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Abstract

This report documents the results of the Danfoss EKC trial project on model
based development using IAR visualState. We present a formal state-model of an
refrigeration controller based on a specification given by Danfoss. We report re-
sults on modeling, verification, simulation, and code-generation. It is found that
the IAR visualState is a promising tool for this application domain, but that im-
provements must be done to code-generation and automatic test generation.
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1 Introduction

This paper documents the results of a trial project on model based development of
embedded systems in collaboration with Danfoss “Refrigeration and A/C Controls Di-
vision” (DCD).

1.1 Objectives

The objective of the study is to quickly form a basis on which a decision can made
about whether model based development using formal UML notation and an appropri-
ate tool for simulation, verification, test and code generation appear to be feasible in the
specific application domain of DCD low-end products, that phase one of the planned
collaboration project between CISS and Danfoss should be initiated.

To meet this objective it was agreed that DCD provides a small but realistic application
that CISS attempts to model using a state-of-the-art tool, IAR visualSTATER©. The
application provided by Danfoss is a typical sub-function of an EKC-thermostat—an
industrial refrigeration and air-conditioning controller. The result should at least make
it plausible that DCD application software can be realized using IAR visualSTATER©,
that this can be integrated with the input/output parameter structure of the EKC, and
that the model can be used as basis for coding and testing.

The deliverables consists of

• This report documenting and summarizing the trial project.

• The developed IAR visualSTATER© models.

• A developed PC based demo application.

• An oral presentation of the result to DCD representatives.

1.2 The process

The modeling has been done during a period of approximately one month, including
about 2 weeks of Christmas and New Year break. The work has progressed gradu-
ally and iteratively towards the finalized model. The following main steps have been
identified:

1. Study of application requirements: The EKC-Thermostat specification was
studied in detail to understand the required functionality. During this activity
and the initial modeling in the next step, several questions were raised about the
required functionality.

2. Model v1 (Doodling) The first draft of the model was developed by doodling
on a whiteboard. Also options about what events the environment should gen-
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erate and how the model should be integrated with the DCD device drivers and
parameter database were discussed.

3. Model v2 (Flat model). The first formalized model was entered into IAR visual-
STATER© and syntactically checked. The aim was to identify main concurrent
components (temperature calculator, regulator, alarm handler) and modes (nor-
mal, emergency, defrost and standby).

4. Model v3 (Hierarchical model). After the model v2 followed a series of simpli-
fications/refinements and resolutions of the specification ambiguities. This was
mainly done by refactoring redundant information by utilizing hierarchical state
machines, entry- and -exit transitions, and internal reactions.

5. Verification and Code Generation As model v3 progressed more time was
spent on checking the functionality. This was done through reviewing and dis-
cussing the model, running it through the standard verification checks of IAR
visualSTATER©, and by animating it using IAR visualSTATER© and a small PC
based demo application generated by IAR visualSTATER©.

1.3 Staff

The following CISS staff members contributed to the modeling:

Kim Larsen: Full Professor. super expert on general state machine modeling and ver-
ification algorithms, has conducted several industrial case studies. Time spent: 1
day

Ulrik Larsen: New research assistant. IAR visualSTATER© tool developer, contacts
with the IAR visualSTATER© company. Time spent: less than 1 day.

Brian Nielsen: Associate Professor. Expert on model based testing, some industrial
case studies using model based testing. Main responsible for editing the model
using IAR visualSTATER©; no prior detailed knowledge about IAR visualSTATER©
or UML, and no previous application of IAR visualSTATER©. Time spent: 5
days.

Arne Skou: Associate Professor. Modeling expert, several industrial case studies on
modeling and verification. Time spent: 1 day.

Andrzej Wasowski Senior Phd Student. Expert on IAR visualSTATER© and UML
modeling language and semantics, and code generation expert. Main responsible
for code generation and demo application development. Time spent: 3 days.
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2 Modeling the EKC

2.1 Environment Integration

The model is based on a fundamental choice regarding its interaction with the DCD
parameter database and i/o drivers, that constitute the environment of the model. The
current DCD software is divided into two main parts, the parameter database and i/o
drivers, and the application logic. These parts communicate through a set of shared
global variables classified as either input variables, output variables, or settings vari-
ables (special user input variables containing dynamically configurable parameters).
The parameter interface is depicted in Figure 1.

S4Percent

CutOut

Differential

LowALarmLimit

HighAlarmLimit

AlarmDelay

PulldownAlarmDelay

S3Temp

S4Error

S3Error

S4Temp

ThTemp

HighAlarm

LowAlarm

CoolingOn

EKC Thermostat

Standby

Defrost

Figure 1: Parameter Interface

The code generated by IAR visualSTATER© requires that events are communicated to
the state machine interpreter when the environments changes such that the machine is
required to react. This is done by writing a small software adaptation layer relaying
model input/output events to and from the device driver interface. It is required by
DCD that the current parameter database is reused. This can be done in two principally
different ways:

Pure Event based: In collaboration with the i/o drivers and parameter database the
adaptation software generates events (like standbyRequested, StandbyDisabled,
temperatureSample, s3ErrorDetected, S3ErrorRepaired etc).

Pure Shared Variable Based: The model is requested to read and write the shared
variables periodically or at requested points in time, and then react accordingly.

The shared variable based approach was selected due to the natural and easy integra-
tion with DCD interface.The model assumes that a set of globally shared variables
exists named according to the DCD specification (See Figure 1), and that the model is
informed via a singlesampleevent by the adaptation software when it is required to
react to the current values of the variables. It is also assumed that the model can order
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timer signals from the underlying platform, and that model can be informed about these
via adaptation generated events.

It also turns out to beconvenientto assume that the environment generatessam-
ple events whenever one of the parameters change. In particular it is assumed that
each change to the standby and defrost mode variables are reported via separatesam-
ple events, i.e if (standbyOn==1, defrostActive==1) changes to (standbyOn==0, de-
frostActive==0) this is reported via 2sampleevents revealing the intermediate config-
uration.

2.2 Walk Through of the Finalized model

The final model is depicted in Figure 2. The top level stateTC is divided into three
concurrent regions: theRegulator, theHighAlarmHandler, and theLowAlarmHandler.
The internal reaction rules ofTC ensures that a new combined temperature estimate
from the temperature sensors S3 and S4 is computed at each sample event, and that the
other components reacts to this by issuing theNewTempsignal.

The Regulator

TheRegulatorcontains a hierarchical state machine whose overall responsibility is to
regulate the cooler, i.e., whether cooling is on or off, and for how long. Overall, the
Regulatorcan be either in operation or in standby mode represented by the composite
statesInOperationandStandingBy. We assume that active regulation must be off when
standing by.

When the system isInOperation, it can either regulate (Regulating) the temperature or
or perform defrost operations (DefrostMode). The requirements specification does not
describe what activity is performed in defrost mode.

The temperature regulation inRegulatingstate is different depending on whether there
are sensor errors (EmergencyMode) or not (NormalMode). In NormalModeregulation
is based on the calculated temperature estimate. The entry and exit rules of the substates
CoolerOffandcoolerOnaccumulates the amount of time spent in each mode, and cuts-
in or cuts-out cooling. Cooling is cut-in when the calculated temperatureThTemp
exceeds the threshold parameter (ThCutOut) plus a hysteresis value (thDifferential)
and cut-out when dropping below the threshold valueThCutOut.

EmergencyModeis entered when both temperature sensors fail. Depending on whether
there is a history of normal operation (counted by the number of cut-outs (CutOut-
Count)) or not, the required cooling on time (onTime) in each 20 minute period in
emergency mode is computed from the history or from a default 30/70% distribution,
as required in specification section 1.1.1 and 1.1.2, hence the two transition.
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Figure 2: EKC state machine model



Two timers controls the time spent in the the sub-states. The(DutyOnTimer) issues
eventDutyOnCompletedwhen the requiredonTimehas elapsed. Similarly, the(Duty-
CycleTimer) issues eventDutyCycleCompletedwhen the requiredDutyCyclePeriodof
20 minutes has elapsed. The timer events are ordered whenever theEmergencyMode
is entered. Emergency mode is exited as soon as one sensor becomes valid.

The HighAlarmHandler

TheHighAlarmHandlerenters stateHighDetectedwhen a calculated temperatureThTemp
exceeds the threshold value for high temperature alarms (HighAlarmLimit). Depend-
ing on whether the threshold was reached before the first cut out after power on, leaving
defrost or standby mode (as tracked by the boolean variableAfterCutOut), the delay be-
fore raising the alarm is respectivelyAlarmDelayor PullDownAlarmDelay. This delay
between waiting for an alarm (WaitAlarm) and sounding it (SoundAlarm) is controlled
by the timerHighAlarmDelaythat generates the eventHighAlarmTimeoutupon expi-
ration. TheHighDetectedstate is left when the temperature is below the alarm limit
whether the alarm as sounded or not (i.e the alarm may be canceled).

The LowAlarmHandler

TheLowAlarmHandleris similar to theHighAlarmHandler.

2.3 Questions Raised during Modeling

During this activity and the initial modeling in the next step, several questions were
raised about the required functionality. Essentially, these questions were caused by
the informal requirements specification that have several unclear points and possible
interpretations, and the fact that the staff are modeling experts, but lacks the specific
knowledge of EKC-thermostat domain experts.

A few of the initial questions were directed to DCD, but most was resolved by the
modelers using educated guesses of the intended behavior. This was done to facilitate a
discussion later with DCD about how formal modeling can be used to identify possible
ambiguities and design alternatives.

