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Adhesive Categories

Stephen Lack
School of Quantitative Methods and Mathematical Sciences,

University of Western Sydney

Paweł Sobocínski
BRICS∗, University of Aarhus

Abstract

We introduce adhesive categories, which are categories with struc-
ture ensuring that pushouts along monomorphisms are well-behaved.
Many types of graphical structures used in computer science are shown
to be examples of adhesive categories. Double-pushout graph rewriting
generalises well to rewriting on arbitrary adhesive categories.

Introduction

Recently there has been renewed interest in reasoning using graphical meth-
ods, particularly within the fields of mobility and distributed computing [13,
23] as well as applications of semantic techniques in molecular biology [7,
4, 15]. Research has also progressed on specific graphical models of com-
putation [21, 16]. As the number of various models grows, it is important to
understand the basic underlying principles of computation on graphical struc-
tures. Indeed, a solid understanding of the foundations of a general class of
models (provided byadhesive categories, introduced in this paper), together
with a collection of general semantic techniques (for example [26, 25]) will
provide practitioners and theoreticians alike with a toolbox of standard tech-
niques with which to construct the models, define the semantics and derive
proof-methods for reasoning about these.

∗Basic Research in Computer Science (www.brics.dk ),
funded by the Danish National Research Foundation.
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Category theory provides uniform proofs and constructions across a wide
range of models. The usual approach is to find a natural class of categories
with the right structure to support the range of constructions particular to the
application area. A well-known example is the class of cartesian-closed cate-
gories, which provides models for simply typed lambda calculi [19].

One important general construction which appears in much of the litera-
ture on graphical structures in computer science is the pushout construction.
Sometimes referred to as generalised union [9], it can often be thought of
as the construction of a larger structure from two smaller structures by gluing
them together along a shared substructure. Recently, pushouts have been used
in semantics in order to derive well-behaved labelled transition systems [20].

In this paper we introduce adhesive categories, which should be thought of
as categories in which pushouts along monomorphisms are “well-behaved”,
where the paradigm for behaviour is given by the category of sets. An ex-
ample of the good behaviour of these pushouts is that they are stable under
pullback (the dual notion to pushout, which intuitively can often be thought
of as a “generalised intersection”). The idea is analogous to that of extensive
categories [3], which have well-behaved coproducts in a similar sense. Since
coproducts can be obtained with pushouts and an initial object, and an initial
object is “well-behaved” if it is strict, one might expect that adhesive cate-
gories with a strict initial object would be extensive, and this indeed turns out
to be the case.

Various notions of graphical structures used in computer science form ad-
hesive categories. This includes ordinary directed graphs, typed graphs [1]
and ranked graphs [13], amongst others. The structure of adhesive category
allows us to derive useful properties. For instance, the union of two subob-
jects is calculated as the pushout over their intersection, which corresponds
well with the intuition of pushout as generalised union.

The properties of adhesive categories allow the development of a general
notion of rewriting on such categories. Term rewriting has been a cornerstone
of computation since the lambda-calculus; and indeed term rewriting can still
be considered as an underlying computational mechanism in modern foun-
dational process calculi for concurrency and mobility [22, 5]. Thus it is rea-
sonable to expect a suitable notion ofgraph rewriting if one replaces syntax
by directed graphs. One notion, that of double-pushout (d-p) graph rewriting,
was introduced in the early seventies [12] and the field is now mature [6]. D-
p graph rewriting is especially interesting since it works well together with a
contextual/modular view of graphs as arrows in a cospan bicategory [14].

In D-p rewriting, a rewrite rule is given as a spanL← K→ R. Roughly,
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the intuition is thatL forms the left-hand side of the rewrite rule,R forms
the right-hand side andK, common to bothL andR, is the sub-structure to
be unchanged as the rule is applied. To apply the rule to a structureC, one
first needs to find a matchL→C of L within C. The rule is then applied by
constructing the missing parts (E, D and arrows) of the following diagram

L
��

K
��

oo // R
��

C Eoo // D

in a way which ensures that the two squares are pushout diagrams. Once such
a diagram is constructed we may deduce thatC B D, that is,C rewrites to
D.

D-p rewriting is formulated in categorical terms and is therefore portable
to structures other than directed graphs. There have been several attempts [11,
9] to isolate classes of categories in which one can perform d-p rewriting
and in which one can develop the rewriting theory to a satisfactory level.
In particular, several axioms were put forward in [11] in order to prove a
local Church-Rosser theorem for such general rewrite systems. Additional
axioms were needed to prove a general version of the so-called concurrency
theorem [17].

We defineadhesive grammarswhich are d-p rewrite systems on adhe-
sive categories. We show that the resulting rewriting theory is satisfactory by
proving the local Church-Rosser theorem and the concurrency theorem with-
out the need for extra axioms. Indeed, we shall argue that adhesive categories
provide a natural general setting for d-p rewriting. We also examine how ad-
hesive categories fit within the previously conceived general frameworks for
rewriting [11, 9]. Many of the axioms put forward in [11] follow elegantly as
lemmas from the axioms of adhesive categories.

Adhesive categories, therefore, provide a satisfactory model in which to
define a theory of rewriting on “graph-like” structures. They are mathemati-
cally elegant and arguably less ad-hoc than previous approaches. We firmly
believe that they will prove useful in the development of further theory in
the area of semantics of graph-based computation, and in particular, in the
development of a contextual theory of graph rewriting.

