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Abstract

This paper confirms a conjecture of Bergstra and Klop’s from 1984 by
establishing that the process algebra obtained by adding an auxiliary opera-
tor proposed by Hennessy in 1981 to the recursion free fragment of Milner’s
Calculus of Communicationg Systems is not finitely based modulo bisimula-
tion equivalence. Thus Hennessy’s merge cannot replace the left merge and
communication merge operators proposed by Bergstra and Klop, at least if a
finite axiomatization of parallel composition is desired.
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1 Introduction

Process algebras are prototype description languages for reactive systems that arose
from the pioneering work of figures like Bergstra, Hoare, Klop and Milner. Well
known examples of such languages are ACP [7], CCS [26], CSP [23] and Meije [5].
These algebraic description languages for processes differ in the basic collection of
operators that they offer for building new process descriptions from existing ones.
However, since they are designed to allow for the description and analysis of sys-
tems of interacting processes, they all contain some form of parallel composition
(also known as merge) operator allowing one to put two process terms in parallel
with one another. These operators usually interleave the behaviours of their argu-
ments, and allow for some form of synchronization between them. For example,
Milner’s CCS offers the binary operator|, whose intended semantics is described
by the following classic rules in Plotkin-style [32]:

x
µ→ x′

x | y µ→ x′ | y
y

µ→ y′

x | y µ→ x | y′
x

α→ x′, y
ᾱ→ y′

x | y τ→ x′ | y′ (1)

(In the above rules, the symbolµ stands for an action that a process may perform,α
andᾱ are two observable actions that may synchronize, andτ is a symbol denoting
the result of their synchronization.)

Although the above rules describe the behaviour of the parallel composition
operator in very intuitive fashion, the equational characterization of this operator
is not straightforward. In their seminal paper [22], Hennessy and Milner offered,
amongst a wealth of other classic results, a complete equational axiomatization of
bisimulation equivalence [31] over the recursion free fragment of CCS. The axiom-
atization proposed by Hennessy and Milneribidemdealt with parallel composition
using the so-calledexpansion law—a law that, intuitively, allows one to obtain
a term describing the initial transitions of the parallel composition of two terms
whose initial transitions are known. This law can be expressed as a conditional
equation thus

x =
∑

i∈I µixi, y =
∑

j∈J γjyj

x | y =
∑

i∈I µi(xi | y) +
∑

j∈J γj(x | yj) +
∑

i∈I,j∈J,µi=γj
τ(xi | yj)
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(whereI andJ are two finite index sets, and theµi andγj are actions), and is
nothing but an equational formulation of the aforementioned rules describing the
operational semantics of parallel composition.

As already remarked, the expansion law, however, is a conditional equation,
which may alternatively be viewed as an equation schema with a countably infinite
number of instances. This raised the question of whether the parallel composition
operator could be axiomatized in bisimulation semantics by means of a finite col-
lection of equations. This question was answered positively by Bergstra and Klop,
who gave in [8] a finite equational axiomatization of the merge operator in terms
of the auxiliary left merge and communication merge operators. Moller showed
in [29, 30] that strong bisimulation equivalence is not finitely based over CCS and
PA without the left merge operator. (The process algebra PA [8] contains a parallel
composition operator based on pure interleaving without communication—viz. an
operator described by the first two rules in (1)—and the left merge operator.) Thus
auxiliary operators are necessary to obtain a finite axiomatization of parallel com-
position.

In the arguably less well known paper [21], Hennessy proposed an axiomatiza-
tion of observation congruence [22] (also known as rooted weak bisimulation) and
timed congruence (also known as split-2 congruence) over a CCS-like recursion
free process language. (It is worth noting that, although this paper was published
in 1988 by the SIAM Journal on Computing as [21], the results reportedibidem
were actually obtained in 1981–1982.) Those axiomatizations used an auxiliary
operator, denoted|/ by Hennessy, that is essentially a combination of the left and
communication merge operators as its behaviour is described by the first and the
last rule in (1). Apart from having soundness problems (see the reference [1] for a
general discussion of this problem, and corrected proofs of Hennessy’s results), the
proposed axiomatization of observation congruence offered inop. cit. is infinite, as
it used a variant of the expansion theorem from [22]. This led Bergstra and Klop
to write in [8, page 118] that:

“It seems thatγ does not have a finite equational axiomatization.”

(In op. cit. Bergstra and Klop usedγ to denote Hennessy’s merge.) To the best
of our knowledge, the non-finite axiomatizability of Hennessy’s merge has, how-
ever, never been proven. The main result in this paper confirms this conjecture of
Bergstra and Klop’s by showing that, in the presence of two distinct complementary
actions, it is impossible to provide a finite axiomatization of the recursion free frag-
ment of CCS modulo bisimulation using Hennessy’s merge operator|/. We believe
that this result further reinforces the status of the left merge and the communication
merge operators as auxiliary operators in the finite equational characterization of
parallel composition in bisimulation semantics.
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The aforementioned negative result holds in a very strong form. Indeed, we
prove that no finite collection of equations over the language we study that are
sound with respect to bisimulation equivalence can prove all of the sound closed
equalities of the form

en : a0 |/ pn ≈ apn +
n∑

i=0

τai (n ≥ 0) ,

where the termspn are defined thus:

pn =
n∑

i=0

āai (n ≥ 0) .

The proof of our main result is given along proof theoretic lines that have their
roots in those for the aforementioned results of Moller’s to the effect that bisim-
ulation equivalence is not finitely based over the recursion free fragment of CCS.
However, the presence of possible synchronizations in the terms used in the fam-
ily of equationsen is necessary for our result, and requires careful attention in the
proofs. (Indeed, in the absence of synchronization, Hennessy’s merge reduces to
Bergstra and Klop’s left merge operator, and thus affords a finite equational ax-
iomatization.) In particular, the infinite family of equationsen and our arguments
based upon it exploit the inability of any finite axiom systemE that is sound with
respect to bisimulation equivalence to “expand” the synchronization behaviour of
terms of the formp |/ q, for termsq that, like the termspn above eventually do,
have a number of inequivalent “summands” that is larger than the maximum size
of the terms mentioned in equations inE. As in the original arguments of Moller’s,
the root of this problem can be traced back to the fact that the choice operator+
distributes with respect to|/ in the first argument, butnot in the second.

Related Work The equational characterization of different versions of the par-
allel composition operator is a classic topic in the theory of computation, and this
paper joins the aforementioned seminal references in contributing to this line of re-
search. In particular, the process algebraic literature abounds with results on equa-
tional axiomatizations of various notions of behavioural equivalences or preorders
over languages incorporating some notion of parallel composition—see, e.g., the
textbooks [7, 20, 26] and the classic papers [8, 22, 25] for general references. Early
ω-complete axiomatizations are offered in [19, 28]. More recently, Fokkink and
Luttik have shown in [17] that the process algebra PA [8] affords anω-complete
axiomatization that is finite if so is the underlying set of actions.
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An analysis of the reasons why operators like the left merge and the commu-
nication merge are equationally well behaved in bisimulation semantics has led to
general algorithms for the generation of (finite) equational axiomatizations for be-
havioural equivalences from their operational semantics—see, e.g., [3, 6] and the
references in [4] for further details.

Parallel composition appears as the shuffle operator in the time-honoured the-
ory of formal languages. Not surprisingly, the equational theory of shuffle has
received considerable attention in the literature. Here we limit ourselves to men-
tioning some results that have a special relationship with process theory.

In [35], Tschantz offered a finite equational axiomatization of the theory of lan-
guages over concatenation and shuffle, solving an open problem raised by Pratt. In
proving this result he essentially rediscovered the concept of pomset [33]—a model
of concurrency based on partial orders whose algebraic aspects have been investi-
gated by Gischer in [18]—, and proved that the equational theory of series-parallel
pomsets coincides with that of languages over concatenation and shuffle. The argu-
ment adopted by Tschantz was based on the observation that series-parallel pom-
sets may be coded by a suitable homomorphism into languages, where the series
and parallel composition operators on pomsets are modelled by the concatenation
and shuffle operators on languages. Tschantz’s technique of coding pomsets with
languages homomorphically was further extended in the papers [10, 12, 13] to deal
with several other operators, infinite pomsets and infinitary languages, and sets of
pomsets. The axiomatizations by Gischer and Tschantz have later been extended
in [13, 16] to a two-sorted language withω powers of the concatenation and paral-
lel composition operators. The axiomatization of the algebra of pomsets resulting
from the addition of these iteration operators is, however, necessarily infinite be-
cause, as shown inop. cit. no finite collection of equations can capture all the sound
equalities involving them. (See [14] for closely related developments.)

