transitions in H . Hence, if the computation of CompWin(H) terminates
in n iterations, the computation of CompWin(A) cannot take more than n iterations.
In addition we get that WA = ∃cost.WH .

Now let us prove item 2) of theorem 4. For the “if ” part, assume we have f ∈
WinStrat(q, WA) with Cost(q, f) ≤ c. Take a maximal run π ∈ Outcome(q, f). Then
π is winning and Cost(π) ≤ c. By definition of H , if there is a run from q in WA

ending in Win with cost less than c, then there is a run ρ′ in GH from (q, c) ending in
Win∧cost ≥ 0 s.t. ∃cost.ρ′ = ρ (the run ρ′ is in H , states along ρ′ are thus of the form
(q, c) ; ∃cost.ρ′ is the run in GA where each state (q, c) is projected onto q). Define
then g(ρ′) = f(∃cost.ρ′). The strategy g is well-defined and winning (because f is
winning and each run ρ in Outcome((q, c), g) verifies that ∃cost.ρ is in Outcome(q, f)),
realizable (because f is realizable). Thus (q, c) is a winning state and must be in WH .

For the “only if ” part. As (q, c) ∈ WH , by theorem 2, there is a state-based,
realizable and winning strategy f in WinStrat((q, c), WH). We will build inductively
a strategy g from f so that: g is well-defined, winning and Cost(q, g) ≤ c. Define
g0 by g0(q) = f(q, c). Now assume we have build gi so that i) gi is a realizable
strategy ; ii) gi is well-defined and generates only runs of length less than i ; and iii)
if π ∈ Outcome(q, gi) then there exists ρ ∈ Outcome((q, c), f) s.t. ∃cost.ρ = π and
gi(π) = f(last(ρ)). For runs of length ≤ i 12 allowed by gi, we define gi+1 = gi.
Now we define gi+1 on runs of length i + 1 generated by gi. Take π with |π| = i and
π ∈ Outcome(q, gi). If gi(π) = a with a ∈ Actc, then by induction hypothesis and
iii) we know that there exists ρ ∈ Outcome((q, c), f) s.t. ∃cost.ρ = π and gi(π) =
f(last(ρ)) = a. Thus, a is enabled at last(ρ) in WH and f allows a. This entails that
ρ

a−→ (q′, c′) is in Outcome((q, c), f) for some (q′, c′) ∈ WH . Now define gi+1(π a−→ q′)
as f(q′, c′). If gi(π) = λ, then by induction hypothesis and iii) we know that there
exists ρ ∈ Outcome((q, c), f) s.t. ∃cost.ρ = π and gi(π) = f(last(ρ)) = λ. There
exists δ > 0 such that if ρ

δ−→ (q′, c′) with (q′, c′) ∈ WH , then either (q′, c′) is winning
or f(q′, c′) 6= λ. We then define for each 0 < t < δ, gi+1(π t−→) = λ. If (q′, c′) is
winning, then so is q′ in GA. If not, define gi+1(π δ−→ q′) = f(q′, c′). The strategy
gi+1 satisfies ii). It also satisfies i). Finally it satisfies iii) as we build gi+1 in order
to satisfy iii). Now define g by: g(q) = g0(q) and if ρ ∈ Outcome(q, g) and |ρ| = n
then g(ρ) = gn(ρ). g is winning and Cost(q, g) ≤ c because otherwise f would not be
winning from (q, c) in GH .

This completes the proof of theorem 4.

4.3 Computation of the Optimal Cost and Strategy
Theorem 5. Let A be a RPTGA and H its corresponding LHG. If the semi-algorithm
CompWin terminates for GH then for every (`, v) ∈ WA, the upward closure13 of the
set Cost(`, v) is equal to {c | ((`, v), c) ∈ WH}.

12The length of a run is the number of strict alternations between delays and actions.
13The upward closure of a set of reals S is defined as {s′ | ∃s ∈ S s.t. s′ ≥ s}.

4 Reducing Priced Timed Games to Timed Games 19

Proof. This is a direct consequence of theorem 4.

Corollary 1 (Optimal Cost). Let A be a RPTGA and H its corresponding LHG.
If the semi-algorithm CompWin terminates for GH then the upward closure of the
set Cost(`0,~0) is computable and is of the form cost ≥ k (left-closed) or cost > k
(left-open) with k ∈ Q≥0. In addition we get that OptCost(A) = k.

Proof. The fact that it is of the form cost ≥ k or cost > k is direct from theorem 5.
Now k is a rational number because we are considering LHG and symbolic algorithms.
The iterative computation of the π operator generates only polyhedra defined by
rational inequations. As it terminates the result follows.