Structure of the paper.In §1 we recall the definition of extensive categories.
The notion of van Kampen (VK) square is given in §2. VK squares are central
in the definition of adhesive categories which are introduced in §3. In §4 we
state and prove some basic lemmas which hold in any adhesive category. We
also show that the subobjects of an object in an adhesive category form a dis-
tributive lattice, with the union of two subobjects constructed as the pushout
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over their intersection. We develop double-pushout rewriting theory in adhe-
sive categories in §5 and offer a comparison with High-Level Replacement
Systems in §6. We conclude in §7 with directions for future research.

1 Extensive categories

Throughout the paper we assume that the reader is familiar with basic con-
cepts of category theory. In this section we recall briefly the notion of exten-
sive category [3].

Definition 1.1. A categoryC is said to beextensivewhen

(i) it has finite coproducts

(ii) it has pullbacks along coproduct injections

(iii) given a diagram where the bottom row is a coproduct diagram

X
r
��

m // Z
h
��

Y
s
��

noo

A i
// A+B Bj

oo

the two squares are pullbacks if and only if the top row is a coproduct.

The third axiom states what we mean when we say that the coproduct
A+B is “well-behaved”: it includes the fact that coproducts are stable under
pullback, and it implies that coproducts are disjoint (the pullback of the co-
product injections is initial) and that initial objects are strict. It also implies
a cancellativity property of coproducts: given an isomorphismA+B∼= A+C
compatible with the injections, one can construct an isomorphismB∼= C. For
an objectZ of an extensive category, the lattice Sub(Z) of coproduct sum-
mands ofZ is a Boolean algebra.

2 Van Kampen squares

The definition of adhesive category is stated in terms of something called a
van Kampen square, which can be thought of as a “well-behaved pushout”, in
a similar way to which coproducts can be thought of as “well-behaved” in an
extensive category; essentially this means that they behave as they do in the
category of sets.
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The name van Kampen derives from the relationship between these squares
and the van Kampen theorem in topology, in its “coverings version”, as pre-
sented for example in [2]. This relationship is described in detail in [18].

Definition 2.1 (van Kampen square).A van Kampen (VK) square (i)is a
pushout which satisfies the following condition: given a commutative cube
(ii) of which (i) forms the bottom face and the back faces are pullbacks,

C f
��

??
?m

����
�

A
g ��

??
? B

n����
�

D

(i)

C′m′
vvnnnnnnn f ′

  
AA

c

��

A′

a

��

g′
  AA

B′

b

��

n′
vvnnnnnn

D′

d
��

Cm
mmm

vvmmm
f
!!BB

B

A
g !!CC
C B

nvvmmmmmmm

D

(ii)

the front faces are pullbacks if and only if the top face is a pushout

Another, equivalent, way of defining a VK square in a category with pull-
backs is as follows. A VK square(i) is a pushout which satisfies the property
that given a commutative diagram(iii) , the two squares are pullbacks if and
only if there exists an objectU and diagrams

X
r
��

m // Z
h
��

Y
noo

s
��

A p
// D Bq

oo

(iii )

X
r
��

U
koo

t
��

l // Y
s
��

A C
f

oo
g

// B

(iv)

