
B
R

IC
S

R
S

-03-38
B̈ottger

etal.:
C

ontracts
for

C
ooperation

betw
een

P
rogram

m
ers

and
D

esigners

BRICS
Basic Research in Computer Science

Contracts for Cooperation between
Web Service Programmers and
HTML Designers

Henning Böttger
Anders Møller
Michael I. Schwartzbach

BRICS Report Series RS-03-38

ISSN 0909-0878 November 2003

Copyright c© 2003, Henning B̈ottger & Anders Møller & Michael I.
Schwartzbach.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/03/38/

Contracts for Cooperation between
Web Service Programmers and HTML Designers

Henning Böttger, Anders Møller∗, and Michael I. Schwartzbach
BRICS†, Department of Computer Science

University of Aarhus, Denmark
{bottger,amoeller,mis}@brics.dk

Abstract

Interactive Web services consist of a mixture of HTML fragments and pro-
gram code. The fragments, which are maintained by designers, are combined to
form HTML pages that are shown to the clients. The code, which is maintained
by programmers, is executed on the server to handle the business logic. Current
Web service frameworks provide little help in separating these constituents, which
complicates cooperation between programmers and HTML designers.

We propose a system based on XML templates and formalized contracts allow-
ing a flexible separation of concerns. The contracts act as interfaces between the
programmers and the HTML designers and permit tool support for statically check-
ing that both parties fulfill their obligations. This ensures that (1) programmers and
HTML designers work more independently focusing on their own expertises, (2)
the Web service implementation is better structured and thus easier to develop and
maintain, (3) it is guaranteed that only valid HTML is sent to the clients even
though it is constructed dynamically, (4) the programmer uses the XML templates
consistently, and (5) the form input fields being sent to the client always match
the code receiving those values. Additionally, we describe tools that aid in the
construction and management of contracts and XML templates.

1 Introduction

An interactive Web service contains both HTML markup and program code. Ideally,
these two constituents are maintained by different experts: HTML designers and pro-
grammers. This would be a relatively simple task, if the HTML pages shown to clients
could be statically defined and kept separate from the code. However, most pages are
dynamically generated and are typically composed by numerous copies of a specific
collection of HTML fragments.

∗Supported by the Carlsberg Foundation contract number ANS-1069/20.
†Basic Research in Computer Science (www.brics.dk),

funded by the Danish National Research Foundation.

1

Consider for example a Webboard showing a list of current discussions threads.
The length and depth of these are not known before runtime, but the entire HTML page
is built of fragments that could be calledWrapper, Header, Footer, ThreadTitle,
ThreadItem, andThreadStatus. Other parts of the page could depend of the prefer-
ences of the current client and be composed fromMenuHeader, MenuItem, and so on.
If the Webboard allows clients to choose among different skins, then each of the above
fragments must even exist in several versions.

Consequently, these HTML fragments are intertwined with the code. In a simple
approach using plain Servlets [24] or JSP [25], this means that the lines of the source
file are alternating Java code and HTML markup and, clearly, it is difficult to develop
and maintain such a hybrid document. In typical scenarios, the programmer and the
HTML designer fight for control across a spectrum of possible collaborations:

• the designer presents the desired layout as a series of graphical snapshot, which
the programmer tries to emulate;

• the programmer ends up designing the pages, with general guidelines from the
designer; or

• the programmer and designer work together in a form ofextreme program-
ming[4].

Neither of these models is satisfactory or optimally productive and, hence, various tech-
niques may be considered to decouple these activities. In the Java world, it is possible
to introduce custom tag libraries [21] containing all the detailed HTML markup. The
programmer would then use abstract markup tags such as<Wrapper>, <Header> and
<Footer>, whose actual contents may reside in separate files and be independently de-
termined by the designer. With such an approach, however, the decoupling has become
too complete and several new problems appear:

• since the designer does not know the flow of control, the concrete HTML frag-
ments may not fit together;

• the designer may inadvertently change the markup such that required form fields
disappear; and

• it is near impossible to determine at compile time if the service always generates
syntactically valid HTML pages.

We propose a solution that introduces a notion ofcontractsbetween programmers and
designers. This supports the principle oflow couplingby allowing the two parties to
work independently of each other [15]. Intuitively, a contract defines theshapesof
a collection of jigsaw puzzle pieces. Independently of each other, the programmer
may build pages from copies of these pieces and the designer may decorate them with
HTML markup. Even when the programmer and the designer is the same person, the
contract facilitates separation of concerns.

In this presentation, we use HTML [20] and XHTML [19], the XML [6] variant of
HTML, interchangeably. The readers are presumably most familiar with HTML; the
tools and techniques we present use XHTML, but it is straightforward to convert in
either direction.

2

Contributions

The contributions of this paper are the following:

• A convenient formal language for specifying contracts between programmers
and designers;

• tool support for independently checking that both parties fulfill their obligations,
which implies that certain potential runtime errors related to the cooperation be-
tween them are detected at compile time;

• tool support for automatically inferring a contract from a Web service, which is
useful as a starting point for applying our techniques on preexisting Web ser-
vices;

• tool support for managing XHTML templates for the designer; and

• experimental evidence that the approach is practically useful in aiding the co-
operation between programmers and designers and thereby increasing their pro-
ductivity.

We work in the context of the JWIG system, which is a Java-based language for de-
veloping interactive Web services. JWIG has two special features: (1) A higher-order
template mechanism for XHTML page construction; and (2) static guarantees of valid-
ity of the dynamically generated pages and consistency of the use of form input fields.
The static guarantees are provided using a data-flow analysis that models the manipu-
lation of XML values in the program. JWIG is described in detail in an ACM TOPLAS
article [8] and the user manual [7].

