
B
R

IC
S

R
S

-03-42
N

ygaard
&

W
inskel:

F
ullA

bstraction
for

H
O

P
LA

BRICS
Basic Research in Computer Science

Full Abstraction for HOPLA

Mikkel Nygaard
Glynn Winskel

BRICS Report Series RS-03-42

ISSN 0909-0878 December 2003



Copyright c© 2003, Mikkel Nygaard & Glynn Winskel.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/03/42/



Full Abstraction for HOPLA

Mikkel Nygaard Glynn Winskel
BRICS∗ Computer Laboratory

University of Aarhus University of Cambridge

Abstract

A fully abstract denotational semantics for the higher-order pro-
cess language HOPLA is presented. It characterises contextual and
logical equivalence, the latter linking up with simulation. The seman-
tics is a clean, domain-theoretic description of processes as downwards-
closed sets of computation paths: the operations of HOPLA arise as
syntactic encodings of canonical constructions on such sets; full ab-
straction is a direct consequence of expressiveness with respect to com-
putation paths; and simple proofs of soundness and adequacy shows
correspondence between the denotational and operational semantics.

1 Introduction

HOPLA (Higher-Order Process LAnguage [19]) is an expressive language for
higher-order nondeterministic processes. It has a straightforward operational
semantics supporting a standard bisimulation congruence, and can directly
encode calculi like CCS, higher-order CCS and mobile ambients with public
names. The language came out of work on a linear domain theory for con-
currency, based on a categorical model of linear logic and associated comon-
ads [4, 18], the comonad used for HOPLA being an exponential ! of linear
logic.

The denotational semantics given in [19] interpreted processes as pre-
sheaves. Here we consider a “path semantics” for HOPLA which allows us to
characterise operationally the distinguishing power of the notion of computa-
tion path underlying the presheaf semantics (in contrast to the distinguish-
ing power of the presheaf structure itself). Path semantics is similar to trace

∗Basic Research in Computer Science (www.brics.dk),
funded by the Danish National Research Foundation.

1



semantics [10] in that processes denote downwards-closed sets of computa-
tion paths and the corresponding notion of process equivalence, called path
equivalence, is given by equality of such sets; computation paths, however,
may have more structure than traditional traces. Indeed, we characterise
contextual equivalence for HOPLA as path equivalence and show that this
coincides with logical equivalence for a fragment of Hennessy-Milner logic
which is characteristic for simulation equivalence in the case of image-finite
processes [8].

To increase the expressiveness of HOPLA (for example, to include the
type used in [25] for CCS with late value-passing), while still ensuring that
every operation in the language has a canonical semantics, we decompose
the “prefix-sum” type Σα∈Aα.Pα in [19] into a sum type Σα∈APα and an
anonymous action prefix type !P. The sum type, also a product, is associated
with injection (“tagging”) and projection term constructors, βt and πβt for
β ∈ A. The prefix type is associated with constructions of prefixing !t and
prefix match [u > !x ⇒ t], subsuming the original terms β.t and [u > β.x ⇒
t] using β!t and [πβu > !x ⇒ t].

In Sect. 2 we present a domain theory of path sets, used in Sect. 3 to
give a fully abstract denotational semantics to HOPLA. Section 4 presents
the operational semantics of HOPLA, essentially that of [19], and relates
the denotational and operational semantics with pleasingly simple proofs of
soundness and adequacy. Section 5 concludes with a discussion of related
and future work.

2 Domain Theory from Path Sets

In the path semantics, processes are represented as collections of computa-
tion paths. Paths are elements of preorders P, Q, . . . called path orders which
function as process types, each describing the set of possible paths for pro-
cesses of that type together with their sub-path ordering. A process of type
P is then represented as a downwards-closed subset X ⊆ P, called a path set.
Path sets X ⊆ P ordered by inclusion form the elements of the poset P̂ which
we’ll think of as a domain of meanings of processes of type P.

The poset P̂ has many interesting properties. First of all, it is a complete
lattice with joins given by union. In the sense of Hennessy and Plotkin [7], P̂ is
a “nondeterministic domain”, with joins used to interpret nondeterministic
sums of processes. Accordingly, given a family (Xi)i∈I of elements of P̂,
we sometimes write Σi∈IXi for their join. A typical finite join is written
X1 + · · · + Xk while the empty join is the empty path set, the inactive
process, written ∅.

2



A second important property of P̂ is that any X ∈ P̂ is the join of certain
“prime” elements below it; P̂ is a prime algebraic complete lattice [17]. Primes
are down-closures yPp = {p′ : p′ ≤P p} of individual elements p ∈ P, repre-
senting a process that may perform the computation path p. The map yP

reflects as well as preserves order, so that p ≤P p′ iff yPp ⊆ yPp
′, and yP thus

“embeds” P in P̂. We clearly have yPp ⊆ X iff p ∈ X and prime algebraicity
of P̂ amounts to saying that any X ∈ P̂ is the union of its elements:

X =
⋃

p∈X yPp . (1)

Finally, P̂ is characterised abstractly as the free join-completion of P,
meaning (i) it is join-complete and (ii) given any join-complete poset C and

a monotone map f : P → C, there is a unique join-preserving map f † : P̂ → C
such that the diagram on the left below commutes.

P
yP //

f $$HHH
HHH

HH P̂
f†��

C

f †X =
⋃

p∈X fp . (2)

We call f † the extension of f along yP. Uniqueness of f † follows from (1).

Notice that we may instantiate C to any poset of the form Q̂, drawing
our attention to join-preserving maps P̂ → Q̂. By the freeness property (2),

join-preserving maps P̂ → Q̂ are in bijective correspondence with monotone
maps P → Q̂. Each element Y of Q̂ can be represented using its “charac-
teristic function”, a monotone map fY : Qop → 2 from the opposite order
to the simple poset 0 < 1 such that Y = {q : fY q = 1} and Q̂ ∼= [Qop, 2].
Uncurrying then yields the following chain:

[P, Q̂] ∼= [P, [Qop, 2]] ∼= [P×Qop, 2] = [(Pop ×Q)op, 2] ∼= ̂Pop ×Q . (3)

So the order Pop × Q provides a function space type. We’ll now investigate
what additional type structure is at hand.

2.1 Linear and Continuous Categories

Write Lin for the category with path orders P, Q, . . . as objects and join-pre-
serving maps P̂ → Q̂ as arrows. It turns out Lin has enough structure to be
understood as a categorical model of Girard’s linear logic [5, 23]. Accordingly,
we’ll call arrows of Lin linear maps.

Linear maps are represented by elements of ̂Pop ×Q and so by downwards-
closed subsets of the order Pop ×Q. This relational presentation exposes an

3



involution central in understanding Lin as a categorical model of classical
linear logic. The involution of linear logic, yielding P⊥ on an object P, is
given by Pop; clearly, downwards-closed subsets of Pop × Q correspond to
downwards-closed subsets of (Qop)op × Pop, showing how maps P → Q cor-
respond to maps Q⊥ → P⊥ in Lin. The tensor product of P and Q is given
by the product of preorders P×Q; the singleton order 1 is a unit for tensor.
Linear function space P ( Q is then obtained as Pop × Q. Products P & Q
are given by P + Q, the disjoint juxtaposition of preorders. An element of

P̂ & Q can be identified with a pair (X, Y ) with X ∈ P̂ and Y ∈ Q̂, which
provides the projections π1 : P & Q → P and π2 : P & Q → Q in Lin. More
general, not just binary, products &i∈I Pi with projections πj , for j ∈ I, are
defined similarly. From the universal property of products, a collection of
maps fi : P → Pi, for i ∈ I, can be tupled together to form a unique map
〈fi〉i∈I : P → &i∈I Pi with the property that πj ◦ 〈fi〉i∈I = fj for all j ∈ I.
The empty product is given by the empty order O and, as the terminal ob-
ject, is associated with unique maps ∅P : P → O, constantly ∅, for any path
order P. All told, Lin is a ∗-autonomous category, so a symmetric monoidal
closed category with a dualising object, and has finite products as required
by Seely’s definition of a model of linear logic [23].