U l
��

@@k
~~~~

X
m   A

A Y
n��~

~

Z

(v)

in which the squares in(iv) are pullbacks and(v) is a pushout.
By a pushout along a monomorphismwe mean a pushout, as in Diagram

(i) above, in whichm is a monomorphism. (Of course by the symmetric
nature of pushouts, if insteadf were a monomorphism this pushout square
could also be viewed as a pushout along a monomorphism). Similarly, ifm is
a coproduct injection, we have a pushout along a coproduct injection.

A crucial class of examples of VK squares is provided by:

Theorem 2.2. In an extensive category, pushouts along coproduct injections
are VK squares.
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Proof. If m:C→A is a coproduct injection, sayC→C+E, then the diagrams
(i) and(ii) have the form

C f
$$JJ

JJJ
xxqqqqq

C+E

f+E &&MM
MMM

B
zzuuuu

B+E

(i)

C′
sshhhhhhhhhh f ′

##G
G

c

��

C′+E′

c+e

��

u ''PPPP
B′

b

��

vttj
jjjjjjjj

Z

h
��

Cggggg
ssggggg

f
$$H

H

C+E
f+E

''PPP
B

ttiiiiiiii

B+E

(ii)

where the unnamed arrows are coproduct injections; it is a straightforward
exercise in the theory of extensive categories to show that if either the top
face is a pushout or the front faces are pullbacks, thenZ has the formB′+E′
and so to deduce the result.

We have the following important properties of VK squares:

Lemma 2.3. In a VK square as in(i), if m is a monomorphism thenn is a
monomorphism and the square is also a pullback.

Proof. Suppose that the bottom face of the cube

C1
wwoooooo f

��
>>

1

��

C

m

��

f
��

?? B

1

��

1
wwoooooo

B

n
��

C
mooo

wwooo
f
��

>>

A
g ��

?? B
nwwoooooo

D

is VK. Then the top and bottom squares are pushouts, while the back squares
are pullbacks ifm is a monomorphism. Thus the front faces will be pullbacks:
the front right face being a pullback means thatn is a monomorphism, and the
front left face being a pullback means that the original square is a pullback.
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3 Adhesive categories

We shall now proceed to define the notion of adhesive category, and provide
various examples and counterexamples.

Definition 3.1 (Adhesive category).A categoryC is said to beadhesiveif

(i) C has pushouts along monomorphisms;

(ii) C has pullbacks;

(iii) pushouts along monomorphisms are VK-squares.

Since every monomorphism inSet is a coproduct injection, andSet is
extensive, we immediately have:

Example 3.2. Setis adhesive.

Observe that the restriction to pushouts along monomorphisms is neces-
sary: there are pushouts inSet which are not VK squares. Consider the 2
element abelian groupZ2 (the following argument works for any non-trivial
group). In the diagram

Z2×Z2π1
uukkkk

k π2
&&MM

M
+

��

Z2

��

��
@@

Z2

��

sshhhhhhhhhhh

1

��

Z2kkkk
uukkk ''NNN

NN

1
  B

B 1
ssgggggggggggg

1

both the bottom and the top faces are easily verified to be pushouts and the
rear faces are both pullbacks. However, the front two faces are not pullbacks.

Even with the restriction to pushouts along a monomorphism, many well-
known categories fail to be adhesive.

Counterexample 3.3.The categoriesPos, Top, Gpd andCat are not adhe-
sive.

Proof. For the case of the category of posets, write[n] for the ordered set
{0≤ 1≤ . . .n−1}. The pushout square

[1] 0 //

1 ��

[2]
��

[2] // [3]
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is not van Kampen, since it is not stable under pullback along the map[2]→
[3] sending 0 to 0 and sending 1 to 2. ThusPos is not adhesive. The same
pushout square, regarded as a pushout of categories, shows thatCat is not ad-
hesive. For the case ofGpd, one simply replaces the poset[n] by the groupoid
with n objects and a unique isomorphism between each pair of objects.

Finally consider the categoryTop of topological spaces. A finite poset
induces a finite topological space on the same underlying set: the topology
is determined by specifying thaty is in the closure ofx if and only if x≤ y.
Applying this process to the previous example yields an example showing that
Top is not adhesive.

Since the definition of adhesive category only uses pullbacks, pushouts,
and relationships between these, we have the following constructions involv-
ing adhesive categories:

Proposition 3.4.

(i) If C andD are adhesive categories then so isC×D;

(ii) If C is adhesive then so areC/C andC/C for any objectC of C;

(iii) If C is adhesive then so is any functor category[X,C].

SinceSetis adhesive, part (iii) of the proposition implies that any presheaf
topos[X,Set] is adhesive. In particular, the categoryGraph of directed graphs
is adhesive. Indeed, ifC is adhesive, then so is the category

Graph(C) = [·⇒ ·, C]

of internal graphs inC [24].
Part (ii) implies that categories of typed graphs [1], coloured (or labelled)

graphs [6], ranked graphs [13] and hypergraphs [11], considered in the litera-
ture on graph grammars, are adhesive.

As a consequence, all proof techniques and constructions in adhesive cat-
egories can be readily applied to any of the aforementioned categories of
graphs. In fact, more generally, we have:

Proposition 3.5. Any elementary topos is adhesive.

This is somewhat harder to prove than the result for presheaf toposes; the
proof can be found in [18].

Part(ii) of Proposition 3.4 also allows us to construct examples of adhe-
sive categories which are not toposes.
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Example 3.6.The categorySet∗= 1/Setof pointed sets (or equivalently, sets
and partial functions) is adhesive, but is not extensive, and therefore, is not a
topos.

Proof. In the category of pointed sets, the initial object is the one-point set 1.
Since every non-initial object has a map into 1, the initial object is not strict,
and so the category is not extensive [3, Proposition 2.8].

4 Basic properties of adhesive categories

Here we provide several simple lemmas which hold in any adhesive category.
Lemma 4.1 demonstrates why adhesive categories can be considered as a gen-
eralisation of extensive categories. Lemmas 4.2, 4.3, 4.5 and 4.6 shed some
light on pushouts in adhesive categories.