Overview

We first, in Section 2, discuss related work on the concepts of separation of concerns
and component-based Web development, arguing that existing technologies are insuf-
ficient. Section 3 gives an overview of the XML template mechanism in JWIG. In
Section 4, we define our contract language and show examples of its use and the bene-
fits it provides.

Section 5 explains how to check automatically that both the programmer and the
designer fulfills a given contract. Section 6 describes how other tools can help devel-
oping and maintaining Web services using contracts. Section 7 describes our imple-
mentation and experiments indicating that our approach successfully allows separation
of concerns and collaboration.

2 Related Work

There exist numerous technologies and methodologies for developing Web services;
due to the limited space we can only mention a few of the most relevant and focus
on those that are based on Java. A common theme isseparation of concerns: Web
sites contains program code that interacts with the clients, accesses databases contents,
controls sessions of interactions, and builds HTML pages from small HTML fragments

3

and the actual contents. By identifying the different components, different people may
focus on developing and maintaining different aspects of the site, which can increase
productivity and the stability of the site.

Model2 [22] is a variant of the model-view-controller (MVC) design pattern [13]
tailored for structuring Java-based Web applications. AcontrollerServlet [24] receives
a HTTP request, updates themodel, which represents the underlying data, and then in-
vokes the appropriateview renderer, a JSP page [25] that produces the HTML page
being sent back to the client. In this paper, our main distinction is between thepro-
gramming tasksand thedesigner tasks, rather than the considering the individual pro-
gramming tasks.

The Apache community is developing a number of popular projects that are related
to ours. Apache Struts [16] is a framework for building Web applications with Java
based on a further development of the MVC/Model2 approach, providing a generic
controller component that can be configured declaratively. The Tiles extension of Struts
is a template mechanism reminiscent of the one in JWIG, but without the static guaran-
tees of validity of the dynamically generated pages and consistency of the use of form
fields.

Apache Cocoon is an XML-based development framework using a model of pipe-
lined components. It is “built around the concepts of separation of concerns (making
sure people can interact and collaborate on a project, without stepping on each other
toes) and component-based Web development” [3]. It considers four areas of concern:
management, logic, content, andstyle. Again, we focus on programming and design,
roughly corresponding to logic and style, respectively.

Apache Velocity is a Java-based template engine, which also follows the MVC ap-
proach and aims for separating Java code from HTML templates. With Velocity, “Web
page designers can focus solely on creating a site that looks good, and programmers
can focus solely on writing top-notch code. Velocity separates Java code from the Web
pages, making the web site more maintainable over the long run” [26]. Its core is a spe-
cialization of Servlets combined with Velocity Template Language (VTL), a scripting
language used by the page designers and content providers as a simple and more man-
agable alternative to JSP. Velocity’s design concept is borrowed from the WebMacro
system [27]. Yet another alternative to JSP is FreeMarker [12], which uses a more
expressive template language than VTL for constructing HTML pages from templates
and Java objects. As the previously mentioned systems, these ones do not provide static
guarantees that the separation of code and design is consistent, in contrast to the system
we propose.

Other related projects are the Barracuda [10] and Apache Turbine [23] Web appli-
cation frameworks, which also promise separation of HTML design and programming,
but without static guarantees of consistency.

When distinguishing between the programming and HTML design tasks, we apply
a slightly different viewpoint than some of these projects: We consider the program
code that deals with the construction of complete HTML pages from smaller templates
as a part of the programmer’s tasks; for example in Velocity, this is instead specified
by the page designers using the VTL language.

The template mechanism of JWIG that we build upon originates from MAWL [2],
which permitted a complete separation of HTML and code, but no contracts or static

4

guarantees of conformance.
Another approach for building Web sites is to use a Web-orientedcontent man-

agement system(CMS). This is a tool that enables non-technical staff to manage and
publish content on the Web, under the contraints of centralized rules that specify work-
flows and Web site appearance. A CMS typically supports a strict separation of content
and presentation. In contrast, we focus on the development of more specialized Web
services, which do not fit into the CMS model of configuring a Web site by combining
shrink-wrapped software components.

Although the general issue of separation of concerns in Web service development
is being considered extensively by developers of Web service frameworks, no existing
technique solves the problems that we are attacking in this paper: that programmers
and designers should be able to work independently and also to safely combine the
results of their work.

3 Programming with XML Templates

Dynamic XHTML document are often generated by printing to an output stream, as
exemplified by Servlets. The MAWL project invented a more structured approach by
defining XML templatesas primitive values in a Web programming language [14, 2].
A template in MAWL is a wellformed XML fragment containing namedgapswhich at
runtime may bepluggedwith string values. The<bigwig> and JWIG projects [5, 8]
extend this concept tohigher-ordertemplates, in which gaps may also be plugged with
other templates. The following is an example of an XML template:

members/Outer.xml:
<html>

<head><title><[title]></title></head>

<body bgcolor=[color]>

<[body]>

</body>

</html>

It contains two gaps namedtitle andbody, and oneattribute gapnamedcolor.
Attribute gaps may only be plugged with string values, while ordinary gaps may be
plugged with both strings and templates. Theplug operation

x.plug (g,y)

creates a copy ofx where allg gaps are replaced by copies ofy. Note that neitherx nor
y are modified, that is, XML templates areimmutable. Bothx andy may contain other
gaps, which can be plugged later. Templates are stored in separate files in a directory
structure. A given template is referenced in the Java code using syntax such as:

[members.Outer]

when the template is in the file namedmembers/Outer.xml. An XML template is
presented to the client using the syntax:

5

show x;

which removes all remaining gaps and produces a textual representation of the resulting
document. The current Java thread is suspended until the client submits the form that
is typically contained. Subsequently, the string valued expression:

receive f

returns the value of the field namedf from the last form that was shown to the client.
If the field has multiple occurrences, then the variantreceive [] f is used which
returns an array of strings.