Corollary 2 (Existence of an Optimal Strategy). Let A be a RPTGA. If the
upward closure of the set Cost(`0,~0) is left-open then there is no optimal strategy.
Otherwise we can compute a realizable, winning, optimal strategy.

Proof. Direct consequence of theorem 4.

Note that in the proof of corollary 2 we build a state-based strategy for H which
is no more state-based for A: indeed the strategy for H depends on the current value
of the cost (which is part of the state in H). The strategy for A is thus dependent on
the run and not memory-free. However it only depends on the last state (`, v) of the
run and on the accumulated cost along the run.

It is not straightforward to build an optimal state-based (without the accumulated
cost) strategy in A as shown by the following example.

Let A be the RPTGA depicted in Fig. 5. The most natural way to define a state-

`0

x ≤ 1

Cost(`0) = 1

`1

x < 1

Cost(`0) = 1

`2

x ≤ 1

Cost(`0) = 1

Win
x < 1; u x < 1; c

x = 1; c; Cost = 7

x = 1; c; Cost = 0

Figure 5: Life is Not Easy

based (without cost) strategy would be to take in each state (`, v) the action given by
the strategy in H in the state (`, v, c) with some minimal c. Doing this would result
in a strategy f such that f(`1, x < 1) = λ. Such a strategy is however not winning.
In this particular case, we can build an optimal strategy f∗ the cost of which is 8:
f∗(`0, x < 1) = λ, f∗(`0, x = 1) = c, f∗(`1, x < 1) = c, f∗(`2, x < 1) = λ and
f∗(`2, x = 1) = c. This strategy is optimal in (`0,0) but is not (and needs not to be)
optimal in state `1 for example. From this observation we see that it is difficult to
exhibit an algorithm for building a state-based (with no cost) winning strategy.

In the next section we will exhibit a restricted class of automata for which we
can synthesize optimal state-based strategies automatically. One of the challenges of
future work is to enlarge this class of automata.

4 Reducing Priced Timed Games to Timed Games 20

4.4 Termination Criterion & Optimal Strategies
Theorem 6. Let A be a RPTGA satisfying the following hypotheses:

• A is bounded, i.e. all clocks in A are bounded ;

• the cost function of A is strictly non-zeno, i.e. there exists some κ > 0 such
that the accumulated cost of every cycle in the region automaton associated with
A is at least κ.

Then the semi-algorithm CompWin terminates for GH , where H is the LHG associated
with A.

Proof. We already know that the semi-algorithm CompWin terminates for GA ([MPS95,
AMPS98]). For each i, we note V

(i)
A respectively V

(i)
H the set of states obtained after i

iterations in the semi-algorithm described in section 2. We note WA = CompWin(GA)
and WH = CompWin(GH). There exists N such that WA = V

(N)
A . As V

(N)
A is a poly-

hedral set, for each location `, for each region R such that (`, R) ⊆ WA, there exists
a piecewise affine function f`,R defined on R and an operator �`,R∈ {>,≥} such that
V

(N)
H is defined by

⋃
`,R region s.t.(`,R)⊆WA

{((`, v), c) | v ∈ R and c �`,R f`,R(v)}

As each region R is bounded, there exists a constant M`,R such that for each v ∈ R,
f`,R(v) ≤ M`,R. Take now M = max(`,R)⊆WA

M`,R. Now take an integer such
that p > M

κ .(size of the region automaton of A). Take now ((`, v), c) ∈ V
(N+p)
H . By

construction there exists ((`′, v′), c′) ∈ V
(N)
H such that there is a path from (`, v, c) to

(`′, v′, c′). Along this path there is at least a region which appears M
κ times. Thus

the cost c must be larger than c′ + M which is itself larger than M . Thus, ((`, v), c)
was already in V

(N)
H . Termination follows.

As argued before, it is not always possible to build state-based optimal strategies
for A (that is without cost information). We will characterize a restricted classes of
automata for which one can synthesize a state-based winning strategy.

Theorem 7. Let A be a RPTGA satisfying the following hypotheses:

1. A is bounded ;

2. the cost function of A is strictly non-zeno ;

3. constraints on controllable actions are non-strict ;

4. constraints on uncontrollable actions are strict

Let WA = CompWin(GA) be the set of winning states. There exists a state-based
strategy f defined over WA s.t. for each (`, v) ∈ WA, f ∈ WinStrat((`, v), WA) and
Cost((`, v), f) = OptCost(`, v).

Proof. The strategy f we will build is to choose in each state the optimal local choice
we can do, that is it will correspond to the action given by an optimal (potentially
not state-based) strategy in each state.

