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Undirected Breadth-First Search and Shortest Paths

Gerth Stølting Brodal∗,†,‡ Rolf Fagerberg∗,‡ Ulrich Meyer§,‡

Norbert Zeh¶
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Abstract

We present improved cache-oblivious data structures and algorithms
for breadth-first search (BFS) on undirected graphs and the single-source
shortest path (SSSP) problem on undirected graphs with non-negative
edge weights. For the SSSP problem, our result closes the performance
gap between the currently best cache-aware algorithm and the cache-
oblivious counterpart. Our cache-oblivious SSSP-algorithm takes nearly
full advantage of block transfers for dense graphs. The algorithm relies on
a new data structure, called bucket heap, which is the first cache-oblivious
priority queue to efficiently support a weak DecreaseKey operation.
For the BFS problem, we reduce the number of I/Os for sparse graphs
by a factor of nearly

√
B, where B is the cache-block size, nearly closing

the performance gap between the currently best cache-aware and cache-
oblivious algorithms.
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1 Introduction

Breadth-first search (BFS) and the single-source shortest path (SSSP) problem
are fundamental combinatorial optimization problems with numerous applica-
tions. SSSP is defined as follows: Let G = (V,E) be a graph with V vertices
and E edges,1 let s be a distinguished vertex of G, and let ω be an assignment
of non-negative real weights to the edges of G. The weight of a path is the
sum of the weights of its edges. We want to find for every vertex v that is
reachable from s, the weight dist(s, v) of a minimum-weight (“shortest”) path
from s to v. BFS can be seen as the unweighted version of SSSP.

Both problems are well understood in the RAM model, where the cost of a
memory access is assumed to be independent of the accessed memory location.
However, modern computers contain a hierarchy of memory levels with each
level acting as a cache for the next. Typical components of the memory hierar-
chy are registers, level-1 cache, level-2 cache, level-3 cache, main memory, and
disk. The time for accessing a level increases for each new level (most dramat-
ically when going from main memory to disk), making the cost of a memory
access highly dependent on what is the currently lowest memory level that
contains the accessed element. This is not accounted for in the RAM model,
and current BFS and SSSP-algorithms, when run in memory hierarchies, have
turned out to be notoriously inefficient for sparse input graphs because their
memory access patterns are highly unstructured. The purpose of this paper is
to provide improved data structures and algorithms for BFS and SSSP under
the currently most powerful model for multi-level memory hierarchies.

I/O model. The most widely used model for the design of cache-aware
algorithms is the I/O-model of Aggarwal and Vitter [2]. This model assumes
a memory hierarchy consisting of two levels, the lower level having size M and
the transfer between the two levels taking place in blocks of B consecutive data
items. The cost of the computation is the number of blocks transferred (I/Os).
The parameters M and B are assumed to be known to the algorithm. The
strength of the I/O-model is its simplicity, while it still adequately models the
situation where the I/Os between two levels of the memory hierarchy dominate
the running time of the algorithm; this is often the case when the size of the
data significantly exceeds the size of main memory. A comprehensive list of
results for the I/O-model have been obtained—see the surveys [3, 17, 20] and
the references therein. One of the fundamental facts is that, in the I/O-model,
comparison-based sorting of N elements takes Θ(Sort(N)) I/Os in the worst
case, where Sort(N) = N

B logM/B
N
B .

1For convenience, we use the name of a set to denote both the set and its cardinality.
Furthermore, we will assume that E = Ω(V ), in order to simplify notation.
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Cache-oblivious model. Recently, the concept of cache-oblivious algo-
rithms was introduced by Frigo et al. [14]. In essence, algorithms are for-
mulated in the RAM model (i.e., M and B are not used in the description of
the algorithms); but they are analyzed in the I/O-model for arbitrary block
size B and memory size M . I/Os are assumed to be performed automatically
by an optimal offline cache-replacement strategy. Since the analysis holds
for any block and memory sizes, it holds for all levels of a multi-level memory
hierarchy (see [14] for details). Thus, the cache-oblivious model elegantly com-
bines the simplicity of the I/O-model with a coverage of the entire memory
hierarchy. An additional benefit is that the designed algorithms are indepen-
dent of the characteristics of the memory hierarchy and are therefore portable.
Together with the model, Frigo et al. also introduced optimal cache-oblivious
algorithms for matrix multiplication, matrix transposition, FFT, and sort-
ing [14]. The cache-oblivious sorting bound matches that for the I/O-model:
O(Sort(N)) I/Os. After the publication of [14], a number of results for the
cache-oblivious model have appeared; see [11, 17] for recent surveys.

Some results in the cache-oblivious model, in particular those concerning
sorting and algorithms and data structures that can be used to sort, such
as priority queues, are proved under the assumption that M ≥ B2. This is
also known as the tall cache assumption. In particular, this assumption is
made in the Funnelsort algorithm of Frigo et al. [14]. A variant termed Lazy-
Funnelsort [6] works under the weaker tall cache assumption that M ≥ B1+ε,
for any fixed ε > 0. The cost is a slow-down by a factor of 1/ε compared to the
optimal sorting bound Θ(Sort(N)) for the case when M � B1+ε. Recently, it
has been shown [8] that a tall cache assumption is necessary for cache-oblivious
comparison-based sorting algorithms, in the sense that the trade-off attained
by Lazy-Funnelsort between the strength of the tall cache assumption and the
cost for the case when M � B1+ε is best possible.