Lemma 4.1. An adhesive category is extensive if and only if it has a strict
initial object.

Proof. In an extensive category the initial object is strict [3, Proposition 2.8].
On the other hand, in an adhesive category with strict initial object, any arrow
with domain 0 is mono. Consider the cube

0
ttjjjjjjjjjj

��
==

��

X

r

��

m %%JJ
JJ Y

s

��

nvvlllllll

Z

t
��

0jjjjj

ttjjjj ��
==

A
i
$$II

I B
jvvmmmmm

A+B

in which the bottom square is a pushout along a monomorphism, while the
back squares are pullbacks since the initial object is strict. By adhesiveness,
front squares are pullbacks if and only if the top squares is a pushout; but this
says that the front squares are pullbacks if and only if the top row of these
squares is a coproduct (Z=X+Y).

The conclusions of the following two lemmas are used extensively in lit-
erature on algebraic graph rewriting. Indeed, they are usually assumed as
axioms (see [9] and §6 below) in attempts at generalising graph rewriting.
They hold in any adhesive category by Lemma 2.3:
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Lemma 4.2. Monomorphisms are stable under pushout.

Lemma 4.3. Pushouts along monomorphisms are also pullbacks.

The notion of pushout complement [12] is vital in algebraic approaches to
graph rewriting.

Definition 4.4. Let m:C→A andg : A→B be arrows in an arbitrary category
(m is not assumed to be monic). Apushout complementof the pair(m,g)
consists of arrowsf : C→ B andn : B→ D for which the resulting square
commutes and is a pushout.

The conclusion of the following lemma is a crucial ingredient in many
applications of graph rewriting. It has also been assumed as an axiom [11]
in order to prove the concurrency theorem (cf. Theorem 5.9). It is important
mainly because it assures that once an occurrence of a left hand side of a
rewrite rule is found within a structure, then the application of the rewrite rule
results in a structure which is unique up to isomorphism (cf. §5). In other
words, rewrite rule application is functional up to isomorphism.

Lemma 4.5. Pushout complements of monos (if they exist) are unique up to
isomorphism.

Proof. Suppose that
Cm

����
f
��

??

A
g ��

?? B
n���

�
D

Cm
����

f ′
  

@@

A
g ��

>> B′
n′

~~}}
D

are pushouts and thatm is mono. Consider the cube

C
wwnnnnnn h

��
??

��

C

m

��

f
��

?? U

l

��

k
wwoooooo

B′

n′
��

Cm
nnn

wwnnn
f
��

??

A
g   

AA B
nwwnnnnnn

D

in which the front right face is a pullback, andh : C→U is the map induced
by g andg′. Then the front faces and the back left face are pullbacks, hence
the back right face is also a pullback; and the bottom face is a pushout, hence
the top face is a pushout. But this implies thatk is invertible; by symmetry,
so too isl . The induced isomorphismj = lk−1 : C→C′ satisfiesn′ j = n and
j f = f ′.
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The final lemma of this section will be used in Section 6 to show that
adhesive categories are high-level replacement systems:

Lemma 4.6. Consider a diagram

A��
l ��

k // B // r //
��
s��

E��
v��

C u
// D //

w
// F

in which the marked morphisms are mono, the exterior is a pushout and the
right square is a pullback. Then the left square is a pushout, and so all squares
are both pullbacks and pushouts.

Proof. This amounts to stability of the exterior pushout under pullback along
w : D→ F. The reader can verify this by examining the diagram below.

A

��

k
��

@@
@@

@��l
����

��
�

C

��

u

��
??

??
? A

k
��

??
??

?��

c��
����

B

�� ��
??

??
?

C

u ��
??

??
? D

�� ��
@@

@@
@ B ��

r
??

��
??

B��
r
��

��

s
����

��
�

D ��

w ��
@@

@@
@ D��

w
��

E��
v��~~

~~
~

F

4.1 Algebra of subobjects

We can put a preorder on monomorphisms into an objectZ of an arbitrary
category by defining a monomorphisma : A→ Z to be less than or equal to
a monomorphismb : B→ Z precisely when there exists an arrowc : A→ B
such thatbc= a. A subobject (ofZ) is an equivalence class with respect to
the equivalence generated by this preorder. For example, subobjects inSet
are subsets while subobjects inGraph are subgraphs.

Here we shall demonstrate that unions of subobjects in adhesive categories
can be formed by pushout over their intersection This provides further evi-
dence of how pushouts behave in adhesive categories as well as making more
precise the intuition that the pushout operation “glues together” two structures
along a common substructure. As a corollary, it follows that in an adhesive
category the lattices of subobjects are distributive.
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Let C be an adhesive category, andZ a fixed object ofC. We write Sub(Z)
for the category of subobjects ofZ in C; it has products (=intersections), given
by pullback inC. It has a top object, given byZ itself. If C has a strict initial
object 0, then the unique map 0→ Z is a monomorphism, and is the bottom
object of Sub(Z).

Theorem 4.7.For an object Z of an adhesive categoryC, the category Sub(Z)
of subobjects of Z has binary coproducts: the coproduct of two subobjects is
the pushout inC of their intersection.

Proof. We shall show how to form binary coproducts (=unions) in Sub(Z).
Let a : A→ Z andb : B→ Z be subobjects ofZ, and form the intersection
A∩B→ Z, with projectionsp : A∩B→ A andq : A∩B→ B; and now the
pushout

A∩B
q
//

p
��

B
v��

A u
// C

in C. Let c : C→ Z be the unique map satisfyingcu = a andcv = b. We
shall show thatc is a monomorphism, and so thatC is the coproductA∪B in
Sub(Z) of A andB. Suppose then thatf ,g : K→C satisfyc f = cg. Form the
following pullbacks

L1
f1
��

l1 // K
f
��

L2
l2oo

f2
��

A u
// C Bv

oo

M1
g1

��

m1 // K
g
��

M2
m2oo

g2
��

A u
// C Bv

oo

N11
m11 //

l11
��

M1
m1
��

N12

l12
��

m12oo

L1
l1 // K L2

l2oo

N21

l21

OO

m21
// M2

m2

OO

N22

l22

OO

m22
oo

and note that each of the following pairs are the coprojections of a pushout,
hence each pair is jointly epimorphic:(l1, l2), (m1,m2), (m11,m12), and(m21,m22).
We are to show thatf = g; to do this, it will suffice to show thatf m1 = gm1