The template operations may cause runtime exceptions: aTemplateException
is thrown whenever a referenced template is non-existing or not wellformed; aShow-
Exception is thrown whenever a document being shown is not valid XHTML 1.0; and
a ReceiveException is thrown whenever a form field value is not available when it
is being received withreceive .

Consider now the task of presenting a list of names stored as an array of strings:

String[] names = {"John Doe",

"Joe Blow",

"John Q. Citizen"};

For this, we need two further templates:

members/List.xml:

<[items]>

members/Item.xml:
<li type=[type]>

<[name]>

<[items]>

The code constructing the desired presentation looks as follows:

int i;

XML x = [members.Outer].plug (body,[members.List]);

x = x.plug (title,"Average Guys");

for (i=0; i<names.length; i++)

x = x.plug (items,[members.Item].plug (name,names[i]));

show x.plug (bgcolor,"silver").plug (type,"square");

and yields the result:

6

Note that plugging also works for embedded gaps and that multiple occurrences of a
gap each are plugged with the same value.

A naive implementation of templates would copy the involved templates during a
plug operation, yielding an unacceptable time complexity of the above tiny program.
However, the data structure underlying the JWIG implementation [8] performs each
plug operation in amortized constant time and eachshow operation in linear time
in the size of the resulting document. As an added benefit, XML documents are con-
structed to internally share as many common parts as possible.

JWIG is implemented as a Java framework, an Apache module, and adesugarer
which transform the special syntax into ordinary Java method invocations.

4 A Contract Language

With the JWIG system, the programmers and the HTML designers can work indepen-
dently since the code and the HTML templates are completely separated and reside
in distinct files. However, without further support, the same problems may arise as
with the custom tag library approach and the related approaches mentioned in previous
sections:the decoupling has become too complete. We need a simple mechanism that
enforces the code and the HTML templates to maintain coherency without being too
rigid.

We now introduce a formal language for specifyingcontractsbetween the program-
mers and the HTML designers. A contract is an interface between code and HTML
templates that specifies abstract properties of the HTML templates and their interre-
lationships. First, we focus on the syntax of contracts and their intuitive meaning,
then later we explain the semantics in terms of obligations of the programmers and the
HTML designers for fulfilling a contract.

A contract is comprised oftemplate declarations corresponding to the HTML
templates being used. Eachtemplate declaration has a name and contains a descrip-
tion of the gaps, forms, and input fields in the corresponding template:

template TemplateName { ... }

A gap descriptor in a template declaration specifies that the corresponding template
has at least one gap of that name:

gap GapName : GapPresence TemplateNameSet RegExp

A TemplateNameSet is either a single template name or a set of such names enclosed
by {... }. TheTemplateNameSet of a gap descriptor specifies the possible tem-
plates that may be plugged into such gaps. TheRegExp part specifies which strings
that may be plugged into the corresponding gaps. ARegExp is a regular expression
over the Unicode alphabet using the syntax from the BRICS Automaton package [18]
as summarized in Figure 1. TheGapPresence is either empty or “?”: in the former
case, the gapsmustbe plugged with one of the allowed values, whereas in the latter
case, the gapsmayadditionally be left open.

7

Operation Meaning
"s" the strings
. any character
rs concatenation
r|s union
r&s intersection
~r complement
r? optional
r* zero or more occurrences
r+ one or more occurrences

r{n} n occurrences
r{n,} n or more occurrences

r{n,m} n to m occurrences
[c] character class (e.g,[A-Z])
[^c] negated character class
(r) grouping
<id> named regular language

Figure 1: Syntax for regular expressions in contracts.

The partRegExp may be omitted from a gap descriptor, in which case no strings
may be plugged in. Conversely, if theTemplateNameSet is omitted, no templates
may be plugged in. The latter case is particularly useful for describing attribute gaps,
which are not allowed to contain markup. TheTemplateNameSet andRegExp may
both be omitted, which is useful in combination with thepage construct explained
below.

Commonly used regular expressions can be named byregexp declarations:

regexp RegexpName : RegExp

The nameRegexpName can then be used in other regular expressions using the notation
<RegexpName>. For example, a “length” in HTML 4.01 [20] can be expressed as
follows:

regexp LENGTH: [0-9]+"%"?

The syntax of URLs is another example that fits into this formalism. The nameAnyString
is predefined to denote the regular expression “.*”. A form descriptor denotes an
HTML form:

form FormName { ... }

which may containgap andfield descriptors. TheFormName , which is optional,
specifies the name of the form (that is, thename attribute). Afield descriptor de-
scribes a family of form fields:

field FieldName : FieldCardinality

8

whereFieldCardinality is either empty, meaningone occurrence, “*” meaning
any number, or “#”, which represents a radio button that has the special operational
meaning in HTML that a form may contain multiple radio buttons of the same name
but only one name/value pair is produced. (Thus,FieldCardinality corresponds
to the field occurrence lattice in the JWIG article [8], Section 5.2.) The order ofgap ,
field , and form descriptors within atemplate rule is insignificant. Apage
declaration describes an HTML page:

page PageName : TemplateNameSet { ... }

Such declarations act as entry points into the contract. TheTemplateNameSet spec-
ifies the possible “outermost” templates. The contents of{...} are additional gap
descriptors that are applicable only to this specific page and extend the existing ones.
Each gap name of such an additional gap descriptor must be prefixed with the name
of the relevant template. The additional gap descriptors are implicitly merged with the
existing ones by taking the unions of the respective template name sets and regular
expressions. This mechanism allows different pages of a Web service to be built from
the same constituents but with different structures.