We apply the following terminology Q: question, A: answer, D: Design decision im-
plied by the question/answer.

Q1 Should alarms be raised in standby and defrost modes?

A1 Finn Rasmussen, 11/12-03: Yes, but the pull-down timer delay should apply in
these modes.

Q2 How are alarms cleared?
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A2 Finn Rasmussen 11/12-03: Alarms are cleared immediately when their enabling
conditions become false.

Q3 Are the cooling conditions to be calculated at a fixed frequency?

A3 Finn Rasmussen 11/12-03: This should be left open in the model, i.e. the model
should not rely on any given frequency.

D3 CISS 18/12-03: We assume in the initial model that the database variables/parameters
are sampled whenever the event ’sample’ occurs. The necessary code to provide
this event is part of the implementation adaptation.

Q4 Is the history of cut-in’s (cut-out’s) ever reset after power up?

Q5 Is there an upper limit for the frequency of cut-in/cut-out sequences?

E.g. fast switching between S3Error==true and S3Error==false might cause fast
cut-in/cut-out switching.

Q6 Do all cut-in’s contribute to the history statistics - e.g. when mode changes occur?

Q7 How must sensor errors be handled in non-operational modes (like e.g. defrost
mode)?

Q8 Must decisions (e.g. cut-in decisions) be based on actual values - or is it acceptable
to perform the cut-in during the next sample?

D8 CISS 18/12-03: This is a tool specific question related to the handling of signals.
In the initial model we assume that actions are based on actual values.

Q9 There is an inconsistency on page 3 and page 5 leaving it unclear when to apply
the pull-down delay (especially in the LowAlarmLimit case).

Q10 Is there an upper limit for the frequency of alarm settings?

Q11 Must sensor errors trigger any kind of alarms?

A11 Finn Rasmussen 11/12-03: In fact alarms should be raised, but we will ignore it
in the trial case study.

Q12 When does a new period start in emergency mode (e.g. should a new period start
even if emergency mode is only left for a short periods of time)?

Q13 What happens in when the system is requested to standby?

D13 System is required to disable cooling while in standby mode?
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Q14 What is the possible transitions between standby and other modes, and what hap-
pens when standby is disabled?

D14 We assume that standby takes priority over other modes, and that standby pre-
empts these (i.e. defrost, standby, and regulating are assumed to be mutually
exclusive, and not concurrent. The interrupted mode is assumed to be resumed
after standby.

Q15 It seems possible that both low alarm and high alarm may both sound at the same
time, provided that the temperature varies sufficiently quickly.

D15 Ensured by theconcurrentcomponents handling of low alarm and high alarm
respectively.

Q16 What are the exact conditions for detecting sensor error and using emergency
cooling? Must S3 and S4 sensors both fail simultaneously, or only one of them?
Does it depend on the settings of S4percent?

D16 Both sensors must fail.

Q17 What is the exact technical hack/solution for computing emergency onTime (run-
ning average) percentage based on cut/in and out history?

Q18 How is a duty cycle in emergency mode executed, i.e. how is the onTime dis-
tributed in the 20 minute cycle period?

A18 Finn Rasmussen 11/12-03???: Cooling is on in the beginning for the required
time followed by cooling off for the remaining time.

2.4 Experiences

Our experiences shows that the IAR visualSTATER© modeling language is very expres-
sive, and could be used to create an elegant, reasonable compact model that accurately
reflects the behavior intended by the designers. A detailed understanding of the seman-
tics of UML, and especially the IAR visualSTATER© dialect is necessary.

The graphical editor worked reliably, but requires some getting used to, and is a bit
heavy to use due to many menus that must be opened. Some cut and paste operations
(moving condition actions among transitions) could not be conveniently done within
the graphical editor, and was performed directly in the textual format.

We also encountered a number of strange limitations:

• no expression allowed in timer value settings, but this must be precomputed vari-
able.

• In boolean guard conditions it is not allowed to use variables of different types
(so-called mixed mode expression).
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• Range cannot be specified on external variables

• No default scoping rules for hierarchies, but prioritization must be done manually
by adding additional conditions on transitions.

3 Verification results

The IAR visualSTATER© Verifier is a tool for formally and exhaustively checking the
logical consistency of a IAR visualSTATER© model. The verifier automatically checks
generic properties such as ambiguities (e.g. conflicting transitions or assignments), un-
activated design elements, dead states etc.

3.1 Verification Example

During the development, the model have been checked with the verifier which has
revealed a number of design problems that have been addressed in the later versions of
the model. An example of an error report from an intermediate version of the model
illustrated in Figure 3 is given below:

NoLowAlarm
Entry /  [LowAlarm=0]

LowTempDetected

WaitAlarm SoundAlarm
Entry /  [LowAlarm=1]

LowAlarmHandler

NewTemp [ThTemp<=LowAlarmLimit]
[AfterCutOut==1] /

LowAlarmDelay(LowAlarmTimeout,
AlarmDelay)

NewTemp [AfterCutOut==0] /
LowAlarmDelay(LowAlarmTimeout,

PulldownAlarmDelay)

NewTemp
[ThTemp>LowAlarmLimit] /

LowAlarmTimeout() /
[LowAlarm=1]

 /

 /

Figure 3: Illustration of conflict 2 in error report.

Ambiguous assignments (static check): (Error)
1) Error: The variable startTime is both assigned and read on the transition
CoolerOn:

NewTemp [ ThTemp < ThCutOut ] / [CutOutCount=(CutOutCount+1)
%CutoutCountLimit+1] [AfterCutOut=1]

-> CoolerOff
CoolerOn:

Exit / [OnTime=OnTime+(Now()-startTime)]
CoolerOff:

Entry / [startTime=Now()] [CoolingOn=0]

2) Error: The variable LowAlarm is assigned several times on the transition
WaitAlarm:
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LowAlarmTimeout() / [LowAlarm=1]
-> SoundAlarm
SoundAlarm:

Entry / [LowAlarm=1]
Fatal Error: Ambiguous system
Verification stopped

The reason for the ambiguous assignment is thatLowAlarm is assigned twice upon
entry to stateSoundAlarm, once on the transition fromWaitAlarm to SoundAlarm,
and once on the entry action in stateSoundAlarm. Although the values are identical in
the example, and no harm is done, this was not intended.

3.2 Experiences

Unfortunately not all static checks could be completed due to an internal error in IAR
visualSTATER©. Our experience shows that verification could be done on the model,
but also that it required some care in choosing a usable verification mode and setting the
verification parameters was a bit confusing and required some expertise (e.g.˙number of
bits for variable encoding).

No application oriented user written properties was verified during the pilot project.

4 Model Simulation

The EKCThermostat model has been simulated using IAR visualSTATER© Validator.

4.1 The IAR visualSTATE R© Validator

The simulation of the model is event driven. User provides the state of the environ-
ment (variables) and then fires an event. Validator advances the system state and gives
information about the actions executed.

The EKC model has been specified using variable-interface, which makes it a bit te-
dious to simulate. In this specific case, in each step one has to modify variables in
desired way and then send the Sample event. Simulator allows defining values for func-
tions not available at so early stages. It also handles timers automatically (at selected
speed) and visualizes the animation. The signal queue can be handled automatically,
or single-stepped by the operator.

4.2 Experiences

Several function bugs were discovered in earlier versions of the EKC model during
simulation in Validator. Most of them were caused by incomplete guards and some by
misplaced actions.
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In general the impression is that IAR visualSTATER© validator is a useful tool for func-
tional testing at early design stages. It should be stressed that the simulation would
have been easier if we had created a more natural, event-driven model. Also we have
found that driving the model into some specific situations, deep in the hierarchy may
be tedious, which indicates that “super-tracing” extension, one among many proposals
in the project, would be a useful extension.

5 Code Generation

We have carried out experiments with code generation and compilation for two plat-
forms (Renesas h8300 and ATMEL atmega16).

5.1 Size Results

The following table presents executable sizes1 obtained with the H8 compiler. The
IAR visualSTATER© (VS) column shows the results for the code generator supplied
in the IAR visualSTATER© package. The SCOPE column shows the results for the
experimental research-based code generator (SCOPE).

model IAR visualSTATE R© 5.1 [bytes] SCOPE[bytes]

minimal 1 748 1 312
aircond 2 426 1 668
EKC 4 134 est. 2 600

The aircond model is a small mockup of the airconditioner shown at the previous meet-
ing. Minimal is a model containing two states and a single transition (no guard and
action). EKC is the model we described earlier in the report. This model has been
created in the newest version of IAR visualSTATER© Designer and cannot be currently
compiled by SCOPE due to file format changes. The SCOPE result for EKC is esti-
mated by proportional scaling of aircond size after substraction of the minimal model
size. We expect to have SCOPE ported to the new format soon.

The EKC and the minimal model have also been compiled for ATMega16 platform,
with the following results:

model IAR visualSTATE R© 5.1 [bytes]

minimal 1 344
EKC 4 248

Then a precise analysis has been made on the EKC image produced for the ATMEL
platform with the builtin IAR visualSTATER© coder, giving following results:

1Note that executable files contain more information than just the kernel with model data and code.
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code/data description size[bytes]

SemLibB+main loop (kernel)2 1 170
guards code 920
guards dispatcher (meta-code) 62
actions code 498
actions dispatcher (meta-code) 52
VS (transition table) 823

These numbers add up to a sum of about 3.5k. The remaining space (nearly 1k) is used
by routines which are not needed and can be removed from linking in the production
code and parts which will be needed anyway (for instance C startup code).