5 Preliminary Experiments 21

Lemma 6. WA is a closed set (with a topological meaning). In particular, we can
write WA as:

WA =
⋃

`∈L,P∈P,f`,P

{(`, v, c) | v ∈ P and c ≥ γ`,P (v)}

where P is a finite set of polyhedra over RX
≥0 and γ`,P are affine functions defined on

RX
≥0.

This is because operators cPred and Predt preserve closed sets whereas uPred
preserves open sets. Thus the operator π preserves closed sets.

We define f formally. First we assume we have constructed as in Theorem 2 a
strategy g over WH which is winning in each point, state-based and realizable. If (`, v)
is a state we note c(`,v) the minimal cost c such that (`, v, c) belongs to WH . We then
define f(`, v) = g(`, v, c`,v). Now there can be a problem in the frontiers of polyhedra
(because of realizability). For all (`, v) such that f(`, v) = λ, but there is no δ > 0
for having the realizability constraint,we define f(`, v) = c where c is the controllable
action given by f in the polyhedron just “after” (`, v). Note that as all controllable
constraints are closed (or non-strict), action c can be done from state (`, v). Note
also that by continuity (closeness of constraints, etc.), (`, v, c) is a possible transition
in WH . Modified that way, f is realizable.

We then prove that f is non-blocking in the sense that for every state (`, v), for
every run ρ ∈ Outcome((`, v), f), either ρ is winning (i.e. ends in Win), or there exists
t ≥ 0 such that:

• for all 0 ≤ t′ < t, ρ
t′−→ (`′, v′) implies f(`′, v′) = λ

• ρ
t−→ (`′, v′) implies (`′, v′) ∈ WA and f(`′, v′) 6= λ

First assume that f(last(ρ)) = c for some controllable action c. Nothing to do
in this case. Assume then that f(last(ρ)) = λ, we note T = {t ≥ 0 | ∀0 ≤ t′ ≤
, f(last(ρ t′−→)) = λ}. As f is realizable (and all clocks are bounded), T is a right-
open interval with t as upper bound for some t. And using the previous lemma
last(ρ t−→) ∈ WA. In addition, as f is realizable, f(last(ρ t−→)) 6= λ. Thus f(last(ρ t−→
)) 6= c for some controllable action c.

We now need to prove that f is a winning strategy in all states (`, v) of WA.
We do that by lifting runs in A into runs in H starting from (`, v, c`,v). From what
precedes we can not be blocked (apart when Win is reached), thus using the strongly
non-zenoness assumption on the cost, we get that all runs generated by f end in Win.
Thus f is a winning strategy.

Under the previous conditions we build a strategy f which is globally optimal for
all states of WA.

5 Preliminary Experiments
A first prototype implementing the construction of optimal strategies from theorem 6
has been made in HyTech [HHWT95, HHWT97] and applied to a small example
concerning energy-optimal connection to a mobile base-station.

5 Preliminary Experiments 22

lowx highx

Winx

jamx?, x :=0

x≥5, y :=0

x :=0,
jamx?

x≥10
+7

[ċx = 0]

[ċx = 1]

[ċx = 10]

Antenna 1

lowy highy

Winy

jamy?, y :=0

y≥2, x :=0

y :=0,
jamy?

y≥10
+1

[ċy = 0]

[ċy = 2]

[ċy = 20]

Antenna 2

X Y

x>6, jamy!

y>6, jamx!

x>6,
jamx!

y>6,
jamy!

Jammer

Controllable

Uncontrollable

Figure 6: Mobile Phone Example.

In our example (see Fig. 6), we consider a mobile phone with two antenna emitting
on different frequencies. Making the initial connection with the base station takes 10
time units whatever antenna is in use. Statistically, a jam of the transmission (e.g.
collision with another phone) may appear every 6 time units in the worst case. When
a collision is observed the antenna try to transmit with a higher level of energy and,
depending on the latency of the antenna, can switch back to the normal mode after a
while. But switching back to the low consumption mode requires more resources and
force to interrupt the other transmission. Once the connection with the base station
is established the message is delivered with an energy consumption varying depending
on the antenna (+7 for Antenna 1 and +1 for Antenna 2). The HyTech model of the
example is in the appendix A14.

In this case the game is clearly a reachability game which is won when one of
the antenna reaches the state Win. It may also be seen, from the model, that the
assumptions of Theorem 7 needed to ensure termination and existence of a state-based
strategy actually hold.

