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Computational Collapse of Quantum State with
Application to Oblivious Transfer
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2 IQI, California Institute of Technology, dmayers@cs.caltech.edu
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Abstract. Quantum 2-party cryptography differs from its classical
counterpart in at least one important way: Given blak-box access to a
perfect commitment scheme there exists a secure 1−2 quantum oblivious
transfer. This reduction proposed by Crépeau and Kilian was proved se-
cure against any receiver by Yao, in the case where perfect commitments
are used. However, quantum commitments would normally be based on
computational assumptions. A natural question therefore arises: What
happens to the security of the above reduction when computationally
secure commitments are used instead of perfect ones?
In this paper, we address the security of 1−2 QOT when computationally
binding string commitments are available. In particular, we analyse the
security of a primitive called Quantum Measurement Commitment when
it is constructed from unconditionally concealing but computationally
binding commitments. As measuring a quantum state induces an irre-
versible collapse, we describe a QMC as an instance of “computational
collapse of a quantum state”. In a QMC a state appears to be collapsed
to a polynomial time observer who cannot extract full information about
the state without breaking a computational assumption.
We reduce the security of QMC to a weak binding criteria for the string
commitment. We also show that secure QMCs implies QOT using a
straightforward variant of the reduction above.

1 Introduction

Quantum 2-party cryptography differs from its classical counterpart in at least
one important way: Given blak-box access to a perfect commitment scheme there
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exists a secure 1 − 2 quantum oblivious transfer (i.e. 1-2 QOT) scheme[5, 3, 4].
Classically, it is known that such a reduction is unlikely to exist [9]. By 1-2 QOT
we mean a standard oblivious transfer of two classical messages using quantum
communication. In [5], Crépeau and Kilian have shown how 1-2 QOT can be ob-
tained from perfect commitments (i.e. the CK protocol). The security analysis
of the CK protocol was provided by Crépeau in [4] with respect to receivers re-
stricted to perform only immediate and complete measurements. The assumption
was relaxed in [14] by showing that privacy for the sender is garanteed against
any individual measurements applied by the receiver. The security against any
receiver was obtained by Yao in [19]. This important paper provides a full proof
of security for 1-2 QOT when constructed from perfect commitments under the
assumption that the quantum channel is error-free. Yao’s result was then gener-
alized by Mayers[12] for the case of noisy quantum channel [3] and where strings
are transmitted instead of bits. Mayers then reduced the security of quantum
key distribution to the security of such a generalized 1-2 QOT. If 2-party cryp-
tography in the quantum world seems to rely upon weaker assumptions than its
classical counterpart, it also shares some of its limits. As it was shown in [11, 13,
10], no statistically binding and concealing quantum bit commitment can exist.
On the other hand, quantum commitments can be based upon physical[16] and
computational[7, 6] assumptions. A natural question arises: What happens to the
security of the CK protocol when computationally secure commitments are used
instead of perfect ones? It should be stressed that Yao’s proof does not apply
in this case since it relies heavily upon the fact that the commitment scheme is
modelled by a classical black-box (i.e. one with classical inputs and outputs). The
proof is information theoretic provided the sender and the receiver have black-
box access to perfect commitments. For Yao’s proof to apply, the committing
phase should be modelled by the transmission of a classical bit to a third party
who conceals it to the receiver until the opening phase. Although any uncondi-
tionally binding commitment scheme defines such a classical bit, unconditionally
concealing commitments do not (i.e. both committed values can be explained by
the information provided to the receiver). In this paper, we address the security
of 1-2 QOT when computationally binding string commitments are available. In
particular, we analyse the security of a primitive called Quantum Measurement
Commitment (i.e. QMC) when it is constructed from unconditionally concealing
but computationally binding commitments. We reduce the security of QMC to
a weak binding criteria for the string commitment. We also show that secure
QMCs implies 1-2 QOT using a straightforward variant of the CK protocol. It
follows that unlike Yao’s proof (and the proof in [14]), our security proof applies
when computionally binding commitments are used.

The CK protocol can be seen as a quantum reduction of 1-2 OT to bit com-
mitment. To see how it works, consider the BB84 coding scheme[2, 5] for classical
bit b into a random state in { b〉+, b〉×}.The random θ ∈ {+,×} used to encode
b into the quantum state b〉θ, is called the transmission basis.Since only orthog-
onal quantum states can be distinguished with certainty, the transmitted bit b is
not received perfectly by the receiver, Alice, who does not know the transmission
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basis. The coding scheme also specifies what an honest Alice should be doing
with the received state b〉θ. She picks θ̂ ∈R {+,×} and measures b〉θ with
measurement Mθ̂ that distinguishes perfectly orthogonal states 0〉θ̂ and 1〉θ̂.If
Bob and Alice follow honestly the BB84 coding scheme then b is received with
probability 1 when θ̂ = θ whereas a random bit is received when θ̂ 6= θ. In other
words, If Bob announces the transmission basis a the end of the transmission
then the BB84 coding scheme implements a Rabin’s oblivious transfer [15] from
Bob to Alice provided she is honest. Otherwise, Alice can easily cheat the pro-
tocol by postponing the measurement until the basis is announced. In this case
she gets the transmitted bit all the time. In order to make the BB84 transmis-
sion resistant to active adversaries, the CK protocol uses n BB84 transmissions
where for each of them, Alice is asked to commit upon the measurements and
outcomes prior the announcement of the transmission bases by Bob.

We call Quantum Measurement Commitment (or QMC) the primitive that
allows Alice to provide Bob with evidences of measurements she claims having
performed on n BB84 qubits before the announcement of θ ∈ {+,×}n. Imple-
menting a QMC is simply done by sending a string commitment containing (θ̂, b̂)
to Bob where θ̂ ∈ {+,×}n is the measurements Alice claims having performed
and b̂ ∈ {0, 1}n are the outcomes. The classical bit encoded in the transmission
is defined as the value of some predicate f(b1, . . . , bn). Once the QMC has been
performed, Alice should be unable to evaluate f(b1, . . . , bn) even given the knowl-
edge of the transmission bases θ. A computational collapse occurred if, given the
transmission basis θ, f(b1, . . . , bn) cannot be determined efficiently. The CK pro-
tocol constructs a 1-2 QOT from a QMC with f(b1, . . . , bn) ≡ ⊕n

i=1bi. A QMC
is therefore a universal primitive for secure 2-party computation (of classical
functions).

Our contribution. In this paper, we address the question of determining how
the binding property of the string commitment scheme used for implementing a
QMC enforces its security. As already pointed out in [7, 6], quantum bit com-
mitment schemes satisfy different binding properties than classical ones. The
difference becomes more obvious when string commitments are taken into ac-
count. In Sect. 3.1, we generalize the computational binding criteria of [7] to
the case where commitments are made to strings of size ` ∈ Θ(n) for n the
security parameter, and ` some value depending on n. Intuitively, for a class
of functions F ⊆ {f : {0, 1}` → {0, 1}m}, with m < ` both depending on n,
we say that a string commitment scheme is F–binding if for all f ∈ F , for all
commitment prepared by the sender, and for a random y ∈R {0, 1}m, the com-
mitment cannot be opened efficiently to any s ∈ {0, 1}` such that f(s) = y with
success probability significantly better than 1/2m. The smaller m is compared
to `, the weaker is the F–binding criteria. We relate the security of QMC to a
weak form of the F–binding property. We assume that a QMC is made using
a computationally binding and unconditionally concealing string commitment
containing the bases θ̂ ∈ {+,×}n and the results b̂ ∈ {0, 1}n obtained by Al-
ice after Bob’s transmission of b〉θ. We then define the security of a QMC by
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the following game between Alice and Bob. Bob selects a challenge c ∈R {0, 1}.
If c = 0, Alice unveils all measurements and outcomes which Bob verifies (by
testing that θ̂i = θi ⇒ b̂i = bi). If c = 1, Bob announces the transmission basis
θ ∈R {+,×}n and Alice tries to maximize her bias on b’s parity. Let p̃s be Al-
ice’s probability of success when c = 0 and let ε̃ be Alice’s expected bias when
c = 1. First, notice that if p̃s + 2ε̃ = 2 then the QMC is not accomplishing
anything since Alice can always unveil perfectly (p̃s = 1) and bias the parity of
b as she likes (ε̃ = 1/2). In this case it is impossible to build a secure OT from
that QMC. However, as we will see in Section 3.2, an honest Alice can always
achieve p̃s + 2ε̃ = 1 and thus all adversaries such that p̃s + 2ε̃ ≤ 1 are considered
trivial. Our main contribution describes how p̃s and ε̃ relate to the Fn

m–binding
criteria of the string commitment for Fn

m a class of functions with small range
m ∈ O(polylog(n)). In Sect. 5, we give a black-box reduction of any good quan-
tum adversary against QMC into one against the string commitent Fn

m–binding
criteria. We show that if p̃s + 4ε̃2 ≥ 1 + δ(n) for non-negligible δ(n), then the
string commitment is not Fn

m–binding. In Sect. 6, we show that the converse con-
dition ε̃ ≤ √1 + δ(n)− p̃s/2 (for negligible δ(n)) is sufficient to build a secure
1-2 QOT. We construct a 1-2 QOT along the same lines than the CK protocol
by invoking O(n) times a QMC built from a Fn

m-binding string commitment
scheme. After making sure that p̃s is sufficiently close to 1 for a large fraction of
all QMC executions, we show how to obtain a correct and private (according the
definition of [4] adapted the obvious way to deal with computational security
against the receiver) 1-2 QOT.

Our reduction shows that using computationally binding commitments one
can enforce a computational or apparent collapse of quantum information. Using
such a QMC allows to construct a 1-2 QOT that is unconditionally secure against
Bob (i.e. the sender) and computationally secure against Alice (i.e. the receiver)
provided the string commitment scheme used to construct the QMC is Fn

m-
binding. As for the quantum version of the Goldreich-Levin theorem[1] and the
computationally binding commitments of [7] and [6], our result clearly indicates
that 2-party quantum cryptography in the computational setting can be based
upon different if not weaker assumptions than its classical counterpart.