The results of Moller’s on the non-finite axiomatizability of bisimulation equiv-
alence over the recursion free fragment of CCS and PA without the left merge
operator given in [29, 30] are paralleled in the world of formal language theory
by those offered in [9, 11, 15]. In the first of those references, Bloom andÉsik
proved that the valid inequations in the algebra of languages equipped with con-
catenation and shuffle have no finite basis.Ésik and Bertol showed in [15] that
the equational theory of union, concatenation and shuffle over languages has no fi-
nite first-order axiomatization relative to the collection of all valid inequations that
hold for concatenation and shuffle. Hence the combination of some form of paral-
lel composition, sequencing and choice is hard to characterize equationally both in
the theory of languages and in that of processes. Moreover, Bloom andÉsik have
shown in [11] that the variety of all languages over a finite alphabet ordered by in-
clusion with the operators of concatenation and shuffle, and a constant denoting the
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singleton language containing only the empty word is not finitely axiomatizable by
first-order sentences that are valid in the the equational theory of languages over
concatenation, union and shuffle.

Roadmap of the Paper We begin by presenting preliminaries on the language
CCSH—the extension of CCS with Hennessy’s merge operator—and equational
logic (Sect. 2). In particular, Sect. 2.2 offers a detailed discussion of the simplifying
assumptions we shall make, without loss of generality, on the equational axiom
systems that we shall consider in the rest of the paper. Our main result on the non-
existence of a finite equational axiomatization for bisimulation equivalence over
the language CCSH (Theorem 3.1) is stated in Sect. 3. There we show how to
reduce the proof of Theorem 3.1 to that of a proposition (Proposition 3.2) to the
effect that no finite axiom system over the fragment of the language CCSH that
does not use the parallel composition operator can prove all of the aforementioned
equationsen. The following two technical sections of the paper, viz. Sects. 4 and 5,
are entirely devoted to a detailed proof of Proposition 3.2. The paper ends with
some concluding remarks (Sect. 6).

2 Preliminaries

We begin by introducing the basic definitions and results on which the technical
developments to follow are based.

2.1 The language CCSH

The language for processes we shall consider in this paper, henceforth referred to
as CCSH , is obtained by adding Hennessy’s merge operator from [21] to the recur-
sion, restriction and relabelling free subset of Milner’s CCS [26]. This language is
given by the following grammar:

t ::= x | 0 | at | āt | τt | t + t | t | t | t |/ t ,

wherex is a variable drawn from a countably infinite setV , a is an action, and
ā is its complement. We assume that the actionsa and ā are distinct. Following
Milner [26], the action symbolτ will result from the synchronized occurrence of
the complementary actionsa andā. We letµ ∈ {a, ā, τ} andα ∈ {a, ā}. As usual,
we postulate that̄̄a = a. We shall use the meta-variablest, u, v, w to range over
process terms, and writevar(t) for the collection of variables occurring in the term
t. Thesizeof a term is the number of operator symbols in it. A process term is
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Table 1: SOS Rules for the CCS Operators (µ ∈ {a, ā, τ} andα ∈ {a, ā})

µx
µ→ x

x
µ→ x′

x + y
µ→ x′

y
µ→ y′

x + y
µ→ y′

x
µ→ x′

x | y µ→ x′ | y
y

µ→ y′

x | y µ→ x | y′
x

α→ x′, y
ᾱ→ y′

x | y τ→ x′ | y′

closedif it does not contain any variables. Closed terms will be typically denoted
by p, q, r.

In order to obtain the negative results offered in this paper, it will be sufficient
to consider the above language. The results we shall present in what follows carry
over unchanged to a setting with an arbitrary number of actions, and corresponding
unary prefixing operators.

A (closed) substitution is a mapping from process variables to (closed) CCSH

terms. For every termt and (closed) substitutionσ, the (closed) term obtained by
replacing every occurrence of a variablex in t with the (closed) termσ(x) will be
written σ(t).

In the remainder of this paper, we leta0 denote0, andam+1 denotea(am).
The SOS rules for all of the classic CCS operators are standard, and may be

found in Table 1. Those for Hennessy’s|/ formalize the intuition that this operator
is indeed a combination of the left and communication merge operators, and are:

x
µ→ x′

x |/ y
µ→ x′ | y

x
α→ x′, y

ᾱ→ y′

x |/ y
τ→ x′ | y′

These transition rules give rise to transitions between CCSH terms. The operational
semantics for CCSH is thus given by the labelled transition system [24] whose
states are CCSH terms, and whose labelled transitions are those that are provable
using the rules. As usual, for each termt and actionµ, we write t

µ→ if t
µ→ t′

holds for some termt′.
The transition relations

µ→ naturally compose to determine the possible effects
that performing a sequence of actions may have on a CCSH term.

Definition 2.1 For a sequence of actionss = µ1 · · · µk (k ≥ 0), and CCSH terms
t, t′, we writet

s→ t′ iff there exists a sequence of transitions

t = t0
µ1→ t1

µ2→ · · · µk→ tk = t′ .

If t
s→ t′ holds for some CCSH termt′, thens is atraceof t.
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The depthof a termt, written depth(t), is the length of the longest trace it
affords.

The depth of closed terms can also be characterized inductively thus:

depth(0) = 0
depth(µp) = 1 + depth(p)

depth(p + q) = max{depth(p), depth(q)}
depth(p | q) = depth(p) + depth(q)

depth(p |/ q) =

{
0 if depth(p) = 0 ,

depth(p) + depth(q) otherwise .

In what follows, we shall sometimes need to consider the possible origins of a
transition of the formσ(t) α→ p, for some actionα ∈ {a, ā}, closed substitutionσ,
CCSH termt and closed termp. Naturally enough, we expect thatσ(t) affords that
transition ift

α→ t′, for somet′ such thatp = σ(t′). However, the above transition
may also derive from the initial behaviour of some closed termσ(x), provided that
the collection of initial moves ofσ(t) depends, in some formal sense, on that of
the closed term substituted for the variablex. To fully describe this situation, we
introduce the auxiliary notion of configuration of a CCSH term. To this end, we
assume a set of symbols

Vd = {xd | x ∈ V }
disjoint fromV . Intuitively, the symbolxd (read “duringx”) will be used to denote
that the closed term substituted for variablex has begun executing.

Definition 2.2 The collection ofCCSH configurationsis given by the following
grammar:

c ::= t | xd | c | t | t | c ,

wheret is a CCSH term, andxd ∈ Vd.

For example, the configurationxd | (a0 |/ x) is meant to describe a state of the
computation of some term in which the (closed term substituted for the) occurrence
of variablex on the left-hand side of the| operator has begun its execution, but the
one on the right-hand side has not. We shall consider the symbolsxd as variables,
and use the notationσ[xd 7→ p], whereσ is a closed substitution andp is a closed
CCSH term, to stand for the substitution mappingxd to p, and acting likeσ on all
of the variables inV .

The way in which the initial behaviour of a term may depend on that of the
variables that occur in it is formally described by an auxiliary transition relation
whose elements have the formt

x→ c, wheret is a term,x is a variable, andc is a
configuration. The SOS rules defining these transitions are given in Table 2.

8



Table 2: SOS Rules for the Auxiliary Transitions
x→ (x ∈ V )

x
x→ xd

t
x→ c

t + u
x→ c

u
x→ c

t + u
x→ c

t
x→ c

t | u x→ c | u
u

x→ c

t | u x→ t | c
t

x→ c

t |/ u
x→ c | u

Lemma 2.1 Assume thatt is a CCSH term, σ is a closed substitution andα ∈
{a, ā}. Then the following statements hold:

1. If t
α→ t′, thenσ(t) α→ σ(t′).

2. Assume thatt
x→ c andσ(x) α→ p, for some closed termp. Thenσ(t) α→

σ[xd 7→ p](c).

3. Assume thatσ(t) α→ p, for some closed termp. Then

• eithert
α→ t′ for somet′ such thatp = σ(t′)

• or t
x→ c andσ(x) α→ q, for some variablex, configurationc and closed

termq such thatσ[xd 7→ q](c) = p.

In this paper, we shall consider the language CCSH modulo bisimulation equiva-
lence [26, 31].

Definition 2.3 Bisimulation equivalence(also sometimes referred to asbisimilar-
ity), denoted by↔, is the largest symmetric relation over closed CCSH terms such
that wheneverp↔ q andp

µ→ p′, then there is a transitionq
µ→ q′ with p′ ↔ q′.