Declarations are organized in a hierarchical structure, typically a file system, simi-
larly to Java source files. The root of the hierarchy is called thecontract root directory.
Each file occurring below the contract root directory must contain apackage decla-
ration:

package Package

wherePackage is the path to the directory containing the file using “.” to separate
the components of the path. A file placed in a directoryshop/inventory should then
begin with:

package shop.inventory

The names of the contract files are insignificant, and it makes no difference whether a
set of declarations from the same package are split into multiple files or combined in
one file.

All references totemplate , regexp , andpage declarations placed in another
package must be qualified according to the package names. For example, if a template
namedT is declared in a directorya/b/c relative to the contract root directory, then
this template can be referred to asa.b.c.T. Similarly to Java,import declarations
can be used to allow shorter references to such names: If a file contains:

import Package

then declarations inPackage can be referred to from this file without the package
qualification. The package corresponding to the directory containing the file is always
implicitly imported. Ambiguous references are not allowed.

Additionally, Java-style comments (//... and/*...*/) are allowed throughout
the contracts.

9

package shop.inventory

template Wrapper { gap title: <AnyString>,

gap body }

template Main { gap inventory: Inventory,

gap buyform: Selection }

template Inventory { gap items: ? Product }

template Product { gap productname: <AnyString>,

gap price: <AnyString>,

gap items: ? Product }

template Selection { form { field product,

field quantity } }

page MainPage: Wrapper { gap Wrapper.body: Main }

Figure 2: A tiny contract.

The job of the HTML designer is to concretize the template declarations by con-
structing an actual XML template for each. These XML templates are placed in a
subdirectory of atemplate root directory, which has the same subdirectory structure as
the contract root directory. For example, an XML template corresponding to a template
declarationT associated a packagea.b.c is placed in the filea/b/c/T.xml.

Finally, we extend JWIG such that eachshow statement is annotated with an ap-
propriate reference into the contract:

show H as P ;

The argumentP refers to apage declaration that describes the required structure of the
HTML pageH being shown. For example,P could beshop.inventory.MainPage,
which is interpreted relative to some contract root directory. At runtime, the program
uses the XML templates below the template root directory, which is specified by a
compiler parameter.

4.1 An Example Contract

Assume that we as a part of a Web service want to produce an HTML page with an in-
ventory of products and a form where a product and a quantity can be selected. Figure 2
shows a tiny but realistic example of a contract for such a page. TheWrapper template
is intended as the outermost template and for reuse in other pages,Main corresponds to
the body of the page,Inventory represents the product inventory,Product represents
a single product, andSelection is the form. Note that theitems loop in Product
permits an inventory to contain any number of products. Finally, theMainPage page
declaration combines the templates usingWrapper as entry point and adding an edge

10

from its body gap to theMain template. These declarations are placed in a directory
shop/inventory below the contract root directory.

The HTML designer can now create the concrete XML templates. The following
templates illustrate one possible design:

shop/inventory/Wrapper.xml:
<html>

<head><title><[title]></title></head>

<body><[body]></body>

</html>

shop/inventory/Main.xml:
<h1>Inventory</h1>

<[inventory]> <p/>

<[buyform]>

shop/inventory/Inventory.xml:
<table border="1">

<tr> <th>Name</th> <th>Price</th> </tr>

<[items]>

</table>

shop/inventory/Product.xml:
<tr>

<td><[productname]></td>

<td align="right">$<[price]></td>

</tr>

<[items]>

shop/inventory/Select.xml:
<form>

Product: <input name="product"/>

Quantity: <input name="quantity"/>

<input type="submit" value="Buy!"/>

</form>

These files are placed in the directoryshop/inventory below the template root di-
rectory.

In this design, the inventory is shown as a table with a header and one row for each
product. The JWIG system will fill in theaction attribute for theform element. The
designer can change the design by modifying the templates. For example, the inven-
tory can be shown as an itemized list instead, simply by replacing theInventory and
Product templates:

shop/inventory/Inventory.xml:

<[items]>

shop/inventory/Product.xml:

11

Figure 3: Three designs for theInventoryPage example.

 <[productname]>: $<[price]>

<[items]>

Or, perhaps the designer instead wants the table rows to be colored, such that even
and odd rows have different background color. This can be achieved by adding a little
JavaScript to theWrapper template:

shop/inventory/Wrapper.xml:
<html><head><title><[title]></title>

<script type="text/javascript"> <!--

function fancycolors() {

var t = document.getElementsByTagName(’tr’);

for (var i = 1; i<t.length; i++)

t[i].style.backgroundColor =

i%2==0 ? "gray" : "silver";

} // -->

</script>

</head>

<body onload="javascript:fancycolors();">

<[body]>

</body></html>

This illustrates that the designer may apply JavaScript programming to obtain full
control of the layout. Of course, the designer should only use JavaScript to change
stylesheet properties, not to modify the underlying DOM tree.

The three designs can be seen in Figure 3. These examples show one of the benefits
of using contracts:

The HTML designer has a large degree of freedom in deciding the design
of the pages without involving the programmer or worrying that the service
will break because of the modifications.

In fact, modifications of the design may be performed while the service is running,
without any downtime or recompilation—the running service automatically uses the
newest family of templates.

12

Independently of the designer, the programmer can develop the code that produces
the final pages from the templates, accesses a database, interacts with the client, etc.
Due to the limited space, we will not show an example of such code; it should be clear
how the example from Section 3 could be used as a starting point for solving this task.

4.2 Obligations of the HTML Designer

The semantics of a contract is divided into two parts corresponding to the obligations
of the HTML designer and the programmer, respectively. We first consider the HTML
designer:

§1. The designer must build a template directory structure matching the contract
directory structure, such that there is one filea/b/c/T.xml containing a well-
formed XML template for each templateT with packagea.b.c in the contract.