In fact, Lin also has all coproducts, also given on objects P and Q by
the juxtaposition P + Q and so coinciding with products. Injection maps
in1 : P → P + Q and in2 : Q → P + Q in Lin derive from the obvious
injections into the disjoint sum of preorders. The empty coproduct is the
empty order O which is then a zero object. This collapse of products and
coproducts highlights that Lin has arbitrary biproducts. Via the isomorphism

Lin(P, Q) ∼= ̂Pop ×Q, each homset of Lin can be seen as a commutative
monoid with neutral element the always ∅ map, itself written ∅ : P → Q,
and sum given by union, written +. Composition in Lin is bilinear in that,
given f, f ′ : P → Q and g, g′ : Q → R, we have (g + g′) ◦ (f + f ′) =
g ◦ f + g ◦ f ′ + g′ ◦ f + g′ ◦ f ′. Further, given a family of objects (Pα)α∈A, we
have for each β ∈ A a diagram

Pβ
inβ

// Σα∈APα

πβoo such that

πβ ◦ inβ = 1Pβ
,

πβ ◦ inα = ∅ if α 6= β, and

Σα∈A(inα ◦ πα) = 1Σα∈APα .

(4)

Processes of type Σα∈APα may intuitively perform computation paths in any
of the component path orders Pα.

We see that Lin is rich in structure. But linear maps alone are too
restrictive. Being join-preserving, they in particular preserve the empty join.
So, unlike e.g. prefixing, linear maps always send the inactive process ∅

4



to itself. Looking for a broader notion of maps between nondeterministic
domains we follow the discipline of linear logic and consider non-linear maps,
i.e. maps whose domain is under an exponential, !. One choice of a suitable
exponential for Lin is got by taking !P to be the preorder obtained as the
free finite-join completion of P. Concretely, !P can be defined to have finite
subsets of P as elements with ordering given by �P, defined for arbitrary
subsets X, Y of P as follows:

X �P Y ⇐⇒def ∀p ∈ X.∃q ∈ Y.p ≤P q . (5)

When !P is quotiented by the equivalence induced by the preorder we obtain
a poset which is the free finite-join completion of P. By further using the
obvious inclusion of this completion into P̂, we get a map iP : !P → P̂ sending
a finite set {p1, . . . , pn} to the join yPp1 + · · · + yPpn. Such finite sums of

primes are the finite (isolated, compact) elements of P̂. The map iP assumes

the role of yP above. For any X ∈ P̂ and P ∈ !P, we have iPP ⊆ X iff
P �P X, and X is the directed join of the finite elements below it:

X =
⋃

P�PX iPP . (6)

Further, P̂ is the free directed-join completion of !P (also known as the ideal
completion of !P). This means that given any monotone map f : !P →
C for some directed-join complete poset C, there is a unique directed-join
preserving (i.e. Scott continuous) map f ‡ : P̂ → C such that the diagram
below commutes.

!P
iP //

f $$IIIIIII P̂
f‡��

C

f ‡X =
⋃

P�PX fP . (7)

Uniqueness of f ‡, called the extension of f along iP, follows from (6). As

before, we can replace C by a nondeterministic domain Q̂ and by the freeness
properties (2) and (7), there is a bijective correspondence between linear

maps !P → Q and continuous maps P̂ → Q̂.
We define the category Cts to have path orders P, Q, . . . as objects and

continuous maps P̂ → Q̂ as arrows. These arrows allow more process opera-
tions, including prefixing, to be expressed. The structure of Cts is induced
by that of Lin via an adjunction between the two categories.

5



2.2 An Adjunction

As linear maps are continuous, Cts has Lin as a sub-category, one which
shares the same objects. We saw above that there is a bijection

Lin(!P, Q) ∼= Cts(P, Q) . (8)

This is in fact natural in P and Q so an adjunction with the inclusion Lin ↪→
Cts as right adjoint. Via (7) the map y!P : !P → !̂P extends to a map

ηP = y‡!P : P → !P in Cts. Conversely, iP : !P → P̂ extends to a map

εP = i†P : !P → P in Lin using (2). These maps are the unit and counit,
respectively, of the adjunction:

ηPX =
⋃

P�PX y!PP

= {P ∈ !P : P �P X}
εPX =

⋃
P∈X iPP

= {p ∈ P : ∃P ∈ X. p ∈ P}
(9)

The left adjoint is the functor ! : Cts → Lin given on arrows f : P → Q
by (ηQ ◦ f ◦ iP)

† : !P → !Q. The bijection (8) then maps g : !P → Q in Lin
to ḡ = g ◦ ηP : P → Q in Cts while its inverse maps f : P → Q in Cts to
f̄ = εQ ◦ !f in Lin. We call ḡ and f̄ the transpose of g and f , respectively;
of course, transposing twice yields back the original map. As Lin is a sub-
category of Cts, the counit is also a map in Cts. We have εP ◦ ηP = 1P and
X ⊆ ηP(εPX) for all X ∈ !̂P.

Right adjoints preserve products, and so Cts has products given as in
Lin. Hence, Cts is a symmetric monoidal category like Lin, and in fact, our
adjunction is symmetric monoidal. In detail, there are isomorphisms of path
orders,

k : 1 ∼= !O and mP,Q : !P× !Q ∼= !(P & Q) , (10)

with mP,Q mapping a pair (P, Q) ∈ !P× !Q to the union in1 P ∪ in2 Q; any
element of !(P & Q) can be written on this form. These isomorphisms induce
isomorphisms with the same names in Lin with m natural. Moreover, k and
m commute with the associativity, symmetry and unit maps of Lin and Cts,
such as sLin

P,Q : P × Q ∼= Q × P and rCts
Q : Q & O ∼= Q, making ! symmetric

monoidal. It then follows [14] that the inclusion Lin ↪→ Cts is symmetric
monoidal as well, and that the unit and counit are monoidal transformations.
Thus, there are maps

l : O → 1 and nP,Q : P & Q → P×Q (11)

in Cts, with n natural, corresponding to k and m above; l maps ∅ to {∗}
while nP,Q is the extension h‡ of the map h(in1 P ∪ in2 Q) = iPP × iQQ.

6



In addition, the unit makes the diagrams below commute and the counit
satisfies similar properties.

P & Q
ηP&ηQ

vvmmmmmmmm ηP&Q

((RRRRRRRR O l //

ηO $$IIIIIII 1

k
��

!P & !Q n!P,!Q

// !P× !Q mP,Q

// !(P & Q) !O

(12)

The diagram on the left can be written as strP,Q ◦(1P&ηQ) = ηP&Q where str ,
the strength of ! viewed as a monad on Cts, is the natural transformation

P & !Q
ηP&1!Q// !P & !Q

n!P,!Q // !P× !Q
mP,Q // !(P & Q) . (13)

Finally, recall that the category Lin is symmetric monoidal closed so that
the functor (Q ( −) is right adjoint to (−×Q) for any object Q. Together
with the natural isomorphism m this provides a right adjoint (Q → −),
defined by (!Q ( −), to the functor (−& Q) in Cts via the chain

Cts(P & Q, R) ∼= Lin(!(P & Q), R) ∼= Lin(!P× !Q, R)
∼= Lin(!P, !Q ( R) ∼= Cts(P, !Q ( R) = Cts(P, Q → R) (14)

—natural in P and R. This demonstrates that Cts is cartesian closed, as is
well known. The adjunction between Lin and Cts now satisfies the condi-
tions put forward by Benton for a categorical model of intuitionistic linear
logic, strengthening those of Seely [1, 23]; see also [14] for a recent survey of
such models.