We used the same method (dissasemble with avr-objdump) to compute the size of cur-
rent Danfoss Kernel, which had been made available to us. The kernel code, initializa-
tion and main loop occupies 580 bytes in this kernel, approximately half of the IAR
visualSTATER© kernel size. We do not have any comparison of model representation
size, as we do not yet have the EKC model implemented with the Danfoss Kernel.

5.2 Code Generation & Compilation Conditions

The IAR visualSTATER© Coder options were set up to use function-pointer table for
dispatching guards and actions. Data was initialized with C initializers (no system
reinitialization allowed).

The SCOPE options used were: scope --release -cCF -cCstubs -cCdrv (essentially
meaning flattening code generator, no debug information).

The H8 code was compiled with h8300-hms-gcc v. 3.3.2, options: h8300-hms-gcc -
Os -static -DNDEBUG -fomit-frame-pointer -foptimize-sibling-calls -Xlinker --relax.
The code was linked with newlib as the C library. A coff-h8300-hms executable was
produced.

The ATMega16 code was compiled with avr-gcc v. 3.3.2, using options: -mmcu=atmega16
-mtiny-stack -Os -static -Wall -DNDEBUG -fomit-frame-pointer -foptimize-sibling-
calls. The code was linked with lavr-libc as the C library. An elf-avr executable was
produced.

The Danfoss Kernel for ATMega has been compiled using a makefile supplied with the
kernel, optimizations set to -Os (optimize for size).

The sizes are reported for stripped binaries.

5.3 Manually implemented code

IAR visualSTATER© does not generate the main loop for its kernel. This gives increased
flexibility, at the cost of transferring this effort to the developer. We present an example
of simple main loop, which was used in the measurements in this section:
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int main( void ) {
SEM_ACTION_EXPRESSION_TYPE ActionExpressNo;
SEM_EVENT_TYPE EventNo = SE_RESET;
SEM_Init(); /* initialize kernel*/
SEM_InitSignalQueue(); /* initialize signal queue*/

while(1) {
/* Fire event*/
if ( SEM_Deduct( EventNo ) != SES_OKAY ) break;
/* Compute System Reaction*/
while (SEM_GetOutput(&ActionExpressNo) == SES_FOUND)

SEM_Action( ActionExpressNo );
/* Advance system’s state*/
if (SEM_NextState() != SES_OKAY) break;
/* Sense next event from the environment*/
EventNo = (SEM_EVENT_TYPE)Sample;

} }

5.4 Project Structure

Proposed project structure:

|--api /* static IAR visualSTATER© libraries */
| |-- SEMLibB.c /* API implementation (‘‘kernel’’)*/
| |-- SEMLibB.h /* IAR visualSTATER© API prototypes*/
| ‘-- VSTypes.h /* definitons of IAR visualSTATER© types*/
|
|--code /* files generated with IAR visualSTATER© coder*/
| |-- EKCThermostat.c /* transition tables*/
| |-- EKCThermostat.h
| |-- EKCThermostatAction.h/* action functions types*/
| |-- EKCThermostatData.c /* model code&internal data*/
| |-- EKCThermostatData.h
| |-- SEMBDef.h
| ‘-- SEMTypes.h
|
|--driver.c /* hand-made: main loop,actions, drivers,...*/
‘--Makefile

The api contains the kernel, thecode directory contains the generated code. Main
directory contains user-written code.

5.5 Experiences

The conclusion is that the code generated by IAR visualSTATER© is bigger than ex-
pected and should be improved. Four areas of potential improvement have been iden-
tified:

• Thorough examination of the impact on efficiency by refactoring model by ap-
plying more event-driven approach, eliminating signals and exchanging guards
on variables with events. This should be give a high priority in the next phase.
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• Improvement in the kernel implementation, by porting the SCOPE kernel di-
rectly to ATMEL platform, or to the Danfoss kernel.

• Improvement in the code generator, by applying more research based optimiza-
tions to the existing tools (this effort is already on its way).

• Improvement in the integration with the EKC project (for instance sharing of
parameters memory space, so it can be directly used from the model code).

All these four areas are potential fields of interest in the project.

6 Code Execution

The code generated from IAR visualSTATER© is ANSI compliant. It can be compiled
on a workstation and executed, provided an adequate main loop and drivers are made
available.

We have implemented such a simple setup for testing the EKC model on a PC, using
a command-driven interface. Such execution may also be referred to as simulation,
although more precisely this the execution of the actual model code, only compiled
for a different platform. The interface was very simple (about 250 lines C program),
nevertheless similar interfaces may be conveniently used in executing automatic test
sequences in early phases, using a workstation (may be faster and cheaper than testing
directly on the platform).

7 Test Generation

The model can also be used for automatically generating test cases for certain desired
observations to be made on the system under test. Most model checking tools have a
facility for producing traces or witnesses that explain the necessary steps to be taken to
bring the model to a desired state. It is even possible to configure most tools to produce
the shortest such trace.

In many cases this trace can be interpreted as a test case. Using this facility it is also
possible to generate a set of test sequences that traverses all transition of the model
thereby obtaining the model based testing dual to code based testing with statement
coverage.

IAR visualSTATER© does not at present have such a trace generation facility, but one
is being developed in collaboration with CISS. To demonstrate the usefulness of such
a feature we have developed an equivalent model using a different notation and tool,
namely Uppaal, and used the trace generation facility of Uppaal to synthesize a test
case. We have annotated this model with an extra array of bits containing a bit for each
interesting transition in the model, such that each bit is set when the corresponding
transition is executed.
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We give one short example of a test produced using this method: The goal of the ex-
ample test is to switch cooling of as done by transition number 0 going from state
CoolerOnto stateCoolerOff, i.e., we search for a trace wherebit[0] == 1. A con-
densed version of theshortest traceproduced by Uppaal where irrelevant details have
been manually removed is listed below. In this particular instance of the EKC model,
ThCutOut=-1, S4Percent=100.

Delay: 1 //1

State:
GlobalTime=1
input #0: DefrostActive=0 S3Error=0 S3Temp=0 S4Error=0 S4Temp=0

StandbyActive=0
output #0: CoolingOn=0 HighAlarm=0 LowAlarm=0 ThTemp=0

Transitions: //2,3,4
Sampler._id30->Sampler._id29 { 1, tau, S3Error := !S3Error }

State:
GlobalTime=1
input #1: DefrostActive=0 S3Error=1 S3Temp=0 S4Error=0 S4Temp=0

StandbyActive=0
output #1: CoolingOn=1 HighAlarm=0 LowAlarm=0 ThTemp=0

Transitions: //5 + // 6+7+8
Delay: 1
Sampler._id30->Sampler._id29 { 1, tau, S4Temp := CoolingOn &&

S4Temp > -maxtemp ? S4Temp - 1 : (S4Temp + 1) % maxtemp }

State:
GlobalTime=2
input #2: DefrostActive=0 S3Error=1 S3Temp=0 S4Error=0 S4Temp=-1

StandbyActive=0
output #2: CoolingOn=1 HighAlarm=0 LowAlarm=0 ThTemp=-1

Transitions: //9 + 10+11+12
Delay: 1
Sampler._id30->Sampler._id29 { 1, tau, S4Temp := CoolingOn &&

S4Temp > -maxtemp ? S4Temp - 1 : (S4Temp + 1) % maxtemp }

State:
GlobalTime=3
bits[0]=1 bits[1]=0 bits[2]=0 bits[3]=0 bits[4]=0 bits[5]=0 bits[6]=0
bits[7]=0 bits[8]=0 bits[9]=0 bits[10]=0 bits[11]=0 bits[12]=0
bits[13]=0 bits[14]=0 bits[15]=0 bits[16]=0 bits[17]=1
DutyTimer.limit=0 HighTimer.limit=0 LowTimer.limit=0 #depth=12

input #3: DefrostActive=0 S3Error=1 S3Temp=0 S4Error=0 S4Temp=-2
StandbyActive=0

output #3: CoolingOn=0 HighAlarm=0 LowAlarm=0 ThTemp=-2

The test recipe produced by Uppaal can be read as:
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1. The preconditions for the test is defined by input/output vector #0

2. wait 1 time unit and set S3Error

(a) give input vector #1:S3Error==1

(b) expect output vector #1:CoolingOn==1

3. wait 1 time unit and decrease S4Temp

(a) give input vector #2:S4Temp==-1

(b) expect output vector #2:ThTemp==-1

4. waits 1 time unit and decrease S4Temp

(a) give input vector #3:S4Temp==-2

(b) expect output vector #3:CoolingOn==0andThTemp==-2

It can be noted that in order to visit transition 0 also transition 17 will be taken, i.e. the
number of test cases needed to cover all transitions will normally be much smaller than
the number of transitions in the model.

8 Conclusions

Our experiences shows that the IAR visualSTATER© modeling language is very expres-
sive, and could be used to create an elegant, reasonable compact model that accurately
reflects the behavior intended by the designers, but that it has a number of tool specific
limitations.

The IAR visualSTATER© verifier was useful, but an internal error was found that pre-
vented all checks to be performed. It is our impression that the IAR visualSTATER©
validator is a useful tool for functional testing at early design stages, and some errors
in the model was detected this way.

The code generated by IAR visualSTATER© appear rather big for the given model. A
thorough investigation as to the impact of the choice between ”shared-variable” versus
”event-driven” modeling on code size should be made.

The main feedback from DCD engineers was that the model was understandable and
reflects a realistic part of an industrial cooler. However, they do not like the complex
guards caused by the shared variable environment integration, and would prefer a pure
event driven model. The code generated by IAR visualSTATER© is too large for their
target platform, and must be improved if automatic code-generation is to be applied.