2 Preliminaries

Notations and Tools. In the following, poly(n) stands for any polynomial in n.
We write A(n) < poly(n) for “A(n) is smaller than any polynomial provided n is
sufficiently large” and A(n) ≤ poly(n) (resp. A(n) ≥ poly(n)) means that A(n) is
upper bounded by some polynomial (resp. lower bounded by some polynomial).
For w ∈ {0, 1}n, x � w means that xi = 0 for all 1 ≤ i ≤ n such that wi = 0
(x belongs to the support of w). We denote by “�” the string concatenation
operator. For w ∈ {0, 1}n, we write [w] ≡ ⊕n

i=1wi. For w, z ∈ {0, 1}n, we write
|w| for the Hamming weight of w, ∆(w, z) = |w ⊕ z| for the Hamming distance,
and w � z ≡ ⊕n

i=1wi · zi is the boolean inner product. Notation ‖u‖ denotes
the Euclidean norm of u and u† denotes its complex conjugate transposed. The
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following well-known identity will be useful,

(∀y ∈ {0, 1}n)[y 6= 0n ⇒
∑

x∈{0,1}n

(−1)x�y = 0]. (1)

Next lemma, proven in Appendix A, provides a generalization of the parallelo-
gram identity:

Lemma 1. Let A ⊆ {0, 1}n be a set of bitstrings. Let {vw,z}w,z be any family
of vectors indexed by w ∈ {0, 1}n and z ∈ A that satisfies,

(∀s, t ∈ {0, 1}n, s 6= t)[
∑
w

∑
z1∈A:w⊕z1=s
z2∈A:w⊕z2=t

(−1)w�(z1⊕z2)〈vw,z1,vw,z2〉 = 0] (2)

Then, ∑
w

‖
∑
z∈A

(−1)w�zvw,z‖2 =
∑

w∈{0,1}n

∑
z∈A

‖vw,z‖2. (3)

Finally, for θ, b ∈ {0, 1}n, we define ∆�(θ, b) = {(θ̂, b̂) ∈ {0, 1}n ×
{0, 1}n|(∀i, 1 ≤ i ≤ n)[θ̂i = θi ⇒ b̂i = bi]}. It is easy to verify that
#∆�(θ, b) = 3n and that (θ ⊕ τ, b⊕ β) ∈ ∆�(θ, b) iff β � τ .

Quantum Stuff. The basis { 0〉, 1〉} denotes the computational or rectilinear
or “+” basis for H2. When the context requires, we write b〉+ to denote the
bit b in the rectilinear basis. The diagonal basis, denoted “×”, is defined as
{ 0〉×, 1〉×} where 0〉× = 1√

2
( 0〉 + 1〉) and 1〉× = 1√

2
( 0〉 − 1〉). States

0〉, 1〉, 0〉× and 1〉× are the four BB84 states. For any x ∈ {0, 1}n and θ ∈
{+,×}n, the state x〉θ is defined as⊗n

i=1 xi〉θi
. In the following, we write P+,0 ≡

P0 = 0〉〈0 , P+,1 ≡ P1 = 1〉〈1 , P×,0 = 0〉×〈0 and P×,1 = 1〉×〈1 for the
projections along the four BB84 states. We define measurements M+ ≡ {P0,P1}
and M× ≡ {P×,0,P×,1} allowing to distinguish the BB84 encoded bit in the
computational and diagonal basis respectively. For θ ∈ {+,×}n, measurement
Mθ is the composition of measurements Mθi for 1 ≤ i ≤ n. In order to simplify
the notation, we sometimes associate the rectilinear basis “+” with bit 0 and the
diagonal basis with bit 1. We map sequences of rectilinear and diagonal bases
into bitstrings the obvious way.

We refer to [7, 6] for a more complete description of how quantum protocols
are modeled by quantum circuits. We denote by UG an universal set of quantum
gates. The complexity of a quantum circuit C is simply the number ‖C‖UG of
elementary gates in C. In the following, we use the two Pauli (unitary) trans-
formations σX (bit flip) and σZ (conditional phase shift) defined for b ∈ {0, 1}
as, σX : b〉 7→ 1− b〉 and σZ : b〉 7→ (−1)b b〉. Assuming U is a one qubit
operation and s ∈ {0, 1}n, we write U⊗s = ⊗n

i=1Ui where Ui = 12 if si = 0
and Ui = U if si = 1. U⊗s is therefore a conditional application of U on each
of n registers depending upon the value of s. The maximally entangled state
Φ+

n 〉 = 2−n/2
∑

x∈{0,1}n x〉⊗ x〉 will be useful in our reduction. This state can
easily be constructed from scratch by a circuit of O(n) elementary gates.
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3 Definitions

3.1 Computationally Binding Quantum String Commitment

In the following we shall always refer to A as the sender and B as the receiver of
some commitment. Such a scheme can be specified by two families of protocols
CAB = {(CA

n , C
B
n )}n>0, and OAB = {(OA

n , O
B
n )}n>0 where each pair defined A’s

and B’s circuits for the committing and the opening phase respectively. A `-string
commitment allows to commit upon strings of length ` for n a security parameter.
The committing stage generates the state ψs〉 = (CA

n � CB
n ) s〉A 0〉B when A

commits to s ∈ {0, 1}`. The opening stage is executed from the shared state
ψs〉 and produces ψfinal〉 = (OA

n �OB
n ) ψs〉. In [7], a natural security criteria

for computationally binding but otherwise concealing quantum bit commitment
schemes was introduced. In the following, we generalize this approach for string
commitment schemes.

An adversary Ã = {(C̃A
n , Õ

A
n )}n>0 for the binding condition is such that

ψ̃〉 = (C̃A
n � CB

n ) 0〉A 0〉B is generated during the committing stage. The dis-
honest opening circuit ÕA

n tries to open s ∈ {0, 1}l given as an extra input
in state s〉X . Given the final state ψ̃final〉 = (ÕA

n � OB
n ) s〉X ψ̃〉AB

we de-
fine p̃s(n) as the probability to open s ∈ {0, 1}` with success. More precisely,
p̃s(n) = ‖QB

s ψ̃final〉‖2 where QB
s is B’s projection operator on the subspace

leading to accept the opening of s. The main difference between quantum and
classical commitments is the impossibility in the quantum case to determine the
committed string s after the committing phase of the protocol. Classically, this
can be done by fixing the parties’ random tapes so s becomes uniquely deter-
mined. In other words, a quantum adversary able to open any string s with
probability p(s) is not necessarily able to compute simultaneously the openings
of all or even a subset of all strings s. In particular, classical security proof
techniques like rewinding have no quantum analogue[8, 17]. A committer (to a
concealing commitment) can always commit upon any superposition of values
for s that will remain such until the opening phase. A honest committer does
not necessarily know a single string that can be unveiled with non-negligible
probability of success. Suppose a quantum `–string commitment scheme has
committing circuit CA

n � CB
n and let ψ(s)〉AB = (CA

n � CB
n ) s〉A 0〉B. If the

committer starts with superposition
∑

s

√
p̃s(n) s〉, for any probability distri-

bution {(p̃s(n), s)}s∈{0,1}` , then the state obtained after the committing phase
would be:

∑
s∈{0,1}`

√
p̃s(n) ψ(s)〉AB = CA

n � CB
n


(

∑
s∈{0,1}`

√
p̃s(n) s〉A)⊗ 0〉B


 . (4)

Equation (4) is a valid commitment to a superposition of strings that will always
allow the sender to unveil s with probability p̃s(n). The honest strategy described
in (4) achieves

∑
s p̃s(n) = 1. In [7], the binding condition is satisfied if no

adversary can do significantly better than what is achievable by (4) in the special

6



case ` = 1. More precisely, a bit commitment scheme is computationally binding
if for all poly-time adversaries Ã:

p̃0(n) + p̃1(n) < 1 + 1/poly(n) (5)

where p̃b(n) is the probability for Ã to open bit b with success. Extending this
definition to the case where ` ∈ Θ(n) must be done with care however. The ob-
vious generalization of (5) to the requirement

∑
s∈{0,1}` p̃s(n) < 1+1/poly(n) is

too strong whenever ` ∈ Θ(n). For example, if ` = n and p̃s(n) = 2−n(1 + 1
p(n) )

for all strings s ∈ {0, 1}n then Ã’s behavior is indistinguishable in polynomial
time from what is achievable with the honest state (4) resulting from distribu-
tion {(2−n, s)}s. Any such attack that cannot be distinguished from the honest
behavior should hardly be considered successful. On the other hand, defining
a successful adversary Ã as one who can open s and s′ (s 6= s′) such that
p̃s(n) + p̃s′(n) ≥ 1 + 1/p(n) is in general too weak when one tries to reduce the
security of a protocol to the security of the string commitment used by that
protocol (as we shall see for QMCs). Breaking a protocol could be reduced to
breaking the string commitment scheme in a more subtle way. In general, the
possibility to commit upon several strings in superposition can be used by the
adversary to make his attack against the binding condition even more peculiar.
Instead of trying to open a particular string s ∈ {0, 1}`, an attacker could be
interested in opening any s ∈ {0, 1}` such that f(s) = y for some function
f : {0, 1}` → {0, 1}m with m ≤ `. Henceforth, we call such an attack an f-
attack. We shall see in the following that the security of QMC is guaranteed
provided the string commitment does not allow the committer to mount such an
f -attack for any f ∈ F where F is a special class of functions. Such an adversary
is defined by a family of interactive quantum circuits Ãf = {(C̃A

n , Õ
A
n )}n>0 such

that ψ̃〉 = (C̃A
n � CB

n ) 0〉A 0〉B is the state generated during the committing
phase of the protocol and ψ̃(y)〉 = (ÕA

n � OB
n ) y〉X ψ̃〉AB

is the state (hope-
fully) allowing to open s ∈ {0, 1}` such that f(s) = y. The probability to succeed
during the opening stage is,

p̃f
y(n) = ‖

∑
s∈{0,1}`:f(s)=y

QB
s ψ̃(y)〉‖2, (6)

where QB
s is B’s projector operator leading to accept the opening of s ∈ {0, 1}`.

The following binding criteria takes into account such attacks:

Definition 1. Let F ⊆ {f : {0, 1}` → {0, 1}m} be a set of functions where
m ≤ `. A `-string commitment scheme is computationally F -binding if for any
f ∈ F and any adversary Ãf such that ‖Ãf‖UG ≤ poly(n), we have∑

y∈{0,1}m

p̃f
y(n) < 1 + 1/poly(n) where p̃f

y(n) is defined as in (6). (7)

Notice that all natural attacks can be expressed by an appropriate class of
functions F . In general, the smaller m is with respect to `, the weaker is the
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F–binding criteria. A class of functions of particular interest is built out of
s1(x, y) = x, s2(x, y) = y, and s3(x, y) = x⊕y for all x, y ∈ {0, 1}. Let In

m be the
set of subsets of {1, . . . , n} having size m. For I ∈ In

m, let Sn
I = {s : {0, 1}2n →

{0, 1}m|(∃j ∈ {1, 2, 3}m)(∀x, y ∈ {0, 1}n)[s(x, y) = �h∈Isjh
(xh, yh)]}, we define:

Fn
m =

{
f : {0, 1}2n → {0, 1}m|(∃I ∈ In

m)[f ∈ Sn
I ]
}
.

In other words, Fn
m contains the set of functions f such that each of the m

output bit of f(x, y) is a bit of either x or y or x ⊕ y. Notice that no quantum
string commitment has been formally shown F -binding for a non-trivial F . We
believe however that the commitment of [6] can be turned into a Fn

m-binding
string commitment for small m but this analysis is beyond the scope of this
paper.