Previous and Related Work for BFS/SSSP in Memory Hierar-
chies

Graph algorithms for the I/O-model have received considerable attention in
recent years; most efficient cache-aware algorithms do have a cache-oblivious
counterpart that achieves the same performance; see Table 1. Despite these
efforts, only little progress has been made on the solution of the SSSP-problem
with general non-negative edge weights using either cache-aware of cache-
oblivious algorithms: The best known lower bound is Ω(Sort(E)) I/Os, which
can be obtained through a reduction from list-ranking; but the currently best
algorithm, due to Kumar and Schwabe [15], performs O(V +(E/B)·log(E/B))
I/Os on undirected graphs.2 For E = O(V ), this is hardly better than näıvely

2log(x) denotes the binary logarithm of x.
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Problem Best cache-oblivious result
List ranking O(Sort(V )) [4]
Euler Tour O(Sort(V )) [4]
ST, Minimum ST O(Sort(E) · log log V ) [4]

O(Sort(E)) (randomized) [1]
Undir. BFS O(V + Sort(E)) [19]

O(ST(E) + Sort(E) + E
B · log V +

√
V ·E/B) New

O(ST(E) + Sort(E) + E
B · 1

ε · log log V

+
√

V ·E/B ·√V ·B/E
ε
)

New

Dir. BFS &DFS O((V + E/B) · log V + Sort(E)) [4]
Undir. SSSP O(V + (E/B) · log(E/B)) New

Problem Best cache-aware result
List ranking O(Sort(V )) [10]
Euler Tour O(Sort(V )) [10]
ST, Minimum ST O(Sort(E) · log log(V ·B/E)) [5, 19]

O(Sort(E)) (randomized) [1]
Undir. BFS O(

√
V ·E/B + Sort(E) + ST(E)) [16]

Dir. BFS &DFS O((V + E/B) · log V + Sort(E)) [9]
Undir. SSSP O(V + (E/B) · log(E/B)) [15]

Table 1: I/O-bounds for some fundamental graph problems.

running Dijkstra’s internal-memory algorithm [12, 13] in external memory,
which would take O(V log V + E) I/Os. On dense graphs, however, the al-
gorithm is efficient. The algorithm of [15] is not cache-oblivious, because the
applied external-memory priority queue based on the tournament tree is not
cache-oblivious. Cache-oblivious priority queues do exist [4, 7]; but none of
them efficiently supports a DecreaseKey operation. Indeed, the tournament
tree is also the only cache-aware priority queue that supports at least a weak
form of this operation.

For bounded edge weights, an improved external-memory SSSP-algorithm
has been developed recently [18]. This algorithm is an extension of the cur-
rently best external-memory BFS-algorithm [16], Fast-BFS, which performs
O(

√
V · E/B + Sort(E) + ST(E)) I/Os, where ST(E) is the number of I/Os

required to compute a spanning tree (see Table 1). Again, the key data struc-
ture used in Fast-BFS is not cache-oblivious, which is why the currently best
cache-oblivious BFS-algorithm is that of [19].
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Our Results

In this paper, we obtain the following results:

• In Section 2, we develop the first cache-oblivious priority queue, called
bucket heap, that supports an Update operation, which is a combina-
tion of the Insert and DecreaseKey operations supported by stan-
dard internal-memory priority queues. The amortized cost of operations
Update, Delete, and DeleteMin is O((log(N/B))/B) where N is
the number of distinct elements in the priority-queue.

• In Section 3, we use the bucket heap to obtain a cache-oblivious shortest-
path algorithm for undirected graphs with non-negative edge weights
that incurs O(V + (E/B) · log(E/B)) I/Os, thereby matching the per-
formance of the best cache-aware algorithm for this problem.

• In Section 4, we develop a new cache-oblivious algorithm for undirected
BFS. The algorithm comes in two versions: The first one performs
O(ST(E) + Sort(E) + E

B · log V +
√

V · E/B) I/Os; the second one per-
formsO(ST(E)+Sort(E)+E

B · 1ε ·log log V +
√

V ·E/B·√V ·B/E
ε
) I/Os,

where 1 ≥ ε > 0. Here, ST(E) denotes the cost of cache-obliviously find-
ing a spanning tree.

2 The Bucket Heap

Our first contribution is a new cache-oblivious priority queue, called the bucket
heap, which supports an Update (a weak DecreaseKey) operation and
does so in the same I/O-bound as the tournament tree of [15]. In Section 3,
we demonstrate that, using the bucket heap, the single-source shortest path
algorithm of [15] becomes cache-oblivious and achieves the same performance
as in the I/O-model: O(V + (E/B) · log(E/B)) I/Os. In analogy to the
tournament tree, the bucket heap supports the following three operations:

Update(x, p): If x is currently in the priority queue and has priority p′, its new
priority becomes min(p, p′). Otherwise, element x is inserted with prior-
ity p. (Operation Update(x, p) is a combination of the Insert(x, p) and
DecreaseKey(x, p) operations supported by standard internal-memory
priority queues.)

Delete(x): Element x is removed from the priority queue (provided it is
currently in the priority queue).