The graphical representation of the optimal strategy obtained from our model is
given in Fig. 7. The optimal cost is 109. As the strategy is state-based, each com-
posite location has its own partition of the clock’s state-space. Starting in location
lowx.lowy.X at x = y = 0, the strategy says that we have to delay until 10. Unfortu-
nately, the opponent will probably produce a jam before 10 and make the system go to
one of the higher energy transmission state. Note that to define the strategy we need
more than zones, classically used for timed automata. Note that on the composed
state highx.highy.Y the splitting of this optimal strategy can not be expressed with
classical zones or regions.

14The file can also be downloaded at http://www.lsv.ens-cachan.fr/aci-cortos/ptga.

5 Preliminary Experiments 23

y

0 x
highx.highy.Y

5

5

10

10

y=
- 53 x+

6

y=
x

y=2

y

0 x
highx.highy.X

6

10

4

y=
x+

6

y

0 x
highx.lowy.Y

105

10

2

(10,20)

(10,12)
y=

x+
10

y=
x+

2

y

0 x
highx.lowy.X

10

10

y

0 x
lowx.highy.Y

10

10

y

0 x
lowx.lowy.Y

y=
x+

10

y=
x+

2
y=

x-
5

y=
x-
10

10

10

(10,20)

lo
wx
→

W
in

or
lo
w y
→

W
in

D
el
ay

y

0 x
lowx.lowy.X

y=
x-
5

y=
x-
10

10

10

Delay
highx→lowx

highy→lowy

lowx→Win
lowy→Win

Figure 7: Strategy of the mobile phone example.

References 24

References
[Abd02] Yasmina Abdeddaim. Modélisation et résolution de problèmes

d’ordonnancement à l’aide d’automates temporisés. PhD thesis, Institut
National Polytechnique de Grenoble, Grenoble, France, 2002.

[ACH93] Rajeev Alur, Costas Courcoubetis, and Thomas A. Henzinger. Comput-
ing accumulated delays in real-time systems. In Proc. 5th International
Conference on Computer Aided Verification (CAV’93), volume 697 of
Lecture Notes in Computer Science, pages 181–193. Springer, 1993.

[AD94] Rajeev Alur and David Dill. A theory of timed automata. Theoretical
Computer Science (TCS), 126(2):183–235, 1994.

[ALTP01] Rajeev Alur, Salvatore La Torre, and George J. Pappas. Optimal paths
in weighted timed automata. In Proc. 4th Int. Work. Hybrid Systems:
Computation and Control (HSCC’01), volume 2034 of Lecture Notes in
Computer Science, pages 49–62. Springer, 2001.

[AM99] Eugene Asarin and Oded Maler. As soon as possible: Time optimal
control for timed automata. In Proc. 2nd Int. Work. Hybrid Systems:
Computation and Control (HSCC’99), volume 1569 of Lecture Notes in
Computer Science, pages 19–30. Springer, 1999.

[AMPS98] Eugene Asarin, Oded Maler, Amir Pnueli, and Joseph Sifakis. Controller
synthesis for timed automata. In Proc. IFAC Symposium on System
Structure and Control, pages 469–474. Elsevier Science, 1998.

[BBL04] Patricia Bouyer, Ed Brinksma, and Kim G. Larsen. Staying alive as
cheaply as possible. In Proc. 7th International Workshop on Hybrid Sys-
tems: Computation and Control (HSCC’04), Lecture Notes in Computer
Science. Springer, 2004. To appear.

[BFH+01] Gerd Behrmann, Ansgar Fehnker, Thomas Hune, Kim G. Larsen, Paul
Pettersson, Judi Romijn, and Frits Vaandrager. Minimum-cost reacha-
bility for priced timed automata. In Proc. 4th International Workshop on
Hybrid Systems: Computation and Control (HSCC’01), volume 2034 of
Lecture Notes in Computer Science, pages 147–161. Springer, 2001.

[BMF02] Ed Brinksma, Angelika Mader, and Ansgar Fehnker. Verification and
optimization of a PLC control schedule. Journal of Software Tools for
Technology Transfer (STTT), 4(1):21–33, 2002.

[CHR02] Franck Cassez, Thomas A. Henzinger, and Jean-François Raskin. A com-
parison of control problems for timed and hybrid systems. In Proc. 5th Int.
Workshop on Hybrid Systems: Computation and Control (HSCC’02), vol-
ume 2289 of Lecture Notes in Computer Science, pages 134–148. Springer,
2002.

[CY92] Costas Courcoubetis and Mihalis Yannakakis. Minimum and maximum
delay problems in real-time systems. Formal Methods in System Design,
1(4):385–415, 1992.

References 25

[DAHM01] Luca De Alfaro, Thomas A. Henzinger, and Rupak Majumdar. Sym-
bolic algorithms for infinite-state games. In Proc. 12th International Con-
ference on Concurrency Theory (CONCUR’01), volume 2154 of Lecture
Notes in Computer Science, pages 536–550. Springer, 2001.