Overall DCD found that the IAR visualSTATER© approach appeared promising as a
platform for model based development using formalized modeling and documentation,
simulation and testing, and coding, and if sufficient improvements can be made, also
for automatic code generation. Future possibilities of automatic of semi-automatic test
generation from the model would be particulary helpfull to DCD.
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1. Thermostat specification 

1.1 Description 

The thermostat function in an EKC controller determines whether cooling is to take place or not. The 
thermostat uses a calculated temperature value, a cut out value and a differential to determine whether the 
thermostat is to cut in or out.  

The physical system 

The thermostat 

 

The thermostat is overruled to cut out if the controller is put into standby mode/state or if defrost mode/state 
is entered. 

If the thermostat temperature is above an upper limit, a high temperature alarm state is raised after a time 
delay. If the high alarm state is entered before the first cut out after 1) power on 2) leaving stand-by 
mode/state 3) leaving defrost mode/state another time delay, pull-down time delay, apply. 

If the thermostat temperature is below a lower limit, a low temperature alarm state is raised after a time 
delay. 

In case of sensor error (short or open circuit), the thermostat cut-in/out is not determined from the used 
temperature input, but is calculated from the cut in/out history (emergency cooling): 

1) If the count of cut outs is below 50, the cut-in/out sequence is calculated from a 30% on/70% off 
duty cycle with a period of 20 minutes. 

Evaporator

S4Temp

S3Temp

Air

Air

S4Percent

CutOut

Differential

LowALarmLimit

HighAlarmLimit

AlarmDelay

PulldownAlarmDelay

S3Temp

S4Error

S3Error

S4Temp

ThTemp

HighAlarm

LowAlarm

CoolingOn

EKC Thermostat

Standby

Defrost
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2) Otherwise the cut-in/out duty cycle is calculated from minutes in cut-in and minutes in cut out 
(excluding standby and defrost cut-out time) again with a period of 20 minutes. 

1.2 Input 

Float flS3Temp Range –200.0, 200.0, temperature from sensor placed in the air stream before 
the evaporator 

Float flS4Temp Range –200.0, 200.0, temperature from sensor placed in the air stream after 
the evaporator 

Boolean bStandbyActive True if standby mode/state active 

Boolean bDefrostActive True if in defrost sequence 

Boolean bS3Error The value of S3Temp is not valid due to a sensor error detected 

Boolean bS3Error The value of S4Temp is not valid due to a sensor error detected 

 

1.3 Output 

Float flThTemp Range –200.0, 200.0, calculated thermostat temperature. Used to determine 
cut-in/out and alarm state. 

FlThTemp = (100-iS4Percent)*flS3Temp +iS4Percent*flS4Temp 

In case of sensor error S3/S4 flThTemp=180.0, but: 

If iS4Percent=100 and bS3Error then flThTemp=flS4Temp 

If iS4Percent=0 and bS4Error then flThTemp=flS3Temp 

 

Boolean bCoolingOn True if cooling is to be on. False if cooling is to be off, standby mode/state or 
defrost mode/state 

Boolean bHighAlarm True if high limit alarm conditions are met 

Boolean bLowAlarm True if low limit alarm conditions are met 

1.4 Settings 

Int iS4Percent Range 0, 100, weighting between S4/S3 sensor 

Float flThCutOut Range –200.0, 200.0, the thermostat cut out limit 

Float flThDifferential Range 0.0, 50.0, the differential value (hysteresis) defining the cut in value as 
cut out value plus hysteresis. 

Float flHighAlarmLimit Range –200.0, 200.0, When the thermostat value goes above the limit, an 
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high limit alarm must be set after a time delay 

Float flLowAlarmLimit Range –200.0, 200.0, When the thermostat value goes below the limit, an 
low limit alarm must be set after a time delay 

Int iAlarmDelay Range 0, 30, the alarm delay in minutes before a high/low alarm is set 

Int iPulldownAlarmDelay Range 0, 60, the alarm delay in minutes before a high/low alarm is set. The 
delay replaces iAlarmDelay before the first thermostat cut out after power 
on, leaving stand-by mode or leaving defrost mode. 

 

1.5 Parameter interface 

Parameter are organized in an array structure, one part placed in ROM and one part placed in RAM. The 
structure defines all options and properties regarding a parameter. Parameter types are of 8, 16, 32 bit size 
e.g. enum, char, int, long and float. 

An example of the parameter interface used today is to be found here: 

DATABASE.C DATABASE.H

  
The application software today uses constant pointers declared to point to the RAM part: 
*pdbS3Temp = 10; 
*pddS4Temp = 15; 
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Model design 
IAR visualSTATE Signature Generator: "50" 

Project Signature: "7ee2 7035 ea2a ea1a ce81 8caf" 

Chart 

EKCThermostat

  

Hierarchy 
•   Project 

•   Elements 
•   EKCThermostat 

•   ThermoController 
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 Elements 

 EKCThermostat 

Chart 
ThermoController

  

 ThermoController (top) 

Path: EKCThermostat 
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Chart 

TC
Sample() [(S3Error==0) && (S4Error==0)] / [ThTemp= ((100-S4Percent) *S3Temp+ S4Percent*S4Temp)/100] ^NewTemp
Sample() [(S3Error==1) && (S4Error==0) && (S4Percent==100)] / [ThTemp=S4Temp] ^NewTemp
Sample() [(S3Error==0) && (S4Error==1) && (S4Percent==0)] / [ThTemp=S3Temp] ^NewTemp
Sample() [! (((S3Error==0) && (S4Error==0)) || ((S3Error==1) && (S4Error==1) && (S4Percent==100)) ||  ((S3Error==0) && (S4Error==1) && (S4Percent==0))) ] / [ThTemp=180.0] ^NewTemp

Standingby

InOperation

Regulating

NormalMode

CoolerOff
Entry /  [OffStartTime=Now()]
Exit /  [OffTime=OffTime+(Now()-OffStartTime)]

CoolerOn
Entry /  [OnStartTime=Now()] [CoolingOn=1]
Exit /  [CoolingOn=0] [OnTime=OnTime+(Now()-OnStartTime)]

EmergencyMode
Entry /  DutyCycleTimer(DutyCycleCompleted, DutyCyclePeriod) DutyOnTimer(DutyOnCompleted, DutyOnTime)

CompleteDutyCycle
CoolerOn

Entry /  [CoolingOn=1]
Exit /  [CoolingOn=0]

H

DefrostMode
H*

Regulator

NoHighAlarm
Entry / 

HighDetected

WaitAlarm
SoundAlarm

Entry /  [HighAlarm=1]
Exit /  [HighAlarm=0]

HighAlarmHandler

NoLowAlarm

LowTempDetected

WaitAlarm

SoundAlarm
Entry /  [LowAlarm=1]
Exit /  [LowAlarm=0]

LowAlarmHandler

Sample() [StandbyActive==0] /
[AfterCutOut=0]

Sample()
[StandbyActive==1] /

Sample() [DefrostActive==1]
[StandbyActive==0] /

Sample() [(CutOutCount>=CutoutCountLimit)  &&
((S3Error==1) && (S4Error==1)) ] [StandbyActive==0]

[DefrostActive==0] / [DutyOnTime=
(OnTime/OnTime+OffTime) *DutyCyclePeriod]

Sample() [ ((S3Error==1) && (S4Error==1)) &&
(CutOutCount<CutoutCountLimit)] [StandbyActive==0]

[DefrostActive==0] / [DutyOnTime=
(DefaultEmergencyOnPercent/100) *DutyCyclePeriod]

NewTemp [ThTemp>= ThCutOut + ThDifferential] /

NewTemp [ThTemp < ThCutOut] /
[CutOutCount=(CutOutCount+1)%CutoutCountLimit+1] [AfterCutOut=1]

 /

Sample()
[(S3Error==0) ||
(S4Error==0)]

[StandbyActive==0]
[DefrostActive==0] /

DutyCycleCompleted() /
DutyCycleTimer(DutyCycleCompleted,

DutyCyclePeriod)
DutyOnTimer(DutyOnCompleted, DutyOnTime)

DutyOnCompleted() /

 /

 /

 /

Sample() [DefrostActive==0]
[StandbyActive==0] / [AfterCutOut=0]

 /

 /

 /

NewTemp
[ThTemp>=HighAlarmLimit]

[AfterCutOut==1] /
HighAlarmDelay(HighAlarmTimeout,

AlarmDelay)

NewTemp [ThTemp>=HighAlarmLimit]
[AfterCutOut==0] /

HighAlarmDelay(HighAlarmTimeout,
PulldownAlarmDelay)

NewTemp
[ThTemp<HighAlarmLimit] /

HighAlarmTimeout() /

 /

 /

NewTemp [ThTemp<=LowAlarmLimit]
[AfterCutOut==1] /

LowAlarmDelay(LowAlarmTimeout,
AlarmDelay)

NewTemp [ThTemp<=LowAlarmLimit]
[AfterCutOut==0] /

LowAlarmDelay(LowAlarmTimeout,
PulldownAlarmDelay)

NewTemp
[ThTemp>LowAlarmLimit] /

LowAlarmTimeout() /

 /

 /

  

Hierarchy 

•   ThermoController 
•   Elements 
•   TC 

•   Regulator 
•   Standingby 
•   InOperation 

•   Regulating 
•   NormalMode 

•   CoolerOff 
•   CoolerOn 

•   EmergencyMode 
•   CompleteDutyCycle 
•   CoolerOn 

•   DefrostMode 
•   HighAlarmHandler 

•   NoHighAlarm 
•   HighDetected 

•   WaitAlarm 
•   SoundAlarm 

•   LowAlarmHandler 
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•   NoLowAlarm 
•   LowTempDetected 