If p↔ q, then we say thatp andq arebisimilar.

It is well-known that, as the name suggests, bisimulation equivalence is indeed an
equivalence relation (see, e.g., the references [26, 31]). Moreover, two bisimulation
equivalent terms over the language CCSH afford the same finite non-empty set
of traces, and have therefore the same depth. Since the SOS rules defining the
operational semantics of the language CCSH are in de Simone’s format [34], we
have that:

Fact 2.1 Bisimulation equivalence is a congruence over the language CCSH .

Bisimulation equivalence is extended to arbitrary CCSH terms thus:
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Definition 2.4 Let t, u be CCSH terms. Thent ↔ u iff σ(t) ↔ σ(u) for every
closed substitutionσ.

For instance, we have that
0 |/ x↔ 0

because0 |/ p affords no transition, for each closed termp.

Definition 2.5 We say that a termt has a0 factor if it contains a subterm of the
form t′ | t′′ or t′ |/ t′′, where eithert′ or t′′ is bisimilar to0.

For example, the termsa(0 | x) and(0 |/ x) | y have a0 factor.

2.2 Equational Logic

An axiom systemis a collection of equationst ≈ u over the language CCSH . An
equationp ≈ q is derivable from an axiom systemE, notationE ` p ≈ q, if it can
be proven from the axioms inE using the rules of equational logic (viz. reflexivity,
symmetry, transitivity, substitution and closure under CCSH contexts):

t ≈ t
t ≈ u

u ≈ t

t ≈ u u ≈ v

t ≈ v

t ≈ u

σ(t) ≈ σ(u)
t ≈ u

µt ≈ µu

t ≈ u t′ ≈ u′

t + t′ ≈ u + u′
t ≈ u t′ ≈ u′

t |/ t′ ≈ u |/ u′
t ≈ u t′ ≈ u′

t | t′ ≈ u | u′ .

Without loss of generality one may assume that substitutions happen first in equa-
tional proofs, i.e., that the rule

t ≈ u

σ(t) ≈ σ(u)

may only be used when(t ≈ u) ∈ E. In this caseσ(t) ≈ σ(u) is called a
substitution instanceof an axiom inE.

Definition 2.6 We call a closed substitutionσ substantialif depth(σ(x)) > 0 for
each variablex.

For reasons of technical convenience, in the proofs of our non-finite axiomatizabil-
ity results presented in this paper we shall only allow for the use of closed sub-
stantial substitutions in the rule of substitution. This does not limit the generality
of those results because every finite equational axiomatizationE can be converted
into a finite equational axiomatizationE′ such that the closed substitution instances
of the axioms ofE are the same as the closed substantial substitution instances of
the axioms ofE′ (when equating any closed subterm of depth 0 with0). This is

10



done by including inE′ any equation that can be obtained from an equation inE
by replacing all occurrences of any number of variables by0. (The identification
of each CCSH term that is bisimilar to0 with 0 can be done equationally using
three equations. See Fact 2.2 to follow.)

Definition 2.7 We say that a substitutionσ is a0-substitutioniff σ(x) 6= x implies
thatσ(x) = 0, for each variablex.

An axiom systemE is closed with respect to0-substitutionsiff σ(t) ≈ σ(u) is
contained inE, for each0-substitutionσ, if so is t ≈ u.

Simplifying Assumption 1 In the remainder of this paper, we shall always tacitly
assume that equational axiom systems are closed with respect to0-substitutions.

Note that ifE is a finite axiom system, then so is its closure with respect to0-
substitutions. In fact, for each termt, the collection of terms

{σ(t) | σ a0-substitution}

is finite.
Moreover, by postulating that for each axiom inE also its symmetric counter-

part is present inE, one may assume that applications of symmetry happen first in
equational proofs.

Simplifying Assumption 2 In the remainder of this paper, we shall also tacitly
assume that our equational axiom systems are closed with respect to symmetry.

Definition 2.8 An equationt ≈ u over the language CCSH is soundwith respect
to ↔ iff t ↔ u. An axiom system is sound with respect to↔ iff so is each of its
equations.

An example of a collection of equations over the language CCSH that are sound
with respect to↔ is given in Table 3. In addition, the following law, which ex-
presses the parallel composition operator in terms of Hennessy’s merge, is easily
seen to be sound with respect to↔:

x | y ≈ (x |/ y) + (y |/ x) . (2)

The axioms A4, HM1 and M1 in Table 3 (used from left to right) are enough to
establish that each CCSH term that is bisimilar to0 is also provably equal to0.
Since we feel that the proof of this little result is instructive, we now proceed to
present its sketch.

11



Table 3: Some Axioms for CCSH

A1 x + y ≈ y + x
A2 (x + y) + z ≈ x + (y + z)
A3 0 + x ≈ x
A4 x + 0 ≈ x

HM1 0 |/ x ≈ 0
HM2 x |/ 0 ≈ x

M1 x | 0 ≈ x
M2 0 | x ≈ x

Fact 2.2 Let t be a CCSH term. Thent ↔ 0 if, and only if, the equationt ≈ 0 is
provable using axioms A4, HM1 and M1 in Table 3 from left to right.

Proof: The “if” implication is an immediate consequence of the soundness of the
equations A4, HM1 and M1 with respect to↔ . To prove the “only if” implication,
define, first of all, the collection NIL of CCSH terms as the set of terms generated
by the following grammar:

t ::= 0 | t + t | t | t | t |/ u ,

whereu is an arbitrary CCSH term. We claim that:

Claim 1 Each CCSH termt is bisimilar to0 if, and only if, t ∈ NIL.

Using this claim and structural induction ont ∈ NIL, it is a simple matter to show
that if t ↔ 0, thent ≈ 0 is provable using axioms A4, HM1 and M1 from left to
right, which was to be shown.

To complete the proof, it therefore suffices to show the above claim. To es-
tablish the “if” implication in the statement of the claim, one proves, using struc-
tural induction ont and the congruence properties of bisimilarity (Fact 2.1), that
if t ∈ NIL, then σ(t) ↔ 0 for every closed substitutionσ. To show the “only if”
implication, we establish the contrapositive statement, viz. that ift 6∈ NIL, then
σ(t) ↔/ 0 for some closed substitutionσ. To this end, it suffices only to show,
using structural induction ont, that if t 6∈ NIL, then σa(t)

µ→ for some action
µ ∈ {a, ā, τ}, whereσa is the closed substitution mapping each variable to the
closed terma0. The details of this argument are not hard, and are therefore left to
the reader. 2

In light of the above result, we find it convenient to make the following:

12



Simplifying Assumption 3 In the technical developments to follow, we shall as-
sume, without loss of generality, that each axiom system we consider includes the
equations in Table 3.

This assumption means, in particular, that our axiom systems will allow us to iden-
tify each term that is bisimilar to0 with 0.

In the remainder of this paper, process terms are considered modulo associa-
tivity and commutativity of +. In other words, we do not distinguisht + u and
u + t, nor (t + u) + v and t + (u + v). This is justified because, as previously
observed, bisimulation equivalence satisfies axioms A1, A2 in Table 3. In what
follows, the symbol= will denote equality modulo axioms A1, A2. We use asum-
mation

∑
i∈{1,...,k} ti to denotet1 + · · · + tk, where the empty sum represents0.

It is easy to see that, modulo the equations in Table 3, every CCSH term t has the
form

∑
i∈I ti, for some finite index setI, and termsti (i ∈ I) that are not0 and do

not have themselves the formt′ + t′′, for some termst′ andt′′. The termsti (i ∈ I)
will be referred to as thesummandsof t. Moreover, again modulo the equations
in Table 3, each of theti can be assumed to have no0 factors. (Recall that this
means that, whenever a term of the formt′ |/ t′′ or t′ | t′′ is a subterm ofti, then
t′ ↔/ 0 andt′′ ↔/ 0.) For example, a term of the form(a0 + ā0) | 0 will not be
considered a summand in what follows because, using equation M1 in Table 3, that
term can be proven equal toa0 + ā0. The collection of summands of a termt can
be inductively characterized thus:

• 0 has no summands;

• x andµt are their only summands;

• u is a summand oft1 + t2 if it is either a summand oft1 or a summand oft2;

• the summands oft1 | t2 are

– those oft2, if t1 ↔ 0,

– those oft1, if t2 ↔ 0, and

– only t1 | t2, otherwise;

• the summands oft1 |/ t2 are

– none, ift1 ↔ 0,

– those oft1, if t2 ↔ 0, and

– only t1 |/ t2, otherwise.
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It is well-known (cf., e.g., Sect. 2 in [19]) that if an equation relating two closed
terms can be proven from an axiom systemE, then there is a closed proof for
it. We shall now argue that ifE satisfies a further closure property in addition
to those mentioned earlier, and that closed equation relates two terms containing
no occurrences of0 as a summand or factor, then there is a closed proof for it in
which all of the terms have no occurrences of0 as a summand or factor—see [28,
Proposition 5.1.5].