3.2 Commitment to Quantum Measurement

Quantum Measurement Commitment (QMC) is a primitive allowing the receiver
of random qubits to show the sender that they have been measured without dis-
closing any further information (i.e. unconditionally) about the measurement
and the outcome. As discussed in the Sect. 1, this primitive is the main ingredi-
ent in order to provide security in 1-2 QOT against the receiver A. In this paper
we restrict our attention to quantum transmission of random BB84 qubits. The
measurements performed by the receiver are, for each transmission, indepen-
dently chosen in {M+,M×}. We model QMCs by the following game between
the sender B and the receiver A:

1. B sends n random BB84 qubits in state b〉θ for b ∈R {0, 1}n and θ ∈R

{+,×}n,
2. A applies measurement Mθ̂ for θ̂ ∈R {+,×}n producing classical outcome
b̂ ∈ {0, 1}n,

3. A uses a 2n-string commitment in order to commit to (θ̂, b̂) toward B,
4. B picks and announces a random challenge c ∈R {0, 1},

– If c = 0 then A opens (θ̂, b̂) and B verifies that b̂i = bi for all i such that
θ̂i = θi, otherwise B aborts,

– If c = 1 then B announces θ and A tries to bias [b].

A wants to maximize both her success probability when unveiling and the bias
on [b] whenever θ is announced. This is almost identical to the receiver’s situ-
ation in the CK protocol[5]. Since we only consider unconditionally concealing
string commitments, B gets information about A’s measurements and results
only if they are unveiled. As we shall see next, this flavor of commitments al-
lows A to postpone her measurement until the unveiling stage. The commitment
stage should nevertheless ensure B that A cannot use this ability for improving
her situation compared to the case where she measures completely before com-
mitting. In other words, although this flavor of commitment cannot force A to
measure upon the committing stage, it should do as such through the actions of
a computationally bounded A.
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We model the adversary Ã by a family of interactive quantum circuits
Ã = {(C̃A

n , Õ
A
n , Ẽn)}n>0 where C̃A

n and ÕA
n are Ã’s circuits for the commit-

ting and the opening phases. Circuit Ẽn allows to extract the parity of b upon
the announcement of basis θ. Circuit C̃A

n works upon Ã’s internal registers HA

together with the register Hchannel storing the BB84 qubits. We denote by

ψθ,b〉AB = (C̃A
n � CB

n ) b〉channel
θ , (8)

the resulting state after the committing phase (step 3). This state should allow
Ã to succeed both challenges with good probability. By linearity, we have that
for all θ, b, x ∈ {0, 1}n,

ψθ,b〉 = 2−
|x|
2

∑
y:y�x

(−1)b�x⊕b�y ψθ⊕x,b⊕y〉, (9)

where θ ⊕ x defines a new basis in which ψθ,b〉 is represented. The probability
to open with success p̃ok

(θ,b)(n), when b〉θ was sent, is

p̃ok
(θ,b)(n) =

∑
(θ̂,b̂)∈∆�(θ,b)

‖QB
(θ̂,b̂)

(ÕA
n �OB

n ) ψθ,b〉‖2 = ‖Q∗
(θ,b) ψθ,b〉‖2, (10)

for QB
(θ̂,b̂)

the projection operator applied upon B’s registers and leading to a valid

opening of (θ̂, b̂) ∈ {0, 1}2n. The opening of (θ̂, b̂) is accepted by B iff (θ̂, b̂) ∈
∆�(θ, b). For simplicity, circuits ÕA

n � OB
n can be included in the description

of QB
(θ̂,b̂)

so the opening process can be seen as a single projection Q∗
(θ,b) =∑

(θ̂,b̂)∈∆�(θ,b) QB
(θ̂,b̂)

. Therefore, the expected probability of success p̃ok(n) is,

p̃ok(n) =
1
4n

∑
b∈{0,1}n

∑
θ∈{+,×}n

p̃ok
(θ,b)(n). (11)

When c = 1, Ã should be able, given the announcement of θ, to extract
information about the parity [b].The extractor Ẽn has access to an extra register
HΘ storing the basis θ ∈ {+,×}n. The extractor stores the guess for [b] in
register H⊕. The bias ε̃θ,b(n) provided by the extractor when the qubits were
initially in state b〉θ is

1
2

+ ε̃θ,b(n) = ‖P⊕[b](Ẽn ⊗ 1B) θ〉Θ 0〉⊕ ψθ,b〉AB‖2, (12)

where P⊕[b] is applied upon the output register H⊕. The expected value ε̃(n) for
the bias provided by Ẽn is simply,

ε̃(n) =
1
4n

∑
b∈{0,1}n

∑
θ∈{+,×}n

ε̃θ,b(n). (13)

We characterize Ã’s behavior against QMC by both p̃ok(n) and ε̃(n). Indepen-
dently of the string commitment scheme used, there always exists Ã∗ preparing

9



a superposition of attacks that 1) succeeds with probability 1 during the opening
and 2) provides [b] with certainty. Such an attack can be implemented as follows:

ψ∗θ,b〉 = α(CA
n � CB

n ) b〉channel
θ + β(CA

n � CB
n ) 0n〉channel

+n (14)

where |α|2+|β|2 = 1 and CA
n and CB

n are the honest circuits for committing. The
state ψ∗θ,b〉 is a superposition of the honest behavior with probability |α|2 and
the trivial attack consisting in not measuring the qubits received with probability
|β|2. The expected probability of success p∗(n) is

p∗(n) = |α|2 + |β|2(3
4
)n ≈ |α|2 (15)

since with probability |α|2 an honest QMC was executed and with probability
|β|2 a QMC to the fixed state 0n〉θ was made. In the later case, the probability
to pass B’s test is (3/4)n. The expected bias satisfies

ε∗(n) =
|α|2
2

(
1
2
)n +

|β|2
2

≈ |β|2
2

(16)

since with probability |α|2 a QMC to b〉θ is recovered (in which case a nonzero
bias on [b] occurs only when θ̂ = θ) and with probability |β|2 a QMC to a dummy
value is made thus allowing to extract [b] perfectly. Such an attack does not
enable the committer to break the binding property of the string commitment
but nevertheless achieves: p∗(n)+2ε∗(n) > 1. We define two flavors of adversaries
against QMC. The first flavor captures any adversary that achieves anything
better than the trivial adversary Ã∗ defined in (14). The second flavor captures
stronger adversaries for which our reduction will be shown to produce attacks
against the Fn

m–binding property of the string commitment.

Definition 2. An adversary Ã = {(C̃A
n , Õ

A
n , Ẽn)}n>0 against QMC is δ(n)–

non-trivial if p̃ok(n) + 2ε̃(n) ≥ 1 + δ(n), and δ(n)–good if p̃ok(n) + 4ε̃(n)2 ≥
1 + δ(n) for p̃ok(n) and ε̃(n) defined as in (11) and (13) respectively.

Notice that if Ã is not δ(n)-good (or δ(n)-non-trivial) then an upper bound on
the expected bias ε̃(n) can be obtained from a lower bound on p̃ok(n). This is
how we use QMCs for implementing oblivious transfer in Sect. 6.

4 The Reduction

Using a good adversary Ã against QMC, we would like to build an adversary
against the Fn

m-binding property of the underlying string commitment. In this
section, we provide the first step of the reduction given that Ã’s parity extractor
is perfect (i.e. it always returns the parity of the committed string). We construct
a circuit built from Ã allowing to prepare a commitment into which any ψθ,b〉
can be inserted efficiently at the opening stage. In Sect. 5, we show how to use
this circuit for attacking the binding property of the string commitment.

10



4.1 The Switching Circuit

Let Ã = {(C̃A
n , Õ

A
n , Ẽn)}n>0 be an adversary in QMC. We callHKeep the register

kept by Ã after the committing phase. We denote by HB the register containing
what is sent by A and kept by B after the committing phase. HQ ' H2n denotes
the register containing the BB84 qubits before the commitment, HΘ ' H2n

denotes the register for the basis given as input to the extractor, and H⊕ ' H2

denotes the register in which the guess on [b] is stored by the extractor.
Instead of running C̃n ≡ (C̃A

n �CB
n ) upon some BB84 qubits, we run it with

the maximally entangled state Φ+
n 〉 where the first half is stored in HΘ and the

second half stored in HQ. Therefore, the basis given as input to the extractor
is not a classical state but is rather entangled with register HQ containing the
qubits Ã is committed upon. After the execution of C̃n Φ+

n 〉Θ,Q, transformations
B⊗b and T⊗θ are applied to register HΘ in order to prepare the input for the
extractor where, B = σX σZ and T = H σZ . Ẽn is then run before σZ is applied
upon the extractor’s output register H⊕. The transformation is completed by
running the extractor in reverse. The resulting circuit, shown in Fig. 1, is called
the switching circuit. Next, we see that whenever the parity extractor is perfect,

T⊗θ

HQ

C̃n

ψθ,b〉

HKeep

σZ

Ψθ,b〉

Ẽ†
nẼn

HB

H⊕

HΘ

Φ+
n 〉

B⊗b

Fig. 1. The Switching Circuit

the instance of the switching circuit using transformations B⊗b and T⊗θ gener-
ates ψθ,b〉. To see this, we follow its evolution from the initial state Φ+

n 〉. We
first look at the state generated before the extractor is applied,

Φ+
n 〉 ≡

∑
s

1√
2

n s〉 s〉 C̃n

7−→
∑

s

1√
2

n s〉 ψ+n,s〉B
⊗b

7−→
∑

s

(−1)b�s

√
2

n b⊕ s〉 ψ+n,s〉

T⊗θ

7−→
∑

s,t : t�θ

(−1)b�s ⊕ b�t ⊕ s�t

√
2

n+|θ| b⊕ s⊕ t〉 ψ+n,s〉 (17)

=
∑

s,t,v :
t�θ

v�b⊕s⊕t

(−1)b�t ⊕ s�v ⊕ s�s

√
2

n+|θ|+|b⊕s⊕t| b⊕ s⊕ t〉 ψb⊕s⊕t,s⊕v〉. (18)
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The states up to (17) are obtained by definition of Φ+
n 〉, C̃n, B

⊗b, and T⊗θ.
Equation (18) follows after changing the basis from +n to b ⊕ s ⊕ t using (9).
From (18), we follow the evolution through Ẽ†nσZẼn,

T⊗θB⊗bCn Φ+
n 〉 Ẽ†nσzẼn

7−→
∑

s,t,v :
t�θ

v�b⊕s⊕t

(−1)b�t ⊕ s�v ⊕ v�v

√
2

n+|θ|+|b⊕s⊕t| b⊕ s⊕ t〉Θ ψb⊕s⊕t,s⊕v〉 (19)

=
∑

x,y,v :
v⊕x⊕y�θ

v�θ⊕x

(−1)b�θ ⊕ b�x ⊕ b�y ⊕ v�y

√
2

n+|θ|+|θ⊕x| θ ⊕ x〉Θ ψθ⊕x,b⊕y〉 (20)

=
∑
y�x

(−1)b�θ ⊕ b�x ⊕ b�y

√
2

n+|θ|+|θ⊕x|−2|θ∧x̄| θ ⊕ x〉Θ ψθ⊕x,b⊕y〉

=
∑
y�x

(−1)b�θ ⊕ b�x ⊕ b�y

√
2

n+|x| θ ⊕ x〉Θ ψθ⊕x,b⊕y〉 (21)

=
∑

x

(−1)b�θ

√
2

n θ ⊕ x〉Θ ⊗
∑

y : y�x

(−1)b�x ⊕ b�y

√
2
|x| ψθ⊕x,b⊕y〉

=
∑

x

(−1)b�θ

√
2

n θ ⊕ x〉Θ ψθ,b〉 ≡ Ψθ,b〉. (22)

Notice that in addition to HΘ, Ẽn acts upon another extra register H⊕ ignored
in the above derivation. W.l.g one may assume it is included in the Hilbert space
where ψθ,b〉 belongs. Equation (19) follows from the fact that the extractor is
perfect. Equation (20) follows after a reorganizing the terms of the sum. Equation
(21) follows after using (1). We finally get (22) using (9).