DeleteMin: The element with minimal priority is removed from the priority
queue and reported.
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Since every element x in the priority queue has an associated priority p,
we refer to this element as element (x, p) unless the priority is irrelevant, in
which case we denote the element simply as element x.

The bucket heap consists of 2q + 1 arrays B1, dots,Bq and S1, . . . ,Sq+1,
where q varies over time, but is always at most dlog4 Ne. We call array Bi

the i-th bucket and array Si the i-th signal buffer (or buffer for short). The
capacity of bucket Bi is 22i; buffer Si has capacity 22i−1. In order to al-
low for temporary overflow, we allocate twice as much space, that is, 22i+1

memory locations for bucket Bi and 22i memory locations for buffer Si. We
store all buckets and buffers consecutively in memory, in the following order:
S1,B1,S2,B2, . . . ,Sq,Bq,Sq+1.

Buffers S1,S2, . . . ,Sq+1 store three types of signals, which we use to update
the contents of the heap in a lazy manner: An Update(x, p) signal is used
to perform the Update(x, p) operation above; a Delete(x) signal performs
the Delete(x) operation above; a Push(x, p) signal is used to push elements
from a buffer Bi to a buffer Bi+1 when Bi overflows. Every signal has a time
stamp corresponding to the time when the operation posting this signal was
performed. The time stamp of an element in a bucket is the time stamp of
the Update signal that led to its insertion.

The three priority queue operations are implemented as follows: A
DeleteMin operation first uses the Fill operation described below to make
sure that bucket B1 is non-empty. Then Observation 1 below ensures that
B1 contains the element with lowest priority. This element is removed and re-
turned. An Update(x, p) operation inserts an Update(x, p) signal into buffer
S1 and then applies the Empty operation below to S1. Similarly, a Delete(x)
operation inserts a Delete(x) signal into S1 and empties S1. Essentially, all
the work to update the contents of the bucket heap is delegated to two aux-
iliary procedures: Procedure Empty(Si) empties the signal buffer Si, applies
these signals to bucket Bi, and inserts appropriate signals into buffer Si+1. If
this leads to an overflow of buffer Si+1, the procedure is applied recursively
to Si+1. Procedure Fill(Bi) fills an underfull bucket Bi with the smallest 22i

elements in buckets Bi, . . . ,Bq.

2.1 Correctness

We say that a priority queue is correct if, given a sequence o1, o2, . . . , ot of
priority queue operations, every DeleteMin operation oi returns the smallest
element in the set Oi−1 constructed by operations o1, . . . , oi−1 according to
their definitions at the beginning of this section. We make the following two
observations about the behaviour of the heap update operations:

Observation 1 For every 1 ≤ i < q and any two elements (x, p) ∈ Bi and
(y, p′) ∈ Bi+1, p ≤ p′.

6



Empty(Si)
1 If i = q + 1, increase q by one and create two new arrays Bq and Sq+1.
2 Scan bucket Bi to determine the maximal priority p′ of the elements in
Bi. (If i = q and Sq+1 is empty, then p′ =∞. Otherwise, if Bi is empty,
then p′ = −∞.)

3 Scan buckets Si and Bi simultaneously and perform the following opera-
tions for each signal in Si:
Update(x, p): If there is an element (x, p′′) in Bi, replace it with

(x,min(p, p′′)) and mark the Update(x, p) signal in Si as handled.
If x is not in Bi, but p ≤ p′, insert (x, p) into Bi and replace the
Update(x, p) signal with a Delete(x) signal. If x is not in Bi and
p > p′, do nothing.

Push(x, p): If there is an element (x, p′′) in Bi, replace it with (x, p). Oth-
erwise, insert (x, p) into Bi. Mark the Push(x, p) signal as handled.

Delete(x): If element x is in Bi, delete it.3

4 If i < q or Si+1 is non-empty, scan buffers Si and Si+1 and insert all
unhandled signals in Si into Si+1. Si ← ∅

5 if |Bi| > 22i

6 then Find the 22i-th smallest priority p in Bi.
7 Scan bucket Bi and buffer Si+1 simultaneously and remove all

elements with priority greater than p from Bi; for each removed
element (x, p′′), insert a Push(x, p′′) signal into Si+1.

8 if |Bi| > 22i

9 then Scan bucket Bi and buffer Si+1 simultaneously and re-
move |Bi|−22i elements with priority p from Bi; for each
removed element (x, p), insert a Push(x, p) signal into
Si+1.

10 if |Si+1| > 22i+1

11 then Empty(Si+1)

Fill(Bi)
1 Empty(Si)
2 if |Bi+1| < 22i and i < q
3 then Fill(Bi+1)
4 Find the (22i − |Bi|)-th smallest priority p in Bi+1.
5 Scan Bi and Bi+1 and move all elements with priority less than p from
Bi+1 to Bi.

6 Scan Bi and Bi+1 again and move the correct number of elements with
priority p from Bi+1 to Bi so that Bi contains 22i elements or Bi+1 is
empty at the end.

7 q ← max{j : Bj or Sj+1 is non-empty}

7



Observation 2 When an element x ∈ Bi+1 moves to bucket Bi, buffers
S1, . . . ,Si+1 are empty.

Using these two observations, we can prove the following two lemmas,
which together establish the correctness of the bucket heap.