[DDR04] Martin De Wulf, Laurent Doyen, and Jean-François Raskin. Almost
ASAP semantics: From timed models to timed implementations. In Proc.
7th International Workshop on Hybrid Systems: Computation and Con-
trol (HSCC’04), Lecture Notes in Computer Science. Springer, 2004. To
appear.

[Feh99] Ansgar Fehnker. Scheduling a steel plant with timed automata. In
Proc. 6th Int. Conf. Real-Time Computing Systems and Applications
(RTCSA’99), pages 280–286. IEEE Computer Society Press, 1999.

[Hen96] Thomas A. Henzinger. The theory of hybrid automata. In Proc. 11th
IEEE Annual Symposim on Logic in Computer Science (LICS’96), pages
278–292. IEEE Computer Society Press, 1996.

[HHM99] Thomas A. Henzinger, Benjamin Horowitz, and Rupak Majumdar. Rect-
angular hybrid games. In Proc. 10th International Conference on Concur-
rency Theory (CONCUR’99), volume 1664 of Lecture Notes in Computer
Science, pages 320–335. Springer, 1999.

[HHWT95] Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. A user guide
to hytech. In Proc. 1st International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS’95), vol-
ume 1019 of Lecture Notes in Computer Science, pages 41–71. Springer,
1995.

[HHWT97] Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. HyTech: A
model-checker for hybrid systems. Journal on Software Tools for Tech-
nology Transfer (STTT), 1(1–2):110–122, 1997.

[HLP00] Thomas Hune, Kim G. Larsen, and Paul Pettersson. Guided synthe-
sis of control programs using uppaal. In Proc. IEEE ICDS Int. Work.
Distributed Systems Verification and Validation, pages E15–E22. IEEE
Computer Society Press, 2000.

[Lar03] Kim G. Larsen. Resource-efficient scheduling for real time systems.
In Proc. 3rd International Conference on Embedded Software (EM-
SOFT’03), volume 2855 of Lecture Notes in Computer Science, pages
16–19. Springer, 2003. Invited presentation.

[LBB+01] Kim G. Larsen, Gerd Behrmann, Ed Brinksma, Angskar Fehnker,
Thomas Hune, Paul Pettersson, and Judi Romijn. As cheap as possi-
ble: Efficient cost-optimal reachability for priced timed automata. In
Proc. 13th International Conference on Computer Aided Verification
(CAV’01), volume 2102 of Lecture Notes in Computer Science, pages
493–505. Springer, 2001.

References 26

[LTMM02] Salvatore La Torre, Supratik Mukhopadhyay, and Aniello Murano.
Optimal-reachability and control for acyclic weighted timed automata.
In Proc. 2nd IFIP International Conference on Theoretical Computer
Science (TCS 2002), volume 223 of IFIP Conference Proceedings, pages
485–497. Kluwer, 2002.

[MPS95] Oded Maler, Amir Pnueli, and Joseph Sifakis. On the synthesis of dis-
crete controllers for timed systems. In Proc. 12th Annual Symposium on
Theoretical Aspects of Computer Science (STACS’95), volume 900, pages
229–242. Springer, 1995.

[NTY00] Peter Niebert, Stavros Tripakis, and Sergio Yovine. Minimum-time reach-
ability for timed automata. In Proc. 8th IEEE Mediterranean Conference
on Control and Automation, 2000.

[NY01] Peter Niebert and Sergio Yovine. Computing efficient operations schemes
for chemical plants in multi-batch mode. European Journal of Control,
7(4):440–453, 2001.

[RLS04] Jacob Rasmussen, Kim G. Larsen, and K. Subramani. Resource-optimal
scheduling using priced timed automata. In Proc. 10th International Con-
ference on Tools and Algorithms for the Construction and Analysis of Sys-
tems (TACAS’04), Lecture Notes in Computer Science. Springer, 2004.
To appear.

[Tho95] Wolfgang Thomas. On the synthesis of strategies in infinite games. In
Proc. 12th Annual Symposium on Theoretical Aspects of Computer Sci-
ence (STACS’95), volume 900, pages 1–13. Springer, 1995. Invited talk.

[WT97] Howard Wong-Toi. The synthesis of controllers for linear hybrid au-
tomata. In Proc. 36th IEEE Conference on Decision and Control, pages
4607–4612. IEEE Computer Society Press, 1997.