§2. Each template must contain the right occurrences of gaps, fields, and forms. This
means that a gap namedg must occur at least once in the template if and only if
the correspondingtemplate declaration contains agap descriptor with name
g . Similarly, input fields must occur according to thefield descriptors and
their associatedFieldCardinality , and the template must contain oneform
for eachform descriptor, such that theFormName matches thename attribute,
if present.

Recall thatgap and field descriptors are allowed both at the same level as
form descriptors and nested within them. The gaps and fields in the XML tem-
plates must adhere to the nesting structure used in thetemplate declaration.

§3. All pages that can be derived from the contract and the concrete templates must
be valid according to the XHTML syntax.

The set of pagesL(P, C, T) that can bederivedfrom a page descriptionP of a con-
tract C and concrete templatesT is defined as those pages that can be obtained by
starting with a root template ofP and recursively plugging all possible templates and
strings into the gaps according to the contract. For example, ifcontractroot and
templateroot denote the contract root directory and the template root directory, re-
spectively, using the first design from the example from Section 4.1, then

L(shop.inventory.MainPage, contractroot, templateroot)

contains the HTML code for the first page in Figure 3, together with the infinitely many
other pages that have aWrapper template outermost, aMain template plugged into its
body gap, etc.

To define validity, we use the DSD2 schema language [17] description of XHTML
1.0 Transitional; we could instead use any XML language that can be described by
DSD2 or DTD. The DSD2 language has the benefit that it allows more syntactic re-
quirements to be formally captured than DTD or even XML Schema. For example, the
DSD2 description of XHTML expresses the facts thatform elements cannot be nested,
thatinput elements must have aname attribute unless the value oftype is submit or

13

reset, and that the values ofcolor attributes must be valid color descriptions. The full
DSD2 schema is available athttp://www.brics.dk/DSD/xhtm1-transitional.dsd.

The templates shown in the example in Section 4.1 can be seen to fulfill the designer
obligations induced by the contract in Figure 2. It is generally far from trivial to verify
that the validity requirement is satisfied; in Section 5.2 we present an automatic and
conservatively approximating approach.

4.3 Obligations of the Programmer

To fulfill a given contract, the programmer is obliged to:

§4. only use the templates that are declared in the contract bytemplate declara-
tions;

§5. only show pages whose structure fulfills the contract, that is, for every instruction
“show H as P ”, the structure of the pageH must match thepage declaration
for P ; and

§6. only receive form fields that are present according to thefield descriptors in
the contract for the latest page that has been shown.

A pageH that has been built from templates and strings using plug operationsmatches
apage declaration forP if the following conditions are satisfied:

• The outermost template inH is permitted as an outermost template according to
P .

• For each template or stringy that has been plugged into a gapg in a template
x during the construction ofH , there is a correspondinggap descriptor in the
contract. Thisgap descriptor can be located either in thetemplate declaration
of x or in thepage declaration ofP , as described in Section 4.

The requirement§6 only applies to the singleton version ofreceive , since the array
variantreceive[] cannot fail.

Note that the programmer in principle does not need the designer’s concrete XHTML
templates until deployment of the Web service. From a contractC we can automati-
cally derive a set ofdummy templatesT (C), which represent a naive but valid design.
For everytemplate declaration, an XHTML template is created containing a table
with a row for eachgap descriptor, a form for eachform descriptor, and an input
field for eachfield descriptor. The templates that occur as roots in somepage
declaration are enclosed by:

<html><head><title/></head><body>...</body></html>

As an example, the dummy template forshop.inventory.Main is the following:

<table border="1">

<tr><th colspan="2">shop.inventory.Main</th></tr>

<tr><td>inventory:</td><td><[inventory]></td></tr>

<tr><td>buyform:</td><td><[buyform]></td></tr>

</table>

14

As for the designer’s obligations mentioned in the previous section, it is also not trivial
to verify that the programmer fulfills his parts of the contract. Again, we suggest a
fully automatic conservative approximation, which we explain in Section 5.3.

4.4 Renegotiating Contracts

As the example in Section 4.1 indicates, the designer does have a significant degree of
freedom in his work without being required to consider the program code. Similarly,
the programmer is free to restructure the program code, as long as the structure of the
pages being built from the templates fulfills the contract.

Of course, the designer may want to perform more profound changes in the page
structures that inevitably involve modifying the program code also. Or, conversely, the
programmer may want to modify the functionality of the service, which, for example,
may require adding new gaps or form fields to the designer’s templates. This leads to
another benefit of using contracts:

Contracts make it explicit exactly when it is required that the HTML de-
signer and the programmer talk together, in other words, renegotiate the
contract.

In many typical cases where the contract inevitably needs to be changed, doing so is
not problematic, because the existing contract can help pinpointing where the changes
are required.

4.5 Soundness

If the contract is fulfilled by both parties, then some important guarantees can be issued
about the dynamic behavior of the service: NeitherTemplateExceptions,Receive-
Exceptions, norShowExceptions can occur. The proof is trivial: aTemplate-
Exception occurs if the programmer attempts to use a nonexisting or not wellformed
template, but this is made impossible by§1 and§4; aReceiveException occurs if
the programmer tries toreceive a nonexisting form field, which is avoided by the
combination of§2, §5, and§6; and aShowException occurs if invalid XHTML 1.0
appears at ashow statement, but this is avoided by§2, §3, and§5. This shows yet
another benefit of the contracts:

The contract defines the interface between HTML design and program-
ming; if both the designer and the programmer fulfill their respective parts
of the contract, then their work can safely be combined.

5 Checking Contracts Automatically

Building on the JWIG system, we are in a unique position to automatically check that
the obligations required by a contract are fulfilled by both the designer and the pro-
grammer. This allows us to obtain strong guarantees about the behavior of the running

15

{"Average Guys"}

{"orange"}

{"square"}

body

bgcolor

title
Wrapper

List Items

items

type

<AnyString>

name

items

ε

itemsitems

Figure 4: A summary graph.