Lemma 1 Given a sequence o1, o2 . . . , ot of priority queue operations and an
index i such that oi is a DeleteMin operation, the element returned by op-
eration oi is in Oi−1.

Proof sketch. Assume the contrary; that is, there exists a sequence o1, . . . , ot

of priority queue operations and an index i such that operation oi is a
DeleteMin operation that returns an element (x, p) not in Oi−1. In or-
der to be returned by operation oi, element (x, p) must have been inserted
into a bucket by an Update(x, p) operation. Let oh be the latest such oper-
ation preceding oi. Since we assume that (x, p) 6∈ Oi−1, there has to exist an
index j, h < j < i, such that oj is a Delete(x) operation or a DeleteMin
operation that returns an element (x, p′).

Assume that operation oh, after percolating through buffers S1,S2, . . . ,Sk,
inserts element (x, p) into bucket Bk. Then, in order to reach bucket B1,
element (x, p) has to be moved from bucket Bk through buckets Bk−1, . . . ,B2

to B1, using Fill operations. If there exists an index j, h < j < i, such that
operation oj is a Delete(x) operation, this operation inserts a Delete(x)
signal into buffer S1. Assume that, at this time, (x, p) is in a bucket Bk′.
Then, before (x, p) is moved to bucket Bk′−1 or returned by a DeleteMin
operation, the Delete(x) signal is applied to Bk′, which leads to the deletion
of element (x, p), a contradiction.

So assume that none of oh+1, oh+2, . . . , oi−1 is a Delete(x) operation.
Then there has to exist an index j, h < j < i, such that operation oj is a
DeleteMin operation that returns an element (x, p′). If p′ > p, element (x, p)
would have to reach bucket B1 before (x, p′) because there is no Delete(x)
signal pending for (x, p) and by Observation 1. Hence, p′ ≤ p. Now consider
the order of the two operations oh = Update(x, p) and oh′ = Update(x, p′)
that inserted elements (x, p) and (x, p′) into the priority queue. If h′ < h, then
(x, p′) is inserted into a bucket Bk′ before oh is applied to bucket Bk. Hence,
oh would find a copy of x with lower priority, and element (x, p) would never
be inserted into any bucket, a contradiction. If h′ > h, then either (x, p′) is
inserted into the bucket Bk currently containing (x, p), thereby replacing (x, p);
or (x, p′) is inserted into a bucket Bk′ , k′ < k, which leads to the insertion of
a Delete(x) signal into Sk′+1. This prevents (x, p) from moving from Bk to
Bk−1 before being deleted. Hence, operation oi cannot return element (x, p).

8



Lemma 2 Given a sequence o1, o2 . . . , ot of priority queue operations and an
index i such that oi is a DeleteMin operation, the element returned by op-
eration oi is the one with smallest priority in Oi−1.

Proof sketch. By Observation 1, the element returned by operation oi is the
one with the smallest priority in all buckets at the time of its deletion. By
Lemma 1, the returned element (x, p) is in Oi−1. If there is an element (y, p′)
with lower priority in Oi−1, this element must have been inserted by an Up-
date operation oj , j < i. The only way this element is not returned by
operation oi is if there is an operation ok, j < k < i, that is a Delete(y)
operation or a DeleteMin operation that returns y. But if this is the case,
(y, p′) is not in Oi−1, a contradiction.

2.2 Analysis

The efficiency of our data structure is based on the following order invariant :

The elements in every bucket or buffer are sorted primarily by their
IDs and secondarily by their time stamps.4

This invariant allows us to perform updates by scanning buckets and buffers
as in the description of procedures Empty and Fill. The amortized cost
per scanned element is hence O(1/B). In our analysis of the amortized com-
plexity of the priority queue operations, we assume that M = Ω(B), large
enough to hold the first log4 B buckets and buffers plus one cache block per
stream that we scan. Under this assumption, operations Update, Delete,
and DeleteMin, excluding the calls to Empty and Fill, do not cause any
I/Os because bucket B1 and buffer S1 are always in cache. We have to
charge the I/Os incurred by Empty and Fill operations to Update and
Delete operations in such a manner that no operation is charged for more
than O((log(N/B))/B) I/Os. To achieve this, we assign credits to the signals
in buffers S1,S2, . . . ,Sq+1 and define the following potential function:

Φ =
q∑

i=log4 B

(|Bi| · (i− log4 B) + 22i
)

Every Delete(x) signal inserted into buffer S1 receives a credit of 2c =
2dlog4(N/B)e; every Update(x, p) signal receives a credit of 5c. We prove
that these credits can pay for the I/Os incurred by all updates of the priority
queue, where B credits are required to pay for O(1) I/Os. Hence, the amor-
tized cost of every DeleteMin operation is 0; an Update or Delete incurs
O((log(N/B))/B) I/Os amortized.

4Since every piece of data must be encoded as a binary string in practice, it is reasonable
to assume that there is a total order defined over the set of identifiers of data elements.
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We divide Empty operations into two groups: A regular Empty operation
is triggered by an Empty(S1) operation. An Empty operation triggered by
a Fill(B1) operation is early. We maintain the invariant that every Update
signal in a buffer Si has credit at least 5c − max(0, i − log4 B), every Push
signal has credit at least 3c−max(0, i− log4 B), and every Delete signal has
credit at least 2c−max(0, i − log4 B).