and f m2 = gm2; we shall prove only the former, leaving the latter to the reader.
To show thatf m1 = gm1 it will in turn suffice to show thatf m1m11 = gm1m11

and f m1m12 = gm1m12.
First note thata f1l11= cu f1l11= c f l1l11= cgl1l11= cgm1m11= cug1m11=

ag1m11, so that f1l11 = g1m11 sincea is monic; thus f m1m11 = f l1l11 =
u f1l11 = ug1m11 = gm1m11 as required.

On the other hand,b f2l12 = cv f2l12 = c f l2l12 = cgl2l12 = cgm1m12 =
cug1m12 = ag1m12, so by the universal property of the pullbackA∩B, there
is a unique maph : N12→ A∩B satisfyingph= g1m12 andqh= f2l12. Now
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f m1m12 = f l2l12 = v f2l12 = vqh= uph= ug1m12 = gm1m12, and sof m1 =
gm1 as claimed. As promised, we leave the proof thatf m2 = gm2 to the
reader, and deduce thatf = g, so thatc is monic.

Since pushouts are stable it follows that intersections distribute over unions:

Corollary 4.8. The lattice Sub(Z) is distributive.

Proof. For subobjectsa : A→ Z,b : B→ Z and c : C→ Z, construct the
pushout below left

A∩B∩C
**VVVVVV

tthhhhhh

A∩B
**UUUUU A∩C

ttiiiii

(A∩B)∪ (A∩C)

A∩B∩C
qqdddddddddddddd

))SS

��

A∩B

��

))SS A∩C

��

rreeeeeeeeeeee

A∩ (B∪C)

��

B∩Cddddddd
qqddddddddd

))SSSSS

B
**TTTTTT C

rrdddddddddddddddd

B∪C

to obtain(A∩B)∪ (A∩C). It is an easy exercise to show that the side faces
of the cube above right are all pullbacks, and therefore, that the top face is a
pushout. By the universal property of pushouts we have that

A∩ (B∪C) = (A∩B)∪ (A∩C)

as subobjects.

5 Double-Pushout Rewriting

Here we shall recall the basic notions of double-pushout rewriting [12, 6] and
show that it can be defined within an arbitrary adhesive category.

Henceforth we shall assume thatC is an adhesive category.

Definition 5.1 (Production). A productionp is a span

L K
loo r // R (1)

in C. We shall say thatp is left-linear whenl is mono, andlinear when both
l andr are mono. We shall letP denote an arbitrary set of productions and let
p range overP .
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In order to develop an intuition of why a production is defined as a span,
we shall restrict our attention to linear production rules. One may then con-
siderK as a substructure of bothL andR. We think ofL as the left-hand side
of the rewrite rulep, and therefore, in order to perform the rewrite, we need
to matchL as a substructure of a redexC. The structureK, thought of as a
substructure ofL, is exactly the part ofL which is to remain invariant as we
apply the rule toC. Finally, parts ofR which are not inK should be added to
produce the final result of the rewrite.

Thus, an application of a rewrite rule consists of three steps. First we
must matchL as a substructure of the redexC; secondly, we delete all of
parts of the redex matched byL which are not included inK. Thirdly, we add
all of R which is not contained inK, thereby producing a new structureD.
The deletion and addition of structure is handled, respectively, by finding a
pushout complement and constructing a pushout.

We shall first clarify what is meant by matching a left-hand side of a
rewrite rule within a redex.

Definition 5.2 (Gluing Conditions). Given a productionp as in (1), amatch
in C is a morphismf : L→C. A match f satisfies thegluing conditionswith
respect top precisely when there exists an objectE and morphismsg : K→E
andv : E→C such that

L
f ��

K
loo

g
��

C Ev
oo

is a pushout diagram. (In other words, there exists a pushout complement of
( f , l) in the sense of Definition 4.4.)

Definition 5.3 (Derivation). Given an objectC ∈ C and a set of productions
P , we writeC Bp, f D for a productionp∈ P and a morphismf : L→C if
(a) f satisfies the gluing conditions with respect tol , and (b) there is a diagram

L
f ��

K
g
��

loo r // R
h��

C Ev
oo

w
// D

in which both squares are pushouts.

The objectE in the above diagram can be thought of as a temporary state
in the middle of the rewrite process. Returning briefly to our informal de-
scription, it is the structure obtained fromC by deleting all the parts ofL not
contained inK. Recall from Lemma 4.5 that ifl is mono (that is, ifp is
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left-linear) thenE is unique up to isomorphism. Indeed, ifp is a left-linear
production,C Bp, f D andC Bp, f D′ then we must haveD ∼= D′. This
is a consequence of Lemma 4.5 and the fact that pushouts are unique up to
isomorphism.

Definition 5.4 (Adhesive Grammar).An adhesive grammarG is a pair〈C,P〉
whereC is an adhesive category andP is a set of linear productions.

Assuming that all the productions are linear allows us to derive a rich
rewriting theory on adhesive categories. Henceforward we assume that we
are working over an adhesive grammarG.

5.1 Local Church-Rosser theorem

As shall be explained in section 6, adhesive categories with coproducts are
high-level replacement systems. In particular, we get the local Church-Rosser
theorem [17, 9].

Before presenting this theorem we need to recall briefly the notions of
parallel-independent derivation and sequential-independent derivation. The
reader may wish to consult [6] for a more complete presentation.

A parallel-independent derivationis a pair of derivations

C Bp1, f1 D1 and C Bp2, f2D2

as illustrated in diagram (2) which satisfy an additional requirement, namely
the existence of morphismsr : L1→ E2 and s : L2→ E1 which render the
diagram commutative, in the sense thatv2r = f1 andv1s= f2.

R1

h1
��

K1

g1
��

r1oo
l1 // L1 r

''
f1 ��

??
??

L2s

ww
f2����

��

K2

g2
��

l2oo
r2 // R2

h2
��

D1 E1w1
oo

v1
// C E2v2

oo
w2

// D2

(2)

Similarly, asequential-independent derivation, illustrated in diagram (3), is a
derivation

C Bp1, f1 D1 Bp2, f ′2 D

where there additionally exist arrowsr ′ : R1→ E3 ands′ : L2→ E1 such that
w1s′ = f ′2 andv3r ′ = h1.

L1

f1
��

K1

g1
��

l1oo
r1 // R1 r ′

''
h1

BB

  B
BBB

L2s′

ww f ′2

}}

~~}}}
}

K2

g′2
��

l2oo
r2 // R2

h′2
��

C E1v1
oo

w1
// D1 E3v3

oo
w3

// D

(3)
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The statement of the theorem below differs from those previously pub-
