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Abstract

This paper confirms a conjecture of Bergstra and Klop’s from 1984 by
establishing that the process algebra obtained by adding an auxiliary opera-
tor proposed by Hennessy in 1981 to the recursion free fragment of Milner’s
Calculus of Communicationg Systems is not finitely based modulo bisimula-
tion equivalence. Thus Hennessy’s merge cannot replace the left merge and
communication merge operators proposed by Bergstra and Klop, at least if a
finite axiomatization of parallel composition is desired.
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1 Introduction

Process algebras are prototype description languages for reactive systems that arose
from the pioneering work of figures like Bergstra, Hoare, Klop and Milner. Well
known examples of such languages are ACP [7], CCS [26], CSP [23] and Meije [5].
These algebraic description languages for processes differ in the basic collection of
operators that they offer for building new process descriptions from existing ones.
However, since they are designed to allow for the description and analysis of sys-
tems of interacting processes, they all contain some form of parallel composition
(also known as merge) operator allowing one to put two process terms in parallel
with one another. These operators usually interleave the behaviours of their argu-
ments, and allow for some form of synchronization between them. For example,
Milner's CCS offers the binary operatdrwhose intended semantics is described
by the following classic rules in Plotkin-style [32]:

K / Hooy « / a oy
r—x y—y r—x,Yy—Y

(1)

x|y Hally aly |y x|y oo |y

(In the above rules, the symbelstands for an action that a process may perfarm,
anda are two observable actions that may synchronize,rasc symbol denoting
the result of their synchronization.)

Although the above rules describe the behaviour of the parallel composition
operator in very intuitive fashion, the equational characterization of this operator
is not straightforward. In their seminal paperl[22], Hennessy and Milner offered,
amongst a wealth of other classic results, a complete equational axiomatization of
bisimulation equivalence [31] over the recursion free fragment of CCS. The axiom-
atization proposed by Hennessy and Militgdemdealt with parallel composition
using the so-calleagxpansion law-a law that, intuitively, allows one to obtain
a term describing the initial transitions of the parallel composition of two terms
whose initial transitions are known. This law can be expressed as a conditional
equation thus

T =D ier Wiis Y = D ic 7 ViV
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(whereI andJ are two finite index sets, and the and~; are actions), and is
nothing but an equational formulation of the aforementioned rules describing the
operational semantics of parallel composition.

As already remarked, the expansion law, however, is a conditional equation,
which may alternatively be viewed as an equation schema with a countably infinite
number of instances. This raised the question of whether the parallel composition
operator could be axiomatized in bisimulation semantics by means of a finite col-
lection of equations. This question was answered positively by Bergstra and Klop,
who gave in|[8] a finite equational axiomatization of the merge operator in terms
of the auxiliary left merge and communication merge operators. Moller showed
in [29,[30] that strong bisimulation equivalence is not finitely based over CCS and
PA without the left merge operator. (The process algebra PA [8] contains a parallel
composition operator based on pure interleaving without communication—viz. an
operator described by the first two rules[ih (1)—and the left merge operator.) Thus
auxiliary operators are necessary to obtain a finite axiomatization of parallel com-
position.

In the arguably less well known papeér [21], Hennessy proposed an axiomatiza-
tion of observation congruende [22] (also known as rooted weak bisimulation) and
timed congruence (also known as split-2 congruence) over a CCS-like recursion
free process language. (It is worth noting that, although this paper was published
in 1988 by the SIAM Journal on Computing as [[21], the results repdtiiekm
were actually obtained in 1981-1982.) Those axiomatizations used an auxiliary
operator, denotel by Hennessy, that is essentially a combination of the left and
communication merge operators as its behaviour is described by the first and the
last rule in[[1). Apart from having soundness problems (see the refefénce [1] for a
general discussion of this problem, and corrected proofs of Hennessy’s results), the
proposed axiomatization of observation congruence offereg.iwit is infinite, as
it used a variant of the expansion theorem from [22]. This led Bergstra and Klop
to write in [8, page 118] that:

“It seems thaty does not have a finite equational axiomatization.”

(In op. cit Bergstra and Klop usedl to denote Hennessy’s merge.) To the best
of our knowledge, the non-finite axiomatizability of Hennessy’s merge has, how-
ever, never been proven. The main result in this paper confirms this conjecture of
Bergstra and Klop’s by showing that, in the presence of two distinct complementary
actions, it is impossible to provide a finite axiomatization of the recursion free frag-
ment of CCS modulo bisimulation using Hennessy’s merge opeffattfe believe

that this result further reinforces the status of the left merge and the communication
merge operators as auxiliary operators in the finite equational characterization of
parallel composition in bisimulation semantics.
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The aforementioned negative result holds in a very strong form. Indeed, we
prove that no finite collection of equations over the language we study that are
sound with respect to bisimulation equivalence can prove all of the sound closed
equalities of the form

en : aO}/pn ~ apn—i-ZTa (n>0)

where the termg,, are defined thus:

Zaa (n>0)

The proof of our main result is given along proof theoretic lines that have their
roots in those for the aforementioned results of Moller’s to the effect that bisim-
ulation equivalence is not finitely based over the recursion free fragment of CCS.
However, the presence of possible synchronizations in the terms used in the fam-
ily of equationse,, is necessary for our result, and requires careful attention in the
proofs. (Indeed, in the absence of synchronization, Hennessy’s merge reduces to
Bergstra and Klop’s left merge operator, and thus affords a finite equational ax-
iomatization.) In particular, the infinite family of equatioas and our arguments
based upon it exploit the inability of any finite axiom systéirthat is sound with
respect to bisimulation equivalence to “expand” the synchronization behaviour of
terms of the formp | ¢, for termsq that, like the termg,, above eventually do,
have a number of inequivalent “summands” that is larger than the maximum size
of the terms mentioned in equationsfih As in the original arguments of Moller’s,

the root of this problem can be traced back to the fact that the choice operator
distributes with respect tb in the first argument, butotin the second.

Related Work The equational characterization of different versions of the par-
allel composition operator is a classic topic in the theory of computation, and this
paper joins the aforementioned seminal references in contributing to this line of re-
search. In particular, the process algebraic literature abounds with results on equa-
tional axiomatizations of various notions of behavioural equivalences or preorders
over languages incorporating some notion of parallel composition—see, e.g., the
textbooks|[7] 20, 26] and the classic papérs [8] 22, 25] for general references. Early
w-complete axiomatizations are offered Iin[19] 28]. More recently, Fokkink and
Luttik have shown in[[1]7] that the process algebra PA [8] affordsvazomplete
axiomatization that is finite if so is the underlying set of actions.



An analysis of the reasons why operators like the left merge and the commu-
nication merge are equationally well behaved in bisimulation semantics has led to
general algorithms for the generation of (finite) equational axiomatizations for be-
havioural equivalences from their operational semantics—see,[€.d., [3, 6] and the
references in [4] for further details.

Parallel composition appears as the shuffle operator in the time-honoured the-
ory of formal languages. Not surprisingly, the equational theory of shuffle has
received considerable attention in the literature. Here we limit ourselves to men-
tioning some results that have a special relationship with process theory.