A Two Antenna Mobile-phone Model 27

A Two Antenna Mobile-phone Model
-- -------------- --
-- Mobile example --
-- -------------- --

var x,y: clock;
t,t1: analog;
cost, cost_x, cost_y: analog;
cost0, cost1, cost2, cost3, cost4: parameter;
c,u,flag: discrete;

-- Legend
-- flag =-1 --> Uncontrollable action
-- flag = 0 --> delay
-- flag = 1 --> low_x->Win
-- flag = 2 --> high_x->A
-- flag = 3 --> low_y->Win
-- flag = 4 --> high_y->low_y
--
-- c --> If c changed -> controllable action
-- u --> If u changed -> uncontrollable action
--
-- t, t1 --> These variables are not part of the model
-- we just need them to some existential quantification
-- to compute the \lambda(X) of a set

automaton Antenna_1
synclabs: jam_x;
initially low_x & x=0;

loc low_x: while x>=0 wait {dcost_x=-1}
when x>=10 & flag=1 do {c’=1-c,u’=u,cost’=cost-7} goto Win;
when True sync jam_x do {x’=0,c’=c,u’=1-u} goto high_x;

loc high_x: while x>=0 & x<=10 wait {dcost_x=-10}
when x>=5 & flag=2 do {y’=0,c’=1-c,u’=u} goto low_x;
when True sync jam_x do {x’=0,c’=c,u’=1-u} goto high_x;

loc Win: while x>=0 wait {dcost_x=0}
end -- Antenna_1

automaton Antenna_2
synclabs: jam_y;
initially low_y & y=0;

loc low_y: while y>=0 wait {dcost_y=-2}
when y>=10 & flag=3 do {c’=1-c,u’=u,cost’=cost-1} goto Win;
when True sync jam_y do {y’=0,c’=c,u’=1-u} goto high_y;

loc high_y: while y>=0 & y<=10 wait {dcost_y=-20}

A Two Antenna Mobile-phone Model 28

when y>=2 & flag=4 do {x’=0,c’=1-c,u’=u} goto low_y;
when True sync jam_y do {y’=0,c’=c,u’=1-u} goto high_y;

loc Win:
while y>=0 wait {dcost_y=0}

end -- Antenna_2

automaton Jammer
synclabs: jam_x, jam_y;
initially X;

loc X: while True wait {dcost=dcost_x+dcost_y,dt=-1,dt1=-1}
when x>6 sync jam_x goto X;
when x>6 sync jam_y goto Y;

loc Y: while True wait {dcost=dcost_x+dcost_y,dt=-1,dt1=-1}
when y>6 sync jam_y goto Y;
when y>6 sync jam_x goto X;

end -- Jammer

-- Computations --

var init, -- Initial states
winning, -- Winning locations
winning_states, -- Winning states obtained by the backward computation
winning_strat, -- Winning states decorated with extra information in

-- in order to extract the strategies.
iterator, -- Iterator in the fix point computation
reachable, -- Reachable regions

uPre_X, -- Uncontrollable predecessors leading to winning states
uPre_nonX, -- Uncontrollable predecessors of the complement of X
cPre_X, -- Controllable predecessors of X
strict_tPre_X, -- The set of states from t>0 can elapse
tPre1X_uPre_nonX,-- Time predecessors of X from which we can reach X

-- and avoid \bar{X} all along the time paths leading
-- to X.

tPrecopy, -- Compute the "interior" of tPre1X_uPrebarX.
-- Represents the states from which a time t>0 can
-- elapse and we can stay in X.

r0, r1, r2, r3, r4,

inf_0_1, inf_0_2, inf_0_3, inf_0_4,
inf_1_0, inf_1_2, inf_1_3, inf_1_4,
inf_2_0, inf_2_1, inf_2_3, inf_2_4,
inf_3_0, inf_3_1, inf_3_2, inf_3_4,
inf_4_0, inf_4_1, inf_4_2, inf_4_3 : region;

A Two Antenna Mobile-phone Model 29

-- Initial region --
init := x=0 & y=0 &

loc[Antenna_1]=low_x & loc[Antenna_2]=low_y & loc[Jammer]=X;

-- Winning region --
winning := (loc[Antenna_1]=Win | loc[Antenna_2]=Win) & cost>=0 ;

-- Compute reachable regions --
-- ------------------------- --
prints "";
prints "Reachable regions";
prints "------------------";

reachable := iterate reachable from
(hide cost,cost_x,cost_y,cost0,cost1,cost2,cost3,cost4,

c,u,t,t1,flag in init endhide) using {
reachable :=

(hide cost,cost_x,cost_y,cost0,cost1,cost2,cost3,cost4,
c,u,t,t1,flag in post(reachable) endhide);

};

-- Backward analysis --
-- ----------------- --
prints "";
prints "Computing the winning states";
prints "----------------------------";