lished in the literature in that we do not need coproducts to establish the
equivalence of the first 3 items.

Theorem 5.5 (Local Church-Rosser).The following are equivalent

1. C Bp1, f1 D1 and C Bp2, f2 D2 are parallel-independent deriva-
tions

2. C Bp1, f1 D1 and D1 Bp2, f ′2 D are sequential-independent deriva-
tions

3. C Bp2, f2 D2 and D2 Bp1, f ′1 D are sequential-independent deriva-
tions.

If moreoverC is extensive then we may add

4. C Bp1+p2,[ f1, f2] D is a derivation.

Proof. (1)⇒(2): Suppose thatC Bp1, f1 D1 andC Bp2, f2 D2 are parallel-
independent derivations. Form the pullback(i) below.

E1

v1
��

G
e1oo

e2
��

C E2v2
oo

(i)

L1
r
��

K1

g1

��

l1oo

E2
v2

��

K2g2oo

l2
��

C E1v1
oo L2s

oo

(ii)

L1
r
��

K1

(†) k1
��

l1oo

E2
v2

��

G
(?)

e2oo

e1
��

K2

(‡)

k2oo

l2
��

C E1v1
oo L2s

oo

(iii )

K1

k1
��

r1 // R1

t
��

K2
r2

��

k2
// G e3 //

e4
��

E3
w3
��

R2 u
// E4 w4

// D

(iv)

The two regions in(ii) are pushouts [cf. diagram (3)]. Combining the two
diagrams gives(iii) , with k1 andk2 obtained by the universal property of(i)
and satisfyinge2k1 = g1 ande1k2 = g2. Regions (†), (‡), and (?) are pushouts
by Lemma 4.6, and one now goes on to construct(iv) by taking successive
pushouts.

The sequential-independent derivationC Bp1, f1 D1 Bp2, f ′2 D may
now be constructed with the pushout squares below.

L1
r
��

K1

k1
��

l1oo
r1 // R1

t
��

E2
v2

��

Ge2oo

e1
��

e3 // E3
v3
��

C E1v1
oo

w1
// D1

L2
s
��

K2
l2oo

k2
��

r2 // R2
u
��

E1
w1

��

Ge1oo

e3
��

e4 // E4
w4
��

D1 E3 w3
//

v1
oo D
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(2)⇒(1): Suppose thatC Bp1, f1 D1 andD1 Bp2, f ′2 D are sequential-
independent derivations. Form the pullback(i) below.

F
e1

��

e3 // E3

v3
��

E1 w1
// D1

(i)

K1

g1

��

r1 // R1

r ′
��

K2

l2
��

g′2 // E3
v3
��

L2
s′

// E1 w1
// D1

(ii)

K1

(†)k1
��

r1 // R1

r ′
��

K2

(‡)

k2 //

l2
��

F
(?)

e3 //

e1
��

E3
v3
��

L2
s′

// E1 w1
// D1

(iii )

K1

k1
��

l1 // L1

t
��

K2
r2

��

k2
// F e2 //

e4
��

E2
w3
��

R2 u
// E4 w4

// D2

(iv)

The two regions in(ii) are pushouts [cf. diagram (3)]. Combining the two
diagrams gives(iii) , with k1 andk2 obtained by the universal property of(i)
and satisfyinge3k2 = g′2 ande1k1 = g1. Regions (†), (‡), and (?) are pushouts
by Lemma 4.6, and one now goes on to construct(iv) by taking successive
pushouts.

The parallel independent derivationsC Bp1, f1 D1 andC Bp2, f2 D2

may now be constructed with the pushout squares below.

L1
r
��

K1

k1
��

l1oo
r1 // R1

t
��

E2
v2

��

Fe2oo

e1
��

e3 // E3

��

C E1v1
oo

w1
// D1

L2

s′
��

K2
l2oo

k2
��

r2 // R2
u
��

E1
w1

��

Fe1oo

e2
��

e4 // E4
w4
��

D1 E3 w3
//

v1
oo D2

The proof of (1)⇔(3) is similar; the proof of (1)⇔(4) is a straightforward
exercise in the theory of extensive categories.

In fact, the proof that (1)⇒(2) remains valid more generally in the context
of left-linear productions, but the proof of the converse requires linearity.

5.2 Concurrency Theorem

The original concurrency theorems were proved for graph grammars [8] and
later generalised to high level replacement structures (cf. §6) in [11] which
satisfy additional axiom sets, there called HLR2 and HLR2*. Roughly, the
concurrency theorem states that given two derivations in a sequence, together
with information about how they are related, one may construct a single
derivation which internalises the two original derivations and performs them
“concurrently”. Moreover, one may reverse this process and deconstruct a
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concurrent derivation into two related sequential derivations. Here we state
and prove the concurrency theorem for adhesive grammars without the need
for extra axioms.

We shall first need to recall the notions of dependency relation, dependent
derivation and concurrent production.

Definition 5.6 (Dependency Relation).Suppose thatp1 and p2 are linear
productions. Adependency relationfor 〈p1, p2〉 is an objectX together with
arrowss : X→R1 andt : X→ L2 for which r1, s, t, andl2 can be incorporated
into a diagram

X
s
}}{{{

{ t
!!B

BBB

K1
g′1 ��

r1 // R1 h′1
��

@@
@@

L2f ′2
����

��
K2

l2oo

g′2��

E′1 w′1
// D′ E′2v′2

oo

(4)

in which all three regions are pushouts.

Definition 5.7 (Dependent Derivation).Consider a derivationC Bp1, f1
D1 Bp2, f2 D as illustrated in(i) below

L1
f1 ��

K1
g1 ��

l1oo r1 // R1 h1
!!C

CCC
L2f2

}}|||
|

K2
g2��

l2oo r2 // R2
h2��

C E1v1
oo

w1
// D1 E3v3

oo
w3

// D

(i)

X
s
}}zzz

z t
!!C

CCC

K1
g′1 ��

r1 // R1 h′1
  A

AA
A L2f ′2

~~}}
}}

K2
l2oo

g′2��

E′1
e1 ��

w′1
// D′

d��

E′2
e2��

v′2
oo

E1 w1
// D1 E2v2

oo

(ii)

and a dependency relationX for 〈p1, p2〉. The derivation is said to beX-
dependentif h1s= f2t and there exist morphismse1 : E′1→ E1 ande2 : E′2→
E2 satisfyinge1g′1 = g1 ande2g′2 = g2, and if moreover the unique mapd :
D′ → D1 satisfyingdh′1 = h1 and d f ′2 = f2 also satisfiesdw′1 = w1e1 and
dv′2 = v2e2 (see(ii) ).

Definition 5.8 (Concurrent Production). Given a dependency relationX for
〈p1, p2〉, theX-concurrent production p1;X p2 is the span

C′ P′
v′1u′
oo

w′2v′
// D′
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obtained by taking the bottom row of the following extension of Diagram (4)

X
s
}}{{{

{ t
!!B

BBB

L1
f ′1 ��

K1
†

l1oo

g′1��

r1 // R1 h′1
��

@@
@@

L2f ′2
����

��
K2

‡

l2oo

g′2 ��

r2 // R2
h2��

C′ E′1v′1
oo

w′1
// D′ E′2v′2

oo

w′2
// D′

P′
]

v′

<<

u′

bb

in which † and ‡ are pushouts and] is a pullback.

Theorem 5.9 (Concurrency Theorem).

1. Given an X-dependent derivation C Bp1, f1 D1 Bp2, f2 D there ex-
ists an X-concurrent derivation C Bp1;X p2 D

2. Given an X-concurrent derivation C Bp1;X p2 D, there exists an X-
dependent derivation C Bp1, f1 D1 Bp2, f2 D.

Proof. 1. Suppose that we have anX dependent-derivation, as in the solid
part of the diagram

X

(iii )

s
}}{{

{{
{ t

!!C
CC

CC

L1

(i)f ′1 ��

f1

""

K1

(ii)g′1��

l1oo
r1 // R1

h′1
  A

AA
AA

L2

f ′2
~~~~