Now consider a regular Empty(Si) operation, where i ≤ q. If i < log4 B,
the operation causes no I/Os because Si, Si+1, and Bi are in cache; and the
potential does not change. If i ≥ log4 B, the cost is bounded by O(22i−1/B)
because only buffers Si and Si+1 and bucket Bi are scanned. Let k be the
increase of the size of bucket Bi, let u, p, and d be the number of Update,
Push, and Delete operations in Si, and let u′, p′, and d′ be the number
of such operations inserted into Si+1. Then we have u − u′ + d = d′ and
k+p′ ≤ (u−u′)+p. The total number of credits we need to pay for the cost of
the Empty operation, for the potential increase, and for the credit of elements
inserted into Si+1 is 22i−1+k(i−log4 B)+u′(5c−max(0, i+1−log4 B))+p′(3c−
max(0, i + 1 − log4 B)) + d′(2c − max(0, i + 1 − log4 B)). Since u + p + d >
22i−1 in the case of a regular Empty operation, this is easily bounded by
u(5c−max(0, i−log4 B))+p(3c−max(0, i−log4 B))+d(2c−max(0, i−log4 B)),
which is the amount of credit carried by the signals in Si.

If i = q + 1, then the cost of a regular Empty(Si) operation remains the
same, but there is an additional 22i increase in potential. However, in this
case, there are no signals that are inserted into Si+1, so that the amount of
credit we would have assigned to these signals can be used to pay for this
increase in potential. (A rigorous analysis appears in the full paper.)

The cost of Fill and early Empty operations will be paid by the resulting
decrease of the potential Φ. Consider a Fill(B1) operation, and let j be the
highest index such that a Fill(Bj) operation is triggered by this Fill(B1)
operation. Then the cost of all Empty and Fill operations triggered by this
Fill(B1) operation is O(22j/B). If there are new elements inserted into the
buckets during the Empty operations, the resulting increase of potential can
be paid from the credit of the corresponding Update or Push signals. Hence,
it suffices to show that, excluding this increase of potential due to element
insertions, the potential decreases by Ω(22j). We distinguish two cases. if q
does not change, then the Fill(Bj) operation moves at least 3 ·22j−2 elements
from Bj+1 to Bj, which results in the desired potential change. If q decreases,
then q > j before the Fill(B1) operation and q decreases by at least one.
This results in a potential decrease of at least 22q ≥ 22j . Hence, we obtain the
following result.

Theorem 1 The bucket heap supports operations Update, Delete, and
DeleteMin at an amortized cost of O((log(N/B))/B) I/Os.
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3 Cache-Oblivious Undirected Shortest Paths

The shortest-path algorithm of [15] is an adaptation of Dijkstra’s algorithm
[12]. It uses a priority queue Q that stores the vertices of G whose distance
from the source s is not known yet; the priority of a vertex v is equal to the
length of the currently known shortest path from s to v; it is ∞ if no path
from s to v is known. We call the vertices in G whose distances from s are
known settled. As long as there is still a vertex in Q, the vertex v with lowest
priority is removed, its current priority is fixed as the final distance from s to
v, and all edges incident to v are relaxed by performing Update operations
on Q, for all of v’s neighbours. A problem with this approach is that a settled
neighbour w is re-inserted into Q by such an Update operation. Kumar and
Schwabe use a second priority queue to ensure that this re-inserted vertex w
is removed from Q using a Delete(w) operation before it can be settled a
second time.

Kumar and Schwabe argue that their algorithm performs O(E) priority
queue operations. Apart from these, the algorithm accesses the adjacency
list of every vertex v once, namely when v is settled, to retrieve the set of
edges incident to v and relax them. Accessing this adjacency list incurs O(1+
deg(v)/B) I/Os. Summing over all vertices, the cost of accessing all adjacency
lists is O(V + E/B). The O(E) priority queue operations cause O((E/B) ·
log(E/B)) I/Os if we use the bucket heap as the priority queue. This proves
the following result.

Theorem 2 There exists a cache-oblivious algorithm that solves the single-
source shortest path problem on an undirected graph G = (V,E) with non-
negative edge weights and incurs at most O(V + (E/B) · log(E/B)) I/Os.

4 Cache-Oblivious Breadth-First Search

In this section, we develop a cache-oblivious version of the undirected BFS-
algorithm from [16]. As in [16], the actual BFS-algorithm is the algorithm
from [19], which generates the BFS levels Li one by one, exploiting that, in
an undirected graph, Li+1 = N (Li) \ (Li ∪ Li−1), where N (S) denotes the
set of nodes5 that are neighbours of nodes in S, and Li denotes the nodes of
the i’th level of the BFS traversal, that is, the nodes at distance i from the
source vertex s. The algorithm from [19] relies only on sorting and scanning
and, hence, is straightforward to implement cache-obliviously; this gives the
cache-oblivious O(V + Sort(E)) result mentioned in Table 1.

The speed-up in [16] compared to [19] is achieved using a data struc-
ture which, for a query set S, returns N (S) in an I/O-efficient manner. To

5As shorthand for N ({v}) we will use N (v).

11



do so, the data structure exploits the fact that the query sets are the levels
L0, L1, L2, . . . of a BFS traversal. Our contribution is to develop a cache-
obliviously version of this data structure.