Definition 2.9

1. For CCSH termst and t′, we write t ; t′ if t′ can be obtained fromt by
applying one of the equations A3, A4, HM1, HM2, M1 and M2 from left
to right. As usual, we write;∗ for the reflexive, transitive closure of the
relation;.

2. LetE be an axiom system. We define the axiom systemcl(E) thus:

cl(E) = {t′ ≈ u′ | (t ≈ u) ∈ E, t ;∗ t′ andu ;∗ u′} .

3. An axiom systemE is saturatedif E = cl(E).

Intuitively, one application of the rewrite relation; eliminates one occurrence of
0 as a summand or a factor in terms. Note thatt ↔ t′ holds whenevert ; t′.

The following lemma collects some basic sanity properties of the closure op-
eratorcl(·). (Note, in particular, that the application ofcl(·) to an axiom system
satisfying our simplifying assumptions is guaranteed to produce a saturated axiom
system that also affords them.)

Lemma 2.2 Let E be an axiom system. Then the following statements hold.

1. E ⊆ cl(E) = cl(cl(E)).

2. cl(E) is finite, if so isE.

3. cl(E) is sound, if so isE.

4. cl(E) is closed with respect to0 substitutions and symmetry, if so isE.

5. cl(E) andE prove the same equations, ifE contains the equations in Table 3.

Proof: We limit ourselves to sketching a proof of the second statement in the
lemma. To prove this claim, we begin by noting that the size of the termt′ is
smaller than that oft whenevert ; t′. Using this observation, it is not hard to see
that, for each termt, the set

{t′ | t ;∗ t′}

14



is finite. In fact, the rooted tree with roott resulting from the unfolding of the
directed acyclic graph whose nodes are the terms reachable fromt via ;∗, and
whose edges are given by the; relation is finitely branching, and all of its paths
are finite because the; relation decreases the size of terms. Thus this tree must
be finite, or else it would have an infinite path by K¨onig’s lemma. It follows that,
for each equationt ≈ u in E, the setcl(E) containsnm equations, wheren and
m are the cardinalities of the sets{t′ | t ;∗ t′} and{u′ | u ;∗ u′}, respectively.
We may therefore conclude thatcl(E) is finite, if so isE. 2

We now proceed to characterize syntactically the normal forms of the rewriting
relation;. The syntactic characterization of the normal forms given below will be
useful in obtaining the promised result to the effect that if a saturated axiom system
E proves a closed equation relating two terms containing no occurrences of0 as a
summand or factor, then there is a closed proof for it in which all of the terms have
no occurrences of0 as a summand or factor.

Definition 2.10 For each CCSH termt, we definet/0 thus:

0/0 = 0 (t + u)/0 =


u/0 if t ↔ 0

t/0 if u↔ 0
(t/0) + (u/0) otherwise

x/0 = x (t |/ u)/0 =


0 if t↔ 0
t/0 if u↔ 0

(t/0) |/ (u/0) otherwise

µt/0 = µ(t/0) (t | u)/0 =


u/0 if t↔ 0

t/0 if u↔ 0
(t/0) | (u/0) otherwise .

Intuitively, t/0 is the term that results by removingall occurrences of0 as a sum-
mand or factor fromt.

The following lemma, whose simple proof by structural induction on terms is
omitted, collects the basic properties of the above construction. In particular, note
that, as expected, the termt/0 is the normal form fort with respect to the rewrite
relation;.

Lemma 2.3 For each CCSH termt, the following statements hold:

1. t ;∗ t/0 and thereforet ↔ t/0;

2. t/0 ; u for no termu;
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3. the termt/0 has no occurrence of0 as a summand or factor;

4. t/0 = t, if t has no occurrence of0 as a summand or factor.

We are now ready to state our counterpart of [28, Proposition 5.1.5].

Proposition 2.1 Assume thatE is a saturated axiom system. Suppose furthermore
that we have a closed proof fromE of the closed equationp ≈ q. Then replacing
each termr in that proof withr/0 yields a closed proof of the equationp/0 ≈ q/0.
In particular, the proof fromE of an equationp ≈ q, wherep andq are terms not
containing occurrences of0 as a summand or factor, need not use terms containing
occurrences of0 as a summand or factor.

Proof: The proof follows the lines of that of [28, Proposition 5.1.5], and is there-
fore omitted. 2

In light of this result, since the saturation of a finite axiom system that includes
the equations in Table 3 results in an equivalent, finite collection of equations
(Lemma 2.2(2) and (5)), we put forth our last:

Simplifying Assumption 4 Henceforth, we shall limit ourselves to considering
saturated axiom systems.

The use of saturated axiom systems will play an important role in the proof of our
main technical results.

3 Hennessy’s Merge is not Finitely Based

Our order of business in the remainder of this paper will be to show the following
result to the effect that bisimulation equivalence doesnot admit a finite equational
axiomatization over the language CCSH , and that thus Bergstra and Klop were
indeed right in writing in [8, page 118] that:

“It seems thatγ does not have a finite equational axiomatization.”

(In op. cit. Bergstra and Klop usedγ to denote Hennessy’s merge.)

Theorem 3.1 Bisimulation equivalence admits no finite equational axiomatization
over the language CCSH . In fact, the collection ofclosedequations over that lan-
guage that hold with respect to bisimulation equivalence has no finite equational
axiomatization.

16



As a first stepping stone towards the proof of this result, we now proceed to argue
that it is sufficient to show that bisimulation equivalence admits no finite equa-
tional axiomatization over the language CCS−

H , consisting of the CCSH terms that
do not contain occurrences of the parallel composition operator. Even though this
observation is not unexpected—as equation (2) essentially states that parallel com-
position is a derived operator in the algebra of CCSH terms modulo bisimulation
equivalence—, we now argue for it in some detail for the sake of completeness.

Definition 3.1 For each CCSH termt, we definêt thus:

0̂ = 0 t̂ + u = t̂ + û

x̂ = x t̂ |/ u = t̂ |/ û

µ̂t = µt̂ t̂ | u = (t̂ |/ û) + (û |/ t̂)

.

If E is an axiom system over the language CCSH , then

Ê = {t̂ ≈ û | (t ≈ u) ∈ E} .

Note that, for each CCSH term t, the termt̂ is in the language CCS−H . Moreover,
if t contains no occurrences of the parallel composition operator, thent̂ = t. Since
equation (2) is sound with respect to bisimulation equivalence, and bisimilarity is
a congruence (Fact 2.1), it is not hard to show that:

Fact 3.1 Each termt in the language CCSH is bisimilar tot̂. Therefore ifE is an
axiom system over the language CCSH that is sound with respect to bisimilarity,
thenÊ is an axiom system over the language CCS−

H that is sound with respect to
bisimilarity.

The following result states the promised reduction of the non-finite axiomatizabil-
ity of bisimilarity over the language CCSH to that of bisimilarity over the language
CCS−H .

Proposition 3.1 Let E be an axiom system over the language CCSH . Then the
following statements hold.

1. If E proves the equationt ≈ u, thenÊ proves the equation̂t ≈ û.

2. If E gives a complete axiomatization of bisimulation equivalence over the
language CCSH , thenÊ completely axiomatizes bisimulation equivalence
over the language CCS−H .

3. If bisimulation equivalence admits no finite equational axiomatization over
the language CCS−H , then it has no finite equational axiomatization over the
language CCSH either.
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Proof: We prove the three statements separately.

• PROOF OFSTATEMENT 1. Assume thatE ` t ≈ u. We shall argue that̂E
proves the equation̂t ≈ û by induction on the depth of the proof oft ≈ u
from E. We proceed by a case analysis on the last rule used in the proof.
Below we only consider the two most interesting cases in this analysis.

– CASE E ` t ≈ u, BECAUSE σ(t′) = t AND σ(u′) = u FOR SOME

EQUATION (t′ ≈ u′) ∈ E. Note, first of all, that, by the definition of
Ê, the equation̂t′ ≈ û′ is contained inÊ. Observe now that

t̂ = σ̂(t̂′) andû = σ̂(û′) ,

whereσ̂ is the substitution mapping each variablex to the termσ̂(x).
It follows that the equation̂t ≈ û can be proven from the axiom system
Ê by instantiating the equation̂t′ ≈ û′ with the substitution̂σ, and we
are done.