3 Denotational Semantics

HOPLA is directly suggested by the structure of Cts. The language is typed
with types given by the grammar

T ::= T1 → T2 | Σα∈ATα | !T | T | µj
~T .~T . (15)

The symbol T is drawn from a set of type variables used in defining recursive
types; closed type expressions are interpreted as path orders. Using vector
notation, µj

~T .~T abbreviates µjT1, . . . , Tk.(T1, . . . , Tk) and is interpreted as
the j-component, for 1 ≤ j ≤ k, of “the least” solution to the defining
equations T1 = T1, . . . , Tk = Tk, in which the expressions T1, . . . , Tk may
contain the Tj ’s. We shall write µ~T .~T as an abbreviation for the k-tuple

with j-component µj
~T .~T, and confuse a closed expression for a path order

7



with the path order itself. Simultaneous recursive equations for path orders
can be solved using information systems [22, 12]. Here, it will be convenient
to give a concrete, inductive characterisation based on a language of paths:

p, q ::= P 7→ q | βp | P | abs p . (16)

Above, P ranges over finite sets of paths. We use P 7→ q as notation for pairs
in the function space (!P)op×Q. The language is complemented by formation
rules using judgements p : P, meaning that p belongs to P, displayed below
on top of rules defining the ordering on P using judgements p ≤P p′. Recall
that P �P P ′ means ∀p ∈ P.∃p′ ∈ P ′. p ≤P p′.

P : !P q : Q

P 7→ q : P → Q

P ′ ≤!P P q ≤Q q′

P 7→ q ≤P→Q P ′ 7→ q′

p : Pβ β ∈ A

βp : Σα∈APα

p ≤Pβ
p′

βp ≤Σα∈APα βp′

p1 : P · · ·pn : P

{p1, . . . , pn} : !P

P �P P ′

P ≤!P P ′

p : Tj [µ~T .~T/~T ]

abs p : µj
~T .~T

p ≤
Tj [µ~T .~T/~T ] p′

abs p ≤µj
~T .~T abs p′

(17)

Using information systems as in [12] yields the same representation, except
for the tagging with abs in recursive types, done to help in the proof of ade-
quacy in Sect. 4.1. So rather than the straight equality between a recursive
type and its unfolding which we are used to from [12], we get an isomorphism

abs : Tj[µ~T .~T/~T ] ∼= µj
~T .~T whose inverse we call rep.

As an example, consider the type of CCS processes given in [19] as the
path order P satisfying P = Σα∈A!P where A is a set of CCS actions. The
elements of P then have the form abs(βP ) where β ∈ A and P is a finite set
of paths from P. Intuitively, a CCS process can perform such a path if it can
perform the action β and, following that, is able to perform each path in P .

The raw syntax of HOPLA terms is given by

t, u ::= x |rec x.t |Σi∈Iti |λx.t | t u |βt |πβt | !t | [u > !x ⇒ t] |abs t |rep t . (18)

The variables x in the terms rec x.t, λx.t, and [u > !x ⇒ t] are binding
occurrences with scope t. We shall take for granted an understanding of free
and bound variables, and substitution on raw terms.

Let P1, . . . , Pk, Q be closed type expressions and assume that the variables
x1, . . . , xk are distinct. A syntactic judgement x1 : P1, . . . , xk : Pk ` t : Q
stands for a map Jx1 : P1, . . . , xk : Pk ` t : QK : P1 & · · · & Pk → Q in Cts.

8



We’ll write Γ, or Λ, for an environment list x1 : P1, . . . , xk : Pk and most

often abbreviate the denotation to P1 & · · ·&Pk
t−→ Q, or Γ

t−→ Q, or even JtK,
suppressing the typing information. When the environment list is empty, the
corresponding product is the empty path order O.

The term-formation rules are displayed below alongside their interpre-
tations as constructors on maps of Cts, taking the maps denoted by the
premises to that denoted by the conclusion (cf. [2]). We assume that the
variables in any environment list which appears are distinct.

Structural rules. The rules handling environment lists are given as follows:

x : P ` x : P P
1P−→ P

(19)

Γ ` t : Q

Γ, x : P ` t : Q

Γ
t−→ Q

Γ & P
t&∅P−−−→ Q & O

rCts
Q−−→ Q

(20)

Γ, y : Q, x : P, Λ ` t : R

Γ, x : P, y : Q, Λ ` t : R

Γ & Q & P & Λ
t−→ R

Γ & P & Q & Λ
t◦(1Γ&sCts

P,Q &1Λ)−−−−−−−−−→ R
(21)

Γ, x : P, y : P ` t : Q

Γ, z : P ` t[z/x, z/y] : Q

Γ & P & P
t−→ Q

Γ & P
1Γ&∆P−−−−→ Γ & P & P

t−→ Q
(22)

In the formation rule for contraction (22), the variable z must be fresh; the
map ∆P is the usual diagonal, given as 〈1P, 1P〉.
Recursive definition. Since each P̂ is a complete lattice, it admits least fixed-
points of continuous maps. If f : P̂ → P̂ is continuous, it has a least fixed-
point, fix f ∈ P̂ obtained as

⋃
n∈ω fn(∅). Below, fix f is the fixpoint in

Cts(Γ, P) ∼= Γ̂ → P of the continuous operation f mapping g : Γ → P in Cts
to the composition JtK ◦ (1Γ & g) ◦∆Γ.

Γ, x : P ` t : P

Γ ` rec x.t : P

Γ & P
t−→ P

Γ
fix f−−→ P

(23)

Nondeterministic sum. Each path order P is associated with a join operation,
Σ : &i∈I P → P in Cts taking a tuple 〈ti〉i∈I to the join Σi∈Iti in P̂. We’ll
write ∅ and t1 + · · ·+ tk for finite sums.

Γ ` tj : P all j ∈ I

Γ ` Σi∈Iti : P

Γ
tj−→ P all j ∈ I

Γ
〈ti〉i∈I−−−→ &i∈I P

Σ−→ P
(24)

Function space. As noted at the end of Sect. 2.2, the category Cts is cartesian
closed with function space P → Q. Thus, there is a 1-1 correspondence curry

9



from maps P & Q → R to maps P → (Q → R) in Cts; its inverse is called
uncurry . We obtain application, app : (P → Q) & P → Q as uncurry(1P→Q).

Γ, x : P ` t : Q

Γ ` λx.t : P → Q

Γ & P
t−→ Q

Γ
curry t−−−→ P → Q

(25)

Γ ` t : P → Q Λ ` u : P

Γ, Λ ` t u : Q

Γ
t−→ P → Q Λ

u−→ P

Γ & Λ
t&u−−→ (P → Q) & P

app−−→ Q
(26)

Sum type. The category Cts does not have coproducts, but we can build
a useful sum type out of the biproduct of Lin. The properties of (4) are
obviously also satisfied in Cts, even though the construction is universal
only in the subcategory of linear maps because composition is generally not
bilinear in Cts. We’ll write O and P1 + · · ·+Pk for the empty and finite sum
types. The product P1 & P2 of [19] with pairing (t, u) and projection terms
fst t, snd t can be encoded, respectively, as the type P1 + P2, and the terms
1t + 2u and π1t, π2t.

Γ ` t : Pβ β ∈ A

Γ ` βt : Σα∈APα

Γ
t−→ Pβ β ∈ A

Γ
t−→ Pβ

inβ−−→ Σα∈APα

(27)

Γ ` t : Σα∈APα β ∈ A

Γ ` πβt : Pβ

Γ
t−→ Σα∈APα β ∈ A

Γ
t−→ Σα∈APα

πβ−→ Pβ

(28)

Prefixing. The adjunction between Lin and Cts provides a type constructor,
!(−), for which the unit ηP : P → !P and counit εP : !P → P may interpret
term constructors and deconstructors, respectively. The behaviour of ηP with
respect to maps of Cts fits that of an anonymous prefix operation. We’ll say
that ηP maps u of type P to a “prefixed” process !u of type !P; intuitively, the
process !u will be able to perform an action, which we call !, before continuing
as u.