In [85], Tschantz offered a finite equational axiomatization of the theory of lan-
guages over concatenation and shuffle, solving an open problem raised by Pratt. In
proving this result he essentially rediscovered the concept of pomset [33]—a model
of concurrency based on partial orders whose algebraic aspects have been investi-
gated by Gischer in [18]—, and proved that the equational theory of series-parallel
pomsets coincides with that of languages over concatenation and shuffle. The argu-
ment adopted by Tschantz was based on the observation that series-parallel pom-
sets may be coded by a suitable homomorphism into languages, where the series
and parallel composition operators on pomsets are modelled by the concatenation
and shuffle operators on languages. Tschantz's technique of coding pomsets with
languages homomorphically was further extended in the papeis [10,/12, 13] to deal
with several other operators, infinite pomsets and infinitary languages, and sets of
pomsets. The axiomatizations by Gischer and Tschantz have later been extended
in [13,/1€] to a two-sorted language withpowers of the concatenation and paral-
lel composition operators. The axiomatization of the algebra of pomsets resulting
from the addition of these iteration operators is, however, necessarily infinite be-
cause, as shown wp. cit no finite collection of equations can capture all the sound
equalities involving them. (Seg[14] for closely related developments.)

The results of Moller’s on the non-finite axiomatizability of bisimulation equiv-
alence over the recursion free fragment of CCS and PA without the left merge
operator given in[[29, 30] are paralleled in the world of formal language theory
by those offered in[]9;, 11, 15]. In the first of those references, BloomEzsiki
proved that the valid inequations in the algebra of languages equipped with con-
catenation and shuffle have no finite basizsik and Bertol showed i [15] that
the equational theory of union, concatenation and shuffle over languages has no fi-
nite first-order axiomatization relative to the collection of all valid inequations that
hold for concatenation and shuffle. Hence the combination of some form of paral-
lel composition, sequencing and choice is hard to characterize equationally both in
the theory of languages and in that of processes. Moreover, Bloor&sikdhave
shown in[[11] that the variety of all languages over a finite alphabet ordered by in-
clusion with the operators of concatenation and shuffle, and a constant denoting the
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singleton language containing only the empty word is not finitely axiomatizable by
first-order sentences that are valid in the the equational theory of languages over
concatenation, union and shuffle.

Roadmap of the Paper We begin by presenting preliminaries on the language
CCSy—the extension of CCS with Hennessy’s merge operator—and equational
logic (Sectl2). In particular, Se€t. 2.2 offers a detailed discussion of the simplifying
assumptions we shall make, without loss of generality, on the equational axiom
systems that we shall consider in the rest of the paper. Our main result on the non-
existence of a finite equational axiomatization for bisimulation equivalence over
the language CG% (Theorem 3.1) is stated in Seft. 3. There we show how to
reduce the proof of Theorem 8.1 to that of a proposition (Proposifidn 3.2) to the
effect that no finite axiom system over the fragment of the languageyQO&

does not use the parallel composition operator can prove all of the aforementioned
equations:,,. The following two technical sections of the paper, viz. Sédts. 4and 5,
are entirely devoted to a detailed proof of Proposifiod 3.2. The paper ends with
some concluding remarks (Sddt. 6).

2 Preliminaries

We begin by introducing the basic definitions and results on which the technical
developments to follow are based.

2.1 Thelanguage CCg

The language for processes we shall consider in this paper, henceforth referred to
as CCgy, is obtained by adding Hennessy’s merge operator frorn [21] to the recur-
sion, restriction and relabelling free subset of Milner's CCS [26]. This language is
given by the following grammar:

tu=x|0|at|at|rt|t+t|t|t]|t]t,

wherex is a variable drawn from a countably infinite dét « is an action, and

a is its complement. We assume that the actioreda are distinct. Following
Milner [26], the action symbot will result from the synchronized occurrence of
the complementary actiomsanda. We letu € {a,a, 7} anda € {a,a}. As usual,

we postulate that = a. We shall use the meta-variables., v, w to range over
process terms, and writeir(t) for the collection of variables occurring in the term
t. Thesizeof a term is the number of operator symbols in it. A process term is



Table 1: SOS Rules for the CCS Operatqrs({a, a, 7} anda € {a,a})

AW Koy
T Yy
I

Ur — T ac—l—yﬁmc’ x+yﬁ>y’
© Vi 12 / (&3 / o /
r—x Yy —y x—x,y—uy
Koo H / T o /
r|ly—=aly r|ly—>wly |y —aly

closedif it does not contain any variables. Closed terms will be typically denoted
by p,q,r.

In order to obtain the negative results offered in this paper, it will be sufficient
to consider the above language. The results we shall present in what follows carry
over unchanged to a setting with an arbitrary number of actions, and corresponding
unary prefixing operators.

A (closed) substitution is a mapping from process variables to (closed);CCS
terms. For every termand (closed) substitution, the (closed) term obtained by
replacing every occurrence of a variabién ¢ with the (closed) terna () will be
written o ().

In the remainder of this paper, we I€t denote0, anda™*! denotea(a™).

The SOS rules for all of the classic CCS operators are standard, and may be
found in Tablél. Those for Hennessy'$ormalize the intuition that this operator

is indeed a combination of the left and communication merge operators, and are:
Ko a g a
r—x rT—2,y—y

afybaly afySa |y

These transition rules give rise to transitions between g£@8ns. The operational
semantics for CCg is thus given by the labelled transition systeml[24] whose
states are CGterms, and whose labelled transitions are those that are provable
using the rules. As usual, for each tetmand actionu, we writet = if ¢ 5 ¢/
holds for some terny.

The transition relations® naturally compose to determine the possible effects
that performing a sequence of actions may have on agCesn.

Definition 2.1 For a sequence of actiors= - - - ur (k > 0), and CCSG; terms
t,t', we writet > t' iff there exists a sequence of transitions

t=to B 8. By =4 .

If + = ¢’ holds for some CC term¢’, thens is atraceof t.



The depthof a termt, written depth(t), is the length of the longest trace it
affords.

The depth of closed terms can also be characterized inductively thus:

depth(0) = 0
depth(up) = 1+ depth(p)
depth(p +q) = max{depth(p), depth(q)}
depth(p|q) = depth(p) + depth(q)
)

depth(p | 0 if depth(p) =0 ,
PR depth(p) + depth(q) otherwise.

In what follows, we shall sometimes need to consider the possible origins of a
transition of the formv () % p, for some actionx € {a,a}, closed substitution,
CCSy termt and closed term. Naturally enough, we expect thatt) affords that
transition ift % ¢/, for somet’ such thap = o(t'). However, the above transition
may also derive from the initial behaviour of some closed tefm), provided that
the collection of initial moves of(¢) depends, in some formal sense, on that of
the closed term substituted for the variableTo fully describe this situation, we
introduce the auxiliary notion of configuration of a Cg$rm. To this end, we
assume a set of symbols

Vi= {.%'d ‘ T € V}

disjoint from V. Intuitively, the symbolz, (read “duringz”) will be used to denote
that the closed term substituted for variablbas begun executing.

Definition 2.2 The collection of CCS; configurationss given by the following
grammar:
cu=tlzgle|t|t]c,

wheret is a CCS; term, andr, € V.

For example, the configuratiany, | (a0 | ) is meant to describe a state of the
computation of some term in which the (closed term substituted for the) occurrence
of variablez on the left-hand side of theoperator has begun its execution, but the
one on the right-hand side has not. We shall consider the sympals variables,

and use the notatiom[x,; — p|, whereo is a closed substitution andis a closed
CCSy term, to stand for the substitution mappingto p, and acting likes on all

of the variables irl/.

The way in which the initial behaviour of a term may depend on that of the
variables that occur in it is formally described by an auxiliary transition relation
whose elements have the form® ¢, wheret is a term,z is a variable, and is a
configuration. The SOS rules defining these transitions are given in[Table 2.
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Table 2: SOS Rules for the Auxiliary Transitiods (z € V)

t c U —C
ngd t+u->c t+u->c
t S U t 5
tlu>clu tluSt|ec tfudeclu

Lemma 2.1 Assume that is a CCS; term, o is a closed substitution and ¢
{a,a}. Then the following statements hold:

1. Ift 5 ¢, theno(t) S o(t).

2. Assume that % c ando(z) = p, for some closed term. Theno(t) &
olzg — pl(c).

3. Assume thatr(t) = p, for some closed term. Then

e eithert % ¢’ for somet’ such thap = o (t')

e ort % cando(x) % ¢, for some variable, configuratior: and closed
termgq such that[z; — q](c) = p.