-- Winning states
winning_states := winning & reachable;

-- Decorated Winning states
winning_strat := winning_states;

-- -- --
-- Backward analysis: look for a fix point of \pi --
-- -- --
iterator := iterate iterator from winning using {

-- Uncontrollable predecessors of the complement of X
uPre_nonX := hide t,u in

t=0 & u=0 & pre(~iterator & u=1 & t=0)
endhide;

-- Controllable predecessors of X
-- Note: cPre_X is a union of region of the form flag=k (k>=1) &
-- something the flag=k indicates which controllable action should
-- be taken to reach a particular region of X.
cPre_X := hide t,c in

t=0 & c=0 & pre(iterator & t=0 & c=1)
endhide ;

A Two Antenna Mobile-phone Model 30

-- Time predecessors of X from which we can reach X and avoid
-- \bar{X} all along the time paths leading to X.
tPre1X_uPre_nonX := hide t in

(hide c,u in
t>=0 & c=0 & u=0 &
pre(iterator & t=0 & c=0 & u=0)
endhide) &
~(hide t1 in

(hide c,u in
t1>=0 & t1<=t & c=0 & u=0 &
pre(uPre_nonX & t1=0 & c=0 & u=0)
endhide)

endhide)
endhide;

-- Compute the interior of tPre1X_uPre_nonX --
tPrecopy := flag=0 & tPre1X_uPre_nonX &

hide t,c,u in
t>0 & c=0 & u=0 & pre(tPre1X_uPre_nonX & t=0 & u=0 & c=0)

endhide;

-- We need to hide the value of flag in cPreX because we do not need
-- it to compute the next iteration and it contrains the state space
iterator := tPre1X_uPre_nonX

| ((hide flag in cPre_X endhide) & ~uPre_nonX) ;

-- Add this winning regions to the set of winning regions already
-- computed with the informations of what the cost is if we take
-- a particular action.
winning_strat := winning_strat

| tPrecopy
| (cPre_X & ~uPre_nonX) ;

-- Add the newly computed regions to the set of computed regions
winning_states := winning_states | iterator ;

-- Intersect with reachable regions
winning_strat := winning_strat & reachable;
winning_states := winning_states & reachable;
};

-- -------- --
-- End Loop --
-- -------- --

prints "";
prints "------------------";
prints "-- Optimal cost --";
prints "------------------";
print hide x,y,flag in (winning_states & init) endhide;

-- Removing the winning from the decorated winning states

A Two Antenna Mobile-phone Model 31

winning_strat := winning_strat & ~(winning);

prints "";
prints "--------------";
prints "-- Strategy --";
prints "--------------";

r0 := hide flag,cost in cost0=cost & winning_strat & flag=0 endhide ;
r1 := hide flag,cost in cost1=cost & winning_strat & flag=1 endhide ;
r2 := hide flag,cost in cost2=cost & winning_strat & flag=2 endhide ;
r3 := hide flag,cost in cost3=cost & winning_strat & flag=3 endhide ;
r4 := hide flag,cost in cost4=cost & winning_strat & flag=4 endhide ;

-- compute inf A <= inf B
-- hide a in A & ~(hide b in B & b<a endhide) endhide ;

inf_0_1 := hide cost0 in
r0 & ~(hide cost1 in r1 & cost1<cost0 endhide)
endhide ;

inf_0_2 := hide cost0 in
r0 & ~(hide cost2 in r2 & cost2<cost0 endhide)
endhide ;

inf_0_3 := hide cost0 in
r0 & ~(hide cost3 in r3 & cost3<cost0 endhide)
endhide ;

inf_0_4 := hide cost0 in
r0 & ~(hide cost4 in r4 & cost4<cost0 endhide)
endhide ;

inf_1_0 := hide cost1 in
r1 & ~(hide cost0 in r0 & cost0<cost1 endhide)
endhide ;

inf_1_2 := hide cost1 in
r1 & ~(hide cost2 in r2 & cost2<cost1 endhide)
endhide ;

inf_1_3 := hide cost1 in
r1 & ~(hide cost3 in r3 & cost3<cost1 endhide)
endhide ;

inf_1_4 := hide cost1 in
r1 & ~(hide cost4 in r4 & cost4<cost1 endhide)
endhide ;

inf_2_0 := hide cost2 in
r2 & ~(hide cost0 in r0 & cost0<cost2 endhide)
endhide ;

inf_2_1 := hide cost2 in
r2 & ~(hide cost1 in r1 & cost1<cost2 endhide)
endhide ;

inf_2_3 := hide cost2 in
r2 & ~(hide cost3 in r3 & cost3<cost2 endhide)
endhide ;

inf_2_4 := hide cost2 in
r2 & ~(hide cost4 in r4 & cost4<cost2 endhide)