•   WaitAlarm 
•   SoundAlarm 

 Elements 

 Events 
• DutyCycleCompleted () 
• DutyOnCompleted () 
• HighAlarmTimeout () 
• LowAlarmTimeout () 
• Sample () 

 Action functions 
• extern VS_INT Now () 
• extern VS_VOID DutyCycleTimer (VS_UINT event, VS_UINT ticks) 
• extern VS_VOID DutyOnTimer (VS_UINT event, VS_UINT ticks) 
• extern VS_VOID HighAlarmDelay (VS_UINT event, VS_UINT ticks) 
• extern VS_VOID LowAlarmDelay (VS_UINT event, VS_UINT ticks) 

 External variables 
• VS_UINT8 AlarmDelay = 50 
• VS_BOOL CoolingOn = 0 
• VS_BOOL DefrostActive = 0 
• VS_BOOL HighAlarm = 0 
• VS_INT HighAlarmLimit = 15 
• VS_BOOL LowAlarm = 0 
• VS_INT LowAlarmLimit = 0 
• VS_UINT8 PulldownAlarmDelay = 200 
• VS_INT S3Error = 0 
• VS_INT S3Temp = 0 
• VS_INT S4Error = 0 
• VS_INT S4Percent = 50 
• VS_INT S4Temp = 0 
• VS_BOOL StandbyActive = 0 
• VS_INT ThCutOut = 5 
• VS_INT ThDifferential = 2 
• VS_INT ThTemp = 0 

 Internal variables 
• VS_BOOL AfterCutOut = 0 
• VS_INT CutOutCount = 0 
• VS_INT DutyOnTime = 0 
• VS_INT OffStartTime = 0 
• VS_INT OffTime = 0 
• VS_INT OnStartTime = 0 
• VS_INT OnTime = 0 

 Signals 
• NewTemp 
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 Constants 
• VS_UINT8 CutoutCountLimit = 50 
• VS_INT DefaultEmergencyOnPercent = 30 
• VS_INT DutyCyclePeriod = 20 

Transitions 

• Standingby -> Sample() [StandbyActive == 0] / [AfterCutOut = 0] -> _DeepHistoryState0; 
• InOperation -> Sample() [StandbyActive == 1] / -> Standingby; 
• NoHighAlarm -> NewTemp [ThTemp >= HighAlarmLimit] [AfterCutOut == 1] / [HighAlarmDelay 

(HighAlarmTimeout, AlarmDelay)] -> HighDetected; 
• NoHighAlarm -> NewTemp [ThTemp >= HighAlarmLimit] [AfterCutOut == 0] / [HighAlarmDelay 

(HighAlarmTimeout, PulldownAlarmDelay)] -> HighDetected; 
• HighDetected -> NewTemp [ThTemp < HighAlarmLimit] / -> NoHighAlarm; 
• NoLowAlarm -> NewTemp [ThTemp <= LowAlarmLimit] [AfterCutOut == 1] / [LowAlarmDelay 

(LowAlarmTimeout, AlarmDelay)] -> LowTempDetected; 
• NoLowAlarm -> NewTemp [ThTemp <= LowAlarmLimit] [AfterCutOut == 0] / [LowAlarmDelay 

(LowAlarmTimeout, PulldownAlarmDelay)] -> LowTempDetected; 
• LowTempDetected -> NewTemp [ThTemp > LowAlarmLimit] / -> NoLowAlarm; 
• Regulating -> Sample() [DefrostActive == 1] [StandbyActive == 0] / -> DefrostMode; 
• DefrostMode -> Sample() [DefrostActive == 0] [StandbyActive == 0] / [AfterCutOut = 0] -> 

_ShallowHistoryState0; 
• NormalMode -> Sample() [(CutOutCount >= CutoutCountLimit) && ((S3Error == 1) && (S4Error == 1))] 

[StandbyActive == 0] [DefrostActive == 0] / [DutyOnTime = (OnTime / OnTime + OffTime) * 
DutyCyclePeriod] -> EmergencyMode; 

• NormalMode -> Sample() [((S3Error == 1) && (S4Error == 1)) && (CutOutCount < CutoutCountLimit)] 
[StandbyActive == 0] [DefrostActive == 0] / [DutyOnTime = (DefaultEmergencyOnPercent / 100) * 
DutyCyclePeriod] -> EmergencyMode; 

• EmergencyMode -> Sample() [(S3Error == 0) || (S4Error == 0)] [StandbyActive == 0] [DefrostActive == 
0] / -> NormalMode; 

• CoolerOff -> NewTemp [ThTemp >= ThCutOut + ThDifferential] / -> CoolerOn; 
• CoolerOn -> NewTemp [ThTemp < ThCutOut] / [CutOutCount = (CutOutCount + 1) % CutoutCountLimit 

+ 1] [AfterCutOut = 1] -> CoolerOff; 
• CompleteDutyCycle -> DutyCycleCompleted() / [DutyCycleTimer (DutyCycleCompleted, 

DutyCyclePeriod)] [DutyOnTimer (DutyOnCompleted, DutyOnTime)] -> CoolerOn; 
• CoolerOn -> DutyOnCompleted() / -> CompleteDutyCycle; 
• WaitAlarm -> HighAlarmTimeout() / -> SoundAlarm; 
• WaitAlarm -> LowAlarmTimeout() / -> SoundAlarm; 

States 

 TC 

Path: EKCThermostat:ThermoController 

Reactions and default transitions 

•   Sample() [(S3Error == 0) && (S4Error == 0)] / [ThTemp = ((100 - S4Percent) * S3Temp + S4Percent 
* S4Temp) / 100] ^NewTemp; 

•   Sample() [(S3Error == 1) && (S4Error == 0) && (S4Percent == 100)] / [ThTemp = S4Temp] 
^NewTemp; 

•   Sample() [(S3Error == 0) && (S4Error == 1) && (S4Percent == 0)] / [ThTemp = S3Temp] 
^NewTemp; 

•   Sample() [!(((S3Error == 0) && (S4Error == 0)) || ((S3Error == 1) && (S4Error == 1) && (S4Percent 
== 100)) || ((S3Error == 0) && (S4Error == 1) && (S4Percent == 0)))] / [ThTemp = 180.0] ^NewTemp; 
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 Regulator 

Path: EKCThermostat:ThermoController.TC 

 Standingby 

Path: EKCThermostat:ThermoController.TC.Regulator 

 InOperation 

Path: EKCThermostat:ThermoController.TC.Regulator 

 Regulating 

Path: EKCThermostat:ThermoController.TC.Regulator.InOperation 

 NormalMode 

Path: EKCThermostat:ThermoController.TC.Regulator.InOperation.Regulating 

 CoolerOff 

Path: EKCThermostat:ThermoController.TC.Regulator.InOperation.Regulating.NormalMode 

Reactions and default transitions 

•   Entry / [OffStartTime = Now ()]; 
•   Exit / [OffTime = OffTime + (Now () - OffStartTime)]; 

 CoolerOn 

Path: EKCThermostat:ThermoController.TC.Regulator.InOperation.Regulating.NormalMode 

Reactions and default transitions 

•   Entry / [OnStartTime = Now ()] [CoolingOn = 1]; 
•   Exit / [CoolingOn = 0] [OnTime = OnTime + (Now () - OnStartTime)]; 
•   _InitialState0 -> / -> CoolerOff; 

 EmergencyMode 

Path: EKCThermostat:ThermoController.TC.Regulator.InOperation.Regulating 

Reactions and default transitions 

•   Entry / [DutyCycleTimer (DutyCycleCompleted, DutyCyclePeriod)] [DutyOnTimer 
(DutyOnCompleted, DutyOnTime)]; 

 CompleteDutyCycle 

Path: EKCThermostat:ThermoController.TC.Regulator.InOperation.Regulating.EmergencyMode 

 CoolerOn 

Path: EKCThermostat:ThermoController.TC.Regulator.InOperation.Regulating.EmergencyMode 
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Reactions and default transitions 

•   Entry / [CoolingOn = 1]; 
•   Exit / [CoolingOn = 0]; 
•   _InitialState1 -> / -> CoolerOn; 
•   _ShallowHistoryState0 -> / -> NormalMode; 
•   _InitialState2 -> / -> NormalMode; 

 DefrostMode 

Path: EKCThermostat:ThermoController.TC.Regulator.InOperation 

Reactions and default transitions 

•   _DeepHistoryState0 -> / -> Regulating; 
•   _InitialState3 -> / -> Regulating; 
•   _InitialState4 -> / -> InOperation; 

 HighAlarmHandler 

Path: EKCThermostat:ThermoController.TC 

 NoHighAlarm 

Path: EKCThermostat:ThermoController.TC.HighAlarmHandler 

 HighDetected 

Path: EKCThermostat:ThermoController.TC.HighAlarmHandler 

 WaitAlarm 

Path: EKCThermostat:ThermoController.TC.HighAlarmHandler.HighDetected 

 SoundAlarm 

Path: EKCThermostat:ThermoController.TC.HighAlarmHandler.HighDetected 

Reactions and default transitions 

•   Entry / [HighAlarm = 1]; 
•   Exit / [HighAlarm = 0]; 
•   _InitialState5 -> / -> WaitAlarm; 
•   _InitialState6 -> / -> NoHighAlarm; 