4.1 The Data Structure

To construct the data structure, we first build a spanning tree for G and then
construct an Euler tour for the tree (which is a list containing the edges of the
Euler tour in the order they appear in the tour) using the algorithm described
in [4]. Next, we assign to each node v the rank in the Euler tour of the first
occurrence of the node, which is done by a traversal of the Euler tour and a
sorting step. We denote this value as r(v). The Euler tour has length 2V − 1;
so r(v) ∈ [0; 2V −2]. A central observation used in [16] as well as in this paper
is the following:

Observation 3 If for two nodes u and v, the values r(v) and r(u) differ by
d, then a section of the Euler tour is a path in G of length d that connects u
and v; hence, d is an upper bound on the distance between their BFS levels.

Let g0 < g1 < g2 < · · · < gh be an increasing sequence of h + 1 integers
where g0 = 1, gh−1 < 2V − 2 ≤ gh, and gi divides gi+1. We will later consider
two specific sequences, namely gi = 2i and one for which gi = Θ(2(1+ε)i

),
where 1 ≥ ε > 0. For each integer gi, we can partition the nodes into groups
of at most gi nodes each by letting the k’th group Vki be all nodes v for which
kgi ≤ r(v) < (k + 1)gi. We call a group Vki of nodes a gi-node-group and
call its set of adjacency lists N (Vki) a gi-edge-group. Since gi divides gi+1, the
groups form a hierarchy of h+1 levels, with level h containing one group with
all nodes and level 0 containing 2E− 1 groups of at most one node. Note that
there is no strong relation between gi and the number of nodes in a gi-node-
group or the number of edges in a gi-edge-group. In particular, gi-edge-groups
may be much larger than gi.

The data structure consists of h levels G1, . . . , Gh, where each level stores
a subset of the adjacency lists of the graph G. Each adjacency list N (v)
will appear in exactly one of the levels, unless it has been removed from the
structure. Recall that the query sets of the BFS-algorithm are the BFS-levels
L0, L1, L2, . . . ; so each node v is part of a query set S from the BFS-algorithm
exactly once. Its adjacency list N (v) will leave the data structure when this
happens. Initially, all adjacency lists are in level h. Over time, the query
algorithm for the data structure moves the adjacency list of each node from
higher numbered to lower numbered levels, until the adjacency list eventually
reaches level G1 and is removed.

A high-level description of our query algorithm is shown in Figure 1. It
is a recursive procedure that takes as input a query set S of nodes and a
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GetEdgeLists(S,i)
1 S′ = S \ {v ∈ V | N (v) is stored in level Gi}
2 if S′ 6= ∅:
3 X = GetEdgeLists(S′, i + 1)
4 for each gi-edge-group g in X
5 insert g in Gi

6 for each gi−1-edge-group γ in Gi containing N (v) for some v ∈ S
7 remove γ from Gi

8 include γ in the output set

Figure 1: The query algorithm.

level number i to query. The output consists of the gi−1-edge-groups stored
at level Gi for which the corresponding gi−1-node-group contains one or more
nodes in S. The BFS-algorithm will query the data structure by calling Get-
EdgeLists(S, 1), which will return N (v), for all v in S. (Recall that g0 = 1;
so a non-empty g0-edge-group is the adjacency list of a single node).

Next we describe how we represent a level Gi so that GetEdgeLists can
be performed efficiently. First of all, it follows from Figure 1 that at any time,
the edges stored in level Gi constitute a set of gi-edge-groups from each of
which zero or more gi−1-edge-groups have been removed. Since gi−1 divides
gi, the part of a gi-edge-group residing at level Gi is a collection of gi−1-edge-
groups.

We store the adjacency lists of level Gi in an array Bi. Each gi−1-edge-
group of the level is stored in consecutive locations of Bi, and the adjacency
listsN (v) of the nodes v in a group occupy these locations in order of increasing
ranks r(v). The gi−1-edge-groups of each gi-edge-group are also stored in
order of increasing ranks of the nodes involved, but empty location may exist
between the gi−1-edge-groups. However, the entire array Bi has a number of
locations which is at most a constant times the number of edges it contains.
This will require Bi to shrink and grow appropriately. The arrays B1, B2,. . . ,
Bh will be laid out in O(E) consecutive memory locations. For purposes of
exposition, we defer the discussion of how this shrinking and growing can be
achieved at sufficiently low cost while maintaining this layout to Section 4.3.

Note that there are no restrictions on the order in which the gi-edge-groups
appear in among each other in Bi. To locate these groups, we keep an index
Ai at every level, which is an array of entries (k, p), one for every gi-edge-group
present in Gi. The value k is the number of the corresponding gi-node-group
Vki, and p is a pointer to the start of the gi-edge-group in Bi. The entries of
Ai are sorted by their first components. The indexes A1, A2,. . . , Ah occupy
consecutive locations of one of two arrays A′ and A′′ of size O(V ).
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Finally, every gi-edge-group g of a level will contain an index of the gi−1-
edge-groups it presently contains. This index consists of the first and last edge
of each gi−1-edge-group γ together with pointers to the first and last locations
of the rest of γ. These edges are kept at the front of g, in the same order as
the gi−1-edge-groups to which they belong. For simplicity, we assume that the
data type for an edge has room for such a pointer.