Web service even before it is launched. Furthermore, the designer and the program-
mer may independently check their own work, since the contract serves as the crucial
interface that combines the indvidual checks to provide a global guarantee.

5.1 Summary Graphs in JWIG

The JWIG system performs static analysis of the class files that implement Web ser-
vices. For each occurrence of an XML expressions, the analyzer determines the set of
XML documents that may result from evaluation at runtime. Such a set is described as a
summary graph, which is a finite representation of a possibly infinite set of documents.
Since the problem of finding the exact solution is clearly undecidable, the analysis is
conservatively approximate, so the true set of XML documents may be smaller than
that corresponding to the inferred summary graph.

The notion of summary graphs is formally defined in [8]. Informally, thenodes
of a summary graph are templates being used in the program. Theedgesof the graph
corresponds to possible plug operations that have been performed. There is an edge
labeledg from a nodet1 to a nodet2 if the templatet1 contains a gap namedg which
may have been plugged with an XML document whose outermost template ist2. If
gaps are plugged with strings, then the corresponding edges lead to regular expressions
describing the possible string values. These regular expressions are inferred by a sepa-
rate static analysis [9]. Some of the nodes in a summary graph are identified asroots,
meaning that they correspond to the outermost templates of the documents described.
Finally, a summary graph notes for every template whether a given gap is possibly still
open or has definitely been plugged with one of the templates corresponding to the
given edges.

The languageL(G) of a summary graphG is the set of XML documents that is
represents. Intuitively it contains those documents that are obtained by starting at a
root and following all possible choices of plug operations permitted by the edges.

For the small example in Section 3, the summary graph for the XML expression
being shown is inferred to be the one in Figure 4, where an edge to “ε” means that

16

the gap may remain open. For realistic applications, a summary graph may contain
hundreds of nodes and edges.

Using the algorithms presented in [8], the JWIG system is able to analyze a sum-
mary graph and determine if all documents contained in its language are valid ac-
cording to a given DSD2 schema, in particular the one describing XHTML 1.0. The
analyzer is also able to determine that any field occurring in areceive expression
is guaranteed to be present in all documents that may have been sent to the client at
the immediately precedingshow statement. In the present work, we heavily exploit
these earlier results. The analyses in JWIG are technically challenging; they handle
all aspects of the Java language, and have been carefully engineered to achieve high
efficiency and precision.

5.2 Checking the Designer’s XHTML

When the designer has created a template directoryT , it may be checked against a
given contract directoryC. First, some simplelocal checks are performed:

• corresponding to§1, the template directory must have the same structure as the
contract directory, and each template file must contain a wellformed XML doc-
ument; and

• corresponding to§2, each template file must contain the gaps, forms, and fields
that are mandated by the contract.

What remains is theglobal check that all pagesP conform to the XHTML 1.0 speci-
fication, corresponding to§3. This is done by constructing a summary graphGP,C,T

such that
L(GP,C,T) = L(P, C, T)

and using JWIG to check validity against the appropriate DSD2 schema. The construc-
tion is straightforward, since contracts are essentially abstract summary graphs. We
simply use the designer’s templates as summary graph nodes, the edges and roots are
read directly from the contract, and gaps that are marked by “?” in the contract become
potentially open in the summary graph.

5.3 Checking the Programmer’s Code

For a given program, we first check that each template referred from the program is
also mentioned in the contract directory, corresponding to§4. The remaining checks
require the construction of summary graphs for each expression inshow statements.
These are obtained by constructing the dummy template directoryT (C), as described
in Section 4.3, and then running the JWIG analyzer on this structure. For every state-
ment of the form:

show H as P;

this provides a summary graphGH . To check§5, we inspect thatP occurs as a page
in the contract, construct a summary graphGP,C,T (C) as in Section 5.2 but using the

17

dummy templates, and then check that

GH ⊆ GP,C,T (C)

Inclusion on summary graphs is determined on the set of edges, where potentially open
gaps are viewed as edges to a special “ε” template, and nodes representing string sets
are compared by set inclusion.

Finally, the check of fields inreceive expressions,§6, is simply performed by
the JWIG analyzer using the algorithm described in [8].

5.4 Soundness

When the checks described above have been performed, then we are guaranteed that
the soundness requirements described in Section 4.5 are satisfied, since our analyses
are conservative. Ultimately, this works to ensure that the exceptions thrown by the
template operations will never occur. Importantly, the two checks of templates and
code areindependent, which means that the designer and the programmer are free to
work on their own, only bound by the limitations of the contract.

Our analyses are of course approximative, which means that they may unfairly
reject programs for which no exceptions would actually be thrown during runtime.
However, experiences from the JWIG project [8, 9] indicate that the precision is suffi-
cient for practical use. The analyses are also efficient, handling large programs in mere
seconds.

6 Additional Tool Support

There are several other opportunities for providing tool support for both the program-
mer and the designer.

6.1 Viewing Contracts Graphically

Contracts are defined as a directory structure of text files. While this is a concise
formalism, it may at times be easier to browse through a graphical representation.
This is easily obtained by depicting what is essentially the corresponding summary
graph. Using the AT&T Graphvizdot tool [11], the contract from Section 4.1 is pre-
sented as seen in Figure 5. The edges labeled “MainPage” are applicable only to the
shop.inventory.MainPage page, whereas the others are also applicable to other
pages, as defined in the contract.

6.2 A Dummy Designer

We have earlier shown how a contractC gives rise to a dummy template directory
T (C). For a programmer starting out with an already negotiated contract, this approach
can be exploited to construct a collection of primitive but functional templates that are
guaranteed to satisfy the contract.