A Two Antenna Mobile-phone Model 32

endhide ;
inf_3_0 := hide cost3 in

r3 & ~(hide cost0 in r0 & cost0<cost3 endhide)
endhide ;

inf_3_1 := hide cost3 in
r3 & ~(hide cost1 in r1 & cost1<cost3 endhide)
endhide ;

inf_3_2 := hide cost3 in
r3 & ~(hide cost2 in r2 & cost2<cost3 endhide)
endhide ;

inf_3_4 := hide cost3 in
r3 & ~(hide cost4 in r4 & cost4<cost3 endhide)
endhide ;

inf_4_0 := hide cost4 in
r4 & ~(hide cost0 in r0 & cost0<cost4 endhide)
endhide ;

inf_4_1 := hide cost4 in
r4 & ~(hide cost1 in r1 & cost1<cost4 endhide)
endhide ;

inf_4_2 := hide cost4 in
r4 & ~(hide cost2 in r2 & cost2<cost4 endhide)
endhide ;

inf_4_3 := hide cost4 in
r4 & ~(hide cost3 in r3 & cost3<cost4 endhide)
endhide ;

prints "";
prints "Delay on:";
prints "---------";
print inf_0_1 & inf_0_2 & inf_0_3 & inf_0_4 &

~(inf_1_0 | inf_2_0 | inf_3_0 | inf_4_0);

prints "";
prints "Do low_x->Win on:";
prints "-----------------";
print inf_1_0 & inf_1_2 & inf_1_3 & inf_1_4;

prints "";
prints "Do high_x->low_x on:";
prints "--------------------";
print inf_2_0 & inf_2_1 & inf_2_3 & inf_2_4;

prints "";
prints "Do low_y->Win on:";
prints "-----------------";
print inf_3_0 & inf_3_1 & inf_3_2 & inf_3_4;

prints "";
prints "Do high_y->low_y on:";
prints "--------------------";
print inf_4_0 & inf_4_1 & inf_4_2 & inf_4_3;

Recent BRICS Report Series Publications

RS-04-4 Patricia Bouyer, Franck Cassez, Emmanuel Fleury, and
Kim G. Larsen. Optimal Strategies in Priced Timed Game Au-
tomata. February 2004. 32 pp.

RS-04-3 Mads Sig Ager, Olivier Danvy, and Jan Midtgaard. A Func-
tional Correspondence between Call-by-Need Evaluators and
Lazy Abstract Machines. February 2004. 17 pp. This report
supersedes the earlier BRICS report RS-03-24. Extended ver-
sion of an article to appear inInformation Processing Letters.

RS-04-2 Gerth Stølting Brodal, Rolf Fagerberg, Ulrich Meyer, and Nor-
bert Zeh. Cache-Oblivious Data Structures and Algorithms for
Undirected Breadth-First Search and Shortest Paths. February
2004. 19 pp.

RS-04-1 Luca Aceto, Willem Jan Fokkink, Anna Inǵolfsdóttir, and Bas
Luttik. Split-2 Bisimilarity has a Finite Axiomatization over CCS
with Hennessy’s Merge. January 2004. 16 pp.

RS-03-53 Kyung-Goo Doh and Peter D. Mosses.Composing Program-
ming Languages by Combining Action-Semantics Modules. De-
cember 2003. 39 pp. Appears inScience of Computer Program-
ming, 47(1):2–36, 2003.

RS-03-52 Peter D. Mosses.Pragmatics of Modular SOS. December 2003.
22 pp. Invited paper, published in Kirchner and Ringeissen, ed-
itors, Algebraic Methodology and Software Technology: 9th In-
ternational Conference, AMAST ’02 Proceedings, LNCS 2422,
2002, pages 21–40.

RS-03-51 Ulrich Kohlenbach and Branimir Lambov. Bounds on Itera-
tions of Asymptotically Quasi-Nonexpansive Mappings. Decem-
ber 2003. 24 pp.

RS-03-50 Branimir Lambov. A Two-Layer Approach to the Computability
and Complexity of Real Numbers. December 2003. 16 pp.

RS-03-49 Marius Mikucionis, Kim G. Larsen, and Brian Nielsen. On-
line On-the-Fly Testing of Real-time Systems. December 2003.
14 pp.

RS-03-48 Kim G. Larsen, Ulrik Larsen, Brian Nielsen, Arne Skou, and
Andrzej Wasowski. Danfoss EKC Trial Project Deliverables.
December 2003. 53 pp.