We now describe how each step of GetEdgeLists is performed. We
assume that every query set S of nodes is sorted by assigned rank r(v), which
can be ensured by sorting the initial query set before the first call. In Line 1
of the algorithm, we find S′ by simultaneously scanning S and Ai, using that,
if (k, p) is an entry of Ai, all nodes v ∈ S for which kgi ≤ r(v) < (k + 1)gi

will have N (v) residing in the gi-edge-group pointed to by p (otherwise, N (v)
would have been found at an earlier stage of the recursion). In other words,
S′ is the subset of S not covered by the entries in Ai.

In line 5, when a gi-edge-group g is to be inserted into level Gi, the index
of the gi−1-edge-groups of g is generated by scanning g, and g (now with the
index) is appended to Bi. An entry for Ai is generated. When the for-loop in
Line 4 is finished, the set of new Ai entries are sorted by their first components
and merged with the current Ai. Specifically, the merging writes Ai to A′′ if Ai

currently occupies A′, and vice versa, implying that the location of the entire
set of Ai’s alternates between A′ and A′′ for each call GetEdgeLists(S, 1).

In Line 6, we scan S and the updated Ai to find the entries (k, p) pointing
to the relevant gi-edge-groups of the updated Bi. During the scan, we generate
for each of these groups g each of the gi−1-edge-groups γ inside g that contains
one or more nodes from S, a pair (v, p), where v is the first node in the
group. These pairs are now sorted in reverse lexicographic order (the second
component is most significant), so that the gi-edge-groups can be accessed in
the same order as they are located in Bi. For each such group g, we scan its
index to find the relevant gi−1-edge-groups and access these in the order of
the index. Each gi−1-edge-group is removed from its location in Bi (leaving
empty positions) and placed in the output set. We also remove its entry in
the index of g. The I/O-bound of this process in the minimum I/O-bound of
a scan of Bi and a scan of each of the moved gi−1-edge-groups.

4.2 Analysis

In the following we analyze the number of I/Os performed by our cache-
oblivious BFS-algorithm (assuming that the management of the layout of the
Bi’s can be done efficiently, which will be easier to discuss in Section 4.3 once
we have the analysis of the main structure available).

The basic BFS-algorithm from [19] scans each BFS-level Li twice: once
while constructing Li+1 and once while constructing Li+2, causing a total of
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O(V/B) I/Os for all lists Li. Edges extracted from the data structure storing
the adjacency lists are sorted once and scanned once for filtering out duplicates
and already discovered nodes, causing a total of O(Sort(E) + E/B) I/Os. It
follows that the basic algorithm requires a total of O(Sort(E)) I/Os.

We now turn to the I/Os performed during queries of the data structure
storing the adjacency lists. The cost for constructing the initial spanning tree
is O(ST(E)); the Euler tour can be constructed in O(Sort(V )) I/Os [4]. As-
signing ranks to nodes and labelling the edges with the assigned ranks requires
further O(Sort(E)) I/Os. The total preprocessing of the data structure hence
costs O(ST(E) + Sort(E)) I/Os.

For each query from the basic BFS-algorithm, the query algorithm for the
data structure accesses the Ai and Bi lists. We first consider the number of
I/Os for handling the Ai lists. During a query, the algorithm scans each Ai list
at most a constant number of times: to identify which gi-edge-groups to extract
recursively from Bi+1; to merge Ai with new entries extracted recursively; and
to identify the gi−1-edge-groups to extract from Bi. The number of distinct
gi-edge-groups is 2V/gi. Each group is inserted into level Gi at most once. By
Observation 3, when a gi-edge-group is inserted into level Gi, it will become
part of an initial query set S within gi queries from the basic BFS-algorithm,
that is, within the next gi BFS-levels; at this time, it will be removed from the
structure. In particular, it will reside in level Gi for at most gi queries. We
conclude that the total cost of scanning Ai during the run of the algorithm is
O((2V/gi) ·gi/B), implying a total number of O(h ·V/B) I/Os for scanning all
Ai lists. This bound holds because the Ai’s are stored in consecutive memory
locations, which can be considered to be scanned in a single scan during a
query from the basic BFS-algorithm. Since each node is part of exactly one
query set of the basic BFS-algorithm, the total I/O cost for scanning the S
sets during all recursive calls is also O(h · V/B).

We now bound the sorting cost caused during the recursive extraction of
groups. The pointer to each gi-edge-group participates in two sorting steps:
When the group is moved from level i + 1 to level i, the pointer to the group
participates in the sorting of Ai+1 before accessing Bi+1; when the gi-edge-
group has been extracted from Bi+1, the pointer is involved in the sorting
of the pointers to all extracted groups before they are merged into Ai. We
conclude that the total sorting cost is bounded by O(

∑h
i=1 Sort(2V/gi)) which

is O(Sort(V )), since gi is at least exponentially increasing for both of the two
sequences considered.

Finally, we need to argue about the I/O cost of accessing the Bi lists.
For each query of the basic BFS-algorithm, these will be accessed in the or-
der Bh, Bh−1, . . . , B1, since the Bi lists are accessed after the recusive call
to GetEdgeLists. Let t be an integer, where 1 ≤ t ≤ h. The cost
of accessing Bt, . . . , B1 during a query is bounded by the cost of scanning
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Figure 2: The memory layout of B1, . . . , Bh

Bt, . . . , B1. Since an edge in Bi can only remain in Bi for gi queries from
the basic BFS-algorithm, we get a bound on the total I/O cost for B1, . . . , Bt

of O(
∑t

i=1 gi · E/B), which is O(gt · E/B) since gi is at least exponentially
increasing.