In this paper, we shall consider the language @CG&odulo bisimulation equiva-
lence [26] 31].

Definition 2.3 Bisimulation equivalencéalso sometimes referred to A&similar-
ity), denoted by, is the largest symmetric relation over closed GQ8rms such
that whenevep — ¢ andp -5 p/, then there is a transition -2 ¢’ with p’ < ¢'.

If p < ¢, then we say that andq arebisimilar.

It is well-known that, as the name suggests, bisimulation equivalence is indeed an

equivalence relation (see, e.g., the references [26, 31]). Moreover, two bisimulation

equivalent terms over the language GCS8fford the same finite non-empty set

of traces, and have therefore the same depth. Since the SOS rules defining the
operational semantics of the language GC&e in de Simone’s format [34], we

have that:

Fact 2.1 Bisimulation equivalence is a congruence over the languageyCCS

Bisimulation equivalence is extended to arbitrary GQsrms thus:



Definition 2.4 Let ¢t,u be CCS; terms. Thent < wu iff o(t) < o(u) for every
closed substitutiown.

For instance, we have that
0fz<0

becaus® V p affords no transition, for each closed tepm

Definition 2.5 We say that a term has a0 factorif it contains a subterm of the
form¢' |t ort’ | ", where eithet’ or " is bisimilar to0.

For example, the termg0 | ) and(0 | z) | y have a0 factor.

2.2 Equational Logic

An axiom systems a collection of equations~ u over the language CGS An
equationp ~ ¢ is derivable from an axiom systef), notationE + p = ¢, if it can
be proven from the axioms iff using the rules of equational logic (viz. reflexivity,
symmetry, transitivity, substitution and closure under GQ®ntexts):

¢t t~u t~u u~v t~u ~u

urt t~wv o(t) =o(u) pt=pu
trut ~u trut'~u trut =ud
t+t mu+u tft¥=ulfu | ~uld

Without loss of generality one may assume that substitutions happen first in equa-
tional proofs, i.e., that the rule

t~u
o(t) ~ o(u)

may only be used whe(¥ ~ u) € E. In this cases(t) ~ o(u) is called a
substitution instancef an axiom inE.

Definition 2.6 We call a closed substitutiom substantiaif depth(o(x)) > 0 for
each variabler.

For reasons of technical convenience, in the proofs of our non-finite axiomatizabil-
ity results presented in this paper we shall only allow for the use of closed sub-
stantial substitutions in the rule of substitution. This does not limit the generality
of those results because every finite equational axiomatizatioan be converted

into a finite equational axiomatizatidi such that the closed substitution instances

of the axioms ofF’ are the same as the closed substantial substitution instances of
the axioms ofE’ (when equating any closed subterm of depth 0 \ith This is
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done by including inE’ any equation that can be obtained from an equatioB in
by replacing all occurrences of any number of variable®byThe identification
of each CCg term that is bisimilar ta@ with 0 can be done equationally using
three equations. See Fact]|2.2 to follow.)

Definition 2.7 We say that a substitutionis a0-substitutioriff o(x) # = implies
thato(z) = 0, for each variable.

An axiom systen¥ is closed with respect -substitutionsff o(t) =~ o(u) is
contained inZ, for each0-substitutiono, if so ist ~ u.

Simplifying Assumption 1 In the remainder of this paper, we shall always tacitly
assume that equational axiom systems are closed with resp@stutastitutions.

Note that if £ is a finite axiom system, then so is its closure with resped-to
substitutions. In fact, for each terinthe collection of terms

{o(t) | o a0-substitutior}

is finite.

Moreover, by postulating that for each axiomAhalso its symmetric counter-
part is present i/, one may assume that applications of symmetry happen firstin
equational proofs.

Simplifying Assumption 2 In the remainder of this paper, we shall also tacitly
assume that our equational axiom systems are closed with respect to symmetry.

Definition 2.8 An equationt ~ u over the language CG§Sis soundwith respect
to « iff t — u. An axiom system is sound with respect e iff so is each of its
equations.

An example of a collection of equations over the language £@ft are sound

with respect to— is given in TabldB. In addition, the following law, which ex-
presses the parallel composition operator in terms of Hennessy’s merge, is easily
seen to be sound with respectta

zly~@ly -+l . )

The axioms A4, HM1 and M1 in Tablg 3 (used from left to right) are enough to
establish that each CGSterm that is bisimilar ta is also provably equal to.
Since we feel that the proof of this little result is instructive, we now proceed to
present its sketch.

11



Table 3: Some Axioms for CGH

Al r4+y = y+zx

A2 (z+4y)+z = 2+ (y+2)
A3 O+zr =~ =z

A4 r+0 =~ =z

HM1 0fz ~ 0

HM?2 w}/O S

M1 |0 ~ =z

M2 Olz ~ x

Fact 2.2 Lett be a CC% term. Thent « 0 if, and only if, the equation ~ 0 is
provable using axioms A4, HM1 and M1 in Talble 3 from left to right.

Proof: The “if” implication is an immediate consequence of the soundness of the
equations A4, HM1 and M1 with respect to . To prove the “only if” implication,
define, first of all, the collection NIL of CGgterms as the set of terms generated
by the following grammar:

to=0t+t|t|t]|t]u,
whereuw is an arbitrary CCg term. We claim that:
Claim 1 Each CC$% termt is bisimilar to0 if, and only if, ¢ € NIL.

Using this claim and structural induction ore NIL, it is a simple matter to show
that if t < 0, thent = 0 is provable using axioms A4, HM1 and M1 from left to
right, which was to be shown.

To complete the proof, it therefore suffices to show the above claim. To es-
tablish the “if” implication in the statement of the claim, one proves, using struc-
tural induction ont and the congruence properties of bisimilarity (Hact 2.1), that
if £ € NIL, theno(t) < 0 for every closed substitution. To show the “only if”
implication, we establish the contrapositive statement, viz. thatdfNIL, then
o(t) <& 0 for some closed substitutiom. To this end, it suffices only to show,
using structural induction on, that if ¢ ¢ NIL, then o,(¢) 2 for some action
w € {a,a, 7}, whereo, is the closed substitution mapping each variable to the
closed termz0. The details of this argument are not hard, and are therefore left to
the reader. O

In light of the above result, we find it convenient to make the following:

12



Simplifying Assumption 3 In the technical developments to follow, we shall as-
sume, without loss of generality, that each axiom system we consider includes the
equations in Tablel3.

This assumption means, in particular, that our axiom systems will allow us to iden-
tify each term that is bisimilar t@ with 0.