In conclusion, a perfect extractor allows to produce a commitment inside
which any ψθ,b〉 can be put efficiently even when θ and b are chosen after the
end of the committing phase.

5 Analysis

We analyze the switching circuit when it is run with imperfect parity extractors.
We first show how states { Ψ̃θ,b〉}θ,b, produced in this case, overlap with states
{ Ψθ,b〉}θ,b generated when perfect extractors are available. In Sect. 5.2, we rep-
resent the behavior of the switching circuit by a table. In Sect. 5.3, we relate this
table to attacks against the Fn

m–binding property of the string commitment.

5.1 Generalization to Imperfect Extractors

Assume the adversary Ã = {(C̃A
n , Õ

A
n , Ẽn)}n>0 has access to an imperfect ex-

tractor. In this case, Ẽn is modeled as follows:

Ẽn θ〉Θ ψθ,b〉 = θ〉Θ ⊗
(
γθ,b [b]〉⊕ ϕθ,b〉+ γ̂θ,b 1⊕ [b]〉⊕ ϕ̂θ,b〉

)
. (23)
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Without loss of generality, we may assume that both γθ,b and γ̂θ,b are real positive
numbers such that |γθ,b|2 ≥ 1

2 (i.e. arbitrary phases can be added to ϕθ,b〉 and
ϕ̂θ,b〉). According (13), the expected bias provided by Ẽn is,

ε̃(n) ≡ 4−n
∑

θ

∑
b

ε̃θ,b(n) = 4−n
∑

θ

∑
b

∣∣∣∣|γθ,b|2 − 1
2

∣∣∣∣ . (24)

Compared to the case where the extractor is perfect, only the effect of transfor-
mation Ẽ†nσZẼn needs to be recomputed. From (23), we obtain,

(Ẽ†nσZẼn) θ〉 ψθ,b〉 = (−1)[b] θ〉 ⊗ ( ψθ,b〉+ eθ,b) , (25)

where the error vector eθ,b satisfies θ〉 ⊗ eθ,b ≡ −2γ̂θ,bẼ
†
n( θ〉 1⊕ [b]〉⊕ ϕ̂θ,b〉).

The final state Ψ̃θ,b〉, produced by the switching circuit, can be obtained easily
from (19) using (25). We get that Ψ̃θ,b〉 = Ẽ†nσzẼnT

⊗θB⊗bCn Φ+
n 〉 satisfies:

Ψ̃θ,b〉 =
∑
y�x

(−1)b�θ ⊕ b�x ⊕ b�y

√
2

n+|x| θ ⊕ x〉 ⊗ ( ψθ⊕x,b⊕y〉+ eθ⊕x,b⊕y) . (26)

Splitting the inner sum of (26) after distributing the tensor product gives,

Ψ̃θ,b〉 = Ψθ,b〉+ F θ,b. (27)

The first part Ψθ,b〉 = (2−n/2
∑

x(−1)b�θ θ〉)⊗ ψθ,b〉 is exactly what one gets
when the switching circuit is run with a perfect extractor (see (22)). The second
part is the error term for which next lemma gives a characterization.

Lemma 2. Consider the switching circuit built from adversary Ã =
{(C̃A

n , Õ
A
n , Ẽn)}n>0. Then,

4−n
∑

θ

∑
b

‖F θ,b‖2 ≤ 2− 4ε̃(n).

Proof. Let θ be fixed. Using the definition of F θ,b, we get

2−n
∑

b∈{0,1}n

‖F θ,b‖2 = 2−n
∑

b

‖
∑
y�x

(−1)b�θ⊕b�x⊕b�y

√
2

n+|x| θ ⊕ x〉 ⊗ eθ⊕x,b⊕y‖2

= 2−n
∑

b

‖
∑

x

(−1)b�θ⊕b�x

√
2

n+|x| θ ⊕ x〉
∑

y:y�x

(−1)b�yeθ⊕x,b⊕y‖2

= 2−2n−|x|∑
x

∑
b

‖
∑

y:y�x

(−1)b�yeθ⊕x,b⊕y‖2, (28)

where (28) is obtained from the orthogonality of all eθ⊕x,b⊕y when x varies,
and from Pythagoras theorem. We now apply Lemma 1 to (28) with A = {y ∈
{0, 1}n|y � x}, w ≡ b,z ≡ y, and vw,z ≡ eθ⊕x,b⊕y. We first verify that the
condition expressed in (2) is satisfied:
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∑
b

∑
y1∈A:b⊕y1=s

∑
y2∈A:b⊕y2=t

(−1)b�(y1⊕y2)〈eθ⊕x,b⊕y1, eθ⊕x,b⊕y2〉 =

〈eθ⊕x,s, eθ⊕x,t〉
∑

b:
b⊕s�x,b⊕t�x

(−1)b�(s⊕t) = 0,

from an identity equivalent to (1) since b runs aver all substrings in the support
of s ⊕ t � x. We therefore apply the conclusion of Lemma 1 to get that for all
x ∈ {0, 1}n,∑

b

‖
∑

y:y�x

(−1)b�yeθ⊕x,b⊕y‖2 =
∑

y:y�x

∑
b

‖eθ⊕x,b⊕y‖2 ≤ 2n+|x|(2−4ε̃(n)). (29)

The result follows after replacing (29) in (28). ut
Using Lemma 2, we show how the the output of the switching circuit with
imperfect extractors approaches the one with perfect extractors. Next lemma
gives an upper bound on the expected overlap between the states produced
using perfect and imperfect extractors.

Lemma 3. Let Ã = {(C̃A
n , Õ

A
n , Ẽn)}n>0 be the circuits for the adversary such

that the extractor Ẽn has expected bias ε̃(n). Then, the set of states { Ψ̃θ,b〉}b,θ

produced by the switching circuit satisfies,

SÃ = 4−n
∑
b,θ

|〈Ψ̃θ,b Ψθ,b〉| ≥ 2ε̃(n).

Proof. According (27), we can write Ψ̃θ,b〉 = Ψθ,b〉+ F θ,b = (1− αθ,b) Ψθ,b〉+
βθ,b Ψ⊥θ,b〉, where 1 = ‖ Ψ̃θ,b〉‖2 = |(1 − αθ,b)|2 + |βθ,b|2 and 〈Ψθ,b Ψ

⊥
θ,b〉 = 0.

Isolating |αθ,b| and using the fact that |αθ,b|2 + |βθ,b|2 = ‖F θ,b‖2 gives |αθ,b| =
‖F θ,b‖2

2 which, after invoking Lemma 2, leads to SÃ =
∑

θ,b 4−n|〈Ψ̃θ,b Ψθ,b〉| ≥∑
θ,b 4−n(1− |αθ,b|) = 1−∑θ,b 4−n ‖F θ,b‖2

2 ≥ 2ε̃(n). ut
Lemma 3 tells us that with good extractors, one can generate states having

large overlap (in the expected sense) with all QMCs to different BB84 qubits
which states are chosen at the beginning of the opening stage (i.e. after the end
of the committing phase). It remains to show how to use this ability to break
the binding property. This second and last step of our reduction is addressed in
next section.

5.2 Representing The Switching Circuit by a Table

In this section, we look at how to invoke the switching circuit in order to attack
the binding property of the string commitment. Remember first that ψθ,b〉
has probability p̃ok

(θ,b)(n) = ‖Q∗
(θ,b) ψθ,b〉‖2 to open a valid QMC to b〉θ where

Q∗
(θ,b) is defined as in (10). Remember that a valid opening of b〉θ consists in
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the opening of any 2n–bit string (θ̂, b̂) ∈ ∆�(θ, b). We take advantage of the
structure of ∆�(θ, b) in order to exhibit attacks against the binding condition.

Suppose first that adversary Ã has access to a perfect parity extractor En.
From Sect. 4.1, such an adversary can generate ψθ,b〉 for any choice of θ ∈
{+,×}n and b ∈ {0, 1}n. Each of 4n sets of valid announcements ∆�(θ, b) is of
size #∆�(θ, b) = 3n. We define a table of positive real numbers having 4n rows
and 3n columns where each row is labeled by a pair (θ, b). The row (θ, b) contains
values Tθ,b(τ, β) = ‖QB

(θ⊕τ,b⊕β) ψθ,b〉‖2 for all (τ, β) such that (θ ⊕ τ, b ⊕ β) ∈
∆�(θ, b). This condition is equivalent to (τ, β) such that β � τ . The table values
for the case n = 1 are shown in Fig. 2. The sum of each row is added to the
right. The construction is easily generalized for arbitrary n in which case, each

‖QB
(+,0) ψ+,0〉‖2 ‖QB

(×,0) ψ+,0〉‖2 ‖QB
(×,1) ψ+,0〉‖2 p̃ok

(+,0)(n) = ‖Q∗
(+,0) ψ+,0〉‖2

‖QB
(+,1) ψ+,1〉‖2 ‖QB

(×,1) ψ+,1〉‖2 ‖QB
(×,0) ψ+,1〉‖2 p̃ok

(+,1)(n) = ‖Q∗
(+,1) ψ+,1〉‖2

‖QB
(×,0) ψ×,0〉‖2 ‖QB

(+,0) ψ×,0〉‖2 ‖QB
(+,1) ψ×,0〉‖2 p̃ok

(×,0)(n) = ‖Q∗
(×,0) ψ×,0〉‖2

‖QB
(×,1) ψ×,1〉‖2 ‖QB

(+,1) ψ×,1〉‖2 ‖QB
(+,0) ψ×,1〉‖2 p̃ok

(×,1)(n) = ‖Q∗
(×,1) ψ×,1〉‖2

Fig. 2. The table for the case n = 1 and perfect extractor.

column contains 4n orthogonal projectors applied to the 4n states { ψθ,b〉}θ,b.
The sum of all values in the table is simply 4np̃ok(n) =

∑
θ,b p̃

ok
(θ,b)(n).

The table is defined similarly for imperfect parity extractors. In this case,
table TÃ = {Tθ,b(τ, β)}θ,b,τ,β�τ associated with adversary Ã contains elements,

Tθ,b(τ, β) = ‖QB
(θ⊕τ,b⊕β) Ψ̃θ,b〉‖2. (30)

While for perfect extractors the sum over all elements in the table is at least
4np̃ok(n), next theorem shows that any table TÃ built from a δ(n)–good adver-
sary adds up to 4npoly(δ(n)). The proof follows easily from Lemma 3 and can
be found in Appendix B.