Γ ` u : P

Γ ` !u : !P

Γ
u−→ P

Γ
u−→ P

ηP−→ !P
(29)

By the universal property of ηP, if t of type Q has a free variable of type
P, and so is interpreted as a map t : P → Q in Cts, then the transpose
t̄ = εQ ◦ !t is the unique map !P → Q in Lin such that t = t̄ ◦ ηP. With
u of type !P, we’ll write [u > !x ⇒ t] for t̄u. Intuitively, this construction
“tests” or matches u against the pattern !x and passes the results of successful
matches for x on to t. Indeed, first prefixing a term u of type P and then
matching yields a successful match u for x as t̄(ηPu) = tu. By linearity of t̄,
the possibly multiple results of successful matches are nondeterministically

10



summed together; the denotations of [Σi∈Iui > !x ⇒ t] and Σi∈I [ui > !x ⇒ t]
are identical.

The above clearly generalises to the case where u is an open term, but if
t has free variables other than x, we need to make use of the strength map
(13):

Γ, x : P ` t : Q Λ ` u : !P

Γ, Λ ` [u > !x ⇒ t] : Q

Γ & P
t−→ Q Λ

u−→ !P

Γ & Λ
1Γ&u−−−→ Γ & !P

strΓ,P−−−→ !(Γ & P)
t̄−→ Q

(30)

Recursive types. Folding and unfolding recursive types is accompanied by
term constructors abs and rep:

Γ ` t : Tj [µ~T .~T/~T ]

Γ ` abs t : µj
~T .~T

Γ
t−→ Tj [µ~T .~T/~T ]

Γ
t−→ Tj [µ~T .~T/~T ]

abs−−→ µj
~T .~T

(31)

Γ ` t : µj
~T .~T

Γ ` rep t : Tj [µ~T .~T/~T ]

Γ
t−→ µj

~T .~T

Γ
t−→ µj

~T .~T
rep−→ Tj [µ~T .~T/~T ]

(32)

3.1 Useful Equivalences

We provide some technical results about the path semantics which are used
in the proof of soundness, Proposition 4.3. Proofs can be found in [20].

Lemma 3.1 (Substitution) Suppose Γ, x : P ` t : Q and Λ ` u : P with
Γ and Λ disjoint. Then Γ, Λ ` t[u/x] : Q with denotation given by the
composition JtK ◦ (1Γ & JuK).

Corollary 3.2 If Γ, x : P ` t : P, then Γ ` t[rec x.t/x] : P and Jrec x.tK =
Jt[rec x.t/x]K so recursion amounts to unfolding.

Corollary 3.3 Application amounts to substitution. In the situation of the
substitution lemma, we have J(λx.t) uK = Jt[u/x]K.

Proposition 3.4 From the properties of the biproduct we get:

Jπβ(βt)K = JtK

Jπα(βt)K = ∅ if α 6= β

JΣα∈Aα(πα(t))K = JtK where Γ ` t : Σα∈APα

(33)

In addition, Jβ(Σi∈Iti)K = JΣi∈I(βti)K and Jπβ(Σi∈Iti)K = JΣi∈I(πβti)K by
linearity of injection and projection.

11



Proposition 3.5 The prefix match satisfies the properties

J[!u > !x ⇒ t]K = Jt[u/x]K

J[Σi∈Iui > !x ⇒ t]K = JΣi∈I [ui > !x ⇒ t]K
(34)

Proposition 3.6 As abs and rep are inverses and linear, we get

Jrep(abs t)K = JtK

Jabs(rep t)K = JtK

Jabs(Σi∈Iti)K = JΣi∈I(abs ti)K

Jrep(Σi∈Iti)K = JΣi∈I(rep ti)K
(35)

3.2 Full Abstraction

We define a program to be a closed term t of type !O. A (Γ, P)-program
context C is a term with holes into which a term t with Γ ` t : P may be
put to form a program ` C(t) : !O. The denotational semantics gives rise to
a type-respecting contextual preorder [16]:

Definition 3.7 Suppose Γ ` t1 : P and Γ ` t2 : P. We say that t1 and t2
are related by contextual preorder, written t1 <∼ t2, iff for all (Γ, P)-program
contexts C, we have JC(t1)K 6= ∅ =⇒ JC(t2)K 6= ∅. If both t1 <∼ t2 and
t2 <∼ t1, we say that t1 and t2 are contextually equivalent. 2

Contextual equivalence coincides with path equivalence as do the associated
preorders:

Theorem 3.8 (Full Abstraction) Suppose Γ ` t1 : P and Γ ` t2 : P.
Then

Jt1K ⊆ Jt2K ⇐⇒ t1 <∼ t2 . (36)

Proof. Suppose Jt1K ⊆ Jt2K and let C be a (Γ, P)-program context with
JC(t1)K 6= ∅. As Jt1K ⊆ Jt2K we have JC(t2)K 6= ∅ by compositionality and
monotonicity, and so t1 <∼ t2 as wanted.

To prove the converse we define for each path p : P a closed term tp
of type P and a (O, P)-program context Cp that respectively “realise” and
“consume” the path p, by induction on the structure of p.1

tP 7→q ≡def λx.[C ′
P (x) > !x′ ⇒ tq]

tβp ≡def βtp

tP ≡def !t′P
tabs p ≡def abs tp

CP 7→q ≡def Cq(− t′P )

Cβp ≡def Cp(πβ−)

CP ≡def [− > !x ⇒ C ′
P (x)]

Cabs p ≡def Cp(rep−)

(37)

1We have recently become aware that this technique has been applied by Guy McCusker
to prove full abstraction for a version of Idealized Algol [13].

12



Here, t′P and C ′
P realise and consume finite sets of paths:

t′{p1,...,pn} ≡def tp1 + · · ·+ tpn

C ′
{p1,...,pn} ≡def [Cp1 > !x1 ⇒ · · · ⇒ [Cpn > !xn ⇒ !∅] · · · ] (38)

Note that t′∅ ≡ ∅ and C ′
∅ ≡ !∅. Although the syntax of t′P and C ′

P depends
on a choice of permutation of the elements of P , the semantics obtained for
different permutations is the same. Indeed, we have (z being a fresh variable):

JtpK = yPp

Jt′P K = iPP

Jλz.Cp(z)K = yP→!O({p} 7→ ∅)

Jλz.C ′
P (z)K = yP→!O(P 7→ ∅)

(39)

It then follows from the substitution lemma that for any p : P and ` t : P,

p ∈ JtK ⇐⇒ JCp(t)K 6= ∅ . (40)

Suppose t1 <∼ t2 with t1 and t2 closed. Given any p ∈ Jt1K we have JCp(t1)K 6=
∅ and so using t1 <∼ t2, we get JCp(t2)K 6= ∅, so that p ∈ Jt2K. It follows that
Jt1K ⊆ Jt2K.

As for open terms, suppose Γ ≡ x1 : P1, . . . , xk : Pk. Writing λ~x.t1 for
the closed term λx1. · · ·λxk.t1 and likewise for t2, we get

t1 <∼ t2 =⇒ λ~x.t1 <∼ λ~x.t2
=⇒ Jλ~x.t1K ⊆ Jλ~x.t2K
=⇒ Jt1K ⊆ Jt2K .

(41)

The proof is complete. 2

4 Operational Semantics

HOPLA can be given an operational semantics using actions defined by

a ::= u 7→ a | βa | ! | abs a . (42)

We assign types to actions a using a judgement of the form P : a : P′.
Intuitively, performing the action a turns a process of type P into a process
of type P′.