In the remainder of this paper, process terms are considered modulo associa-
tivity and commutativity of +. In other words, we do not distinguish- « and
u+t, nor(t+u) + vandt + (u+ v). This is justified because, as previously
observed, bisimulation equivalence satisfies axioms Al, A2 in Table 3. In what
follows, the symbolk= will denote equality modulo axioms Al, A2. We use@n-
mationy_;cq; ryti to denotet; + --- + ¢, where the empty sum represefts
It is easy to see that, modulo the equations in Table 3, every/Q€®nt has the
form )", ; t;, for some finite index sef, and termg; (i € I) that are noD and do
not have themselves the forth+ ", for some termg¢’ andt”. The termg; (z € I)
will be referred to as theummand®f t. Moreover, again modulo the equations
in Table[3, each of the; can be assumed to have Adactors. (Recall that this
means that, whenever a term of the fottrf ¢” or¢’ | ¢’ is a subterm of;, then
t' <4 0 andt” <4 0.) For example, a term of the forfa0 + a0) | 0 will notbe
considered a summand in what follows because, using equation M1 inTable 3, that
term can be proven equal t® + a0. The collection of summands of a tetncan
be inductively characterized thus:

e 0 has no summands;
e 1 andut are their only summands;

u is a summand of; + ¢4 if it is either a summand af; or a summand aofy;

e the summands df | 2 are

— those oft,, if t1 < 0,
— those ofty, if t « 0, and
— onlyt; | to, otherwise;

the summands df, | ¢, are

— none, ift; < 0,
— those ofty, if t5 « 0, and
— onlyt; | t., otherwise.
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It is well-known (cf., e.g., Sect. 2 in_[19]) that if an equation relating two closed
terms can be proven from an axiom systéim then there is a closed proof for

it. We shall now argue that iFF satisfies a further closure property in addition

to those mentioned earlier, and that closed equation relates two terms containing
no occurrences d as a summand or factor, then there is a closed proof for it in
which all of the terms have no occurrencedadds a summand or factor—see [28,

Proposition 5.1.5].

Definition 2.9

1. For CCS; termst andt’, we writet ~ ' if ¢ can be obtained from by
applying one of the equations A3, A4, HM1, HM2, M1 and M2 from left
to right. As usual, we writew* for the reflexive, transitive closure of the

relation~-.
2. LetE be an axiom system. We define the axiom syst§(®) thus:

A(BE)={t'~u | (t=u) € E, t~*t andu~*u'} .

3. An axiom systenk is saturatedf £ = cl(E).

Intuitively, one application of the rewrite relatien eliminates one occurrence of
0 as a summand or a factor in terms. Note that ¢’ holds whenevet ~ t'.

The following lemma collects some basic sanity properties of the closure op-
eratorcl(-). (Note, in particular, that the application dff(-) to an axiom system
satisfying our simplifying assumptions is guaranteed to produce a saturated axiom
system that also affords them.)

Lemma 2.2 Let F be an axiom system. Then the following statements hold.
1. ECcl(E) =cl(c(E)).
1(E) is finite, if SO iSE.

2. cl(F)
3. cl(FE) is sound, if so igv.

4. cl(F) is closed with respect t0 substitutions and symmetry, if so Is.

5. cl(E) andE prove the same equations Afcontains the equations in Table 3.
Proof: We limit ourselves to sketching a proof of the second statement in the
lemma. To prove this claim, we begin by noting that the size of the t#ri®
smaller than that of whenever ~» t’. Using this observation, it is not hard to see
that, for each term, the set

{t'[t~" 1}

14



is finite. In fact, the rooted tree with roetresulting from the unfolding of the
directed acyclic graph whose nodes are the terms reachablet fugar*, and
whose edges are given by the relation is finitely branching, and all of its paths
are finite because the- relation decreases the size of terms. Thus this tree must
be finite, or else it would have an infinite path byp#ig’'s lemma. It follows that,

for each equation ~ « in E, the setcl(E) containsnm equations, where and

m are the cardinalities of the sef§ | t ~* t'} and{v’ | u ~* u'}, respectively.

We may therefore conclude thd{ F) is finite, if so iSE. O

We now proceed to characterize syntactically the normal forms of the rewriting
relation~». The syntactic characterization of the normal forms given below will be
useful in obtaining the promised result to the effect that if a saturated axiom system
E proves a closed equation relating two terms containing no occurren@essod
summand or factor, then there is a closed proof for it in which all of the terms have
no occurrences d as a summand or factor.

Definition 2.10 For each CCg termt¢, we define /0 thus:

u/0 ift—0
0/0 = 0 t+u)/0 = {t/o if 4 0
(t/0) + (u/0) otherwise
0 ift<0
/0 = «x tfuw/0o = {t/0 ifue=0
(t/0) | (u/0) otherwise
(u/O ift <0
ut/0 = pu(t/0) (tlu)/O0 = 4t/0 if ue=0
(t/0) | (u/0) otherwise.

Intuitively, ¢/0 is the term that results by removir occurrences ob as a sum-
mand or factor front.

The following lemma, whose simple proof by structural induction on terms is
omitted, collects the basic properties of the above construction. In particular, note
that, as expected, the ter0 is the normal form for with respect to the rewrite
relation~.

Lemma 2.3 For each CCg termt, the following statements hold:
1. t ~* t/0 and thereforeé < t/0;

2. t/0 ~» u for no termuy;
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3. the termt/0 has no occurrence & as a summand or factor;
4. t/0 = t, if t has no occurrence &as a summand or factor.
We are now ready to state our counterpari of [28, Proposition 5.1.5].

Proposition 2.1 Assume tha¥ is a saturated axiom system. Suppose furthermore
that we have a closed proof frof of the closed equatiop ~ ¢. Then replacing
each termr in that proof withr /0 yields a closed proof of the equatipyi0 ~ ¢/O0.

In particular, the proof fron¥ of an equatiorp ~ ¢, wherep andq are terms not
containing occurrences @6fas a summand or factor, need not use terms containing
occurrences o as a summand or factor.

Proof. The proof follows the lines of that of [28, Proposition 5.1.5], and is there-
fore omitted. O

In light of this result, since the saturation of a finite axiom system that includes
the equations in Tablel 3 results in an equivalent, finite collection of equations
(Lemmd_ 2.8(R) and {5)), we put forth our last:

Simplifying Assumption 4 Henceforth, we shall limit ourselves to considering
saturated axiom systems.

The use of saturated axiom systems will play an important role in the proof of our
main technical results.

3 Hennessy’s Merge is not Finitely Based

Our order of business in the remainder of this paper will be to show the following
result to the effect that bisimulation equivalence doetadmit a finite equational
axiomatization over the language CgSand that thus Bergstra and Klop were
indeed right in writing in[[8, page 118] that:

“It seems thaty does not have a finite equational axiomatization.”

(In op. cit Bergstra and Klop usegto denote Hennessy’s merge.)

Theorem 3.1 Bisimulation equivalence admits no finite equational axiomatization
over the language CGS$S In fact, the collection otlosedequations over that lan-
guage that hold with respect to bisimulation equivalence has no finite equational
axiomatization.
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As a first stepping stone towards the proof of this result, we now proceed to argue
that it is sufficient to show that bisimulation equivalence admits no finite equa-
tional axiomatization over the language CESonsisting of the CCS terms that

do not contain occurrences of the parallel composition operator. Even though this
observation is not unexpected—as equation (2) essentially states that parallel com-
position is a derived operator in the algebra of GCt®rms modulo bisimulation
equivalence—, we now argue for it in some detail for the sake of completeness.

Definition 3.1 For each CC$ termt, we definef thus:

~ —

0 = 0 t+u = t+4
T = x tl/u = f|/ﬂ .
pt = pt tu (1 a)+ (aft)

If £ is an axiom system over the language GG 8en

~

E={t~a|(t~u) € E} .

Note that, for each CGStermt, the termi is in the language CGS Moreover,

if ¢ contains no occurrences of the parallel composition operatorithen Since
equation[(®) is sound with respect to bisimulation equivalence, and bisimilarity is
a congruence (Fact2.1), it is not hard to show that:

Fact 3.1 Each terny in the language CG$is bisimilar tot. Therefore ifE is an
axiom system over the language G at is sound with respect to bisimilarity,
thenE is an axiom system over the language GQBat is sound with respect to
bisimilarity.

The following result states the promised reduction of the non-finite axiomatizabil-
ity of bisimilarity over the language CGgto that of bisimilarity over the language

CCs;.
Proposition 3.1 Let E be an axiom system over the language GCShen the
following statements hold.