 LowAlarmHandler 

Path: EKCThermostat:ThermoController.TC 

 NoLowAlarm 

Path: EKCThermostat:ThermoController.TC.LowAlarmHandler 
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 LowTempDetected 

Path: EKCThermostat:ThermoController.TC.LowAlarmHandler 

 WaitAlarm 

Path: EKCThermostat:ThermoController.TC.LowAlarmHandler.LowTempDetected 

 SoundAlarm 

Path: EKCThermostat:ThermoController.TC.LowAlarmHandler.LowTempDetected 

Reactions and default transitions 

•   Entry / [LowAlarm = 1]; 
•   Exit / [LowAlarm = 0]; 
•   _InitialState7 -> / -> WaitAlarm; 
•   _InitialState8 -> / -> NoLowAlarm; 
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Model test 
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Model interface 

 Events 
Event Path 

DutyCycleCompleted EKCThermostat:ThermoController 

DutyOnCompleted EKCThermostat:ThermoController 

HighAlarmTimeout EKCThermostat:ThermoController 

LowAlarmTimeout EKCThermostat:ThermoController 

Sample EKCThermostat:ThermoController 

 Action functions 
Action function Path 

DutyCycleTimer EKCThermostat:ThermoController 

DutyOnTimer EKCThermostat:ThermoController 

HighAlarmDelay EKCThermostat:ThermoController 

LowAlarmDelay EKCThermostat:ThermoController 

Now EKCThermostat:ThermoController 

 External variables 
External variable Path 

AlarmDelay EKCThermostat:ThermoController 

CoolingOn EKCThermostat:ThermoController 

DefrostActive EKCThermostat:ThermoController 

HighAlarm EKCThermostat:ThermoController 

HighAlarmLimit EKCThermostat:ThermoController 

LowAlarm EKCThermostat:ThermoController 

LowAlarmLimit EKCThermostat:ThermoController 

PulldownAlarmDelay EKCThermostat:ThermoController 

S3Error EKCThermostat:ThermoController 

S3Temp EKCThermostat:ThermoController 

S4Error EKCThermostat:ThermoController 

S4Percent EKCThermostat:ThermoController 

S4Temp EKCThermostat:ThermoController 

StandbyActive EKCThermostat:ThermoController 
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ThCutOut EKCThermostat:ThermoController 

ThDifferential EKCThermostat:ThermoController 

ThTemp EKCThermostat:ThermoController 

 Constants 
Constant Path 

CutoutCountLimit EKCThermostat:ThermoController 

DefaultEmergencyOnPercent EKCThermostat:ThermoController 

DutyCyclePeriod EKCThermostat:ThermoController 
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Implementation 
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Pseudo code 
Project Project 
{ 
  SignalQueueOverflowBehavior: errorIfFull; 
  Elements  
  { 
  } 
  System EKCThermostat 
  { 
    Instances: 1; 
    SignalQueueLength: 5; 
    TopState ThermoController; 
  } 
} 
 
TopState EKCThermostat:ThermoController 
{ 
  Elements  
  { 
    Events  
    { 
      DutyCycleCompleted (); 
      DutyOnCompleted (); 
      HighAlarmTimeout (); 
      LowAlarmTimeout (); 
      Sample ();  /* A new set of environment variables are available, and the 
controller 
needs to change state */  
    } 
    ActionFunctions  
    { 
      extern VS_INT Now ();  /* Returns current global real-time (tics) since 
system start */  
      extern VS_VOID DutyCycleTimer (VS_UINT event, VS_UINT ticks); 
      extern VS_VOID DutyOnTimer (VS_UINT event, VS_UINT ticks); 
      extern VS_VOID HighAlarmDelay (VS_UINT event, VS_UINT ticks); 
      extern VS_VOID LowAlarmDelay (VS_UINT event, VS_UINT ticks); 
    } 
    ExternalVariables  
    { 
      VS_UINT8 AlarmDelay = 50;  /* INPUT SETTING  
Range 0, 30 
the alarm delay in minutes before a high/low alarm is set */  
      VS_BOOL CoolingOn = 0;  /* OUTPUT 
Danfoss: 
True if cooling is to be on.  
False if cooling is to be off, standby mode/state or defrost mode/state */  
      VS_BOOL DefrostActive = 0;  /* INPUT: True when defrost mode is requested 
 
Danfoss: True if in defrost sequence */  
      VS_BOOL HighAlarm = 0;  /* OUTPUT: 
 
Danfoss: 
True if high limit alarm conditions are met */  
      VS_INT HighAlarmLimit = 15;  /* INPUT SETTING 
Danfoss 
Range -200.0, 200.0,  
When the thermostat value goes above the limit, an high limit alarm must be set 
after a time delay */  
      VS_BOOL LowAlarm = 0;  /* OUTPUT 
Danfoss: 
 
True if low limit alarm conditions are met */  
      VS_INT LowAlarmLimit = 0;  /* INPUT SETTING 
Danfoss: 
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Range -200.0, 200.0,  
When the thermostat value goes below the limit, an low limit alarm must be set 
after a time delay */  
      VS_UINT8 PulldownAlarmDelay = 200;  /* INPUT SETTING  
 
Range 0, 60,  
the alarm delay in minutes before a high/low alarm is set.  
The delay replaces iAlarmDelay before the first thermostat cut out after power on,  
leaving stand-by mode or leaving defrost mode. */  
      VS_INT S3Error = 0;  /* INPUT 
True when an error has been detected on Sensor 3 (incomming air temperature) 
Danfoss: 
The value of S3Temp is not valid due to a sensor error detected */  
      VS_INT S3Temp = 0;  /* INPUT: Incomming Air Temperature 
 
Danfoss:  
Range -200.0, 200.0, T 
emperature from sensor placed in the air stream before the evaporator */  
      VS_INT S4Error = 0;  /* INPUT 
True when an error has been detected on Sensor 3 (incomming air temperature) 
Danfoss: 
The value of S4Temp is not valid due to a sensor error detected */  
      VS_INT S4Percent = 50;  /* INPUT SETTING 
Danfoss: 
Range 0, 100,  
weighting between S4/S3 sensor */  
      VS_INT S4Temp = 0;  /* INPUT: Outcomimng air temperature 
 
Danfoss: 
Range -200.0, 200.0,  
temperature from sensor placed in the air stream after the evaporator */  
      VS_BOOL StandbyActive = 0;  /* INPUT True when standby is requested 
Danfoss: 
True if standby mode/state active */  
      VS_INT ThCutOut = 5;  /* INPUT SETTING 
Defines threshold for disabling cooling 
 
Danfoss:  
Range -200.0, 200.0, 
the thermostat cut out limit */  
      VS_INT ThDifferential = 2;  /* INPUT SETTING 
 
Danfoss: 
Range 0.0, 50.0,  
the differential value (hysteresis) defining the cut in value as cut out value plus 
hysteresis. */  
      VS_INT ThTemp = 0;  /* OUTPUT/INTERNAL  
Calculated Thermostat temperature 
 
Danfoss: 
Range -200.0, 200.0,  
calculated thermostat temperature. Used to determine cut-in/out and alarm state. 
FlThTemp = (100-iS4Percent)*flS3Temp +iS4Percent*flS4Temp 
In case of sensor error S3/S4 flThTemp=180.0, but: 
If iS4Percent=100 and bS3Error then flThTemp=flS4Temp 
If iS4Percent=0 and bS4Error then flThTemp=flS3Temp */  
    } 
    InternalVariables  
    { 
      VS_BOOL AfterCutOut = 0; 
      VS_INT CutOutCount = 0; 
      VS_INT DutyOnTime = 0; 
      VS_INT OffStartTime = 0;  /* Time at which a state was entered */  
      VS_INT OffTime = 0; 
      VS_INT OnStartTime = 0; 
      VS_INT OnTime = 0; 
    } 
    Signals  
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    { 
      NewTemp;  /* A new Calculated Temperature Has been calculated */  
    } 
    Constants  
    { 
      VS_UINT8 CutoutCountLimit = 50;  /* Number of cutouts determines wheter to 
use historically computed emergency cooling duty cycle or  
default 30/70 duty cycle. 
 