` u : P Q : a : P′

P → Q : u 7→ a : P′
Pβ : a : P′ β ∈ A

Σα∈APα : βa : P′

!P : ! : P

Tj [µ~T .~T/~T ] : a : P′

µj
~T .~T : abs a : P′

(43)

13



P : t[rec x.t/x]
a−→ t′

P : rec x.t
a−→ t′

P : tj
a−→ t′

P : Σi∈Iti
a−→ t′

j∈I

Q : t[u/x]
a−→ t′

P → Q : λx.t
u 7→a−−→ t′

P → Q : t
u 7→a−−→ t′

Q : t u
a−→ t′

Pβ : t
a−→ t′

Σα∈APα : βt
βa−→ t′

Σα∈APα : t
βa−→ t′

Pβ : πβt
a−→ t′

!P : !t
!−→ t

!P : u
!−→ u′ Q : t[u′/x]

a−→ t′

Q : [u > !x ⇒ t]
a−→ t′

Tj [µ~T .~T/~T ] : t
a−→ t′

µj
~T .~T : abs t

abs a−−→ t′
µj

~T .~T : t
abs a−−→ t′

Tj [µ~T .~T/~T ] : rep t
a−→ t′

Figure 1: Operational rules

Notice that in P : a : P′, the type P′ is unique given P and a. The operational
rules of Fig. 1 define a relation P : t

a−→ t′ where ` t : P and P : a : P′.2 The
operational rules are type-correct:

Proposition 4.1 If P : t
a−→ t′ with P : a : P′, then ` t′ : P′.

Proof. By rule-induction on the operational rules.

Abstraction. Suppose P → Q : λx.t
u 7→a−−→ t′ is derived from Q : t[u/x]

a−→ t′

with P 7→ Q : u 7→ a : P′. By typing of actions, we have ` u : P and
Q : a : P′. The induction hypothesis then yields ` t′ : P′ as wanted. Note
also that the substitution t[u/x] is well-formed as x : P ` t : Q follows from
` λx.t : P → Q by the typing rules.

Application. Suppose Q : t u
a−→ t′ is derived from P → Q : t

u 7→a−−→ t′ with
Q : a : P′. By the premise and typing rules, we have ` t : P → Q and ` u : P,
such that P → Q : u 7→ a : P′. The induction hypothesis then yields ` t′ : P′

as wanted.

Prefixing. Suppose !P : !t
!−→ t with !P : ! : P. Then ` !t : !P and so by the

typing rules, ` t : P as wanted.

Prefix match. Suppose Q : [u > !x ⇒ t]
a−→ t′ is derived from !P : u

!−→ u′ and
Q : t[u′/x]

a−→ t′ with Q : a : P′. By the induction hypothesis applied to the
right premise, we get ` t′ : P′ as wanted. Note also that we have ` u : !P and

2The explicit types in the operational rules were missing in the rules given in [19]. They
are needed to ensure that the types of t and a agree in transitions.

14



therefore ` u′ : P by the induction hypothesis for the left premise. Thus, as
x : P ` t : Q, the substitution t[u′/x] is well-formed.

The remaining cases are handled similarly. 2

Accordingly, we’ll write P : t
a−→ t′ : P′ when P : t

a−→ t′ and P : a : P′.

4.1 Soundness and Adequacy

For each action P : a : P′ we define a linear map a∗ : P → !P′ which intuitively
maps a process t of type P to a representation of its possible successors after
performing the action a. In order to distinguish between, say, the successor
∅ and no successors, a∗ embeds into the type !P′ rather than using P′ itself.
For instance, the successors after action ! of the processes !∅ and ∅ are,
respectively, !∗J!∅K = 1!P(ηP∅) = ηP∅ and !∗J∅K = 1!P∅ = ∅. It will be
convenient to treat a∗ as a syntactic operation and so we define a term a∗t
such that Ja∗tK = a∗JtK:

(u 7→ a)∗ = a∗ ◦ app ◦ (−& JuK)

(βa)∗ = a∗ ◦ πβ

!∗ = 1!P

(abs a)∗ = a∗ ◦ rep

(u 7→ a)∗t ≡ a∗(t u)

(βa)∗t ≡ a∗(πβt)

!∗t ≡ t

(abs a)∗t ≡ a∗(rep t)

(44)

The role of a∗ is to reduce the action a to a prefix action:

Lemma 4.2 P : t
a−→ t′ : P′ ⇐⇒ !P′ : a∗t !−→ t′ : P′.

Proof. By structural induction on a exploiting the fact that there is only one
operational rule deriving transitions from each of the constructs application
t u, injection βt, and folding abs t so that

P → Q : t
u 7→a−−→ t′ : P′ ⇐⇒ Q : t u

a−→ t′ : P′

Σα∈APα : t
βa−→ t′ : P′ ⇐⇒ Pβ : πβt

a−→ t′ : P′

µj
~T .~T : t

abs a−−→ t′ : P′ ⇐⇒ Tj[µ~T .~T/~T ] : rep t
a−→ t′ : P′

(45)

Function space. We argue as follows:

P → Q : t
u 7→a−−→ t′ : P′

⇐⇒ Q : t u
a−→ t′ : P′ (by (45))

⇐⇒ !P′ : a∗(t u)
!−→ t′ : P′ (ind. hyp.)

⇐⇒ !P′ : (u 7→ a)∗t !−→ t′ : P′ (def. of (u 7→ a)∗t)

15



Sum. We argue as follows:

Σα∈APα : t
βa−→ t′ : P′

⇐⇒ Pβ : πβt
a−→ t′ : P′ (by (45))

⇐⇒ !P′ : a∗(πβt)
!−→ t′ : P′ (ind. hyp.)

⇐⇒ !P′ : (βa)∗t !−→ t′ : P′ (def. of (βa)∗t)

Prefix. We argue as follows:

!P : t
!−→ t′ : P

⇐⇒ !P : !∗t !−→ t′ : P (def. of !∗t)

Recursion. We argue as follows:

µj
~T .~T : t

abs a−−→ t′ : P′

⇐⇒ Tj [µ~T .~T/~T ] : rep t
a−→ t′ : P′ (by (45))

⇐⇒ !P′ : a∗(rep t)
!−→ t′ : P′ (ind. hyp.)

⇐⇒ !P′ : (abs a)∗t !−→ t′ : P′ (def. of (abs a)∗t)

The structural induction is complete. 2

Note that the reduction is done uniformly at all types using deconstructor
contexts: application, projection, and unfolding. This explains the somewhat
mysterious function space actions u 7→ a. A similar use of labels to carry
context information appears e.g. in [6].

Soundness says that the operational notion of “successor” is included in
the semantic notion:

Proposition 4.3 (Soundness) If P : t
a−→ t′ : P′, then ηP′Jt

′K ⊆ a∗JtK.

Proof. By rule-induction on the transition rules. We’ll dispense with the
typing information in transitions for clarity.

Recursive definition. Suppose rec x.t
a−→ t′ is derived from t[rec x.t/x]

a−→ t′.
By the induction hypothesis and Corollary 3.2,

J!t′K ⊆ a∗Jt[rec x.t/x]K = a∗Jrec x.tK . (46)

Nondeterministic sum. Suppose Σi∈Iti
a−→ t′ is derived from tj

a−→ t′ for some
j ∈ I. By the induction hypothesis and linearity of a∗,

J!t′K ⊆ a∗JtjK = Ja∗tjK ⊆ JΣi∈Ia
∗tiK = a∗JΣi∈ItiK . (47)

16



Abstraction. Suppose λx.t
u 7→a−−→ t′ is derived from t[u/x]

a−→ t′. By the
induction hypothesis and Corollary 3.3,

J!t′K ⊆ a∗Jt[u/x]K = a∗J(λx.t) uK = (u 7→ a)∗Jλx.tK . (48)

Application. Suppose t u
a−→ t′ is derived from t

u 7→a−−→ t′. By the induction
hypothesis,

J!t′K ⊆ (u 7→ a)∗JtK = a∗Jt uK . (49)

Injection. Suppose βt
βa−→ t′ is derived from t

a−→ t′. By the induction
hypothesis and Proposition 3.4,

J!t′K ⊆ a∗JtK = a∗Jπβ(βt)K = (βa)∗JβtK . (50)

Projection. Suppose πβt
a−→ t′ is derived from t

βa−→ t′. By the induction
hypothesis,

J!t′K ⊆ (βa)∗JtK = a∗JπβtK . (51)

Prefixing. Consider the transition !t
!−→ t. By definition, J!tK = !∗J!tK.