~~
~

K2

(iv)

l2oo

g′2��

r2 // R2

(v) h′2
��

h2

||

C′
(vi)c

��

E′1
(vii)e1

��

v′1oo w′1 // D′1
d1
��

E′2
(viii) (ix)e2

��

v′2oo w′2 // D′
d
��

C E1v1
oo

w1
// D1 E2v2

oo
w2

// D

in which(iii) , (i)+(vi) , (ii)+(vii) , (iv)+(viii) , (v)+(ix), (ii) , and(iv) are pushouts,
so that also(vii) and(viii) are pushouts. Fill in the dotted parts of the diagram
to obtain further pushouts(i), (v), (vi), and(ix).

By Lemma 4.2 bothw′1 andv′2 are monomorphisms, and now by Lemma 4.3
both (vii) and (viii) are pullbacks. Consider the cube in which bottom and
front left faces are the pullbacks(vii) and(viii) , and the remaining faces are
constructed so as to be pullbacks. Since the bottom face is also a pushout, so
is the top face. Similarly, since the front left face is a pushout, so is the back
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right face.
P′v′

vvnnnnnnn p
  

AAA

u′

��

E′2

v′2

��

e′2
!!B

B P

u

��

vwwn
nnnnnn

E2

v2

��

E′1
w′1

ooo
wwooo

e1
��

>>

D′1
d1

!!B
B

E1

w1wwnnnnnnn

D1

2. Suppose that we have anX-concurrent derivationC Bp1;X p2, f D, as
illustrated by the solid part of the diagram below left.

X
t
!!B

BBBs
}}{{{

{

L1

f ′1
��

K1
l1oo

g′1
��

r1 // R1 h′1
  B

BB
L2f ′2

~~||
|

K2
l2oo

g′2
��

r2 // R2

h′2
��

D′

C′
c
��

E′1
(i)

w′1
77nnnnnnnnnv′1oo

e1��

P′u′oo

(iii )(ii) p
��

v′ // E′2
(iv)

v′2
ggPPPPPPPPP w′2//

e2��

D′1
d
��

C E1v1oo Puoo

q

gg

r

66v // E2 w2 // D

X
s
}}zzz

z t
!!C

CCC

L1

f ′1
��

K1

g′1
��

l1oo r1 // R1

h′1
��

44
44

44
4 L2

f ′2
��











K2
l2oo

g′2
��

r2 // R2

h′2
��

C′
c
��

E′1
(i) e1��

v′1oo w′1 // D′1
(v) (vi)d1��

E′2
(iv)e2��

v′2oo w′2 // D′
d
��

C E1v1
oo

w1
// D1 E2v2

oo
w2

// D

We construct pushouts(ii) and (iii) and obtainv1 andw2 using the univer-
sal properties. It now follows that(i) and(iv) are also pushouts. Now con-
struct the pushout(v); since(ii)+(v) and(iii) are pushouts, there is a unique
map v2 : E2 → D1 so that(vi) is a pushout and(iii)+(vi) equals(ii)+(v) .
The diagram on the right now provides the requiredX-dependent derivation
C Bp1,c f ′1 D1 Bp2,d1 f ′2 D.

