sal0Ba1eD aAISaYPY :BSU00GOS B %08 TE-£0-SH SOlYd

BRICS

Basic Research in Computer Science

Adhesive Categories

Stephen Lack
Pawet Soboanski

BRICS Report Series RS-03-31
ISSN 0909-0878 October 2003

Copyright (© 2003, Stephen Lack & Pawet Soboaski.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work

is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS

Department of Computer Science
University of Aarhus

Ny Munkegade, building 540
DK-8000 Aarhus C

Denmark

Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLSs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/03/31/

Adhesive Categories

Stephen Lack

School of Quantitative Methods and Mathematical Sciences,
University of Western Sydney

Pawet Sobociski
BRICS; University of Aarhus

Abstract

We introduce adhesive categories, which are categories with struc-
ture ensuring that pushouts along monomorphisms are well-behaved.
Many types of graphical structures used in computer science are shown
to be examples of adhesive categories. Double-pushout graph rewriting
generalises well to rewriting on arbitrary adhesive categories.

Introduction

Recently there has been renewed interest in reasoning using graphical meth-
ods, particularly within the fields of mobility and distributed computing [13,
23] as well as applications of semantic techniques in molecular biology [7,
4, 15]. Research has also progressed on specific graphical models of com-
putation [21, 16]. As the number of various models grows, it is important to
understand the basic underlying principles of computation on graphical struc-
tures. Indeed, a solid understanding of the foundations of a general class of
models (provided bydhesive categoriestroduced in this paper), together
with a collection of general semantic techniques (for example [26, 25]) will
provide practitioners and theoreticians alike with a toolbox of standard tech-
niques with which to construct the models, define the semantics and derive
proof-methods for reasoning about these.

*Basic Research in Computer Scieneeny.brics.dk),
funded by the Danish National Research Foundation.

Category theory provides uniform proofs and constructions across a wide
range of models. The usual approach is to find a natural class of categories
with the right structure to support the range of constructions particular to the
application area. A well-known example is the class of cartesian-closed cate-
gories, which provides models for simply typed lambda calculi [19].

One important general construction which appears in much of the litera-
ture on graphical structures in computer science is the pushout construction.
Sometimes referred to as generalised union [9], it can often be thought of
as the construction of a larger structure from two smaller structures by gluing
them together along a shared substructure. Recently, pushouts have been used
in semantics in order to derive well-behaved labelled transition systems [20].

In this paper we introduce adhesive categories, which should be thought of
as categories in which pushouts along monomorphisms are “well-behaved”,
where the paradigm for behaviour is given by the category of sets. An ex-
ample of the good behaviour of these pushouts is that they are stable under
pullback (the dual notion to pushout, which intuitively can often be thought
of as a “generalised intersection”). The idea is analogous to that of extensive
categories [3], which have well-behaved coproducts in a similar sense. Since
coproducts can be obtained with pushouts and an initial object, and an initial
object is “well-behaved” if it is strict, one might expect that adhesive cate-
gories with a strict initial object would be extensive, and this indeed turns out
to be the case.

Various notions of graphical structures used in computer science form ad-
hesive categories. This includes ordinary directed graphs, typed graphs [1]
and ranked graphs [13], amongst others. The structure of adhesive category
allows us to derive useful properties. For instance, the union of two subob-
jects is calculated as the pushout over their intersection, which corresponds
well with the intuition of pushout as generalised union.

The properties of adhesive categories allow the development of a general
notion of rewriting on such categories. Term rewriting has been a cornerstone
of computation since the lambda-calculus; and indeed term rewriting can still
be considered as an underlying computational mechanism in modern foun-
dational process calculi for concurrency and mobility [22, 5]. Thus it is rea-
sonable to expect a suitable notiongsiph rewriting if one replaces syntax
by directed graphs. One notion, that of double-pushout (d-p) graph rewriting,
was introduced in the early seventies [12] and the field is now mature [6]. D-
p graph rewriting is especially interesting since it works well together with a
contextual/modular view of graphs as arrows in a cospan bicategory [14].

In D-p rewriting, a rewrite rule is given as a spar— K — R. Roughly,

the intuition is thatL forms the left-hand side of the rewrite rul,forms
the right-hand side an, common to boti. andR, is the sub-structure to
be unchanged as the rule is applied. To apply the rule to a struciuwee
first needs to find a matdh— C of L within C. The rule is then applied by
constructing the missing parts (D and arrows) of the following diagram

L+—~K—=R

L
C+~E—D

in a way which ensures that the two squares are pushout diagrams. Once such
a diagram is constructed we may deduce @at—> D, that is,C rewrites to
D.

D-p rewriting is formulated in categorical terms and is therefore portable
to structures other than directed graphs. There have been several attempts [11,
9] to isolate classes of categories in which one can perform d-p rewriting
and in which one can develop the rewriting theory to a satisfactory level.
In particular, several axioms were put forward in [11] in order to prove a
local Church-Rosser theorem for such general rewrite systems. Additional
axioms were needed to prove a general version of the so-called concurrency
theorem [17].