18

Wrapper

title body

Main

inventory buyform

MainPage

<AnyString>

MainPage

Selection

product quantity

Product

productname price items
?

Inventory

items

?

Figure 5: Graphical view of the example contract.

Figure 6: X-ray view ofMainPage.

19

Starting out with the contract from Section 4.1, the generated dummy templates
present anX-ray viewof theMainPage as shown in Figure 6. For the programmer, this
allows an early implementation suitable for testing the business logic. For the designer,
it offers an explicit view at the template structure of the generated pages.

6.3 A Dummy Programmer

When the designer has produced a draft set of templates, it is possible to view complete
sample documents, even when the programmer has not delivered the code yet. This is
done by generating random elements from the setL(P, C, T) for a given pageP . In
case of loops in the contract, some care must be taken to generate only finite docu-
ments. Our strategy uses a depth-first search of the contract graph to identify theback
edges[1]. The designer specifies ascale factork, and when unfoldings of the graph
are generated, a given back edge is allowed to be traversed at mostk times. If a gapg
does not have an outgoing edge, then the text<[g]> is generated. For strings, random
elements of the specified regular language are chosen.

6.4 Inferring Contracts

If an existing JWIG service is to be refactored into using contracts, then substantial
automatic support is also available. It is possible toinfer a contract that is satisfied
by the given code and XHTML. The template directory structure is copied to form the
contract directory. Each template is described in the contract with respect to the ex-
isting gaps, forms, and fields. The rest of the contract is inferred from the summary
graphs computed by the analyzer. Eachshow statement is represented by apage in
the contract. The edges in all summary graphs are distributed into either the templates
or the pages in the contract. If an edge is present in all the summary graphs corre-
sponding toshow statements, then it is represented directly in that template, otherwise
it is represented in only the pages corresponding to the relevantshow statements. For
theshop.inventory code, the inferred contract is identical to the given one, which
indicates that the accuracy of this inference algorithm is high.

6.5 Managing Templates

For a realistic application, the designer may have to consider a great many templates.
Again, automatic tool support may help. In a special mode, the JWIG service may
generate XHTML pages enriched with JavaScript such that a mouse click on a point in
a generated page will identify the templates involved in that part of the presentation. A
screenshot of this feature is presented in Figure 7.

7 Implementation and Experiments

The contract mechanism we have described has been implemented in a prototype ex-
tension of the JWIG system. This primarily consists of a syntax checker for contracts
and tools for checking that the obligations of the contract are fulfilled by the designer

20

Figure 7: Identifying theshop.inventory.Product template.

and the programmer, as described in Section 5. Most of the tools described in Sec-
tion 6 have also been prototyped. The implementations have been fairly straightfor-
ward, since the most complicated parts wholly rely on the exisiting JWIG analyses.

Checking contracts is fairly efficient. We are in the process of converting existing
JWIG services to use the contract system. A large example is the JAOO 2002 confer-
ence administration system, which consists of 3,923 lines of pure Java code and 198
XHTML templates totalling 259K data. Checking the obligations of the designer or
the programmer takes less than 30 seconds for each.

To test the contract methodology, we have developed a small service from scratch.
The example is a typical Web shop, calledThe Plant Store, selling house plants and
tracking the buying histories of customers. Although this is just a single case study, we
learned some valuable lessons:

• it makes sense for both the programmer and the designer to take the lead when
drafting the contract;

• benign renegotiations are frequent in the early stages of development;

• the use of dummy templates and the graphical view of contracts are useful sup-
plements to the text of the contract;

• the X-ray view of generated pages is invaluable for the programmer, allowing
early prototyping without design distractions;

• it is a simple task to generate alternate presentations of the pages once they
have been designed, which is particularly useful for internationalization and cus-
tomization.

In all, the contract system seems to hit a sweet spot between complete decoupling and
rigidity.

21

8 Conclusion

By introducing our contract language, we improve collaboration between HTML de-
signers and programmers jointly developing Web services. A contract formalizes the
interface between the two parties and pinpoint the dependencies between design and
code.

We work in the context of the JWIG system, which already provides a well-structured
and flexible mechanism for building Web pages from XML pages together with unique
program analyses for ensuring that the templates are used consistently. The obligations
incurred by the contract can be automatically checked by tools that exploit these anal-
yses. On top of the contract lanaguage, we offer a host of tools facilitating the use of
XML templates and contracts.

Our experiments demonstrate that the contract system can be implemented effi-
ciently and is practically useful.

References

[1] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman.Data Structures and
Algorithms. Addison-Wesley, January 1983.

[2] David Atkins, Thomas Ball, Glenn Bruns, and Kenneth Cox. Mawl: a domain-
specific language for form-based services.IEEE Transactions on Software Engi-
neering, 25(3):334–346, May/June 1999.

[3] Nicola Ken Barozzi et al. Cocoon, 2003.http://cocoon.apache.org/.

[4] Kent Beck.Extreme Programming Explained. Addison-Wesley, October 1999.

[5] Claus Brabrand, Anders Møller, and Michael I. Schwartzbach. The<bigwig>
project.ACM Transactions on Internet Technology, 2(2):79–114, 2002.

[6] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, and Eve Maler. Extensible
Markup Language (XML) 1.0 (second edition), October 2000. W3C Recommen-
dation.http://www.w3.org/TR/REC-xml.

[7] Aske Simon Christensen and Anders Møller.JWIG User Manual. BRICS, De-
partment of Computer Science, University of Aarhus, June 2002. Notes Series
NS-02-6. Available fromhttp://www.brics.dk/JWIG/manual/.

[8] Aske Simon Christensen, Anders Møller, and Michael I. Schwartzbach. Extend-
ing Java for high-level Web service construction.ACM Transactions on Program-
ming Languages and Systems, 25(6):814–875, November 2003.