In case of sensor error (short or open circuit), the thermostat cut-in/out is not 
determined from the used temperature input, but is calculated from the cut in/out 
history (emergency cooling): 
1) If the count of cut outs is below 50, the cut-in/out sequence is calculated 
from a 30% on/70% off duty cycle with a period of 20 minutes. 
2) Otherwise the cut-in/out duty cycle is calculated from minutes in cut-in and 
minutes in cut out (excluding standby and defrost cut-out time) again with a period 
of 20 minutes. 
 */  
      VS_INT DefaultEmergencyOnPercent = 30;  /* The fraction of a duty cycle 
period where the cooling is required to be on.   */  
      VS_INT DutyCyclePeriod = 20;  /* Length of a duty cycle in emergency mode 
 */  
    } 
  } 
  Transitions  
  { 
    ThermoController.TC.Standingby -> Sample() [StandbyActive==0] / [AfterCutOut=0] 
-> ThermoController.TC.InOperation._DeepHistoryState0; 
    ThermoController.TC.InOperation -> Sample() [StandbyActive==1] / -> 
ThermoController.TC.Standingby; 
    ThermoController.TC.NoHighAlarm -> NewTemp [ThTemp>=HighAlarmLimit] 
[AfterCutOut==1] / [HighAlarmDelay (HighAlarmTimeout, AlarmDelay)] -> 
ThermoController.TC.HighDetected; 
    ThermoController.TC.NoHighAlarm -> NewTemp [ThTemp>=HighAlarmLimit] 
[AfterCutOut==0] / [HighAlarmDelay (HighAlarmTimeout, PulldownAlarmDelay)] -> 
ThermoController.TC.HighDetected; 
    ThermoController.TC.HighDetected -> NewTemp [ThTemp<HighAlarmLimit] / -> 
ThermoController.TC.NoHighAlarm; 
    ThermoController.TC.NoLowAlarm -> NewTemp [ThTemp<=LowAlarmLimit] 
[AfterCutOut==1] / [LowAlarmDelay (LowAlarmTimeout, AlarmDelay)] -> 
ThermoController.TC.LowTempDetected; 
    ThermoController.TC.NoLowAlarm -> NewTemp [ThTemp<=LowAlarmLimit] 
[AfterCutOut==0] / [LowAlarmDelay (LowAlarmTimeout, PulldownAlarmDelay)] -> 
ThermoController.TC.LowTempDetected; 
    ThermoController.TC.LowTempDetected -> NewTemp [ThTemp>LowAlarmLimit] / -> 
ThermoController.TC.NoLowAlarm; 
    ThermoController.TC.InOperation.Regulating -> Sample() [DefrostActive==1] 
[StandbyActive==0] / -> ThermoController.TC.InOperation.DefrostMode; 
    ThermoController.TC.InOperation.DefrostMode -> Sample() [DefrostActive==0] 
[StandbyActive==0] / [AfterCutOut=0] -> 
ThermoController.TC.InOperation.Regulating._ShallowHistoryState0; 
    ThermoController.TC.InOperation.Regulating.NormalMode -> Sample() 
[(CutOutCount>=CutoutCountLimit)  && ((S3Error==1) && (S4Error==1)) ] 
[StandbyActive==0] [DefrostActive==0] / [DutyOnTime= (OnTime/OnTime+OffTime) 
*DutyCyclePeriod] -> ThermoController.TC.InOperation.Regulating.EmergencyMode; 
    ThermoController.TC.InOperation.Regulating.NormalMode -> Sample() [ 
((S3Error==1) && (S4Error==1)) && (CutOutCount<CutoutCountLimit)] 
[StandbyActive==0] [DefrostActive==0] / [DutyOnTime= 
(DefaultEmergencyOnPercent/100) *DutyCyclePeriod] -> 
ThermoController.TC.InOperation.Regulating.EmergencyMode; 
    ThermoController.TC.InOperation.Regulating.EmergencyMode -> Sample() 
[(S3Error==0) || (S4Error==0)] [StandbyActive==0] [DefrostActive==0] / -> 
ThermoController.TC.InOperation.Regulating.NormalMode; 
    ThermoController.TC.InOperation.Regulating.NormalMode.CoolerOff -> NewTemp 
[ThTemp>= ThCutOut + ThDifferential] / -> 
ThermoController.TC.InOperation.Regulating.NormalMode.CoolerOn; 
    ThermoController.TC.InOperation.Regulating.NormalMode.CoolerOn -> NewTemp 
[ThTemp < ThCutOut] / [CutOutCount=(CutOutCount+1)%CutoutCountLimit+1] 
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[AfterCutOut=1] -> ThermoController.TC.InOperation.Regulating.NormalMode.CoolerOff; 
    ThermoController.TC.InOperation.Regulating.EmergencyMode.CompleteDutyCycle -> 
DutyCycleCompleted() / [DutyCycleTimer (DutyCycleCompleted, DutyCyclePeriod)] 
[DutyOnTimer (DutyOnCompleted, DutyOnTime)] -> 
ThermoController.TC.InOperation.Regulating.EmergencyMode.CoolerOn; 
    ThermoController.TC.InOperation.Regulating.EmergencyMode.CoolerOn -> 
DutyOnCompleted() / -> 
ThermoController.TC.InOperation.Regulating.EmergencyMode.CompleteDutyCycle; 
    ThermoController.TC.HighDetected.WaitAlarm -> HighAlarmTimeout() / -> 
ThermoController.TC.HighDetected.SoundAlarm; 
    ThermoController.TC.LowTempDetected.WaitAlarm -> LowAlarmTimeout() / -> 
ThermoController.TC.LowTempDetected.SoundAlarm; 
  } 
  CompositeState TC 
  { 
    Sample() [(S3Error==0) && (S4Error==0)] / [ThTemp= ((100-S4Percent) *S3Temp+ 
S4Percent*S4Temp)/100] ^NewTemp; 
    Sample() [(S3Error==1) && (S4Error==0) && (S4Percent==100)] / [ThTemp=S4Temp] 
^NewTemp; 
    Sample() [(S3Error==0) && (S4Error==1) && (S4Percent==0)] / [ThTemp=S3Temp] 
^NewTemp; 
    Sample() [! (((S3Error==0) && (S4Error==0)) || ((S3Error==1) && (S4Error==1) && 
(S4Percent==100)) ||  ((S3Error==0) && (S4Error==1) && (S4Percent==0))) ] / 
[ThTemp=180.0] ^NewTemp; 
 
    Region Regulator 
    { 
      SimpleState Standingby 
      { 
      } 
      CompositeState InOperation 
      { 
        CompositeState Regulating 
        { 
          CompositeState NormalMode 
          { 
            SimpleState CoolerOff 
            { 
              Entry / [OffStartTime=Now()]; 
              Exit / [OffTime=OffTime+(Now()-OffStartTime)]; 
            } 
 
            SimpleState CoolerOn 
            { 
              Entry / [OnStartTime=Now()] [CoolingOn=1]; 
              Exit / [CoolingOn=0] [OnTime=OnTime+(Now()-OnStartTime)]; 
            } 
            ThermoController.TC.InOperation.Regulating.NormalMode._InitialState0 -> 
/ -> ThermoController.TC.InOperation.Regulating.NormalMode.CoolerOff; 
          } 
 
          CompositeState EmergencyMode 
          { 
            Entry / [DutyCycleTimer (DutyCycleCompleted, DutyCyclePeriod)] 
[DutyOnTimer (DutyOnCompleted, DutyOnTime)]; 
 
            SimpleState CompleteDutyCycle 
            { 
            } 
            SimpleState CoolerOn 
            { 
              Entry / [CoolingOn=1]; 
              Exit / [CoolingOn=0]; 
            } 
            ThermoController.TC.InOperation.Regulating.EmergencyMode._InitialState1 
-> / -> ThermoController.TC.InOperation.Regulating.EmergencyMode.CoolerOn; 
          } 
          ThermoController.TC.InOperation.Regulating._ShallowHistoryState0 -> / -> 
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ThermoController.TC.InOperation.Regulating.NormalMode; 
          ThermoController.TC.InOperation.Regulating._InitialState2 -> / -> 
ThermoController.TC.InOperation.Regulating.NormalMode; 
        } 
 
        SimpleState DefrostMode 
        { 
        } 
        ThermoController.TC.InOperation._DeepHistoryState0 -> / -> 
ThermoController.TC.InOperation.Regulating; 
        ThermoController.TC.InOperation._InitialState3 -> / -> 
ThermoController.TC.InOperation.Regulating; 
      } 
      ThermoController.TC._InitialState4 -> / -> ThermoController.TC.InOperation; 
    } 
 
    Region HighAlarmHandler 
    { 
      SimpleState NoHighAlarm 
      { 
      } 
      CompositeState HighDetected 
      { 
        SimpleState WaitAlarm 
        { 
        } 
        SimpleState SoundAlarm 
        { 
          Entry / [HighAlarm=1]; 
          Exit / [HighAlarm=0]; 
        } 
        ThermoController.TC.HighDetected._InitialState5 -> / -> 
ThermoController.TC.HighDetected.WaitAlarm; 
      } 
      ThermoController.TC._InitialState6 -> / -> ThermoController.TC.NoHighAlarm; 
    } 
 
    Region LowAlarmHandler 
    { 
      SimpleState NoLowAlarm 
      { 
      } 
      CompositeState LowTempDetected 
      { 
        SimpleState WaitAlarm 
        { 
        } 
        SimpleState SoundAlarm 
        { 
          Entry / [LowAlarm=1]; 
          Exit / [LowAlarm=0]; 
        } 
        ThermoController.TC.LowTempDetected._InitialState7 -> / -> 
ThermoController.TC.LowTempDetected.WaitAlarm; 
      } 
      ThermoController.TC._InitialState8 -> / -> ThermoController.TC.NoLowAlarm; 
    } 
  } 
} 
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Element lists 

 Events 
Event Path 

DutyCycleCompleted EKCThermostat:ThermoController 

DutyOnCompleted EKCThermostat:ThermoController 

HighAlarmTimeout EKCThermostat:ThermoController 

LowAlarmTimeout EKCThermostat:ThermoController 

Sample EKCThermostat:ThermoController 

 Action functions 
Action function Path 

DutyCycleTimer EKCThermostat:ThermoController 

DutyOnTimer EKCThermostat:ThermoController 

HighAlarmDelay EKCThermostat:ThermoController 

LowAlarmDelay EKCThermostat:ThermoController 

Now EKCThermostat:ThermoController 

 External variables 
External variable Path 

AlarmDelay EKCThermostat:ThermoController 

CoolingOn EKCThermostat:ThermoController 

DefrostActive EKCThermostat:ThermoController 

HighAlarm EKCThermostat:ThermoController 

HighAlarmLimit EKCThermostat:ThermoController 

LowAlarm EKCThermostat:ThermoController 

LowAlarmLimit EKCThermostat:ThermoController 

PulldownAlarmDelay EKCThermostat:ThermoController 

S3Error EKCThermostat:ThermoController 

S3Temp EKCThermostat:ThermoController 

S4Error EKCThermostat:ThermoController 

S4Percent EKCThermostat:ThermoController 

S4Temp EKCThermostat:ThermoController 

StandbyActive EKCThermostat:ThermoController 
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ThCutOut EKCThermostat:ThermoController 