We defineadhesive grammarwhich are d-p rewrite systems on adhe-
sive categories. We show that the resulting rewriting theory is satisfactory by
proving the local Church-Rosser theorem and the concurrency theorem with-
out the need for extra axioms. Indeed, we shall argue that adhesive categories
provide a natural general setting for d-p rewriting. We also examine how ad-
hesive categories fit within the previously conceived general frameworks for
rewriting [11, 9]. Many of the axioms put forward in [11] follow elegantly as
lemmas from the axioms of adhesive categories.

Adhesive categories, therefore, provide a satisfactory model in which to
define a theory of rewriting on “graph-like” structures. They are mathemati-
cally elegant and arguably less ad-hoc than previous approaches. We firmly
believe that they will prove useful in the development of further theory in
the area of semantics of graph-based computation, and in particular, in the
development of a contextual theory of graph rewriting.

Structure of the papein 81 we recall the definition of extensive categories.
The notion of van Kampen (VK) square is given in 82. VK squares are central
in the definition of adhesive categories which are introduced in 83. In 84 we
state and prove some basic lemmas which hold in any adhesive category. We
also show that the subobjects of an object in an adhesive category form a dis-
tributive lattice, with the union of two subobjects constructed as the pushout

3

over their intersection. We develop double-pushout rewriting theory in adhe-
sive categories in 85 and offer a comparison with High-Level Replacement
Systems in 86. We conclude in 87 with directions for future research.

1 Extensive categories

Throughout the paper we assume that the reader is familiar with basic con-
cepts of category theory. In this section we recall briefly the notion of exten-
sive category [3].

Definition 1.1. A categoryC is said to beextensivavhen
(i) it has finite coproducts
(i) it has pullbacks along coproduct injections

(iif) given a diagram where the bottom row is a coproduct diagram

X2z Dy

s

AT>A+BTB

the two squares are pullbacks if and only if the top row is a coproduct.

The third axiom states what we mean when we say that the coproduct
A+ B is “well-behaved”: it includes the fact that coproducts are stable under
pullback, and it implies that coproducts are disjoint (the pullback of the co-
product injections is initial) and that initial objects are strict. It also implies
a cancellativity property of coproducts: given an isomorphsmB = A+C
compatible with the injections, one can construct an isomorpBisaC. For
an objectZ of an extensive category, the lattice Sfip6f coproduct sum-
mands ofZ is a Boolean algebra.

2 Van Kampen squares

The definition of adhesive category is stated in terms of something called a
van Kampen squarevhich can be thought of as a “well-behaved pushout”, in

a similar way to which coproducts can be thought of as “well-behaved” in an
extensive category; essentially this means that they behave as they do in the
category of sets.

The name van Kampen derives from the relationship between these squares
and the van Kampen theorem in topology, in its “coverings version”, as pre-
sented for example in [2]. This relationship is described in detail in [18].

Definition 2.1 (van Kampen square).A van Kampen (VK) square (i¥ a
pushout which satisfies the following condition: given a commutative cube
(i) of which (i) forms the bottom face and the back faces are pullbacks,

C

A B

A

C B
v f
D mC

B
ﬁi P
(1) (ii)
the front faces are pullbacks if and only if the top face is a pushout
Another, equivalent, way of defining a VK square in a category with pull-
backs is as follows. A VK squar@ is a pushout which satisfies the property

that given a commutative diagrai) , the two squares are pullbacks if and
only if there exists an objett and diagrams

XMz y x<&uly Y
X Y

r h

] s r| t s N

(iii) (iv) (V)

in which the squares iiv) are pullbacks an{v) is a pushout.

By a pushout along a monomorphisse mean a pushout, as in Diagram
(i) above, in whichm is a monomorphism. (Of course by the symmetric
nature of pushouts, if insteatdwere a monomorphism this pushout square
could also be viewed as a pushout along a monomorphism). Similamysif
a coproduct injection, we have a pushout along a coproduct injection.

A crucial class of examples of VK squares is provided by:

Theorem 2.2.1n an extensive category, pushouts along coproduct injections
are VK squares.

Proof. If m:C — Ais acoproductinjection, s&y— C+E, then the diagrams
(i) and(ii) have the form

c

/

C C' +FE ‘B
C+E B z v |
+ c+e b
f+E / /C f
B+E — Y
C+E h B
f+EB+E/

(1) (il

where the unnamed arrows are coproduct injections; it is a straightforward
exercise in the theory of extensive categories to show that if either the top
face is a pushout or the front faces are pullbacks, thbas the fornB’ + E’
and so to deduce the result. O

We have the following important properties of VK squares:

Lemma 2.3. In a VK square as irfi), if mis a monomorphism thenis a
monomorphism and the square is also a pullback.