Prefix match. Suppose [u > !x ⇒ t]
a−→ t′ is derived from u

!−→ u′ and
t[u′/x]

a−→ t′. By the induction hypothesis for u, we have J!u′K ⊆ !∗JuK = JuK,
and so by the induction hypothesis for t, Proposition 3.5, and monotonicity,

J!t′K ⊆ a∗Jt[u′/x]K = a∗J[!u′ > !x ⇒ t]K ⊆ a∗J[u > !x ⇒ t]K . (52)

Fold. Suppose abs t
abs a−−→ t′ is derived from t

a−→ t′. By the induction hypoth-
esis and Proposition 3.6,

J!t′K ⊆ a∗JtK = a∗Jrep(abs t)K = (abs a)∗Jabs tK . (53)

Unfold. Suppose rep t
a−→ t′ is derived from t

abs a−−→ t′. By the induction
hypothesis,

J!t′K ⊆ (abs a)∗JtK = a∗Jrep tK . (54)

The rule-induction is complete. 2

We obtain a corresponding adequacy result using logical relations X EP t
between subsets X ⊆ P and closed terms of type P. Intuitively, X EP t
means that all paths in X can be “operationally realised” by t. Because of
recursive types, these relations cannot be defined by structural induction on
the type P and we therefore employ a trick essentially due to Martin-Löf

17



(see [24], Ch. 13). We define auxiliary relations p εP t between paths p : P
and closed terms t of type P, by induction on the structure of p:

X EP t ⇐⇒def ∀p ∈ X. p εP t

P 7→ q εP→Q t ⇐⇒def ∀u. (P EP u =⇒ q εQ t u)

βp εΣα∈APα t ⇐⇒def p εPβ
πβt

P ε!P t ⇐⇒def ∃t′. !P : t
!−→ t′ : P and P EP t′

abs p εµj
~T .~T t ⇐⇒def p ε

Tj [µ~T .~T/~T ] rep t

(55)

Lemma 4.4 Suppose ` t : P. Then JtK EP t.

Proof. We need two technical results, which can both be proved by induction
on the structure of paths. One says that εP is closed on the left by ≤P, the
other that εP is closed on the right by the relation <∼1, defined by t1 <∼1 t2 iff
P : t1

a−→ t′ : P′ implies P : t2
a−→ t′ : P′.

Lemma 4.5 If p ≤P p′ and p′ εP t, then p εP t.

Lemma 4.6 If p εP t1 and t1 <∼1 t2, then p εP t2.

It follows from Lemma 4.5 that for any subset X of P we have X EP t iff
the down-closure of X, written X̄, satisfies X̄ EP t. Lemma 4.6 will be used
freely below.

The proof of the main lemma proceeds by structural induction on terms
using the induction hypothesis

Suppose x1 : P1, . . . , xk : Pk ` t : P and let ` sj : Pj with Xj EPj

sj for 1 ≤ j ≤ k. Then JtK(X̄1, . . . , X̄k) EP t[s1/x1, . . . , sk/xk].

We’ll abbreviate x1 : P1, . . . , xk : Pk to Γ, (X̄1, . . . , X̄k) to X, and the substi-
tution [s1/x1, . . . , sk/xk] to [s].

Variable. Let Γ ` xj : Pj , with j between 1 and k, and ` sj : Pj with
Xj EPj

sj for 1 ≤ j ≤ k. We must show that JxjKX EPj
xj [s]. Now,

JxjKX = X̄j and xj [s] ≡ sj so this amounts to X̄j EPj
sj which by the

remarks above is equivalent to Xj EPj
sj.

Recursive definition. Let Γ ` rec x.t : P and ` sj : Pj with Xj EPj
sj for

1 ≤ j ≤ k. We must show that Jrec x.tKX EP rec x.t[s]. Now, Jrec x.tKX =
(fix f)X where f maps g : Γ → P to the composition

Γ
∆Γ−−→ Γ & Γ

1Γ&g−−−→ Γ & P
t−→ P . (56)

18



We’ll show by induction on n that fn(∅)X EP rec x.t[s] for all n ∈ ω. Having
done so we may argue as follows: Since

Jrec x.tKX = (fix f)X = (
⋃

n∈ω fn∅)X =
⋃

n∈ω ((fn∅)X) , (57)

we have that p ∈ Jrec x.tKX implies the existence of an n ∈ ω such that
p ∈ (fn∅)X. Therefore Jrec x.tKX EP rec x.t[s] as wanted.

Basis. Here, (f 0∅)X = ∅. By definition of EP we get ∅ EP t for any type
P and term ` t : P.

Step. Suppose (fn∅)X EP rec x.t[s]. By the assumption of the lemma,
Xj EP sj for each 1 ≤ j ≤ k, and so by the induction hypothesis of the
structural induction,

JtK(X, (fn∅)X) EP t[s][rec x.t[s]/x] . (58)

So if p ∈ (fn+1∅)X, then since (fn+1∅)X = JtK(X, (fn∅)X) we have
p εP t[s][rec x.t[s]/x]. By the transition rules we have t[s][rec x.t[s]/x] <∼1

rec x.t[s], and so p εP rec x.t[s]. We conclude (fn+1∅)X EP rec x.t[s] and the
mathematical induction is complete.

Nondeterministic sum. Let Γ ` Σi∈Iti : P and ` sj : Pj with Xj EPj
sj for

1 ≤ j ≤ k. We must show that JΣi∈ItiKX EP Σi∈Iti[s]. Now, JΣi∈ItiKX =
Σi∈IJtiKX. So if p ∈ JΣi∈ItiKX, there exists j ∈ I with p ∈ JtjKX. Using
the induction hypothesis for tj we have p εP tj [s]. By the transition rules,
tj [s] <∼1 Σi∈Iti[s] and so p εP Σi∈Iti[s] as wanted.

Abstraction. Let Γ ` λx.t : P → Q and ` sj : Pj with Xj EPj
sj for 1 ≤ j ≤

k. We must show that Jλx.tKX EP→Q (λx.t)[s]. So let P 7→ q ∈ Jλx.tKX.
By the denotational semantics, we then have q ∈ JtK(X, iPP ). We must show
that P 7→ q εP→Q (λx.t)[s]. So suppose ` u : P with P EP u. We must then
show q εQ (λx.t)[s] u. By the transition rules, t[s][u/x] <∼1 (λx.t)[s] u and
so it is sufficient to show q εQ t[s][u/x]. Now, by the induction hypothesis,
we know that JtK(X, iPP ) EQ t[s][u/x] and so, with q ∈ JtK(X, iPP ), we are
done.

Application. Let Γ ` t u : Q and ` sj : Pj with Xj EPj
sj for 1 ≤ j ≤ k.

We must show that Jt uKX EQ (t u)[s]. So suppose q ∈ Jt uKX. By the
denotational semantics, there exists P ∈ !P such that P 7→ q ∈ JtKX and
P ⊆ JuKX. By the induction hypothesis for t, we have JtKX EP→Q t[s] and
so P 7→ q εP→Q t[s]. This means that given any ` u′ : P with P EP u′,
we have q εQ t[s] u′. Now using the induction hypothesis for u we get
that JuKX EP u[s] and so, since P ⊆ JuKX, we have P EP u[s] so that
q εQ t[s] u[s] ≡ (t u)[s] as wanted.

19



Injection. Let Γ ` βt : Σα∈APα and ` sj : Pj with Xj EPj
sj for 1 ≤ j ≤ k.

We must show that JβtKX EΣα∈APα (βt)[s]. So suppose βp ∈ JβtKX; by
the denotational semantics, p ∈ JtKX. We must then show that βp εΣα∈APα

(βt)[s] which means that p εPβ
πβ(βt[s]). By the transition rules, we have

t[s] <∼1 πβ(βt[s]) so it is sufficient to show that p εPβ
t[s]. By the induction

hypothesis, JtKX EPβ
t[s] and so, since p ∈ JtKX we have p εPβ

t[s] as wanted.