Theorem 1. If Ã = {(C̃A
n , Õ

A
n , Ẽn)}n>0 is a δ(n)–good adversary against QMC

and TÃ = {Tθ,b(τ, β)}θ,b,τ,β�τ is its associated table, then

∑
θ,b,τ

∑
β�τ

Tθ,b(τ, β) ≥ 4nδ(n)3

32
. (31)

Theorem 1 establishes the existence of one column in TÃ providing a weak
attack since any table with 3n columns all summing up to more than 4nδ(n)3

32 has
one column exceeding (4

3 )n δ(n)2

32 � 1+1/poly(n). Let (τ, β) be such a column and
consider the class of functions containing only the identity 12n. For (y, y′) ∈
{0, 1}2n, the state Ψ̃y⊕τ,y′⊕β〉 can be generated using the switching circuit.
The probability to unveil (y, y′) is Ty⊕τ,y′⊕β(τ, β) = ‖QB

(y,y′) Ψ̃y⊕τ,y′⊕β〉‖2. By
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construction, we have
∑

(y,y′) p̃
f
(y,y′)(n) =

∑
(y,y′) Ty⊕τ,y′⊕β(τ, β) > 1+1/poly(n)

which provides an attack against the string commitment’s 12n–binding property
in accordance with (7). As we pointed out in Sect. 3.1 however, this attack
might not even be statistically distinguishable from the trivial adversary. This
implies that proving a string commitment computationally 12n-binding would
be impossible. In the next section, we find stronger attacks allowing to relax the
binding property required for secure QMC.

5.3 Strong Attacks Against the String Commitment

We now show that the table TÃ, built out of any δ(n)–good adversary Ã, contains
an attack against the Fn

m–binding property of the 2n–string commitment with
m ∈ O(polylog(n)) whenever δ(n) ≥ 1/poly(n). We show this using a counting
argument. We cover uniformly the table TÃ with all attacks in Fn

m. Theorem 1
is then invoked in order to conclude that for some f ∈ Fn

m, condition (7) does
not hold.

Attacking the binding condition according to a function f ∈ Fn
m is done

by grouping columns in TÃ as described in (6) and discussed in more details
in Appendix C. The number of lines involved in such an attack is clearly 2m

while the number of columns can be shown to be 2m3n−m (for information see
Appendix C and Lemma 4 below). This means that any attack in Fn

m covers
t = 3n−m4m elements in TÃ. The quality of such an attack is characterized by
the sum of all elements in the sub-array defined by the attack since this sum
corresponds to the value of (7). Let tÃ = 3n4n be the total number of elements
in TÃ and let sÃ be its sum. The following lemma, proved in Appendix D, shows
that all attacks in Fn

m cover TÃ uniformly:

Lemma 4. All f -attacks with f ∈ Fn
m cover TÃ uniformly, that is, each element

in TÃ belongs to exactly a = C(m,n)4m attacks each of size t = 3n−m4m.

Let s∗ be the maximum of (7) for all f -attacks with f ∈ Fn
m. Clearly, a · s∗ ≥

a·t·sÃ
tÃ

since by Lemma 4, the covering of TÃ by f ∈ Fn
m is uniform and a · t/tÃ

is the number of times TÃ is generated by attacks in Fn
m. In other words,

a · s∗ ≥ a · t · sÃ
tÃ

=
a · t · sÃ

3n4n
⇒ s∗ ≥ t · sÃ

3n4n
=

4m · sÃ
3m4n

. (32)

Assuming that Ã is δ(n)–good, Theorem 1 tells us that sÃ ≥ 4nδ(n)3

32 so (32)
implies that,

s∗ ≥ δ(n)34m

32 · 3m
≥ 1 + 1/poly(n), (33)

for any m ≥ dlog 4
3

(
32

δ(n)3

)
e. Equation (33) guarantees that for at least one

f ∈ Fn
m, condition (7) is not satisfied thereby providing an attack against

the Fn
m–binding criteria. Moreover, since δ(n) ≥ 1/poly(n) it is sufficient that

m ∈ O(polylog(n)). It follows that at least one f -attack in Fn
m is statistically

distinguishable from any trivial one.
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6 The Main Result and Its Application

Putting together Theorem 1 and (33) leads to our main result:

Theorem 2 (Main). Any δ(n)–good adversary Ã against QMC can break
the Fn

m–binding property of the string commitment it is built upon for m ∈
O(log 1

δ(n) ) using a circuit of size O(‖Ã‖UG).

Theorem 2 can be applied for the construction of 1-2 QOT in the computational
setting. We can use QMCs for building a weak 1-2 QOT such that:

– the sender has no information about the receiver’s selection bit and,
– the receiver, according Theorem 2, can only extract a limited amount of

information about both bits.

This weak flavor of 1-2 QOT is easily obtained by the following primitive, called
Wn, accepting B’s input bits (β0, β1) and A’s selection bit s (i.e this construction
is very similar to the CK protocol[5]):

ProtocolWn

1. B and A run the committing phase of a QMC (i.e. built from a Fn
m-binding string

commitment scheme) upon b〉θ for b ∈R {0, 1}n, θ ∈R {+,×}n picked by B,
2. B chooses c ∈R {0, 1} and announces it to A,

– if c = 0 then A unveils the QMC, if unveil succeeds then A and B return
to 1 otherwise B aborts,

– if c = 1 then B announces θ, A announces a partition I0, I1 ⊆ {1, . . . , n}
such that for all i ∈ Is the measurements were made in basis θ̂i = θi, then B
announces a0, a1 ∈ {0, 1} s.t. β0 = a0 ⊕i∈I0 bi and β1 = ⊕i∈I1bi:
• A does her best to guess (b̂0, b̂1) ≈ (

L
i∈I0

bi,
L

i∈I1
bi).

Clearly, Wn is a correct 1-2 QOT since an honest receiver A can always get bit
βs = bs ⊕ as. Ã’s information about the other bit can be further reduced using
the following simple protocol accepting B’s input bits (β0, β1) and the selection
bit s for the honest receiver:

Protocol R-Reduce(t,Wn)

1. W is executed t times, with random inputs (β0i, β1i), i = 1..t for the sender and
input s for the receiver such that β01 ⊕ . . .⊕ β0t = β0 and β11 ⊕ . . .⊕ β1t = β1.

2. The receiver computes the XOR of all bits received, that is βs = ⊕t
i=1βsi.

Classically, it is straightforward to see that the receiver’s information about one-
out-of-two bit decreases exponentially in t. We say that a quantum adversary Ã
against R-Reduce(t,Wn) is promising if it runs in poly-time and the probability
to complete the execution is non-negligible. Using Theorem 2, it is not difficult
to show that Ã’s information about one of the transmitted bits also decreases
exponentially in t whenever Ã is promising:

Theorem 3. For any promising receiver Ã in R-Reduce(t,Wn) and for all exe-
cutions, there exists s̃ ∈ {0, 1} such that Ã’s expected bias on βs̃ is negligible in
t (even given βs).
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A sketch of proof can be found in Appendix E. It relies upon the fact that any
promising adversary must run almost all Wn with p̃ok(n) > 1− δ for any δ > 0.
Using Theorem 2, this means that independently for each of those executions
1 ≤ i ≤ t, one bit βs̃i out of (β0i, β1i) cannot be guessed with bias better than
εmax(δ) << 1

2 . In this case, the bias on βs̃ can be shown to be negligible in t.
Clearly, the sender B in R-Reduce(t,Wn) cannot get any non-negligible

amount of information about A’s selection bit when the commitments are sta-
tistically concealing. This remark together with Theorem 3 and the correctness
of R-Reduce(t,Wn) lead to:

Corollary 1. A correct and private 1-2 QOT can be based upon any Fn
m-binding

and statistically concealing quantum string commitment scheme. The resulting
1-2 QOT statistically hides the selection bit and computationally hides one out
of two transmitted bits.

In other words, building 1-2 QOT upon Theorem 2 allows for an easy security
proof in the computational setting. Our analysis assumes for simplicity that A
and B have access to a perfect quantum channel. Nevertheless, noise may be
tolerated if we construct 1-2 QOT along the lines of BBCS [3] instead of CK [5].

7 Open Questions

An obvious open problem is how to build Fn
m-string commitments from computa-

tionally binding bit commitment schemes. In particular, how one can transform
the computationally binding bit commitments of [7] and [6] into Fn

m–binding
string commitments? This would show that QMCs and therefore 1-2 QOT can
be based upon any one-way permutation[7] and/or any one-way function[6]. It
is an open question whether or not Theorem 2 holds for δ(n)–non-trivial ad-
versaries against QMC. Such an extension would show that our reduction from
an adversary to QMC into one against the binding condition is to some extent
optimal. It is also of interest to find attacks against weaker binding properties.

Finally, it would be very interesting to formally prove the security of the
CK protocol using Theorem 2. This would result in a proof of security that, in
addition to apply in the computational setting, would be based upon a com-
pletely different approach than Yao’s proof [19]. Moreover, the CK protocol is
more practical than our construction since it only requires a constant number
of rounds with fewer qubits transmitted (i.e. Θ(n) vs. Θ(tn)). It would also be
useful to prove Corollary 1 in the case where the quantum channel is noisy.
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A Proof of Lemma 2

First, we prove the following related claim:

Claim. Let {uw,z}w,z be any family of vectors, indexed by w, z ∈ {0, 1}n, that
satisfies,

(∀s, t ∈ {0, 1}n, s 6= t)[
∑
w

∑
z1:w⊕z1=s
z2:w⊕z2=t

(−1)w�(z1⊕z2)〈uw,z1 ,uw,z2〉 = 0] (34)

Then, ∑
w

‖
∑

z

(−1)w�zuw,z‖2 =
∑

w,z∈{0,1}n

‖uw,z‖2. (35)

Proof. We carry out the calculation for (35):∑
w

‖
∑

z

(−1)w�zuw,z‖2 =
∑
w

〈
∑
z1

(−1)w�z1uw,z1,
∑
z2

(−1)w�z2uw,z2〉

=
∑

w,z1,z2

(−1)w�(z1⊕z2)〈uw,z1 ,uw,z2〉

=
∑
w,z

‖uw,z‖2 +
∑

w,z1,z2:z1 6=z2

(−1)w�(z1⊕z2)〈uw,z1,uw,z2〉.(36)

We now re-arrange the terms in the right-hand part of (36):∑
w,z1,z2:z1 6=z2

(−1)w�(z1⊕z2)〈uw,z1,uw,z2〉 =
∑
w,z1

∑
z2:z2 6=z1

(−1)w(z1⊕z2)
∑

s:w⊕z1=s
t:w⊕z2=t

〈uw,z1,uw,z2〉

=
∑

s,t:s 6=t
w

∑
z1:w⊕z1=s
z2:w⊕z2=t

(−1)w(z1⊕z2)〈uw,z1 ,uw,z2〉

= 0, (37)

where (37) follows from condition (34). Replacing (37) in (36) concludes the
proof. ut
Proof (Lemma 1). Follows from the Claim after setting uw,z = vw,z if z /∈ A
and uw,z = 0 if z ∈ A. It is easy to verify that if condition (2) is satisfied by
{vw,z}w,z then {uw,z}w,z satisfies (34). Our result then follows from (35). ut