ThDifferential EKCThermostat:ThermoController 

ThTemp EKCThermostat:ThermoController 

 Internal variables 
Internal variable Path 

AfterCutOut EKCThermostat:ThermoController 

CutOutCount EKCThermostat:ThermoController 

DutyOnTime EKCThermostat:ThermoController 

OffStartTime EKCThermostat:ThermoController 

OffTime EKCThermostat:ThermoController 

OnStartTime EKCThermostat:ThermoController 

OnTime EKCThermostat:ThermoController 

 Signals 
Signal Path 

NewTemp EKCThermostat:ThermoController 

 Constants 
Constant Path 

CutoutCountLimit EKCThermostat:ThermoController 

DefaultEmergencyOnPercent EKCThermostat:ThermoController 

DutyCyclePeriod EKCThermostat:ThermoController 
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Index 
Index entries: ACDEHILNOPRSTW 

A 
• AfterCutOut [p6] (Internal variable) 

• Action expression [p7] 
• Guard expression [p7] 
• Guard expression [p7] 
• Guard expression [p7] 
• Guard expression [p7] 
• Action expression [p7] 
• Action expression [p7] 

• AlarmDelay [p6] (External variable) 
• Action expression [p7] 
• Action expression [p7] 

C 
• CompleteDutyCycle [p8] (State) 

• Source state [p7] 
• Destination state [p7] 

• CoolerOff [p8] (State) 
• Source state [p7] 
• Destination state [p7] 
• Destination state [p8] 

• CoolerOn [p8] (State) 
• Destination state [p7] 
• Source state [p7] 

• CoolerOn [p8] (State) 
• Destination state [p7] 
• Source state [p7] 
• Destination state [p9] 

• CoolingOn [p6] (External variable) 
• Action expression [p8] 
• Action expression [p8] 
• Action expression [p9] 
• Action expression [p9] 

• CutOutCount [p6] (Internal variable) 
• Guard expression [p7] 
• Guard expression [p7] 
• Action expression [p7] 
• Action expression [p7] 

• CutoutCountLimit [p7] (Constant) 
• Guard expression [p7] 
• Guard expression [p7] 
• Action expression [p7] 

D 
• DefaultEmergencyOnPercent [p7] (Constant) 

• Action expression [p7] 
• DefrostActive [p6] (External variable) 

• Guard expression [p7] 
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• Guard expression [p7] 
• Guard expression [p7] 
• Guard expression [p7] 
• Guard expression [p7] 

• DefrostMode [p9] (State) 
• Destination state [p7] 
• Source state [p7] 

• DutyCycleCompleted [p6] (Event) 
• Trigger [p7] 
• Action expression [p7] 
• Action expression [p8] 

• DutyCyclePeriod [p7] (Constant) 
• Action expression [p7] 
• Action expression [p7] 
• Action expression [p7] 
• Action expression [p8] 

• DutyCycleTimer [p6] (Action function declaration) 
• Action expression [p7] 
• Action expression [p8] 

• DutyOnCompleted [p6] (Event) 
• Action expression [p7] 
• Trigger [p7] 
• Action expression [p8] 

• DutyOnTime [p6] (Internal variable) 
• Action expression [p7] 
• Action expression [p7] 
• Action expression [p7] 
• Action expression [p8] 

• DutyOnTimer [p6] (Action function declaration) 
• Action expression [p7] 
• Action expression [p8] 

E 
• EmergencyMode [p8] (State) 

• Destination state [p7] 
• Destination state [p7] 
• Source state [p7] 

H 
• HighAlarm [p6] (External variable) 

• Action expression [p9] 
• Action expression [p9] 

• HighAlarmDelay [p6] (Action function declaration) 
• Action expression [p7] 
• Action expression [p7] 

• HighAlarmLimit [p6] (External variable) 
• Guard expression [p7] 
• Guard expression [p7] 
• Guard expression [p7] 

• HighAlarmTimeout [p6] (Event) 
• Action expression [p7] 
• Action expression [p7] 
• Trigger [p7] 
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• HighDetected [p9] (State) 
• Destination state [p7] 
• Destination state [p7] 
• Source state [p7] 

I 
• InOperation [p8] (State) 

• Source state [p7] 
• Destination state [p9] 

L 
• LowAlarm [p6] (External variable) 

• Action expression [p10] 
• Action expression [p10] 

• LowAlarmDelay [p6] (Action function declaration) 
• Action expression [p7] 
• Action expression [p7] 

• LowAlarmLimit [p6] (External variable) 
• Guard expression [p7] 
• Guard expression [p7] 
• Guard expression [p7] 

• LowAlarmTimeout [p6] (Event) 
• Action expression [p7] 
• Action expression [p7] 
• Trigger [p7] 

• LowTempDetected [p10] (State) 
• Destination state [p7] 
• Destination state [p7] 
• Source state [p7] 

N 
• NewTemp [p6] (Signal) 

• Trigger [p7] 
• Trigger [p7] 
• Trigger [p7] 
• Trigger [p7] 
• Trigger [p7] 
• Trigger [p7] 
• Trigger [p7] 
• Trigger [p7] 
• Sent signal [p7] 
• Sent signal [p7] 
• Sent signal [p7] 
• Sent signal [p7] 

• NoHighAlarm [p9] (State) 
• Source state [p7] 
• Source state [p7] 
• Destination state [p7] 
• Destination state [p9] 

• NoLowAlarm [p9] (State) 
• Source state [p7] 
• Source state [p7] 
• Destination state [p7] 
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• Destination state [p10] 
• NormalMode [p8] (State) 

• Source state [p7] 
• Source state [p7] 
• Destination state [p7] 
• Destination state [p9] 
• Destination state [p9] 

• Now [p6] (Action function declaration) 
• Action expression [p8] 
• Action expression [p8] 
• Action expression [p8] 
• Action expression [p8] 

O 
• OffStartTime [p6] (Internal variable) 

• Action expression [p8] 
• Action expression [p8] 

• OffTime [p6] (Internal variable) 
• Action expression [p7] 
• Action expression [p8] 
• Action expression [p8] 

• OnStartTime [p6] (Internal variable) 
• Action expression [p8] 
• Action expression [p8] 

• OnTime [p6] (Internal variable) 
• Action expression [p7] 
• Action expression [p7] 
• Action expression [p8] 
• Action expression [p8] 

P 
• PulldownAlarmDelay [p6] (External variable) 

• Action expression [p7] 
• Action expression [p7] 

R 
• Regulating [p8] (State) 

• Source state [p7] 
• Destination state [p9] 
• Destination state [p9] 

S 
• S3Error [p6] (External variable) 

• Guard expression [p7] 
• Guard expression [p7] 
• Guard expression [p7] 
• Guard expression [p7] 
• Guard expression [p7] 
• Guard expression [p7] 
• Guard expression [p7] 
• Guard expression [p7] 
• Guard expression [p7] 

• S3Temp [p6] (External variable) 
• Action expression [p7] 
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• Action expression [p7] 
• S4Error [p6] (External variable) 

• Guard expression [p7] 
• Guard expression [p7] 
• Guard expression [p7] 
• Guard expression [p7] 
• Guard expression [p7] 
• Guard expression [p7] 
• Guard expression [p7] 
• Guard expression [p7] 
• Guard expression [p7] 

• S4Percent [p6] (External variable) 
• Action expression [p7] 
• Action expression [p7] 
• Guard expression [p7] 
• Guard expression [p7] 
• Guard expression [p7] 
• Guard expression [p7] 

• S4Temp [p6] (External variable) 
• Action expression [p7] 
• Action expression [p7] 

• Sample [p6] (Event) 
• Trigger [p7] 
• Trigger [p7] 
• Trigger [p7] 
• Trigger [p7] 
• Trigger [p7] 
• Trigger [p7] 
• Trigger [p7] 
• Trigger [p7] 
• Trigger [p7] 
• Trigger [p7] 
• Trigger [p7] 

• SoundAlarm [p9] (State) 
• Destination state [p7] 

• SoundAlarm [p10] (State) 
• Destination state [p7] 

• StandbyActive [p6] (External variable) 
• Guard expression [p7] 
• Guard expression [p7] 
• Guard expression [p7] 
• Guard expression [p7] 
• Guard expression [p7] 
• Guard expression [p7] 
• Guard expression [p7] 

• Standingby [p8] (State) 
• Source state [p7] 
• Destination state [p7] 

T 
• TC [p7] (State) (unreferenced) 
• ThCutOut [p6] (External variable) 
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• Guard expression [p7] 
• Guard expression [p7] 

• ThDifferential [p6] (External variable) 
• Guard expression [p7] 

• ThermoController [p4] (State) (unreferenced) 
• ThTemp [p6] (External variable) 

• Guard expression [p7] 
• Guard expression [p7] 
• Guard expression [p7] 
• Guard expression [p7] 
• Guard expression [p7] 
• Guard expression [p7] 
• Guard expression [p7] 
• Guard expression [p7] 
• Action expression [p7] 
• Action expression [p7] 
• Action expression [p7] 
• Action expression [p7] 

W 
• WaitAlarm [p10] (State) 

• Source state [p7] 
• Destination state [p10] 

• WaitAlarm [p9] (State) 
• Source state [p7] 
• Destination state [p9] 
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