– CASE E ` t ≈ u, BECAUSE t = t1 | t2 AND u = u1 | u2 FOR

SOME ti, ui (i = 1, 2) SUCH THAT E ` ti ≈ ui (i = 1, 2). Using
the inductive hypothesis twice, we have thatÊ ` t̂i ≈ ûi (i = 1, 2).
Therefore, using substitutivity,̂E proves that

t̂ = (t̂1 |/ t̂2) + (t̂2 |/ t̂1) ≈ (û1 |/ û2) + (û2 |/ û1) = û ,

which was to be shown.

The remaining cases are simpler, and we leave the details to the reader.

• PROOF OFSTATEMENT 2. Assume thatt andu are two bisimilar terms in
the language CCS−H . We shall argue that̂E proves the equationt ≈ u. To
this end, we begin by noting that the equationt ≈ u also holds in the algebra
of CCSH terms modulo bisimulation. In fact, for each termv in the language
CCSH and closed substitutionσ mapping variables to CCSH terms, we have
that

σ(v) ↔ σ̂(v) ,

where the substitution̂σ is defined as above.

SinceE is complete for bisimilarity over CCSH by our assumptions, it fol-
lows thatE proves the equationt ≈ u. Therefore, by statement 1 of the
proposition, we have that̂E proves the equation̂t ≈ û. The claim now
follows becausêt = t andû = u.
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• PROOF OFSTATEMENT 3. This is an immediate consequence of statement 2
becausêE has the same cardinality ofE, and is therefore finite, if so isE.

2

In light of this result, henceforth we shall focus on proving that bisimulation equiv-
alence affords no finite equational axiomatization over the language CCS−

H . The
following infinite family of closed CCS−H terms will play a key role in the technical
developments to follow:

en : a0 |/ pn ≈ apn +
n∑

i=0

τai (n ≥ 0) , (3)

where the termspn are defined thus:

pn =
n∑

i=0

āai (n ≥ 0) .

It is not hard to see that all of the equationsen (n ≥ 0) are sound modulo bisimu-
lation. In the remainder of this paper, we shall prove the following result, of which
Theorem 3.1 is an immediate consequence, to the effect that no finite collection
of equations over the language CCS−

H that are sound with respect to bisimulation
equivalence can prove all of the equationsen (n ≥ 0).

Theorem 3.2 Let E be a finite axiom system over the language CCS−
H that is

sound with respect to bisimulation equivalence. Letn be larger than the size of
each term in the equations inE. ThenE does not prove the sound equationen

from (3).

The remainder of this paper will be devoted to a proof of the above result, which
will be given along proof theoretic lines that have their roots in Moller’s arguments
to the effect that bisimulation equivalence is not finitely based over the language
CCS—see the references [28, 29, 30]. More precisely, to establish Theorem 3.2, we
shall show that there is a property of terms associated with each finite axiom system
E over the language CCS−H that is sound with respect to bisimulation equivalence,
such that whenever the equationp ≈ q can be derived fromE, for some “suitably
large” closed terms without0 summands and factors, then either bothp andq enjoy
the property, or none of them does. The aforementioned property must be chosen
so that, for suitably large values ofn, the right-hand side of equalityen, viz. the
terma0 |/ pn, affords it, whilst the left-hand side, viz. the termapn +

∑n
i=0 τai,

does not.
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Remark 3.1 In the absence of synchronization, Hennessy’s merge reduces to the
left merge operator of Bergstra and Klop’s. It follows that the collection of closed
equations that hold modulo↔ over the sub-language of CCSH obtained by consid-
ering those terms that do not contain occurrences of theā prefixing operator has a
finite equational axiomatization. Therefore the use of synchronization is necessary
in the proof of Theorem 3.1.

The following proposition states the property mentioned in the proof strategy out-
lined above.

Proposition 3.2 Let E be a finite axiom system over the language CCS−
H that is

sound with respect to bisimulation equivalence. Letn be larger than the size of
each term in the equations inE. Assume thatp andq are closed terms that are
bisimilar toa0 |/ pn, and contain no occurrences of0 as a summand or a factor. If
E ` p ≈ q andp has a summand bisimilar toa0 |/ pn, then so doesq.

Using the above proposition, it is a simple matter to prove Theorem 3.2. In fact,
since none of the summands of the term

apn +
n∑

i=0

τai ,

viz. apn andτai (i ∈ {0, . . . , n}), is bisimilar toa0 |/ pn, if n ≥ 1, Proposition 3.2
yields that the sound equalityen cannot be proven fromE, and thus thatE is
incomplete.

We shall now begin to develop the technical machinery that will be brought to
bear in the proof of Proposition 3.2. This proof will occupy the remainder of this
study.

4 Preparatory Results and Observations

Note that terms in the language CCS−
H may contain some occurrences of variables

that can never contribute to the behaviour of their closed instantiations. A typi-
cal example of this situation occurs in the term0 |/ x, which is bisimilar to0.
However, terms that have no0 factors contain no such redundant occurrences of
variables. Moreover, each variable occurring in such terms contributes to the be-
haviour of its closed substantial instantiations. The following basic result, that will
be used repeatedly in the technical developments to follow, formalizes this intu-
ition.

Lemma 4.1 Let t be a CCS−H term, and letσ be a closed substitution.
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1. Assume thatt is not bisimilar to0, andσ is substantial. Thendepth(σ(t))
is positive, and thusσ(t)↔/ 0.

2. If t has no0 factors andx ∈ var (t), thendepth(σ(t)) ≥ depth(σ(x)).

Remark 4.1 The requirement thatσ be substantial is necessary in statement 1 of
the above lemma. For example,x↔/ 0, butσ(x) ↔ 0 if depth(σ(x)) = 0.

Similarly, the proviso thatt has no0 factors cannot be omitted in statement 2.
For instance, ift = 0 |/ x andσ(x) = a0, thendepth(σ(t)) < depth(σ(x)).

In the proof of our main result, we shall make use of some notions from [27, 28].
These we now proceed to introduce for the sake of completeness and readability.

Definition 4.1 A closed termp is irreducibleif p↔ q | r impliesq ↔ 0 or r ↔ 0,
for all closed termsq, r.

We say thatp is primeif it is irreducible and is not bisimilar to0.

For example, each termp of depth1 is prime because every term of the formq | r
that does not involve0 factors has depth at least2, and thus cannot be bisimilar to
p. The following proposition states the primality of two families of closed terms
that will play a key role in the proof of our main result.

Proposition 4.1

1. Letm ≥ 1 and0 ≤ i1 < . . . < im. Then the term̄a.ai1 + · · · + ā.aim is
prime. In particular,pn is prime, for eachn ≥ 1.

2. The terma0 |/ pn is prime, for eachn ≥ 0.

Proof: We prove the two claims separately. In each case, sinceā.ai1 + · · ·+ ā.aim

anda0 |/ pn are not bisimilar to0, it suffices only to show that the relevant term is
irreducible.

• PROOF OF CLAIM 1. Suppose, towards a contradiction, that there exist
closed termsq, r that are not bisimilar0 such that

ā.ai1 + · · ·+ ā.aim ↔ q | r .

Then, sinceq, r ↔/ 0, in light of the above equivalence we have thatq
ā→ q′

andr
ā→ r′, for someq′, r′. But then it follows that

q | r ā→ q′ | r ā→ q′ | r′ ,

whereas the term̄a.ai1 + · · · + ā.aim cannot perform two subsequentā-
transitions. It follows that suchq andr cannot exist, and hence that the term
ā.ai1 + · · ·+ ā.aim is irreducible, which was to be shown.
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• PROOF OF CLAIM 2. We now proceed to prove thata0 |/ pn is irreducible
for n ≥ 0.

If n = 0 thena0 |/ p0 = a0 |/ 0 is a term of depth1, and is therefore
irreducible as claimed.

Let n ≥ 1. Assume, towards a contradiction, thata0 |/ pn ↔ p | q for
two closed termsp andq with p ↔/ 0 andq ↔/ 0—that is,a0 |/ pn is not
irreducible. Sincen ≥ 1, we have that

a0 |/ pn
τ→ 0 | 0↔ 0 .

As a0 |/ pn ↔ p | q, there is a transitionp | q τ→ p′ | q′, for somep′, q′ with
p′ | q′ ↔ 0. In light of our assumption thatp ↔/ 0 andq ↔/ 0, the transition
p | q τ→ p′ | q′ must be derived from the synchronization of two transitions

p
α→ p′ andq

ᾱ→ q′ with α ∈ {a, ā}. This means thatp | q ā→, contradicting
the assumption thata0 |/ pn ↔ p | q. Thusa0 |/ pn is irreducible, which
was to be shown.