To bound the cost of accessing Bh, . . . , Bt+1, we note that the number
of I/Os for moving a gi-edge-group list containing k edges from Bi+1 to Bi is
bounded by O(1+k/B+gi+1/(gi ·B)), where gi+1/gi is the bound of the size of
the index of a gi+1-edge-group. Since the number of gi-edge-groups is bounded
by 2V/gi, it follows that the I/O cost for accessing Bh, . . . , Bt+1 is bounded
by O(

∑h−1
i=t (2V/gi +E/B +(2V/gi) · gi+1/(gi ·B)) = O(V/gt +h ·E/B), since

gi+1 ≤ g2
i for both of the two sequences considered. The total cost of accessing

all Bi is, hence, O(gt · E/B + V/gt + h · E/B), for all 1 ≤ t ≤ h.
Adding all the bounds above gives a bound of O(ST(E) + Sort(E) + gt ·

E/B + V/gt + h ·E/B) on the total number of of I/Os incurred by the query
algorithm, for all 1 ≤ t ≤ h.

For gi = 2i, we select gt = Θ(
√

V · B/E) and have h = Θ(log V ), so
the I/O-bound becomes O(ST(E) + Sort(E) + E

B · log V +
√

V · E/B). For

gi = Θ(2(1+ε)i
), we select the smallest gt ≥

√
V ·B/E, i.e. gt ≤

√
V ·B/E

1+ε
,

and have h = Θ(1
ε ·log log V ), so the I/O-bound becomes O(ST(E)+Sort(E)+

E
B · 1

ε · log log V +
√

V · E/B ·√V · B/E
ε
).

4.3 Layout Management

In this section, we describe how to efficiently maintain a layout of B1, . . . , Bh

in a single array of size 2E. We will maintain a sequence of pointers 0 =
p1 ≤ s1 ≤ p2 ≤ s2 ≤ p3 ≤ · · · ≤ ph ≤ sh ≤ ph+1 = 2E into the array, where
p2 ≥ 2|B1| and pi+1 − pi = 2|Bi| for 1 ≤ i ≤ h. Here, |Bi| denotes the total
number of edges stored in Bi.

We maintain the invariant that all adjacency lists within Bi are stored
within positions [si; pi+1). The gi−1-edge-groups will always be stored as a
consecutive list of positions within Bi; but between the individual gi−1-edge-
groups, there can be unused array positions. In Figure 2, we show the memory
layout of the sets B1, . . . , Bh. Each of the shaded areas within Bi represents
a gi−1-edge-group list.

In the initial state 0 = p1 = s1 = p2 = s2 = · · · = ph, sh = E and ph+1 =
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2E, and all adjacency lists are contained within Bh are stored consecutively
within array positions [E; 2E).

During a query, gi−1-edge-groups will be moved from Bi to Bi−1, leaving
unused array positions in Bi. When moving a total of x edges from Bi to
Bi−1, we place these consecutively at array positions [pi; pi + x). We then
increase pi by 2x to maintain that pj+1 − pj = 2|Bj | for all j. If this makes
pi larger than si, we compress Bi by scanning [si; pi+1), moving Bi into the
consecutive positions [pi+1 − |Bi|; pi+1), and setting si = pi+1 − |Bi|. Since
for the previous value of si, we had si < pi = pi+1 − 2|Bi|, the value of si has
increased by at least half of the scanned area. Charging the scanning cost to
the advance of si, and using that each of the si, for i = 1, 2, . . . , h, can increase
by 2E in total, this cost is bounded by O(h · E/B) I/Os in total. Since each
compression is triggered by the movement of x edges into [pi; pi + x), and the
area to be scanned starts below pi + 2x, the single I/O initiating the scan can
be included in the cost of moving the x edges, a cost which was bounded in
the previous section.

After the compression of Bi, we will need to update Ai. This can be done
efficiently if we add another index Ci to the structure. For level Gi, index Ci

stores the pairs (k, p) previously discussed for the Ai array, but stores them
in the same order as the gi-edge-groups appear in Bi. The pointers in the
pairs in Ai now point to the entries with the same k value in Ci. In short,
information about the permutation of the gi-edge-groups is stored in Ai, while
information about their locations is stored in Ci. The Ci index can be updated
during compression of Bi using a scan (whereas updating Ai in the absence
of Ci would require sorting). Since Ci and Ai have the same size and the Ci’s
are accessed in the order h, h − 1, . . . , 2, 1 during a query, the analysis of the
cost of accessing the Ai’s from the previous section applies also to the Ci’s.

In summary, the desired layout of the Bi’s can be achieved without chang-
ing the I/O-bounds from the previous section.

In the described layout, we have chosen to store B0, . . . , Bh in an array of
size 2E. We could also have chosen a smaller array of size (1+ ε) ·E, for some
constant ε > 0, such that pi+1 − pi = (1 + ε)|Bi|. The result would be an
increased number of compression steps, implying a factor 1/ε more I/Os for
the repeated compression of the Bi’s.
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