6 Relation with High-Level Replacement Systems

High-level replacement systems [9, 10, 11] or HLRS encompass several at-
tempts to isolate general categorical axioms which lead to categories in which
one can define double-pushout graph rewriting and prove useful theorems
such as the local Church-Rosser theorem and the concurrency theorem.

HLRS have axioms which are parametrised over an arbitrary class of mor-
phismsM . Here we give a simplified version of the definition which appears
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in [9]. The simplification is that we takeM to be the class of monomor-
phisms: we justify this by noting that this is the case in the majority of exam-
ples.

Definition 6.1 (High-Level Replacement System).A high-level replace-
ment system is a categoryS satisfying the following axioms:

1. pairsC← A→ B with at least one of the arrows mono have a pushout;

2. pairsB→ D←C with both morphisms mono have pullbacks;

3. monos are preserved by pushout;

4. finite coproducts exist;

5. pushouts of monos are pullbacks;

6. pushout-pullback decomposition holds: that is, given a diagram

A��
l ��

k // B // r //
��
s��

E��
v��

C u
// D //

w
// F

if the marked morphisms are mono, the whole rectangle is a pushout
and the right square is a pullback, then the left square is a pushout.

Lemma 6.2. Any adhesive category with an initial object is an HLRS.

Proof. This follows immediately from Lemmas 4.2, 4.3, and 4.6.

The axioms listed above are enough to prove the local Church-Rosser the-
orem (cf. Theorem 5.5), butnot the concurrency theorem (cf. Theorem 5.9).
To prove the latter, extra axioms had to be introduced in [11], such as the
conclusion of the following lemma. Interestingly, it is almost the dual of the
main axiom of adhesive categories.

Lemma 6.3 (Cube-pushout-pullback-lemma [11]).Given a cube in which
all arrows in the top and bottom faces are mono, if the top face is a pullback
and the front faces are pushouts, then the bottom face is a pullback if and only
if the back faces are pushouts.
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Proof. Since the front faces are pushouts along monomorphisms, they are
also pullbacks.

If the bottom face is a pullback, then the back faces are pushouts by sta-
bility of the pushouts on the front faces. Suppose conversely that the back
faces are pushouts; since they are pushouts along monomorphisms, they are
also pullbacks. One now simply “rotates the cube”: since the front right and
back left faces are pushouts, and the top and back right faces are pullbacks, it
follows by adhesiveness that the bottom square is a pullback.

7 Conclusions and future work

We introduced the notions of van Kampen (VK) square and adhesive cate-
gory. VK squares are “well-behaved pushouts”, and a category is adhesive
when pushouts along monos are VK. Adhesive categories are closely related
to extensive categories.

Double-pushout (D-p) rewriting can be defined in an arbitrary adhesive
category. We introduced adhesive grammars, which are adhesive categories
with a set of linear productions. Adhesive grammars have sufficient structure
for the development of a rich rewriting theory. In particular, we proved the
local Church-Rosser and the so-called concurrency theorem within the setting
of adhesive grammars. We have also shown that adhesive categories satisfy
many of the axioms [9, 11] which were proposed in order to prove these the-
orems. Thus, we have arrived at a class of categories which supports such
a theory of D-p rewriting, however, we believe that adhesive categories are
mathematically elegant and less ad-hoc than previous proposals.

In order to back this claim and to further develop the theory of adhesive
categories, we have demonstrated a number of useful properties. For instance,
subobject union is formed as a pushout over the intersection, and subobject
intersection distributes over subobject union. We have provided some closure
properties which allow the construction of new adhesive categories from old.
Any elementary topos is adhesive, but there are examples of adhesive cate-
gories which are not toposes. Adhesive categories include many well-known
notions of graph structures used in computer science.

We believe that adhesive categories will be useful in the development of
specific graphical models of computation and the development of semantic
techniques for reasoning about such models. The rewriting theory needs to
be developed further, with, for example, the construction of canonical de-
pendency relations from derivations [11]. A possible direction for future
work is to examine whether adhesive categories have enough structure so
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that groupoidal relative pushouts [26] can be constructed in cospan bicate-
gories over adhesive categories. Such cospan bicategories provide a way of
understanding graphs in a modular fashion and will provide a general class of
models which should include bigraphs [21] as examples. Another question to
be resolved is whether demanding the good behaviour of pushouts only along
some class of monomorphisms will result in further interesting categories.
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RS-03-28 Zolt́an Ésik and Kim G. Larsen. Regular Languages Definable
by Lindström Quantifiers. August 2003. 82 pp. This report su-
persedes the earlier BRICS report RS-02-20.

RS-03-27 Luca Aceto, Willem Jan Fokkink, Rob J. van Glabbeek, and
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