Projection. Let Γ ` πβt : Pβ with Γ ` t : Σα∈APα and β ∈ A, and ` sj : Pj

with Xj EPj
sj for 1 ≤ j ≤ k. We must show that JπβtKX EPβ

πβt[s]. So
suppose p ∈ JπβtKX; by the denotational semantics, βp ∈ JtKX. By the
induction hypothesis, JtKX EΣα∈APα t[s] and so βp εΣα∈APα t[s] which means
that p εPβ

πβt[s] as wanted.

Prefixing. Let Γ ` !t : !P and ` sj : Pj with Xj EPj
sj for 1 ≤ j ≤ k. We

must show that J!tKX E!P !t[s]. So suppose P ∈ J!tKX; by the denotational
semantics, P ⊆ JtKX. We must then show that P ε!P !t[s], and so since the

transition rules provide a derivation !P : !t[s]
!−→ t[s] : P, it is enough to show

that P EP t[s]. Now, by the induction hypothesis, JtKX EP t[s] and so, since
P ⊆ JtKX we have P EP t[s] as wanted.

Prefix match. Let Γ ` [u > !x ⇒ t] : Q and ` sj : Pj with Xj EPj
sj for

1 ≤ j ≤ k. By renaming x if necessary, we may assume that x is not one of
the xj . We must show that J[u > !x ⇒ t]KX EQ [u > !x ⇒ t][s]. So suppose
q ∈ J[u > !x ⇒ t]KX; by the denotational semantics, there exists P ∈ !P
such that q ∈ JtK(X, iPP ) and P ∈ JuKX. By the induction hypothesis for
u we have JuKX E!P u[s] and so since P ∈ JuKX, there exists u′ such that

!P : u[s]
!−→ u′ : P and P EP u′. Hence, by the induction hypothesis for

t we have JtK(X, iPP ) EQ t[s][u′/x] and so since q ∈ JtK(X, iPP ) we have
q εQ t[s][u′/x]. Now, by the transition rules, t[s][u′/x] <∼1 [u > !x ⇒ t][s] and
so q εQ [u > !x ⇒ t][s] as wanted.

Fold. Let Γ ` abs t : µj
~T .~T and ` sj : Pj with Xj EPj

sj for 1 ≤ j ≤ k.
We must show that Jabs tKX Eµj

~P .~T abs t[s]. So suppose abs q ∈ Jabs tKX

such that q ∈ JtKX. By the induction hypothesis, q ε
Tj [µ~T .~T/~T ] t[s] and

since t[s] <∼1 rep abs t[s], we have q ε
Tj [µ~T .~T/~T ] rep abs t[s] which means that

abs q εµj
~P .~T abs t[s] as wanted.

Unfold. Let Γ ` rep t : Tj [µ~T .~T/~T ] and ` sj : Pj with Xj EPj
sj for 1 ≤ j ≤

k. We must show that Jrep tKX E
Tj [µ~T .~T/~T ] rep t[s]. So suppose q ∈ Jrep tKX

such that abs q ∈ JtKX. By the induction hypothesis, abs q εµj
~T .~T t[s] and so

q ε
Tj [µ~T .~T/~T ] rep t[s] as wanted.

The structural induction is complete. 2

20



Proposition 4.7 (Adequacy) Suppose ` t : P and P : a : P′. Then

a∗JtK 6= ∅ ⇐⇒ ∃t′. P : t
a−→ t′ : P′ (59)

Proof. The “⇐” direction follows from soundness. Assume a∗JtK 6= ∅. Then
because a∗JtK is a downwards-closed subset of !P′ which has least element ∅,
we must have ∅ ∈ a∗JtK. Thus ∅ ε!P′ a∗t by Lemma 4.4, which implies the

existence of a term t′ such that !P′ : a∗t !−→ t′ : P′. By Lemma 4.2 we have
P : t

a−→ t′ : P′. 2

4.2 Full Abstraction w.r.t. Operational Semantics

Adequacy allows an operational formulation of contextual equivalence. If t is

a program, we write t
!−→ if there exists t′ such that !O : t

!−→ t′ : O. We then
have t

!−→ iff JtK 6= ∅ by adequacy. Hence, two terms t1 and t2 with Γ ` t1 : P
and Γ ` t2 : P are related by contextual preorder iff for all (Γ, P)-program
contexts C, we have C(t1)

!−→ =⇒ C(t2)
!−→.

Full abstraction is often formulated in terms of this operational preorder.
With t1 and t2 as above, the inclusion Jt1K ⊆ Jt2K holds iff for all (Γ, P)-
program contexts C, we have the implication C(t1)

!−→ =⇒ C(t2)
!−→.

4.3 Simulation

The path semantics does not capture enough of the branching behaviour
of processes to characterise bisimilarity (for that, the presheaf semantics
is needed, see [11, 19]). As an example, the processes !∅ + !!∅ and !!∅
have the same denotation, but are clearly not bisimilar. However, using
Hennessy-Milner logic we can link path equivalence to simulation. In detail,
we consider the fragment of Hennessy-Milner logic given by possibility and
finite conjunctions; it is characteristic for simulation equivalence in the case
of image-finite processes [8]. With a ranging over actions, formulae are given
by

φ ::= 〈a〉φ | ∧i≤n φi . (60)

The empty conjunction is written >. We type formulae using judgements
φ : P, the idea being that only processes of type P should be described by
φ : P.

P : a : P′ φ : P′

〈a〉φ : P

φi : P all i ≤ n∧
i≤n φi : P

(61)

21



The notion of satisfaction, written t � φ : P, is defined by

t � 〈a〉φ : P ⇐⇒ ∃t′. P : t
a−→ t′ : P′ and t′ � φ : P′ (62)

t �
∧

i≤n φi : P ⇐⇒ t � φi : P for each i ≤ n . (63)

Note that > : P and t � > : P for all ` t : P.

Definition 4.8 Closed terms t1, t2 of the same type P are related by logical
preorder, written t1 <∼L t2, iff for all formulae φ : P we have t1 � φ : P =⇒
t2 � φ : P. If both t1 <∼L t2 and t2 <∼L t1, we say that t1 and t2 are logically
equivalent. 2

Using adequacy and by adapting the proof of full abstraction, we can show
that logical equivalence coincides with contextual equivalence as do the as-
sociated preorders:

Theorem 4.9 For closed terms t1 and t2 of the same type P,

t1 <∼ t2 ⇐⇒ t1 <∼L t2 . (64)

Proof. To each formula φ : P we can construct a (O, P)-program context Cφ

with the property that

!O : Cφ(t)
!−→ ⇐⇒ t � φ : P . (65)

Define

C〈u 7→a〉φ ≡def C〈a〉φ(− u) ,

C〈βa〉φ ≡def C〈a〉φ(πβ−) ,

C〈!〉φ ≡def [− > !x ⇒ Cφ(x)] ,

C〈abs a〉φ ≡def C〈a〉φ(rep−) ,

C∧
i≤n φi

≡def [Cφ1 > !x1 ⇒ · · · ⇒ [Cφn > !xn ⇒ !∅] · · · ] .

(66)

It follows by (65) that t1 <∼L t2 iff for all formulae φ : P we have that Cφ(t1)
!−→

implies Cφ(t2)
!−→. The direction “⇒” then follows by adequacy.