B Proof of Theorem 1

Proof. We use Lemma 3 together with the fact that Ã is δ(n)–good. From Lemma
3, any δ(n)–good adversary is such that,

p̃ok(n) +
∑
θ,b

4−n|〈Ψθ,b Ψ̃θ,b〉|2 =
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4−n
∑
θ,b

(
p̃ok
(θ,b)(n) + |〈Ψθ,b Ψ̃θ,b〉|2

)
≥ 1 + δ(n). (38)

Let δθ,b = p̃ok
(θ,b)(n) + |〈Ψθ,b Ψ̃θ,b〉|2 − 1 be such that δ = 4−n

∑
θ,b δθ,b. The sum

of any row (θ, b) ∈ TÃ is given by,

‖Q∗
(θ,b) Ψ̃θ,b〉‖2 ≥

‖Q∗
(θ,b)

(
|〈Ψθ,b Ψ̃θ,b〉| Ψθ,b〉 −

√
1− |〈Ψθ,b Ψ̃θ,b〉|2 Ψ⊥θ,b〉

)
‖2, (39)

where Ψ⊥θ,b〉 is any state orthogonal to Ψθ,b〉. Now, notice that we can

always write Ψθ,b〉 =
√
p̃ok
(θ,b)(n) ξθ,b〉 +

√
1− p̃ok

(θ,b)(n) ξ⊥θ,b〉 for ξθ,b〉 =

Q∗
(θ,b) Ψθ,b〉/

√
p̃ok
(θ,b)(n) and ξ⊥θ,b〉 = ( 1− Q∗

(θ,b)) Ψθ,b〉/
√

1− p̃ok
(θ,b)(n). We can

also write Ψ⊥θ,b〉 = αθ,b ξθ,b〉+ βθ,b ξ⊥θ,b〉+ ζθ,b Λθ,b〉 where Λθ,b〉 is orthogonal
to both ξθ,b〉 and ξ⊥θ,b〉 and where |αθ,b|2 + |βθ,b|2 + |ζθ,b|2 = 1. Since by con-

struction 〈Ψθ,b Ψ
⊥
θ,b〉 = 0, it is easy to verify that |αθ,b| ≤

√
1− p̃ok

(θ,b)(n). In order

to simplify the notation, we let cθ,b = 〈Ψθ,b Ψ̃θ,b〉. Using the above observations,
we re-write (39) as,

‖Q∗
(θ,b) Ψ̃θ,b〉‖2 ≥ ‖(cθ,b

√
p̃ok
(θ,b)(n)−

√
(1 − |cθ,b|2)(1 − p̃ok

(θ,b)(n))) ξθ,b〉‖2(40)

=
(√

|cθ,b|2p̃ok
(θ,b)(n)−

√
(1 − |cθ,b|2)(1 − p̃ok

(θ,b)(n))
)2

=
(√

|cθ,b|2p̃ok
(θ,b)(n)−

√
|cθ,b|2p̃ok

(θ,b)(n)− δθ,b

)2

(41)

≥ δ2θ,b

4
, (42)

where (40) comes from definitions of Ψθ,b〉 and Ψ̃θ,b〉 in terms of ξθ,b〉, (41)
comes from the definition of δθ,b, and (42) follows from the fact that (

√
a −√

a− b)2 ≥ b2/4 for any 0 ≤ b ≤ a ≤ 1. Since Ã is δ(n)–good, we use (38) to
conclude that the set G = {(θ, b)|δθ,b ≥ δ(n)/2} must satisfy #G ≥ 4nδ(n)/2.
Any (θ, b) ∈ G is such that (42) is at least δ(n)2

4 . The result follows easily from∑
θ,b ‖Q∗

(θ,b) Ψ̃θ,b〉‖2 ≥
∑

(θ,b)∈G ‖Q∗
(θ,b) Ψ̃θ,b〉‖2 ≥ 4nδ(n)3

32 . ut

C Implementing an f -attack From the Switching Circuit

In this appendix, we briefly describe how one can use the switching circuit in
order to attack the binding property of the string commitment relative to some
function f ∈ Fn

m. We call such an attack an f -attack since its purpose is to
try to open s ∈ f−1(y) for any y ∈ {0, 1}m. To make the description easier,
let us consider the case n = 1 resulting in table TÃ shown at Fig. 3 (this is
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‖QB
(+,0) Ψ̃+,0〉‖2 ‖QB

(×,0) Ψ̃+,0〉‖2 ‖QB
(×,1) Ψ̃+,0〉‖2

‖QB
(+,1) Ψ̃+,1〉‖2 ‖QB

(×,1) Ψ̃+,1〉‖2 ‖QB
(×,0) Ψ̃+,1〉‖2

‖QB
(×,0) Ψ̃×,0〉‖2 ‖QB

(+,0) Ψ̃×,0〉‖2 ‖QB
(+,1) Ψ̃×,0〉‖2

‖QB
(×,1) Ψ̃×,1〉‖2 ‖QB

(+,1) Ψ̃×,1〉‖2 ‖QB
(+,0) Ψ̃×,1〉‖2

Fig. 3. Table TÃ for the case n = 1.

almost identical to Fig.2). We have seen how the switching circuit allows for
generating any state Ψ̃θ,b〉. Suppose now that the attacker wants to open a
string commitment (in this case the string has length 2) according to function
f1 ∈ Fn

1 defines as f1(θ, b) = b for θ, b ∈ {0, 1}. One way consists in generating
(using the switching circuit) Ψ̃+,0〉 in order to open f1(θ, b) = 0 and Ψ̃+,1〉
in order to open f1(θ, b) = 1. According to (6), the probability to succeed in
unveiling s s.t. f1(s) = 0 and f1(s) = 1 satisfies

p̃f
0 (n) = ‖(QB

(+,0) + QB
(×,0)) Ψ̃+,0〉‖2 and p̃f

1 (n) = ‖(QB
(+,1) + QB

(×,1)) Ψ̃+,1〉‖2.

The quality of this f1–attack is given by (2). That is, the attack succeed if
p̃f
0 (n)+ p̃f

1(n) > 1+ δ for some large enough δ. Looking at Fig. 3, this particular
f1–attack is formed by the 2× 2 upper left sub-array of TÃ. The quality of the
attack p̃f

0 (n) + p̃f
1 (n) is simply the sum of all elements in the sub-array. The

same function f1 can be attacked using the elements in the lower left 2× 2 sub-
array of TÃ. This means that the attacker prepare Ψ̃×,0〉 and Ψ̃×,1〉 in order
to open s ∈ f−1

1 (0) and s ∈ f−1
1 (1) respectively. In this case, one gets p̃f

0 (n) =
‖(QB

(×,0) + QB
(+,0)) Ψ̃×,0〉‖2 and p̃f

1 (n) = ‖(QB
(×,1) + QB

(+,1)) Ψ̃×,1〉‖2. There are
two other ways to implement an f1–attack by mixing the first two. The attacker
could generate Ψ̃+,0〉 to unveil s ∈ f−1

1 (0) and Ψ̃×,1〉 to unveil s ∈ f−1
1 (1).

Similarly, Ψ̃+,1〉 to unveil s ∈ f−1
1 (1) and Ψ̃×,0〉 to unveil s ∈ f−1

1 (0) can be
used. This adds up to 4 possible implementations of the f1–attack using the first
two columns of TÃ.

Now consider function f2 ∈ Fn
1 defines as f2(θ, b) = θ. As for f1–attacks,

there are four f2–attacks located in the two last columns of TÃ. In the first case,
states Ψ̃+,0〉 and Ψ̃×,0〉 are generated (by the switching circuit) in order to open
s ∈ f−1

2 (1) and s ∈ f−1
2 (0) respectively (using ′+′ = 0 and ′×′ = 1). We get

p̃f
1 (n) = ‖(QB

(×,0)+QB
(×,1)) Ψ̃+,0〉‖2 and p̃f

0 (n) = ‖(QB
(+,0)+QB

(+,1)) Ψ̃×,0〉‖2. The
second way of attacking f2 is by generating states Ψ̃+,1〉 and Ψ̃×,1〉 in order
to open s ∈ f−1

2 (1) and s ∈ f−1
2 (0) respectively. The other two are obtained

similarly.
There is only one function left in Fn

1 , that is f3(θ, b) = θ⊕ b. This one can be
attacked in four different ways using the first and third columns in TÃ. In the
first case, states Ψ̃+,0〉 and Ψ̃+,1〉 are generated in order to open s ∈ f−1

3 (0) and
s ∈ f−1

3 (1). We get p̃f
0 (n) = ‖(QB

(+,0) + QB
(×,1)) Ψ̃+,0〉‖2 and p̃f

1 (n) = ‖(QB
(+,1) +

QB
(×,0)) Ψ̃+,1〉‖2. The two others can be found similarly.
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Remark that any element in TÃ belongs to exactly 4 attacks and that any
attack uses exactly 4 elements in TÃ. This is what we mean when we say that all
attacks in Fn

1 covers TÃ uniformly. The construction can easily be generalized
for arbitrary n. The number of rows of TÃ uses in any f–attack (f ∈ Fn

m) is
2m and the number of columns is 2m3n−m. That is, the number of elements in
TÃ involved in such an f–attack is 4m3n−m. As we shall see in Lemma 4, the
covering remains uniform for all values of n.

D Proof of Lemma 4

Lemma 4 follows from the combinatorial lemma 5 below. To make the statement
of this combinatorial lemma more succinct we first set the stage for it.

Let T be a 4n lines by 3n columns array. The lines are indexed by the 4n

strings (θ, b) ∈ {0, 1}n × {0, 1}n. The columns are indexed by the 3n strings
(τ, β) ∈ {0, 1}n × {0, 1}n such that β � τ .