1. If E proves the equatioh~ u, thenE proves the equatioh~ .

2. If E gives a complete axiomatization of bisimulation equivalence over the
language CCJg, then £ completely axiomatizes bisimulation equivalence
over the language CGS

3. If bisimulation equivalence admits no finite equational axiomatization over
the language CCg$, then it has no finite equational axiomatization over the
language CC§ either.
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Proof: We prove the three statements separately.

e PROOF OFSTATEMENT [I. Assume that + ¢ ~ u. We shall argue thab
proves the equatioh ~ 4 by induction on the depth of the proof of~ «
from E. We proceed by a case analysis on the last rule used in the proof.
Below we only consider the two most interesting cases in this analysis.

— CASEE F t = u, BECAUSE (') = ¢t AND o(u') = u FOR SOME
EQUATION (' zAu’)Ae E. Note, firstgf all, that, by the definition of
E, the equationt’ ~ v’ is contained in&. Observe now that

whereg is the substitution mapping each variabl¢o the terma/(\)

It follows that the equation ~ 4 can be proven from the axiom system
E by instantiating the equatiah ~ «’ with the substitutiors, and we
are done.

— CASEE F t =~ u, BECAUSEt = 11 | 2 AND u = wuy | ug FOR
SOME t;,u; (i = 1,2) SUCH THAT E + t; ~ u; (1 = 1,2). Using
the inductive hypothesis twice, we have that- 7, ~ (7 =1,2).
Therefore, using substitutivity?: proves that

~

52(13)/5) t2)/t1 ul)/@)—i-(@)/fﬁ):uv
which was to be shown.
The remaining cases are simpler, and we leave the details to the reader.

e PROOF OFSTATEMENT [2. Assume that andw are two bisimilar terms in
the language CGs We shall argue thak proves the equatioh ~ u. To
this end, we begin by noting that the equation « also holds in the algebra
of CCSy terms modulo bisimulation. In fact, for each tetrin the language
CCSy and closed substitutiotn mapping variables to CGgterms, we have
that

o(v) =6(v) ,

where the substitutios is defined as above.

SinceFE is complete for bisimilarity over CG$ by our assumptions, it fol-
lows that E/ proves the equation =~ u. Therefore, by statemeht 1 of the

proposition, we have thak proves the equatioh ~ . The claim now
follows becausé = t and = w.
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e PROOF OFSTATEMENT [3. This is an immediate consequence of statefdent 2
becauser has the same cardinality &f, and is therefore finite, if so iE'.

O

In light of this result, henceforth we shall focus on proving that bisimulation equiv-
alence affords no finite equational axiomatization over the language,CT8e
following infinite family of closed CC$ terms will play a key role in the technical
developments to follow:

n
en a0|/pn R apn—l—ZTai (n>0), 33)
=0

where the termg,, are defined thus:

n
Pn = aa® (n>0) .
i=0

It is not hard to see that all of the equatiafns(n > 0) are sound modulo bisimu-
lation. In the remainder of this paper, we shall prove the following result, of which
Theoren 3.1l is an immediate consequence, to the effect that no finite collection
of equations over the language CL#hat are sound with respect to bisimulation
equivalence can prove all of the equatiens(n > 0).

Theorem 3.2 Let £/ be a finite axiom system over the language GQSat is
sound with respect to bisimulation equivalence. hdte larger than the size of
each term in the equations . ThenE does not prove the sound equatien

from (3).

The remainder of this paper will be devoted to a proof of the above result, which
will be given along proof theoretic lines that have their roots in Moller’s arguments
to the effect that bisimulation equivalence is not finitely based over the language
CCS—see the references|[28] 29, 30]. More precisely, to establish THeatem 3.2, we
shall show that there is a property of terms associated with each finite axiom system
E over the language CGgsthat is sound with respect to bisimulation equivalence,
such that whenever the equatipm= ¢ can be derived fronk, for some “suitably

large” closed terms without summands and factors, then either bptindg enjoy

the property, or none of them does. The aforementioned property must be chosen
so that, for suitably large values of the right-hand side of equality,, viz. the
terma0 | p,, affords it, whilst the left-hand side, viz. the teap,, + >, 7a’,

does not.
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Remark 3.1 In the absence of synchronization, Hennessy’s merge reduces to the
left merge operator of Bergstra and Klop's. It follows that the collection of closed
equations that hold module over the sub-language of Cg®btained by consid-
ering those terms that do not contain occurrences of; fefixing operator has a
finite equational axiomatization. Therefore the use of synchronization is necessary
in the proof of Theorern 3]1.

The following proposition states the property mentioned in the proof strategy out-
lined above.

Proposition 3.2 Let £ be a finite axiom system over the language GQBat is
sound with respect to bisimulation equivalence. hdte larger than the size of
each term in the equations . Assume thap andg are closed terms that are
bisimilar toa0 | p,,, and contain no occurrences@s a summand or a factor. If
E + p ~ g andp has a summand bisimilar t® | p,, then so does.

Using the above proposition, it is a simple matter to prove Thebrem 3.2. In fact,
since none of the summands of the term

n
apy, + Z Ta'
i=0

viz. ap, andra’ (i € {0,...,n}), is bisimilar toa0 | p,, if n > 1, Propositiod 312
yields that the sound equality;, cannot be proven front/, and thus thatt is
incomplete.

We shall now begin to develop the technical machinery that will be brought to
bear in the proof of Propositidn_3.2. This proof will occupy the remainder of this
study.

4 Preparatory Results and Observations

Note that terms in the language C&ay contain some occurrences of variables
that can never contribute to the behaviour of their closed instantiations. A typi-
cal example of this situation occurs in the tem/ =, which is bisimilar to0.
However, terms that have rfactors contain no such redundant occurrences of
variables. Moareover, each variable occurring in such terms contributes to the be-
haviour of its closed substantial instantiations. The following basic result, that will
be used repeatedly in the technical developments to follow, formalizes this intu-
ition.

Lemma 4.1 Lett be a CCS, term, and letr be a closed substitution.
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1. Assume that is not bisimilar to0, ando is substantial. Thedepth(o(t))
is positive, and thus (¢) <4 0.

2. If t has noD factors andr € var(t), thendepth(o(t)) > depth(o(x)).

Remark 4.1 The requirement that be substantial is necessary in stateniént 1 of
the above lemma. For examples£ 0, buto(z) < 0 if depth(o(x)) = 0.

Similarly, the proviso that has na0 factors cannot be omitted in statemiht 2.
For instance, it = 0 | 2 ando(z) = a0, thendepth (o (t)) < depth(o(x)).

In the proof of our main result, we shall make use of some notions froh [27, 28].
These we now proceed to introduce for the sake of completeness and readability.

Definition 4.1 A closed terny is irreducibleif p < ¢ | r impliesq < 0 orr < 0,
for all closed termg, r.
We say thap is primeif it is irreducible and is not bisimilar t@.

For example, each termof depth1 is prime because every term of the fognr
that does not involv® factors has depth at leagtand thus cannot be bisimilar to
p. The following proposition states the primality of two families of closed terms
that will play a key role in the proof of our main result.