For the converse, we observe that the program contexts Cp used in the
full-abstraction proof are all subsumed by the contexts Cφ. In detail, using
the terms t′P realising finite sets of paths, we can define actions P : ap : P′

and formulae φp : P by induction on paths p : P such that Cp ≡ C〈ap〉φp :

aP 7→q ≡def t′P 7→ aq

aβp ≡def βap

aP ≡def !

aabs p ≡def abs ap

φP 7→q ≡def φq

φβp ≡def φp

φP ≡def

∧
p∈P 〈ap〉φp

φabs p ≡def φp

(67)

22



With p : P and ` t : P we obtain p ∈ JtK iff JC〈ap〉φp(t)K 6= ∅ as in the
proof of full abstraction, and so by adequacy and (65), we have p ∈ JtK iff
t � 〈ap〉φp : P. It follows that t1 <∼L t2 implies Jt1K ⊆ Jt2K, and so t1 <∼ t2. 2

We note that the proof above establishes a link between paths and actions:

p ∈ JtK ⇐⇒ P : t
ap−→ t′ : P′ and t′ � φp : P′ . (68)

5 Related and Future Work

Matthew Hennessy’s fully abstract semantics for higher-order CCS [9] is a
path semantics, and what we have presented here can be seen as a gener-
alisation of his work via the translation of higher-order CCS into HOPLA,
see [19].

The presheaf semantics originally given for HOPLA is a refined version
of the path semantics. A path set X ∈ P̂ can be seen to give a “yes/no
answer” to the question of whether or not a path p ∈ P can be realised by
the process (cf. the representation in Sect. 2 of path sets as monotone maps
Pop → 2). A presheaf over P is a functor Pop → Set to the category of sets
and functions, and gives instead a set of “realisers”, saying how a path may
be realised. This extra information can be used to obtain refined versions
of the proofs of soundness and adequacy, giving hope of extending the full
abstraction result to a characterisation of bisimilarity, possibly in terms of
open maps [11].

Replacing the exponential ! by a “lifting” comonad yields a model Aff of
affine linear logic and an affine version of HOPLA, again with a fully abstract
path semantics [20]. The tensor operation of Aff can be understood as a
simple parallel composition of event structures [21]. Thus, the affine language
holds promise of extending our approach to “independence” models like Petri
nets or event structures in which computation paths are partial orders of
events. Work is in progress to provide an operational semantics for this
language together with results similar to those obtained here [21].

Being a higher-order process language, HOPLA allows process passing
and so can express certain forms of mobility, in particular that present in
the ambient calculus with public names [3, 19]. Another kind of mobility,
mobility of communication links, arises from name-generation as in the π-
calculus [15]. Inspired by HOPLA, Francesco Zappa Nardelli and GW have
defined a higher-order process language with name-generation, allowing en-
codings of full ambient calculus and π-calculus. Bisimulation properties and
semantic underpinnings are being developed [26].

23



References

[1] P. N. Benton. A mixed linear and non-linear logic: proofs, terms and models
(extended abstract). In Proc. CSL’94, LNCS 933.

[2] T. Bräuner. An Axiomatic Approach to Adequacy. Ph.D. dissertation, Uni-
versity of Aarhus, 1996. BRICS Dissertation Series DS-96-4.

[3] L. Cardelli and A. D. Gordon. Anytime, anywhere: modal logics for mobile
ambients. In Proc. POPL’00.

[4] G. L. Cattani and G. Winskel. Profunctors, open maps and bisimulation.
Manuscript, 2000.

[5] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50(1):1–102, 1987.

[6] A. D. Gordon. Bisimilarity as a theory of functional programming. In Proc.
MFPS’95, ENTCS 1.

[7] M. C. B. Hennessy and G. D. Plotkin. Full abstraction for a simple parallel
programming language. In Proc. MFCS’79, LNCS 74.

[8] M. Hennessy and R. Milner. Algebraic laws for nondeterminism and con-
currency. Journal of the ACM, 32(1):137–161, 1985.

[9] M. Hennessy. A fully abstract denotational model for higher-order processes.
Information and Computation, 112(1):55–95, 1994.

[10] C. A. R. Hoare. A Model for Communicating Sequential Processes. Technical
monograph, PRG-22, University of Oxford Computing Laboratory, 1981.

[11] A. Joyal, M. Nielsen, and G. Winskel. Bisimulation from open maps. Infor-
mation and Computation, 127:164–185, 1996.

[12] K. G. Larsen and G. Winskel. Using information systems to solve recur-
sive domain equations effectively. In Proc. Semantics of Data Types, 1984,
LNCS 173.

[13] G. McCusker. A fully abstract relational model of syntactic control of in-
terference. In Proc. CSL’02, LNCS 2471.

[14] P.-A. Melliès. Categorical models of linear logic revisited. Submitted to
Theoretical Computer Science, 2002.

[15] R. Milner, J. Parrow and D. Walker. A calculus of mobile processes, parts
I and II. Information and Computation, 100(1):1–77, 1992.

24



[16] J. H. Morris. Lambda-Calculus Models of Programming Languages. PhD
thesis, MIT, 1968.

[17] M. Nielsen, G. Plotkin and G. Winskel. Petri nets, event structures and
domains, part I. Theoretical Computer Science, 13(1):85–108, 1981.

[18] M. Nygaard and G. Winskel. Linearity in process languages. In Proc.
LICS’02.

[19] M. Nygaard and G. Winskel. HOPLA—a higher-order process language. In
Proc. CONCUR’02, LNCS 2421.

[20] M. Nygaard and G. Winskel. Domain theory for concurrency. Submitted to
Theoretical Computer Science, 2003.

[21] M. Nygaard. Domain Theory for Concurrency. PhD dissertation, University
of Aarhus, 2003.

[22] D. S. Scott. Domains for denotational semantics. In Proc. ICALP’82,
LNCS 140.

[23] R. A. G. Seely. Linear logic, ∗-autonomous categories and cofree coalgebras.
In Proc. Categories in Computer Science and Logic, 1987.

[24] G. Winskel. The Formal Semantics of Programming Languages. MIT Press,
1993.

[25] G. Winskel. A presheaf semantics of value-passing processes. In Proc. CON-
CUR’96, LNCS 1119.

[26] G. Winskel and F. Zappa Nardelli. Manuscript, 2003.

25



Recent BRICS Report Series Publications

RS-03-42 Mikkel Nygaard and Glynn Winskel. Full Abstraction for HO-
PLA. December 2003. 25 pp. Appears in Amadio and Lugiez,
editors, Concurrency Theory: 14th International Conference,
CONCUR ’03 Proceedings, LNCS 2761, 2003, pages 383–398.

RS-03-41 Malgorzata Biernacka, Dariusz Biernacki, and Olivier Danvy.
An Operational Foundation for Delimited Continuations. De-
cember 2003. 21 pp.

RS-03-40 Andrzej Filinski and Henning Korsholm Rohde. A Denota-
tional Account of Untyped Normalization by Evaluation. De-
cember 2003. 29 pp.

RS-03-39 J̈org Abendroth. Applyingπ-Calculus to Practice: An Example
of a Unified Security Mechanism. November 2003. 35 pp.

RS-03-38 Henning B̈ottger, Anders Møller, and Michael I.
Schwartzbach. Contracts for Cooperation between Web
Service Programmers and HTML Designers. November 2003.
23 pp.

RS-03-37 Claude Cŕepeau, Paul Dumais, Dominic Mayers, and Louis
Salvail. Computational Collapse of Quantum State with Appli-
cation to Oblivious Transfer. November 2003. 30 pp.

RS-03-36 Ivan B. Damg̊ard, Serge Fehr, Kirill Morozov, and Louis Sal-
vail. Unfair Noisy Channels and Oblivious Transfer. November
2003.

RS-03-35 Mads Sig Ager, Olivier Danvy, and Jan Midtgaard. A Func-
tional Correspondence between Monadic Evaluators and Ab-
stract Machines for Languages with Computational Effects.
November 2003. 31 pp.

RS-03-34 Luca Aceto, Willem Jan Fokkink, Anna Inǵolfsdóttir, and Bas
Luttik. CCS with Hennessy’s Merge has no Finite Equational
Axiomatization. November 2003. 37 pp.

RS-03-33 Olivier Danvy. A Rational Deconstruction of Landin’s SECD
Machine. October 2003. 32 pp. This report supersedes the
earlier BRICS report RS-02-53.

RS-03-32 Philipp Gerhardy and Ulrich Kohlenbach. Extracting Her-
brand Disjunctions by Functional Interpretation. October 2003.
17 pp.