We now consider sub-arrays of T . Each sub-array will be composed of cells
lying at the intersections of 2m lines of T and 3n−m2m columns of T . Any choice
of the following 3n parameters will define a unique sub-array and different choices
of parameters will define different sub-arrays:

r1, r2, . . . , rn ∈ {0, 1, 2, 3}, (43)
u1, u2, . . . , un ∈ {0, 1}, (44)
v1, v2, . . . , vn ∈ {0, 1} (45)

subject to the condition

#{j : rj 6= 0} = m. (46)

Accordingly, there will be C(m,n)3m4n different sub-arrays.
Let us fix a choice for rj ∈ {0, 1, 2, 3}, uj , vj ∈ {0, 1} for all j ∈ {1, . . . , n} sat-

isfying (46). We now describe the sub-array defined by that choice. The column
(τ, β) is part of the sub-array if and only if:

rj = 0 =⇒ (τj , βj) ∈ {(0, 0), (1, 0), (1, 1)} i.e.: βj � τj , (47)
rj = 1 =⇒ (τj , βj) ∈ {(1, 0), (1, 1)} i.e.: τj = 1, (48)
rj = 2 =⇒ (τj , βj) ∈ {(0, 0), (1, 0)} i.e.: βj = 0, (49)
rj = 3 =⇒ (τj , βj) ∈ {(0, 0), (1, 1)} i.e.: βj = τj . (50)

The line (θ, b) is part of the sub-array if and only if:

rj = 0 =⇒ (θj , bj) ∈ {(uj, vj)}, (51)
rj = 1 =⇒ (θj , bj) ∈ {(0, uj), (1, vj)}, (52)
rj = 2 =⇒ (θj , bj) ∈ {(uj, 0), (vj , 1)}, (53)
rj = 3 =⇒ (θj , bj) ∈ {(uj, uj), (vj , 1− vj)}. (54)
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One can easily verify that the lines (47) to (54) define a 2m×3n−m2m sub-array,
thus containing 3n−m4m cells, and that different choices of the parameters (43)
to (45) will lead to different sub-arrays.

We can now state and prove the combinatorial lemma:

Lemma 5. Every cell (θ, b, τ, β) of T belongs to exactly C(m,n)4m sub-arrays.

Proof. Let us fix j ∈ {1, . . . , n}. Figure 4 shows the possible values for (rj , uj , vj)
given the value of (θj , bj , τj , βj). One can verify that, for all j, any 4-tuple

0000 0010 0011 0100 0110 0111 1000 1010 1011 1100 1110 1111

(0; 0; 0) (0; 0; 0) (0; 0; 0)

(0; 0; 1) (0; 0; 1) (0; 0; 1)

(0; 1; 0) (0; 1; 0) (0; 1; 0)

(0; 1; 1) (0; 1; 1) (0; 1; 1)

(1; 0; 0) (1; 0; 0) (1; 0; 0) (1; 0; 0)

(1; 0; 1) (1; 0; 1) (1; 0; 1) (1; 0; 1)

(1; 1; 0) (1; 1; 0) (1; 1; 0) (1; 1; 0)

(1; 1; 1) (1; 1; 1) (1; 1; 1) (1; 1; 1)

(2; 0; 0) (2; 0; 0) (2; 0; 0) (2; 0; 0)

(2; 0; 1) (2; 0; 1) (2; 0; 1) (2; 0; 1)

(2; 1; 0) (2; 1; 0) (2; 1; 0) (2; 1; 0)

(2; 1; 1) (2; 1; 1) (2; 1; 1) (2; 1; 1)

(3; 0; 0) (3; 0; 0) (3; 0; 0) (3; 0; 0)

(3; 0; 1) (3; 0; 1) (3; 0; 1) (3; 0; 1)

(3; 1; 0) (3; 1; 0) (3; 1; 0) (3; 1; 0)

(3; 1; 1) (3; 1; 1) (3; 1; 1) (3; 1; 1)

Fig. 4. Eligible triplets (rj , uj , vj) given (θj , bj , τj , βj)

(θj , bj , τj , βj) allows exactly 1 triplet (rj , uj , vj) if rj = 0, and exactly 4 if rj 6= 0.
From that follows the statement of this combinatorial lemma. ut

E Sketch of Proof for Theorem 3

ProtocolWn, which is almost identical to a QMC, is also a weak form of 1−2-OT.
Theorem 2 tells us that any efficient adversary Ã against Wn must satisfy:

p̃ok(n) + (2ε̃(n))2 ≤ 1 + 1/poly(n), (55)

where p̃ok(n) is the probability to succeed in challenge c = 0 and ε̃(n) is the
maximum bias on [b] = b0 ⊕ b1 that Ã can extract in challenge c = 1.

The only difference between Wn and a QMC (as far as p̃ok(n) and ε̃(n) are
concerned) is that inWn, QMCs are made until challenge c = 1 has been reached.
Let p̃abort,Wn be the probability for B to abort the execution of Wn. Notice that
there is no reason for Ã to change p̃ok(n) during the same execution of Wn since
the challenges are independent and random. We have,

p̃abort,Wn =
∞∑

j=1

2−j(p̃ok(n))j−1(1− p̃ok(n))

24



>
1− p̃ok(n)

2
⇒ p̃ok(n) > 1− 2p̃abort,Wn . (56)

Let In = {(I0, I1)|I0 ∪ I1 = {1, . . . , n}, I0 ∩ I1 = ∅} be the set of possible
announcements for Ã in Wn. Let I = (I0, I1) ∈ In be the set of positions
announced by Ã’s during an execution of Wn. We define fI(b) as the 2-bit
output function:

fI(b) ≡ (
⊕
i∈I0

bi,
⊕
i∈I1

bi).

For s ∈ {0, 1} and b ∈ {0, 1}n, let hI(b, s) ≡ fI(b)[s] where fI(b)[s] denotes
the s-th output bit of fI(b). Let QPoly(n) and QPoly(n,t) be the classes
of families of polynomial-size quantum circuits in one and two variables respec-
tively having one-bit output. Let Cδ be the non-uniform class of all families of
polynomial size quantum circuits allowing to run Wn with success probability
at least 1− δ. That is, any family {Cn}n>0 ∈ Cδ can be used to define the com-
mitting phase of an adversary Ã = {(Cn, ·)}n>0 against Wn where Cn allows
for p̃abort,Wn ≤ δ given n is large enough. For simplicity, we abuse the nota-
tion by writing the output state of the committing phase on b〉θ as Cn b〉θ
although formally, Cn is the circuit obtained by combining Ã’s and B’s inter-
active circuits. Let Gn be a quantum circuit with a one-bit output register so
Gn · (Cn b〉θ) defines a probability distribution over the possible outcomes for
the measurement in the computational basis of Gn’s output register. When we
write out {Gn · (Cn b〉θ)⊗ θ〉} we are not only designating the value of Gn’s
output register but any classical mapping from the output into {0, 1}. Using this
convention, Pr (hI(b, s) 6= out {Gn · (Cn b〉θ)⊗ θ〉}) ≥ 1

2 − ε, means that any
classical mapping from the value of the output register to {0, 1} has expected
probability of error at least 1

2 − ε in guessing the value of hI(b, s).
Using (56), we get that Ã also defines an adversary against QMC with

p̃ok(n) ≥ 1− 2δ. From (55), we conclude that

ε̃(n) ≤
√

2δ + 1

poly(n)

2
(57)

given the output of any family of poly-size quantum circuits {Gn}n>0 ∈
QPoly(n). Remember that ε̃(n) is the maximum expected bias on hI(b, 0) ⊕
hI(b, 1) for any announcement I ∈ In. The following lemma follows easily from
Theorem 2, it tells us that for each execution of Wn, there exists s ∈ {0, 1} such
that hI(b, s) cannot be guessed with arbitrary precision. The proof proceeds
by contradiction showing that if both bits hI(b, 0) and hI(b, 1) can be guessed
respectively by G0

n and G1
n with probability larger than 1−2ε̃(n)

10 then Ã could
attack a QMC with success probability p̃ok(n) ≥ 1−2δ and expected bias larger
than

√
2δ + 1/poly(n)/2 contradicting (55).

Lemma 6.
(∀{Cn}n>0 ∈ Cδ)(∀I ∈ In)(∃s ∈ {0, 1})(∀{Gn}n>0 ∈ QPoly(n))(∀n > n0)[

Pr (hI(b, s) 6= out {Gn · (Cn b〉θ)⊗ θ〉}) ≥ 1− 2ε̃(n)
10

]
,

(58)
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where the probability is taken over θ ∈R {+,×}n and b ∈R {0, 1}n and where
ε̃(n) is the function of δ and n defined in (57).

Proof. Assume any committing circuit Cn ∈ Cδ for an arbitrary value of δ. We
now verify that (58) follows from (55). Suppose predicate f(b) = hI(b, 0) ⊕
hI(b, 1) cannot be guessed by any circuit in poly(n) (i.e. given as input the state
(Cn b〉θ) ⊗ θ〉) with expected bias larger than εA. Assume for a contradiction
that there exists G0

n, G
1
n ∈ poly(n) such that

A1: Pr
(
hI(b, 0) = out

{
G0

n · (Cn b〉θ)⊗ θ〉}) ≥ 1
2 + ε0, and

A2: Pr
(
hI(b, 1) = out

{
G1

n · (Cn b〉θ)⊗ θ〉}) ≥ 1
2 + ε1,

where as usual the probabilities are taken over b, θ ∈R {0, 1}n. We denote by ε0θ,b

and ε1θ,b the bias of G0
n and G1

n on hI(b, 0) and hI(b, 1) respectively for a fixed
input state b〉θ. That is,

ε0 = 4−n
∑
θ,b

ε0θ,b and ε1 = 4−n
∑
θ,b

ε1θ,b.

Given G0
n and G1

n we can easily construct a circuit for guessing f(b). The guess
for f(b) will be x⊕y with probability ‖PyG

1
n(G0

n)†PxG
0
n(Cn b〉θ)⊗ θ〉‖2. In other

words, the guessing circuit for f(b) simply runs G0
n, stores its classical output

x ∈ {0, 1}, undoes G0
n before running G1

n providing classical output y ∈ {0, 1}.
Let perr(b, θ) be the error probability of such a procedure when the initial input
state is b〉θ. We have,

perr(b, θ) = ‖Pout
hI(b,1)G

1
n(G0

n)†( 1− Pout
hI(b,0))G

0
n(Cn b〉θ)⊗ θ〉+

( 1− Pout
hI(b,1))G

1
n(G0

n)†Pout
hI(b,0)G

0
n(Cn b〉θ)⊗ θ〉‖2

= ‖Pout
hI(b,1)G

1
n(G0

n)†( 1− Pout
hI(b,0))G

0
n(Cn b〉θ)⊗ θ〉‖2 +

‖( 1− Pout
hI(b,1))G

1
n(G0

n)†Pout
hI(b,0)G

0
n(Cn b〉θ)⊗ θ〉‖2(59)

≡ ‖A‖2 + ‖B‖2.

By definition, we have that G0
n(Cn b〉θ) θ〉 =

√
1
2 + ε0θ,b hI(b, 0)〉 φ0

θ,b〉 +√
1
2 − ε0θ,b hI(b, 0)〉 φ0

θ,b〉 and G1
n(Cn b〉θ) θ〉 =

√
1
2 + ε1θ,b hI(b, 1)〉 φ1

θ,b〉 +√
1
2 − ε1θ,b hI(b, 1)〉 φ1

θ,b〉. We now apply these specifications for G0
n and G1

n

to each part, ‖A‖2 and ‖B‖2, appearing in (59). The first part can be rewritten
as,

‖A‖2 = ‖Pout
hI(b,1)G

1
n(Cn b〉θ)⊗ θ〉 − Pout

hI(b,1)G
1
n(G0

n)†
√

1
2

+ ε0θ,b hI(b, 0)〉 φ0
θ,b〉‖2

= ‖Pout
hI(b,1)G

1
n(Cn b〉θ)⊗ θ〉 −

Pout
hI(b,1)G

1
n

(
(Cn b〉θ) θ〉 −

√
1
2
− ε0θ,b(G

0
n)† hI(b, 0)〉 φ0

θ,b〉
)
‖2
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≤ ‖
√

1
2
− ε0θ,bP

out
hI(b,1)G

1
n(G0

n)† hI(b, 0)〉 φ0

θ,b〉‖2 ≤
1
2
− ε0θ,b.