Proposition 4.1

1. Letm > 1and0 < iy < ... < i,,. Then the termi.a® + --- + a.a’ is
prime. In particularp,, is prime, for eachn > 1.

2. The termz0 |/pn is prime, for eactm > 0.

Proof: We prove the two claims separately. In each case, sinée+ - - - +a.a’
anda0 | p, are not bisimilar t, it suffices only to show that the relevant term is
irreducible.

e PrROOF OF cLAIM[I. Suppose, towards a contradiction, that there exist
closed termg, r that are not bisimila® such that

a.a' + - +a.am oql|r .
Then, sincey, r <4 0, in light of the above equivalence we have tl;\a% q
andr = 1/, for someg/, 7. But then it follows that
qlr g |rSq |,

whereas the term.a’* + --- + a.a’™ cannot perform two subsequemt
transitions. It follows that sucthpandr cannot exist, and hence that the term
a.a™ + --- + a.a’ is irreducible, which was to be shown.
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e PROOF OF CLAIM[Z. We now proceed to prove tha® | p, is irreducible
forn > 0.
If n = 0thena0 | po = a0 | 0 is a term of depthl, and is therefore
irreducible as claimed.
Letn > 1. Assume, towards a contradiction, thad V pn < p | g for

two closed termg andq with p <4 0 andq <4 0—that is,a0 | p, is not
irreducible. Since:r > 1, we have that

a0l p,50/0=0 .

Asa0 | p, < p| ¢, there is a transitiop | ¢ = p' | ¢/, for someyp’, ¢’ with
?' | ¢ < 0. In light of our assumption that <4 0 andq <4 0, the transition
p|q = p | ¢ mustbe derived from the synchronization of two transitions

p = p andg % ¢’ with a € {a,a}. This means that | ¢ %, contradicting
the assumption that0 | p, < p | ¢. Thusa0 | p, is irreducible, which
was to be shown.

d

Lemma 4.2 Lett be a term in the language CESvith neither0 summands nor
factors that does not haveas head operator. Assume thais a closed substantial

substitution, and that A A
o(t) = a.at +---+a.a™

forsomem > 1and0 < ¢ < ... < i,,. Thent = z, for some variable:.

Proof: Assume, towards a contradiction, thias not a variable. We proceed by a
case analysis on the possible form this term may have.

1. CASEt = ut' FOR SOME TERMt'. Theny = @ anda™ < o(t') < a'm.
However, this is a contradiction because, sincet i,,, the termsa’t and
a'™ are not bisimilar.

2. Caset =t V t” FOR SOME TERMS, t”. Sincet has no0 factors, we have
that neithert’ nor ¢" is bisimilar to0. As o is a substantial substitution, it

follows thato(t') <4 0 ando (t”) <4 0.

Observe now that.a®! + - - - + a.a’™ % a’m. Thus, as
o) =o) | o(t") = a.a™ +---+a.a" |
there is a ternp such that

o(t') % pandp | o(t") < a'm .
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As o(t") < 0, this implies thatr(t”) % ¢, for someq. This leads to a
contradiction, because the temt) = o(t') | o(¢") affords an initialr-
transition, viz.

o(t)=o(t) | o) S pla

whereasi.a’ + - - - + a.a’™ does not.

We may therefore conclude thamust be a variable, which was to be shown

The following decomposition property will find application in the proof of our
main technical result, viz. Proposition 5.1 to follow.

Lemma 4.3 Letn > 1. Assume thap V q < a0 | p,, wheregq is a closed term
that is not bisimilar td. Thenp < a0 andq < p,,.

Proof: Sincep | ¢ < a0 | p, anda0 | p, > 0| p, < p,, there is g’ such that

p % p'andp’ | ¢ < py. It follows thatg < p, andp’ < 0, because,, is prime
(Propositio 4.1) and <4 0. We are therefore left to prove thatis bisimilar to
a0. To this end, note, first of all, that, as> is a congruence over the language
CCSy, we have that

pl pn=a0f p, .

Assume now thap - p” for some actiornu and closed termp”. In light of the
above equivalence, one of the following two cases may arise:

1. p=aandp” | p, = p, Or
2. p=T7andp” | p, « a¢, forsomei € {0,...,n}.

In the former casey” must have depth and is thus bisimilar t@®. The latter case
is impossible, because the depthpdf] p,, is at least, + 1.

We may therefore conclude that every transitiop &f of the formp = p”, for
somep” < 0. Since we have already seen thaffords ana-labelled transition
leading to0, modulo bisimulation equivalence, it follows that- a0, which was
to be shown. 0

Lemma 4.4 Lett ~ u be an equation over the language GLBat is sound with
respect to bisimulation equivalence, wheérandu are terms that have neither
summands nor factors. Assume that some variabdecurs as a summand in
Thenzx also occurs as a summanduin
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Proof: Recall that, for some finite index sets.J, we can write

t = Zti and 4
icl

u = Zuj, (5)
jed

where none of the; (i € I) andu; (j € J) is 0 or a sum. Assume that variabte
occurs as a summand ta-i.e., that there is an € I with t; = . We shall argue
thatz also occurs as a summanchin-i.e., that there is g € J with u; = x.
Consider the substitutiofg mapping each variable . Pick an integern
larger than the depth ofy(¢) and ofog(u). Leto be the substitution mappingto
the terma™*! and agreeing witlrg on all the other variables.
Ast =~ u is sound with respect to bisimulation equivalence, we have that
o(t) = o(u) .
Moreover, the ternw (¢) affords the transitiowr (t) % o™, for t; = 2 ando(z) =
a™tt % g™, Hence, for some closed term

o(u) = Za(uj) Lpoadm .

jed

This means that there isac J such thato(u;) — p. We claim that thisu,
can only be the variable. To see that this claim holds, observe, first of all, that
x € var(u;). In fact, if z did not occur inu;, then we would reach a contradiction
thus:

m = depth(p) < depth(o(u;)) = depth(oo(u;)) < depth(oo(u)) <m .

Using this observation and Leminalfl1(2), it is not hard to show that, for each of the
other possible forms; may haveo(u;) does not afford am-labelled transition
leading to a term of deptln. We may therefore conclude that = =, which was

to be shown. O

5 Proof of Proposition[3.2

We now proceed to present a detailed proof of Propositioh 3.2. The following
result, stating that the property mentioned in the statement of that proposition holds
for all closed substantial instantiations of axiomsEnwill be the crux in such a
proof.
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Proposition 5.1 Let¢ ~ u be an equation over the language GCtBat is sound
with respect to bisimulation equivalence, whem@ndwv are terms withoud sum-

mands or factors. Let be larger than the size of Assume that is a substantial
substitution. Lep = o(t) andq = o(u). Suppose thgt andq are bisimilar to
a0 V pn. If p has a summand bisimilar t@® V pn, then so does.

Proof: We can assume that, for some finite non-empty indexsets

t = Zti and (6)
1€l

u = Zuj, (7)
jeJ

where none of the; (i € I) andu; (j € J) is 0 or a sum. (That is, none of the
(@ € I) andu; (j € J) has+ as its head operator.) Note that,tandu have no0
summands or factors, then none of thé € I) andu; (j € J) does either.
Sincep = o(t) has a summand bisimilar @0 | p,, there is an index € T
such that
o(ti) = a0 | p, .

Our aim is now to show that there is an indgx J such that
o(uj) < a0 |/ Dn

proving thaty = o(u) also has a summand bisimilard® | p,. This we proceed
to do by a case analysis on the fotrmay have.

1. CASEt; = x FOR SOME VARIABLE z. In this case, we have that

o(x) < a0 |/pn )

andt hasx as a summand. As= u is sound with respect to bisimulation
equivalence and neithemor « have0 summands or factors, it follows that
u also hasr as a summand (Lemrha 4.4). Thus there is an index/ such
thatu; = x, and, modulo bisimulationy (u) hasa0 V pn, @S a summand,
which was to be shown.

2. Caset; = ut’ FOR SOME TERMt'. This case is vacuous because, since
o(t;) = po(t') & o(t')

is the only transition afforded by(t;), this term cannot be bisimilar 0 |
Pn.
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3. Caset; = t' | t” FOR SOME TERMSE, t”. The analysis of this case is the
crux of the proof, and we present the argument in considerable detail.