2

Lemma 4.2 Let t be a term in the language CCS−
H with neither0 summands nor

factors that does not have+ as head operator. Assume thatσ is a closed substantial
substitution, and that

σ(t)↔ ā.ai1 + · · ·+ ā.aim ,

for somem > 1 and0 ≤ i1 < . . . < im. Thent = x, for some variablex.

Proof: Assume, towards a contradiction, thatt is not a variable. We proceed by a
case analysis on the possible form this term may have.

1. CASE t = µt′ FOR SOME TERMt′. Thenµ = ā andai1 ↔ σ(t′) ↔ aim.
However, this is a contradiction because, sincei1 6= im, the termsai1 and
aim are not bisimilar.

2. CASE t = t′ |/ t′′ FOR SOME TERMSt′, t′′. Sincet has no0 factors, we have
that neithert′ nor t′′ is bisimilar to0. As σ is a substantial substitution, it
follows thatσ(t′)↔/ 0 andσ(t′′)↔/ 0.

Observe now that̄a.ai1 + · · ·+ ā.aim ā→ aim . Thus, as

σ(t) = σ(t′) |/ σ(t′′)↔ ā.ai1 + · · · + ā.aim ,

there is a termp such that

σ(t′) ā→ p andp | σ(t′′)↔ aim .
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As σ(t′′) ↔/ 0, this implies thatσ(t′′) a→ q, for someq. This leads to a
contradiction, because the termσ(t) = σ(t′) |/ σ(t′′) affords an initialτ -
transition, viz.

σ(t) = σ(t′) |/ σ(t′′) τ→ p | q ,

whereas̄a.ai1 + · · · + ā.aim does not.

We may therefore conclude thatt must be a variable, which was to be shown.2

The following decomposition property will find application in the proof of our
main technical result, viz. Proposition 5.1 to follow.

Lemma 4.3 Let n ≥ 1. Assume thatp |/ q ↔ a0 |/ pn, whereq is a closed term
that is not bisimilar to0. Thenp↔ a0 andq ↔ pn.

Proof: Sincep |/ q ↔ a0 |/ pn anda0 |/ pn
a→ 0 | pn ↔ pn, there is ap′ such that

p
a→ p′ andp′ | q ↔ pn. It follows thatq ↔ pn andp′ ↔ 0, becausepn is prime

(Proposition 4.1) andq ↔/ 0. We are therefore left to prove thatp is bisimilar to
a0. To this end, note, first of all, that, as↔ is a congruence over the language
CCSH , we have that

p |/ pn ↔ a0 |/ pn .

Assume now thatp
µ→ p′′ for some actionµ and closed termp′′. In light of the

above equivalence, one of the following two cases may arise:

1. µ = a andp′′ | pn ↔ pn or

2. µ = τ andp′′ | pn ↔ ai, for somei ∈ {0, . . . , n}.
In the former case,p′′ must have depth0 and is thus bisimilar to0. The latter case
is impossible, because the depth ofp′′ | pn is at leastn + 1.

We may therefore conclude that every transition ofp is of the formp
a→ p′′, for

somep′′ ↔ 0. Since we have already seen thatp affords ana-labelled transition
leading to0, modulo bisimulation equivalence, it follows thatp ↔ a0, which was
to be shown. 2

Lemma 4.4 Let t ≈ u be an equation over the language CCS−
H that is sound with

respect to bisimulation equivalence, wheret andu are terms that have neither0
summands nor factors. Assume that some variablex occurs as a summand int.
Thenx also occurs as a summand inu.
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Proof: Recall that, for some finite index setsI, J , we can write

t =
∑
i∈I

ti and (4)

u =
∑
j∈J

uj , (5)

where none of theti (i ∈ I) anduj (j ∈ J) is 0 or a sum. Assume that variablex
occurs as a summand int—i.e., that there is ani ∈ I with ti = x. We shall argue
thatx also occurs as a summand inu—i.e., that there is aj ∈ J with uj = x.

Consider the substitutionσ0 mapping each variable to0. Pick an integerm
larger than the depth ofσ0(t) and ofσ0(u). Letσ be the substitution mappingx to
the termam+1 and agreeing withσ0 on all the other variables.

As t ≈ u is sound with respect to bisimulation equivalence, we have that

σ(t)↔ σ(u) .

Moreover, the termσ(t) affords the transitionσ(t) a→ am, for ti = x andσ(x) =
am+1 a→ am. Hence, for some closed termp,

σ(u) =
∑
j∈J

σ(uj)
a→ p↔ am .

This means that there is aj ∈ J such thatσ(uj)
a→ p. We claim that thisuj

can only be the variablex. To see that this claim holds, observe, first of all, that
x ∈ var (uj). In fact, if x did not occur inuj, then we would reach a contradiction
thus:

m = depth(p) < depth(σ(uj)) = depth(σ0(uj)) ≤ depth(σ0(u)) < m .

Using this observation and Lemma 4.1(2), it is not hard to show that, for each of the
other possible formsuj may have,σ(uj) does not afford ana-labelled transition
leading to a term of depthm. We may therefore conclude thatuj = x, which was
to be shown. 2

5 Proof of Proposition 3.2

We now proceed to present a detailed proof of Proposition 3.2. The following
result, stating that the property mentioned in the statement of that proposition holds
for all closed substantial instantiations of axioms inE, will be the crux in such a
proof.
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Proposition 5.1 Let t ≈ u be an equation over the language CCS−
H that is sound

with respect to bisimulation equivalence, wheret andu are terms without0 sum-
mands or factors. Letn be larger than the size oft. Assume thatσ is a substantial
substitution. Letp = σ(t) andq = σ(u). Suppose thatp andq are bisimilar to
a0 |/ pn. If p has a summand bisimilar toa0 |/ pn, then so doesq.

Proof: We can assume that, for some finite non-empty index setsI, J ,

t =
∑
i∈I

ti and (6)

u =
∑
j∈J

uj , (7)

where none of theti (i ∈ I) anduj (j ∈ J) is 0 or a sum. (That is, none of theti
(i ∈ I) anduj (j ∈ J) has+ as its head operator.) Note that, ast andu have no0
summands or factors, then none of theti (i ∈ I) anduj (j ∈ J) does either.

Sincep = σ(t) has a summand bisimilar toa0 |/ pn, there is an indexi ∈ I
such that

σ(ti)↔ a0 |/ pn .

Our aim is now to show that there is an indexj ∈ J such that

σ(uj)↔ a0 |/ pn ,

proving thatq = σ(u) also has a summand bisimilar toa0 |/ pn. This we proceed
to do by a case analysis on the formti may have.

1. CASE ti = x FOR SOME VARIABLE x. In this case, we have that

σ(x)↔ a0 |/ pn ,

andt hasx as a summand. Ast ≈ u is sound with respect to bisimulation
equivalence and neithert nor u have0 summands or factors, it follows that
u also hasx as a summand (Lemma 4.4). Thus there is an indexj ∈ J such
that uj = x, and, modulo bisimulation,σ(u) hasa0 |/ pn as a summand,
which was to be shown.

2. CASE ti = µt′ FOR SOME TERMt′. This case is vacuous because, since

σ(ti) = µσ(t′) µ→ σ(t′)

is the only transition afforded byσ(ti), this term cannot be bisimilar toa0 |/
pn.
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3. CASE ti = t′ |/ t′′ FOR SOME TERMSt′, t′′. The analysis of this case is the
crux of the proof, and we present the argument in considerable detail.

Sinceti = t′ |/ t′′, we have that

σ(ti) = σ(t′) |/ σ(t′′)↔ a0 |/ pn .

As σ is a substantial substitution, it follows thatσ(t′) ↔/ 0 andσ(t′′) ↔/ 0
(Lemma 4.1(1)). Thusσ(t′) ↔ a0 andσ(t′′) ↔ pn (Lemma 4.3). Now,t′′

can be written thus:

t′′ = v1 + · · · + v` (` > 0) ,

where none of the summandsvi is 0 or a sum. Observe that, sincen is larger
than the size oft, we have that̀ < n. Hence, since

σ(t′′)↔ pn =
n∑

i=0

āai ,

there must be someh ∈ {1, . . . , `} such that

σ(vh)↔ ā.ai1 + · · ·+ ā.aim

for somem > 1 and0 ≤ i1 < . . . < im ≤ n. By Lemma 4.2, it follows that
vh can only be a variablex and thus that

σ(x) ↔ ā.ai1 + · · ·+ ā.aim . (8)

Sincet′ has no0 factors, the above equation yields thatx 6∈ var(t′)—or else
σ(t′) ↔/ a0 (Lemma 4.1(2)). Thus, sinceσ is substantial, modulo bisimula-
tion equivalence,

t′ = y1 + · · ·+ yk[+a0] (9)

for somek ≥ 0 and some variablesy1, . . . , yk different fromx with

σ(y1)↔ · · · σ(yk)↔ a0 .