[9] Aske Simon Christensen, Anders Møller, and Michael I. Schwartzbach. Precise
analysis of string expressions. InProc. 10th International Static Analysis Sympo-
sium, SAS ’03, volume 2694 ofLNCS, pages 1–18. Springer-Verlag, June 2003.

[10] Christian Cryder et al. Barracuda, 2003.http://barracudamvc.org/.

22

[11] Emden Gansner, Eleftherios Koutsofios, and Stephen North.
Drawing graphs with dot, February 2002. Available from
http://www.research.att.com/sw/tools/graphviz/.

[12] Benjamin Geer, Mike Bayer, et al. FreeMarker, 2003.
http://freemarker.sourceforge.net/.

[13] G. Krasner and S. Pope. A cookbook for using the model view controller user
interface paradigm in Smalltalk-80.Journal of Object-Oriented Programming,
1(3):26–49, August/September 1988.

[14] David A. Ladd and J. Christopher Ramming. Programming the Web: An
application-oriented language for hypermedia services.World Wide Web Jour-
nal, 1(1), January 1996. O’Reilly & Associates. Proc. 4th International World
Wide Web Conference, WWW4.

[15] Craig Larman.Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design and the Unified Process. Pearson Education, July 2001.

[16] Craig R. McClanahan et al. Struts, 2002.http://jakarta.apache.org/struts/.

[17] Anders Møller. Document Structure Description 2.0, December 2002. BRICS,
Department of Computer Science, University of Aarhus, Notes Series NS-02-7.
Available fromhttp://www.brics.dk/DSD/.

[18] Anders Møller. dk.brics.automaton – finite-state automata and regular expressions
for Java, 2001.http://www.brics.dk/automaton/.

[19] Steven Pemberton et al. XHTML 1.0: The extensible hypertext markup language,
January 2000. W3C Recommendation.http://www.w3.org/TR/xhtml1.

[20] Dave Raggett, Arnaud Le Hors, and Ian Jacobs. HTML 4.01 specification, De-
cember 1999. W3C Recommendation.http://www.w3.org/TR/html4/.

[21] Gal Schachor, Adam Chace, and Magnus Rydin.JSP Tag Libraries. Manning
Publications, May 2001.

[22] Govind Seshadri. Understanding JavaServer Pages Model 2 architecture, Decem-
ber 1999. Available fromhttp://www.javaworld.com/javaworld/jw-12-1999/
jw-12-ssj-jspmvc.html.

[23] Jon S. Stevens et al. Turbine, 2003.http://jakarta.apache.org/turbine/.

[24] Sun Microsystems. Java Servlet Specification, Version 2.3, 2001. Available from
http://java.sun.com/products/servlet/.

[25] Sun Microsystems. JavaServer Pages Specification, Version 1.2, 2001. Available
from http://java.sun.com/products/jsp/.

[26] Jason van Zyl et al. Velocity, 2003.http://jakarta.apache.org/velocity.

[27] Justin Wells et al. WebMacro, 2003.http://www.webmacro.org/.

23

Recent BRICS Report Series Publications

RS-03-38 Henning B̈ottger, Anders Møller, and Michael I.
Schwartzbach. Contracts for Cooperation between Web
Service Programmers and HTML Designers. November 2003.
23 pp.

RS-03-37 Claude Cŕepeau, Paul Dumais, Dominic Mayers, and Louis
Salvail. Computational Collapse of Quantum State with Appli-
cation to Oblivious Transfer. November 2003.

RS-03-36 Ivan B. Damg̊ard, Serge Fehr, Kirill Morozov, and Louis Sal-
vail. Unfair Noisy Channels and Oblivious Transfer. November
2003.

RS-03-35 Mads Sig Ager, Olivier Danvy, and Jan Midtgaard. A Func-
tional Correspondence between Monadic Evaluators and Ab-
stract Machines for Languages with Computational Effects.
November 2003. 31 pp.

RS-03-34 Luca Aceto, Willem Jan Fokkink, Anna Inǵolfsdóttir, and Bas
Luttik. CCS with Hennessy’s Merge has no Finite Equational
Axiomatization. November 2003. 37 pp.

RS-03-33 Olivier Danvy. A Rational Deconstruction of Landin’s SECD
Machine. October 2003. 32 pp. This report supersedes the
earlier BRICS report RS-02-53.

RS-03-32 Philipp Gerhardy and Ulrich Kohlenbach. Extracting Her-
brand Disjunctions by Functional Interpretation. October 2003.
17 pp.

RS-03-31 Stephen Lack and Paweł Sobociński. Adhesive Categories. Oc-
tober 2003. 25 pp.

RS-03-30 Jesper Makholm Byskov, Bolette Ammitzbøll Madsen, and
Bjarke Skjernaa. New Algorithms for Exact Satisfiability. Oc-
tober 2003. 31 pp.

RS-03-29 Aske Simon Christensen, Christian Kirkegaard, and Anders
Møller. A Runtime System for XML Transformations in Java.
October 2003. 15 pp.

RS-03-28 Zolt́an Ésik and Kim G. Larsen. Regular Languages Definable
by Lindström Quantifiers. August 2003. 82 pp. This report su-
persedes the earlier BRICS report RS-02-20.

	Introduction
	Related Work
	Programming with XML Templates
	A Contract Language
	An Example Contract
	Obligations of the HTML Designer
	Obligations of the Programmer
	Renegotiating Contracts
	Soundness

	Checking Contracts Automatically
	Summary Graphs in JWIG
	Checking the Designer's XHTML
	Checking the Programmer's Code
	Soundness

	Additional Tool Support
	Viewing Contracts Graphically
	A Dummy Designer
	A Dummy Programmer
	Inferring Contracts
	Managing Templates

	Implementation and Experiments
	Conclusion