Sincet; = ' | ", we have that
o(t;) = o(t') { o(t") = a0 { p, .

As o is a substantial substitution, it follows thaft’) <4 0 ando(t”) <4 0
(LemmaZI()). Thus(t') < a0 ando(t”) < p, (Lemmal43B). Now;”
can be written thus:

t"=vi 4+ 4o (£>0),

where none of the summandsis 0 or a sum. Observe that, sinads larger
than the size of, we have that < n. Hence, since

n
J(t”) = Pn = Z aai )
=0

there must be some € {1, ..., ¢} such that
o(vp) < a.a™ + - + a.a™
forsomem > 1land0 < i; < ... < i, < n. By Lemmd4.2, it follows that
vp, can only be a variable and thus that
o(z) < aad'+---+aa" . (8)

Sincet’ has na factors, the above equation yields thag var(t')—or else
o(t') £ a0 (Lemma4.d(R)). Thus, sinceis substantial, modulo bisimula-
tion equivalence,

t' =y1 4+ yp[+a0] 9)

for somek > 0 and some variableg, .. ., y; different fromaz with

o(y1) = - o(yr) = a0 .

(The notation[+a0] in (9) denotes an optionald summand. Moreover, if
k = 0, thent’ = a0.) So, modulo bisimulation equivalendg,has the form
t' | (x + "), for some term””.

Our order of business will now be to use the information collected so far in
this case of the proof to argue thafu) has a summand bisimilar t@ | p,,.
To this end, consider the substitution

/

o' =olx— a(a0 | p,)] .
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We have that

o(t:) = )] o)
= ot |/ o (t") (Asz & var(t'))
= a0 (a(ao { p,) +o'(t")) .

T

Thus,o’(t;) = p' < a0 | p, for somep’. By (B), we have thav’(t) =
p’ also holds. Sinceé ~ wu is sound with respect to— , it follows that
o' (t) & o’ (u). Hence, byl[(¥), there arejac J and ag’ such that

o' (uj) 5 ¢ = a0 | p, . (10)

Recall that, by one of the assumptions of the propositidn,) < a0 )/ Dny
and thusy(u) has deptm + 2. On the other hand, bl (L0Jepth (o’ (u;j)) >
n + 3. Sinces ando’ differ only in the closed term they map variahteo,
it follows that

x € var(u;) . (11)

We now proceed to show that(u;) « a0 | p, by a further case analysis
on the form a termy; satisfying [(10) and(11) may have.

(@) CASEu; = z. This case is vacuous becaugéxr) = a(a0 | p,) -,
and thus this possible form far; does not meef (10).

(b) CAsEu; = pu’ FOR SOME TERMY/'. In light of (10), we have that =
randq = o'(v') < (a0 | py,). Using [I1) and the fact that has no
0 factors, we have thatepth (o’ (u')) > n + 3 (Lemma4.Il(2)). Since
a0 | p, has dept+2, this contradicts the fact that (u') < a0 | p,,.

(c) CASEu; = u' | u” FOR SOME TERMsu/,u”. This is the lengthiest
sub-case of cagé 3 of the proof, and its analysis will occupy us for the
next couple of pages.

Our assumption that has no0 factors yields that neither’ norv” is
bisimilar to0. Moreover, by[(1ll), eithet € var(u') or x € var(u”).
Sinced’ (u;) = o'(u') | o'(u") affords transition[(10), we have that
¢ = q1 | q» for someqy,qz. Sincea0 | p, is prime (Proposi-
tion[4.1[2)), it follows that eitheg; < 0 or g2 < 0. We now continue
our proof by examining the two possible origins for transitibnl (10).
These are

i. o'(u') = ¢ andgy = o' (u”) and
i. o'(u') % qpando’(u") S go, With a € {a,a}.
We examine these two cases in turn.
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i. Assume that'(u') = ¢, andgy = o’(u”). We now proceed to
argue that this case produces a contradiction. To this end, note
first of all that, aso’ is substantial and” is not bisimilar to0, it
must be the case that — 0 andgy = o'(v”) < a0 | py. In
light of the definition ofo”’, it follows thatz occurs inu’, but not
in v” (Lemmd4.1l(R)). Therefore, sineeands’ only differ at the
variablez,

o) =o' (u") = a0 | p, .

Since < is a congruence, we derive that

o(uj) = o) | o(u") o) (@0 {p,) .  (12)

Sinceo is substantialz occurs inu’, andw’ has no0 factors, we
may infer that

n+2 = depth(a0 | py,)
= depth(c(u)) (Aso(u) < a0 | p,)
> depth(o(u;)) (By (@)
— depth(o(u)) +n+2 (By @)
> n+2 (Asdepth(o(u')) > 0 by LemmdZ4l(R)),

which is the desired contradiction.

ii. Assume now that’(u') % ¢ ando’ (u") = go, with a € {a, a}.
Recall that exactly one af;, g5 is bisimilar to0. We proceed with
the proof by considering these two possible cases in turn.

CASE ¢; < 0. Our order of business will be to argue that, in this
caseo(u;) « a0 | p,, and thus thay = o(u) has a summand
bisimilar toa0 | p,,.

To this end, observe, first of all, thag < a0 | p, by (T0). It
follows thatz € var(u”), for otherwise we could derive a contra-
diction thus:

depth(a0 | p,) = depth(o(u)) (Aso(u) < a0 | p,)
> depth(o(uz)) (By (D)
> depth(o(u”)) (As depth(o(u')) > 0)
= depth(o’(u")) (Asz & var(u"))
> (

depth(a0 )/pn)
(As o' (u") LN g2 < a0 )/pn) .
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Moreover, we claim that ¢ var(u'). Indeed, ifz also occurred in
u’, then, since/ has no0 factors, the terna () would contribute
to the behaviour of (u;). Therefore, byl(B), the term(u ;) would
afford a sequence of actions containing two occurrencas ain-
tradicting our assumption that(u) < a0 | p,. It follows that
o = a, because )
o' (W) =o(u) > |
sinceo(u) < a0 | p,.
Observe now that, as'(v”) = g2 < a0 | p,, it must be the case
thatu” has a summand. To see that this does hold, we examine
the other possible forms a summamdof " responsible for the
transition )
o' (") % g > a0 | py,
may have, and argue that each of them leads to a contradiction.
A. CASE w = aw’, FOR SOME TERMw'. In this caseg, =
o'(w"). However, the depth of suchga is either smaller than
n+ 2 (if z ¢ var(w")), or larger tham + 2 (if = € var(w")).
This contradicts the fact that is bisimilar toa0 V Dn, be-
cause the latter term has depth- 2.
B. CASEw = w; | wy, FOR SOME TERMSw; AND wy. Since

o'(w) = o' (wn) | o' (wz) g

there is a closed terng such thato’(w) % g3 andgy =
g3 | 0/ (wy) = a0 | p,. As the terma0 | p, is prime,o’
is substantial, and is not bisimilar to0, we may infer that
g3 < 0 and

o' (wy) = a0 | py .
It follows that x ¢ wvar(wq)—or else the depth o’ (w-)
would be at least + 3—, and therefore that

o’ (w2) = o(ws) = a0 | p, .

However, this contradicts our assumption thét) < a0 |
Pn-
Summing up, we have argued thdthas a summand. Therefore,

by @),

" — = 1 "
o(u") = a.adt + - +aa™+r"
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for some closed term’’. We have already noted that
o(w)=0(W)%L g =0 .
Therefore, we have that
o(u) = ad+7r"

for some closed tern?. Using the congruence properties of bisim-
ulation equivalence, we may infer that

o(uj) =o(u) [ o) = (a0+r") | (@.a™+---+a.a™™+r") .
In light of this equivalence, we have that
o(uj) Lroaad + - +aam +r" o o),
for some closed term. By (1),
g=o(u) —r .