(The notation[+a0] in (9) denotes an optionala0 summand. Moreover, if
k = 0, thent′ = a0.) So, modulo bisimulation equivalence,ti has the form
t′ |/ (x + t′′′), for some termt′′′.

Our order of business will now be to use the information collected so far in
this case of the proof to argue thatσ(u) has a summand bisimilar toa0 |/ pn.
To this end, consider the substitution

σ′ = σ[x 7→ ā(a0 |/ pn)] .
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We have that

σ′(ti) = σ′(t′) |/ σ′(t′′)
= σ(t′) |/ σ′(t′′) (As x 6∈ var(t′))
↔ a0 |/ (ā(a0 |/ pn) + σ′(t′′′)) .

Thus,σ′(ti)
τ→ p′ ↔ a0 |/ pn for somep′. By (6), we have thatσ′(t) τ→

p′ also holds. Sincet ≈ u is sound with respect to↔ , it follows that
σ′(t)↔ σ′(u). Hence, by (7), there are aj ∈ J and aq′ such that

σ′(uj)
τ→ q′ ↔ a0 |/ pn . (10)

Recall that, by one of the assumptions of the proposition,σ(u) ↔ a0 |/ pn,
and thusσ(u) has depthn+2. On the other hand, by (10),depth(σ′(uj)) ≥
n + 3. Sinceσ andσ′ differ only in the closed term they map variablex to,
it follows that

x ∈ var(uj) . (11)

We now proceed to show thatσ(uj) ↔ a0 |/ pn by a further case analysis
on the form a termuj satisfying (10) and (11) may have.

(a) CASE uj = x. This case is vacuous becauseσ′(x) = ā(a0 |/ pn) τ
9,

and thus this possible form foruj does not meet (10).

(b) CASE uj = µu′ FOR SOME TERMu′. In light of (10), we have thatµ =
τ andq′ = σ′(u′) ↔ (a0 |/ pn). Using (11) and the fact thatu′ has no
0 factors, we have thatdepth(σ′(u′)) ≥ n + 3 (Lemma 4.1(2)). Since
a0 |/ pn has depthn+2, this contradicts the fact thatσ′(u′)↔ a0 |/ pn.

(c) CASE uj = u′ |/ u′′ FOR SOME TERMSu′, u′′. This is the lengthiest
sub-case of case 3 of the proof, and its analysis will occupy us for the
next couple of pages.

Our assumption thatu has no0 factors yields that neitheru′ nor u′′ is
bisimilar to0. Moreover, by (11), eitherx ∈ var (u′) or x ∈ var(u′′).
Sinceσ′(uj) = σ′(u′) |/ σ′(u′′) affords transition (10), we have that
q′ = q1 | q2 for someq1, q2. Sincea0 |/ pn is prime (Proposi-
tion 4.1(2)), it follows that eitherq1 ↔ 0 or q2 ↔ 0. We now continue
our proof by examining the two possible origins for transition (10).
These are

i. σ′(u′) τ→ q1 andq2 = σ′(u′′) and

ii. σ′(u′) α→ q1 andσ′(u′′) ᾱ→ q2, with α ∈ {a, ā}.
We examine these two cases in turn.
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i. Assume thatσ′(u′) τ→ q1 andq2 = σ′(u′′). We now proceed to
argue that this case produces a contradiction. To this end, note
first of all that, asσ′ is substantial andu′′ is not bisimilar to0, it
must be the case thatq1 ↔ 0 andq2 = σ′(u′′) ↔ a0 |/ pn. In
light of the definition ofσ′, it follows thatx occurs inu′, but not
in u′′ (Lemma 4.1(2)). Therefore, sinceσ andσ′ only differ at the
variablex,

σ(u′′) = σ′(u′′)↔ a0 |/ pn .

Since↔ is a congruence, we derive that

σ(uj) = σ(u′) |/ σ(u′′)↔ σ(u′) |/ (a0 |/ pn) . (12)

Sinceσ is substantial,x occurs inu′, andu′ has no0 factors, we
may infer that

n + 2 = depth(a0 |/ pn)
= depth(σ(u)) (As σ(u) ↔ a0 |/ pn)

≥ depth(σ(uj)) (By (7))

= depth(σ(u′)) + n + 2 (By (12))

> n + 2 (As depth(σ(u′)) > 0 by Lemma 4.1(2)),

which is the desired contradiction.

ii. Assume now thatσ′(u′) α→ q1 andσ′(u′′) ᾱ→ q2, with α ∈ {a, ā}.
Recall that exactly one ofq1, q2 is bisimilar to0. We proceed with
the proof by considering these two possible cases in turn.

CASE q1 ↔ 0. Our order of business will be to argue that, in this
case,σ(uj) ↔ a0 |/ pn, and thus thatq = σ(u) has a summand
bisimilar toa0 |/ pn.
To this end, observe, first of all, thatq2 ↔ a0 |/ pn by (10). It
follows thatx ∈ var(u′′), for otherwise we could derive a contra-
diction thus:

depth(a0 |/ pn) = depth(σ(u)) (As σ(u)↔ a0 |/ pn)

≥ depth(σ(uj)) (By (7))

> depth(σ(u′′)) (As depth(σ(u′)) > 0)

= depth(σ′(u′′)) (As x 6∈ var (u′′))
> depth(a0 |/ pn)

(As σ′(u′′) ᾱ→ q2 ↔ a0 |/ pn) .
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Moreover, we claim thatx 6∈ var (u′). Indeed, ifx also occurred in
u′, then, sinceu′ has no0 factors, the termσ(x) would contribute
to the behaviour ofσ(uj). Therefore, by (8), the termσ(uj) would
afford a sequence of actions containing two occurrences ofā, con-
tradicting our assumption thatσ(u) ↔ a0 |/ pn. It follows that
α = a, because

σ′(u′) = σ(u′) ā
9 ,

sinceσ(u) ↔ a0 |/ pn.

Observe now that, asσ′(u′′) ā→ q2 ↔ a0 |/ pn, it must be the case
thatu′′ has a summandx. To see that this does hold, we examine
the other possible forms a summandw of u′′ responsible for the
transition

σ′(u′′) ā→ q2 ↔ a0 |/ pn

may have, and argue that each of them leads to a contradiction.

A. CASE w = āw′, FOR SOME TERMw′. In this case,q2 =
σ′(w′). However, the depth of such aq2 is either smaller than
n + 2 (if x 6∈ var(w′)), or larger thann + 2 (if x ∈ var (w′)).
This contradicts the fact thatq2 is bisimilar toa0 |/ pn, be-
cause the latter term has depthn + 2.

B. CASE w = w1 |/ w2, FOR SOME TERMSw1 AND w2. Since

σ′(w) = σ′(w1) |/ σ′(w2)
ā→ q2 ,

there is a closed termq3 such thatσ′(w2)
ā→ q3 and q2 =

q3 | σ′(w2) ↔ a0 |/ pn. As the terma0 |/ pn is prime,σ′

is substantial, andw2 is not bisimilar to0, we may infer that
q3 ↔ 0 and

σ′(w2)↔ a0 |/ pn .

It follows that x 6∈ var(w2)—or else the depth ofσ′(w2)
would be at leastn + 3—, and therefore that

σ′(w2) = σ(w2)↔ a0 |/ pn .

However, this contradicts our assumption thatσ(u) ↔ a0 |/
pn.

Summing up, we have argued thatu′′ has a summandx. Therefore,
by (8),

σ(u′′)↔ ā.ai1 + · · ·+ ā.aim + r′′ ,
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for some closed termr′′. We have already noted that

σ(u′) = σ′(u′) a→ q1 ↔ 0 .

Therefore, we have that

σ(u′)↔ a0 + r′ ,

for some closed termr′. Using the congruence properties of bisim-
ulation equivalence, we may infer that

σ(uj) = σ(u′) |/ σ(u′′)↔ (a0+r′) |/ (ā.ai1 +· · ·+ ā.aim +r′′) .