Similarly, one can show that ‖B‖2 ≤ 2(1− ε0θ,b − ε1θ,b) which leads to,

perr(b, θ) ≤ 2(
5
4
− 3ε0θ,b

2
− ε1θ,b).

The probability of success psuc(b, θ) = 1 − perr(b, θ) in guessing f(b) from b〉θ
therefore satisfies, psuc(b, θ) ≥ 3ε0θ,b + 2ε1θ,b − 3

2 . Using assumptions A1 and A2
with ε0, ε1 ≥ ε, we get that the expected probability of success psuc, over all
choices of b, θ ∈R {0, 1}n, satisfies:

psuc = 4−n
∑
b,θ

psuc(b, θ) ≥ 5ε− 3
2
.

It follows that the expected bias ε(G0
n, G

1
n) on f(b) provided by such circuit built

from G0
n and G1

n is,

ε(G0
n, G

1
n) = psuc − 1

2
≥ 5ε− 2.

Since our circuit is in poly(n), it follows that ε(G0
n, G

1
n) ≤ εA otherwise, there

would be an efficient extractor with expected bias better than εA from state
(Cn b〉θ) θ〉 with Cn ∈ Cδ in contradiction with the definition of εA. In other
words, ε ≤ εA+2

5 , which means that for at least one s ∈ {0, 1}, for all Gn ∈
poly(n),

Pr (hI(b, s) 6= out {Gn · (Cn b〉θ)⊗ θ〉}) ≥ 1
2
− ε ≥ 1− 2εA

10
.

Equation (58) follows. ut
Let p̃abort(`) be the probability that B aborts the execution no later than

during the `–th call to Wn in R-Reduce. Let p̃stop(`+ 1) be the probability that
given the first ` calls toWn were successful, B aborts during the `+1-th execution
of Wn. We have,

p̃abort(1) = p̃abort,Wn and (60)
p̃abort(`+ 1) = p̃abort(`) + (1− p̃abort(`))p̃stop(`+ 1). (61)

In order for Ã’s success probability 1− p̃abort(t) to be non-negligible in t, p̃stop(`)
must be small for most executions ` ∈ [1 . . . t]. Let δ > 0 and α > 0 be two
arbitrary constants. Assuming p̃stop(`) > δ for all ` ∈ L with #L ≥ αt then
p̃abort(t) ≥ 1 − (1 − δ)αt. In other words, if p̃stop(`) > δ for a constant fraction
of the t executions then 1 − p̃abort(t) is negligible in t. In general, an adversary
Ã against R-Reduce(t,Wn) is modeled by a family of quantum circuits Ã =
{(Cn,t, G

0
n,t, G

1
n,t)}n,t>0 where Cn runs the committing phase and circuits G0

n

and G1
n extract information about b0 and b1 respectively. Promising adversaries

in R-Reduce(t,Wn) are defined as follows:
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Definition 3. A polynomial size adversary Ã = {(Cn,t, G
0
n,t, G

1
n,t)}n,t>0

against R-Reduce(t,Wn) is promising if p̃abort(t) ≤ 1 − 1
p(t) for some

p(t) ∈ poly(t).

We now consider the limitations implied by (58) to any adversary Ã against
R-Reduce(t,Wn). Let b〉θ = ⊗t

i=1 b(i)〉θ(i) be the random n · t BB84 qubits
picked and sent by B. The following lemma links promising adversaries against
R-Reduce(t,Wn) to Lemma 6. It tells us that if Ã is promising then there exists
a large subset L of all executions of Wn in R-Reduce(t,Wn) for which indepen-
dently of each other, predicates hI(b`, s), ` ∈ L cannot be guessed with arbitrary
precision given the output of any polynomial size circuit.

Lemma 7. Assume the security parameters n and t in R-Reduce(t,Wn) are
polynomially related. Then,

(∀δ > 0)(∀γ > 0)(∀ promising Ã = {(Cn,t, ·)}n,t>0)
(∃L ⊆ {1, . . . , t} : #L > (1− γ)t)(∀` ∈ L)

(∀I ∈ In)(∃s ∈ {0, 1})(∀{Gn,t}n,t>0 ∈ QPoly(n,t))

Pr
(
hI(b(`), s) 6= out {Gn,t (Cn,t b〉θ)⊗ θ〉} |{(b(j), θ(j))}j 6=`

)
≥

1−
√

2δ + 1

poly(n)

10




(62)

where the probability is computed over b = b(1), . . . , b(t), and θ = θ(1), . . . , θ(t)

for b(i) ∈R {0, 1}n and θ(i) ∈R {0, 1}n for all i ∈ {1, . . . , t}.
Proof. Let δ ∈ [0, 1

2 [ be a constant. Let L ⊆ {1, . . . , t} be the subset of all
executions ` ∈ {1, . . . , t} of Wn in R-Reduce(t,Wn) such that pAstop(`) > δ. Since
A = {(Cn,t, ·)}n,t>0 is a good adversary, we have

1− 1
p(t)

≥ p̃abort(t) ≥ 1− (1 − δ)#L, (63)

which implies that,
∀γ ∈]0, 1[,#L ≤ γt, (64)

provided t is large enough. Let L = {1, . . . , t} \ L be the set of all executions
` ∈ {1, . . . , t} of Wn such that pAstop(`) ≤ δ. By construction, we have that

∀γ > 0,#L > (1 − γ)t, (65)

provided t is large enough. We now pick any ` ∈ L for which execution we apply
Lemma 6. This is possible since using Cn,t, one can build C′n,t implementing
A’s algorithm against Wn with p̃abort,Wn < 1 − δ. A’s behavior in Wn is de-
fined by circuit C′n,t running Cn,t upon any known ⊗`−1

i=1 b(i)〉θ(i) until the `− 1
first executions of Wn were successful (none of them aborted). Then, B’s state
b(`)〉θ(`) transmitted in Wn is given as input to Cn,t which by definition satisfies
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p̃abort,Wn < 1 − δ. Clearly, the size of C′n,t is polynomial in the size of Cn,t.
Therefore, {C ′n,t}n,t>0 ∈ Cδ allowing us to invoke Lemma 6 whenever n and t
are polynomially related. Since the same is true independently for all ` ∈ L, we
conclude (62) after replacing εA in (58) using (57). ut

>From Lemma 7, we would like to conclude that given any announcement
I = (I(0), I(1), . . . , I(t)) during R-Reduce(t,Wn), the amplification function

gI(b(1), . . . , b(t), s) ≡
t⊕

i=1

hI(i)(b(i), s) ∈ {0, 1} (66)

is such that for s̃ ∈ {0, 1}, the value gI(b(1), . . . , b(t), s̃) cannot be guessed with
bias non-negligible in t. Next theorem follows from Lemma 7 and is equivalent
to Theorem 3:

Theorem 4 (Security Against the Receiver). Let n and t be polynomially
related security parameters in R-Reduce(t,Wn). Then,

(∀δ > 0)(∀γ > 0)(∀ promising Ã = {(Cn,t, ·)}n,t>0)(∀I ∈ It
n)(∃s ∈ {0, 1})

(∀{Gn,t}n,t>0 ∈ QPoly(n,t))[
Pr
(
gI(b(1), . . . , b(t), s) 6= out{Gn,t (Cn,t b〉θ)⊗ θ〉}

)
≥ 1

2
− 2−αt

]
,

(67)

for α = (1−γ)
2 log 5

4+
√

δ
and where the probability is computed over b =

b(1), . . . , b(t), and θ = θ(1), . . . , θ(t) for b(i) ∈R {0, 1}n and θ(i) ∈R {0, 1}n for
all i ∈ {1, . . . , t}.
Proof. For s ∈ {0, 1},β ∈ {0, 1}, and I ⊆ {1, . . . , n}t, let

Zβ(I , s) = {(b(1), . . . , b(t))|gI(b(1), . . . , b(t), s) = β, b(`) ∈ {0, 1}n for ` ∈ 1..t}

be the set of strings b(1), . . . , b(t) that would lead to the transfer of β ∈ {0, 1}
when A’s selection bit is s. Since n and t are polynomially related, we now show
that Lemma 7 implies,

(∀δ > 0)(∀γ > 0)(∀ good A = {(Cn,t, ·)}n,t>0)(∀I ⊆ {1, . . . , n})
(∀{Gn,t}n,t>0 ∈ QPoly(n,t))(∃s ∈ {0, 1})


Pr
(
(b(1), . . . , b(t)) /∈ Zβ(I , s) ∧ out {Gn,t (Cn,t b〉θ)⊗ θ〉} = β

)
≥

1− (4+
√

δ̃
5 )(1−γ)t/2

2


 ,
(68)

provided n and t are large enough and where δ̃ ≡ 2δ + 1
poly(n) . Since guessing

gI(b(1), . . . , b(t), s) given the output of Gn,t is equivalent to determining whether
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(b(1), . . . , b(t)) ∈ Zβ(I, s) then (67) follows from (68). We now establish (68).
From Lemma 7, there exists a subset of positions L, #L > (1 − γ)t such that
independently for each ` ∈ L, any family of polynomial size quantum circuits has

error probability pe ≥
1−

q
2δ+ 1

poly(n)

10 when guessing hI(`)(b(`), s`) for at least one
s` ∈ {0, 1}. This holds for any announcement I(`) made by A for the `-th execu-
tion ofWn in R-Reduce(t,Wn). Given any announcement I = (I(1), . . . , I(t)), and
for all {Gn,t}n,t>0 ∈ QPoly(n,t), the output of circuit Gn,t guesses hI(`)(b(`), s`)
with error probability pe independently for each ` ∈ L. Let s be defined such
that m = #{` ∈ L|s` = s} is maximized. Clearly, m ≥ (1 − γ)t/2 for any
γ > 0. It is a well-known fact that the parity of m independently distributed
boolean variables, each occurring with probability pe < 1/2, is 1 with probabil-
ity q(m, pe) = (1 − (1 − 2pe)m)/2. That is, given the output of any Gn,t, the
probability that (b(1), . . . , b(t)) /∈ Zβ(I, s) is at least q(m, pe). Equation (68) is

simply q( (1−γ)t
2 ,

1−
q

2δ+ 1
poly(n)

10 ) and (67) follows. ut
Theorem 4 establishes that any good adversary A’s can only guess
gI(b(1), . . . , b(t), s) with negligible bias using polynomial size families of quan-
tum circuits. We conclude the security of R-Reduce(t,Wn) against any poly-time
dishonest receiver as stated in Theorem 3.
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