Sinceq = o(u) < a0 | p, by our assumption, it must be the case
thatr < o(u”) < p,. So, again using the congruence properties
of «— , we have that

o(uj) = o) { o) = (a0 +1') { p, .

Aso(u) < a0 | p,, using Lemm&413 it is now a simple matter
to infer that
o(u') = a0 .

Henceo(u;) « a0 | p,. Note thato(u;) is a summand of =

o(u). Thereforey has a summand bisimilar t@ | p,,, which was

to be shown.

CASE g9 < 0. We now proceed to argue that this case produces a
contradiction. To this end, observe, first of all, that— a0 V D
Reasoning as in the analysis of the previous case, we may infer
thata = a, z occurs inw’, butz does not occur in”. Moreover,
sinceo’(v/) % q1 < a0 | py, it must be the case that = v

for someu such that

o' (u"") = q1 = a0 |/pn .
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(For, otherwise, using Lemnha 2.1(3), we would have that

because/ % ¢, o(y) % ¢, andqy = o'[yq — ¢}](c), for some
variabley, configurationc and closed terng}. Note thaty # x.

In fact, if y = x, then we would have that = a by the definition

of ¢/, contradicting the distinctness of these two complementary
actions. Observe now that, again in light of the definition-6f
the variabler cannot occur ir, or else the depth afy = o'[yq —
¢1](c) would be at least + 3, contradicting our assumption that
q1 < a0 V pn. Hence, since the variablgis different fromz,

it is not hard to see that(v') % ¢; also holds, and thus that
depth(q1) < depth(o(u)) = n + 2, contradicting our assumption
thatq; < a0 | p,.) Sinceu contains na factors, in light of the
definition ofo’, thisw” cannot contain occurrences of the variable
x. (For, otherwise, Lemmia 4[1(2) would yield that

depth(a’(u"")) = depth(q1) > n+3 |
contradicting our assumption that < a0 V Dn.) SO
o(")=q = a0 p,

also holds. Thus

V

n+2 = depth(a0 | p,
= depth(o(u)) (AS o(u) < a0 | pn)
> depth(o(u;)) (By (D)
= depth(o(u') | o(u"))
(

depth U(u' )) + depth(o(u"))

(As o) % o(u™)

> n+2

(As depth(o(u”)) > 0 anddepth(o(u")) = n + 2)

which is the desired contradiction.

This completes the proof for the case = «' | " for some terms
u/’ o,

The proof is now complete. 0
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We are now ready to prove Proposition]3.2, thus completing the proof of Theo-
rem3.2 and of our main result (Theoréml3.1).

Proof of Proposition[3.2: Assume that is a finite axiom system over the lan-
guage CCg that is sound with respect to bisimulation equivalence, and that the
following hold, for some closed termsand ¢ and positive integen larger than

the size of each term in the equationsfin

1. EFp~g,

2. poqead | py,

3. p andq contain no occurrences 0fas a summand or factor, and
4. p has a summand bisimilar t® | p,,.

We prove that; also has a summand bisimilard® | p,, by induction on the depth
of the closed proof of the equatign= ¢ from E. Recall that, without loss of gen-
erality, we may assume that the closed terms involved in the proof of the equation
p ~ ¢ have no0 summands or factors (by Proposition]2.1,/asnay be assumed
to be saturated), that applications of symmetry happen first in equational proofs
(that is, E is closed with respect to symmetry), and that only closed substantial
substitutions are used(is closed with respect t0-substititions).

We proceed by a case analysis on the last rule used in the prpotaf from
E. The case of reflexivity is trivial, and that of transitivity follows immediately by
using the inductive hypothesis twice. Below we only consider the other possibili-
ties.

e CASEFE | p~ ¢q,BECAUSEG(t) = p AND o(u) = ¢ FOR SOME EQUATION
(t = u) € E AND CLOSED SUBSTANTIAL SUBSTITUTIONo. Observe, first
of all, that sinces(t) = p ando(u) = ¢ have no0 summands or factors,
then neither da andu. Therefore, as is larger than the size of each term
mentioned in equations iA, the claim follows by Proposition 5.1.

e CASEFE |+ p ~ ¢, BECAUSEp = up’ AND ¢ = uuq’ FOR SOMED’, ¢’ SUCH
THAT E + p/ ~ ¢'. This case is vacuous becayse- ip/ < a0 | p,, and
thusp does not have a summand bisimilarci® V D

e CASEFE  p ~ ¢, BECAUSEp = p' +p” AND ¢ = ¢ + ¢" FOR SOME
p',q¢,p",¢" SUCHTHATE  p' ~ ¢ AND E F p” = ¢”. Sincep has a
summand bisimilar t@0 | p,, we have that so does eithgror p”. As-
sume, without loss of generality, thethas a summand bisimilar t@ | p,,.
Sincep is bisimilar toa0 | p,, so isp’. Using the soundness & modulo
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bisimulation, it follows thaty’ < a0 V pn. The inductive hypothesis now
yields thatg’ has a summand bisimilar t® V pn. Henceg has a summand
bisimilar toa0 V pn, Which was to be shown.

e CASEE F p ~ ¢, BECAUSEp = p/ | p” AND ¢ = ¢/ | ¢" FOR SOME
p'.q,p",q¢" SUCHTHATE F p' ~ ¢’ AND E + p” =~ ¢”. Since the proof
involves no uses dd as a summand or a factor, we have thiap” <4 0 and
q,q" <t 0. It follows thatq is a summand of itself. By our assumptions,

a0 | pp=q .
Therefore we have thathas a summand bisimilar @0 | p,, and we are
done.
This completes the proof. O

6 Concluding Remarks

In their seminal papei[8], Bergstra and Klop showed that the parallel composi-
tion operator can be finitely axiomatized modulo bisimulation equivalence with
the use of two auxiliary operators, viz. the by now classic left merge and commu-
nication merge. Independently, and at roughly the same time, Hennessy proposed
the auxiliary operatof, and used it in[[21] to give equational axiomatizations of
Milner's observation congruence [26] and timed congruence. The axiomatization
of observation congruence offered by Hennessy using thgerator relies, how-
ever, on a variation on the classic expansion law [26], and is therefore infinite.
This led Bergstra and Klop to conjecture in [8, page 118] that Hennesyer-
ator does not have a finite equational axiomatization. The main result in this paper
confirms this conjecture of Bergstra and Klop’s, and answers one of the questions
in [2, Problem 8], by showing that, in the presence of two distinct complemen-
tary actions, it is impossible to provide a finite axiomatization of the recursion free
fragment of CCS modulo bisimulation equivalence usingThis result further
reinforces the status of the left merge and the communication merge operators as
auxiliary operators in the finite equational characterization of parallel composition
in bisimulation semantics.

A natural question to ask at this point is whether there is a sibiglery oper-
ator that preserves bisimulation equivalence, and whose addition to the recursion
free fragment of CCS allows for the finite equational axiomatization of parallel
composition—see 2, Problem 8]. (As was recently pointed out to us by Jos Baeten
and Rob van Glabbeek, it is certainly possible to obtain a finite axiomatization of
bisimulation equivalence by adding otexnaryoperator to the signature of CCS.)
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We conjecture that no such operator exists, and that the useo@fuxiliary oper-

ators is therefore necessary to achieve a finite axiomatization of parallel composi-
tion in bisimulation semantics. This result would offer the definitive justification
we seek for the canonical standing of the operators proposed by Bergstra and Klop.
Work on the confirmation of this conjecture is under way, and we hope to report on
it elsewhere in the near future.
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