In light of this equivalence, we have that

σ(uj)
a→ r ↔ ā.ai1 + · · ·+ ā.aim + r′′ ↔ σ(u′′) ,

for some closed termr. By (7),

q = σ(u) a→ r .

Sinceq = σ(u)↔ a0 |/ pn by our assumption, it must be the case
thatr ↔ σ(u′′) ↔ pn. So, again using the congruence properties
of ↔ , we have that

σ(uj) = σ(u′) |/ σ(u′′)↔ (a0 + r′) |/ pn .

As σ(u) ↔ a0 |/ pn, using Lemma 4.3 it is now a simple matter
to infer that

σ(u′)↔ a0 .

Henceσ(uj) ↔ a0 |/ pn. Note thatσ(uj) is a summand ofq =
σ(u). Thereforeq has a summand bisimilar toa0 |/ pn, which was
to be shown.
CASE q2 ↔ 0. We now proceed to argue that this case produces a
contradiction. To this end, observe, first of all, thatq1 ↔ a0 |/ pn.
Reasoning as in the analysis of the previous case, we may infer
thatα = a, x occurs inu′, butx does not occur inu′′. Moreover,
sinceσ′(u′) a→ q1 ↔ a0 |/ pn, it must be the case thatu′ a→ u′′′

for someu′′′ such that

σ′(u′′′) = q1 ↔ a0 |/ pn .

30



(For, otherwise, using Lemma 2.1(3), we would have that

σ′(u′) a→ q1

becauseu′ y→ c, σ(y) a→ q′1 andq1 = σ′[yd 7→ q′1](c), for some
variabley, configurationc and closed termq′1. Note thaty 6= x.
In fact, if y = x, then we would have thata = ā by the definition
of σ′, contradicting the distinctness of these two complementary
actions. Observe now that, again in light of the definition ofσ′,
the variablex cannot occur inc, or else the depth ofq1 = σ′[yd 7→
q′1](c) would be at leastn + 3, contradicting our assumption that
q1 ↔ a0 |/ pn. Hence, since the variabley is different fromx,
it is not hard to see thatσ(u′) a→ q1 also holds, and thus that
depth(q1) < depth(σ(u)) = n + 2, contradicting our assumption
thatq1 ↔ a0 |/ pn.) Sinceu contains no0 factors, in light of the
definition ofσ′, thisu′′′ cannot contain occurrences of the variable
x. (For, otherwise, Lemma 4.1(2) would yield that

depth(σ′(u′′′)) = depth(q1) ≥ n + 3 ,

contradicting our assumption thatq1 ↔ a0 |/ pn.) So

σ(u′′′) = q1 ↔ a0 |/ pn

also holds. Thus

n + 2 = depth(a0 |/ pn)
= depth(σ(u)) (As σ(u) ↔ a0 |/ pn)

≥ depth(σ(uj)) (By (7))

= depth(σ(u′) |/ σ(u′′))
> depth(σ(u′′′)) + depth(σ(u′′))

(As σ(u′) a→ σ(u′′′))
> n + 2

(As depth(σ(u′′)) > 0 anddepth(σ(u′′′)) = n + 2)

which is the desired contradiction.

This completes the proof for the caseuj = u′ |/ u′′ for some terms
u′, u′′.

The proof is now complete. 2
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We are now ready to prove Proposition 3.2, thus completing the proof of Theo-
rem 3.2 and of our main result (Theorem 3.1).

Proof of Proposition 3.2: Assume thatE is a finite axiom system over the lan-
guage CCS−H that is sound with respect to bisimulation equivalence, and that the
following hold, for some closed termsp andq and positive integern larger than
the size of each term in the equations inE:

1. E ` p ≈ q,

2. p↔ q ↔ a0 |/ pn,

3. p andq contain no occurrences of0 as a summand or factor, and

4. p has a summand bisimilar toa0 |/ pn.

We prove thatq also has a summand bisimilar toa0 |/ pn by induction on the depth
of the closed proof of the equationp ≈ q from E. Recall that, without loss of gen-
erality, we may assume that the closed terms involved in the proof of the equation
p ≈ q have no0 summands or factors (by Proposition 2.1, asE may be assumed
to be saturated), that applications of symmetry happen first in equational proofs
(that is,E is closed with respect to symmetry), and that only closed substantial
substitutions are used (E is closed with respect to0-substititions).

We proceed by a case analysis on the last rule used in the proof ofp ≈ q from
E. The case of reflexivity is trivial, and that of transitivity follows immediately by
using the inductive hypothesis twice. Below we only consider the other possibili-
ties.

• CASE E ` p ≈ q, BECAUSEσ(t) = p AND σ(u) = q FOR SOME EQUATION

(t ≈ u) ∈ E AND CLOSED SUBSTANTIAL SUBSTITUTIONσ. Observe, first
of all, that sinceσ(t) = p andσ(u) = q have no0 summands or factors,
then neither dot andu. Therefore, asn is larger than the size of each term
mentioned in equations inE, the claim follows by Proposition 5.1.

• CASE E ` p ≈ q, BECAUSE p = µp′ AND q = µq′ FOR SOMEp′, q′ SUCH

THAT E ` p′ ≈ q′. This case is vacuous becausep = µp′ ↔/ a0 |/ pn, and
thusp does not have a summand bisimilar toa0 |/ pn.

• CASE E ` p ≈ q, BECAUSE p = p′ + p′′ AND q = q′ + q′′ FOR SOME

p′, q′, p′′, q′′ SUCH THAT E ` p′ ≈ q′ AND E ` p′′ ≈ q′′. Sincep has a
summand bisimilar toa0 |/ pn, we have that so does eitherp′ or p′′. As-
sume, without loss of generality, thatp′ has a summand bisimilar toa0 |/ pn.
Sincep is bisimilar toa0 |/ pn, so isp′. Using the soundness ofE modulo
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bisimulation, it follows thatq′ ↔ a0 |/ pn. The inductive hypothesis now
yields thatq′ has a summand bisimilar toa0 |/ pn. Hence,q has a summand
bisimilar toa0 |/ pn, which was to be shown.

• CASE E ` p ≈ q, BECAUSE p = p′ |/ p′′ AND q = q′ |/ q′′ FOR SOME

p′, q′, p′′, q′′ SUCH THAT E ` p′ ≈ q′ AND E ` p′′ ≈ q′′. Since the proof
involves no uses of0 as a summand or a factor, we have thatp′, p′′ ↔/ 0 and
q′, q′′ ↔/ 0. It follows thatq is a summand of itself. By our assumptions,

a0 |/ pn ↔ q .

Therefore we have thatq has a summand bisimilar toa0 |/ pn, and we are
done.

This completes the proof. 2

6 Concluding Remarks

In their seminal paper [8], Bergstra and Klop showed that the parallel composi-
tion operator can be finitely axiomatized modulo bisimulation equivalence with
the use of two auxiliary operators, viz. the by now classic left merge and commu-
nication merge. Independently, and at roughly the same time, Hennessy proposed
the auxiliary operator|/, and used it in [21] to give equational axiomatizations of
Milner’s observation congruence [26] and timed congruence. The axiomatization
of observation congruence offered by Hennessy using the|/ operator relies, how-
ever, on a variation on the classic expansion law [26], and is therefore infinite.
This led Bergstra and Klop to conjecture in [8, page 118] that Hennessy’s|/ oper-
ator does not have a finite equational axiomatization. The main result in this paper
confirms this conjecture of Bergstra and Klop’s, and answers one of the questions
in [2, Problem 8], by showing that, in the presence of two distinct complemen-
tary actions, it is impossible to provide a finite axiomatization of the recursion free
fragment of CCS modulo bisimulation equivalence using|/. This result further
reinforces the status of the left merge and the communication merge operators as
auxiliary operators in the finite equational characterization of parallel composition
in bisimulation semantics.

A natural question to ask at this point is whether there is a singlebinaryoper-
ator that preserves bisimulation equivalence, and whose addition to the recursion
free fragment of CCS allows for the finite equational axiomatization of parallel
composition—see [2, Problem 8]. (As was recently pointed out to us by Jos Baeten
and Rob van Glabbeek, it is certainly possible to obtain a finite axiomatization of
bisimulation equivalence by adding oneternaryoperator to the signature of CCS.)
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We conjecture that no such operator exists, and that the use oftwo auxiliary oper-
ators is therefore necessary to achieve a finite axiomatization of parallel composi-
tion in bisimulation semantics. This result would offer the definitive justification
we seek for the canonical standing of the operators proposed by Bergstra and Klop.
Work on the confirmation of this conjecture is under way, and we hope to report on
it elsewhere in the near future.
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