Proof. Suppose that the bottom face of the cube

is VK. Then the top and bottom squares are pushouts, while the back squares

are pullbacks imis a monomorphism. Thus the front faces will be pullbacks:

the front right face being a pullback means th& a monomorphism, and the

front left face being a pullback means that the original square is a pullback.
O

3 Adhesive categories

We shall now proceed to define the notion of adhesive category, and provide
various examples and counterexamples.

Definition 3.1 (Adhesive category).A categoryC is said to beadhesivef
() C has pushouts along monomorphisms;
(i) C has pullbacks;

(iif) pushouts along monomorphisms are VK-squares.

Since every monomorphism i8etis a coproduct injection, an8etis
extensive, we immediately have:

Example 3.2. Seis adhesive.

Observe that the restriction to pushouts along monomorphisms is neces-
sary: there are pushouts Betwhich are not VK squares. Consider the 2
element abelian group, (the following argument works for any non-trivial
group). In the diagram

m L2 X Loy,
Zz/ +‘ \Zz

p{

7 h
N
l/
both the bottom and the top faces are easily verified to be pushouts and the
rear faces are both pullbacks. However, the front two faces are not pullbacks.

Even with the restriction to pushouts along a monomorphism, many well-
known categories fail to be adhesive.

1

Counterexample 3.3.The categorie®os Top, Gpd andCat are not adhe-
sive.

Proof. For the case of the category of posets, wfitefor the ordered set
{0<1<...n—1}. The pushout square

1212
1l l
2] -3

7

is not van Kampen, since it is not stable under pullback along the[Bhap

[3] sending 0 to 0 and sending 1 to 2. THessis not adhesive. The same

pushout square, regarded as a pushout of categories, shoWsathanot ad-

hesive. For the case &pd, one simply replaces the poset by the groupoid

with n objects and a unique isomorphism between each pair of objects.
Finally consider the categofjop of topological spaces. A finite poset

induces a finite topological space on the same underlying set: the topology

is determined by specifying thatis in the closure ok if and only if x <'y.

Applying this process to the previous example yields an example showing that

Top is not adhesive. O

Since the definition of adhesive category only uses pullbacks, pushouts,
and relationships between these, we have the following constructions involv-
ing adhesive categories:

Proposition 3.4.

(i) If C andD are adhesive categories then s@ig D;

(i) If Cis adhesive then so a/C andC/C for any objectC of C;
(ii) If Cis adhesive then so is any functor categtyC|.

SinceSetis adhesive, part (iii) of the proposition implies that any presheaf
topos[X, Set is adhesive. In particular, the categ@yaph of directed graphs
is adhesive. Indeed, € is adhesive, then so is the category

Graph(C) =[- = -, C]

of internal graphs irC [24].

Part (ii) implies that categories of typed graphs [1], coloured (or labelled)
graphs [6], ranked graphs [13] and hypergraphs [11], considered in the litera-
ture on graph grammars, are adhesive.

As a consequence, all proof techniques and constructions in adhesive cat-
egories can be readily applied to any of the aforementioned categories of
graphs. In fact, more generally, we have:

Proposition 3.5. Any elementary topos is adhesive.

This is somewhat harder to prove than the result for presheaf toposes; the
proof can be found in [18].

Part(ii) of Proposition 3.4 also allows us to construct examples of adhe-
sive categories which are not toposes.

8

Example 3.6. The categoret. = 1/Setof pointed sets (or equivalently, sets
and partial functions) is adhesive, but is not extensive, and therefore, is not a
topos.

Proof. In the category of pointed sets, the initial object is the one-point set 1.
Since every non-initial object has a map into 1, the initial object is not strict,
and so the category is not extensive [3, Proposition 2.8]. O

4 Basic properties of adhesive categories

Here we provide several simple lemmas which hold in any adhesive category.
Lemma 4.1 demonstrates why adhesive categories can be considered as a gen-
eralisation of extensive categories. Lemmas 4.2, 4.3, 4.5 and 4.6 shed some
light on pushouts in adhesive categories.

Lemma 4.1. An adhesive category is extensive if and only if it has a strict
initial object.

Proof. In an extensive category the initial object is strict [3, Proposition 2.8].
On the other hand, in an adhesive category with strict initial object, any arrow
with domain 0 is mono. Consider the cube

o

N

X Y
h L h
r S

/ &
A t

B

\

v4
kY

/A

A+B

in which the bottom square is a pushout along a monomorphism, while the

back squares are pullbacks since the initial object is strict. By adhesiveness,
front squares are pullbacks if and only if the top squares is a pushout; but this
says that the front squares are pullbacks if and only if the top row of these

squares is a coproduct (Z=X+Y). 0J

The conclusions of the following two lemmas are used extensively in lit-
erature on algebraic graph rewriting. Indeed, they are usually assumed as
axioms (see [9] and 86 below) in attempts at generalising graph rewriting.
They hold in any adhesive category by Lemma 2.3:

9

Lemma 4.2. Monomorphisms are stable under pushout.
Lemma 4.3. Pushouts along monomorphisms are also pullbacks.

The notion of pushout complement [12] is vital in algebraic approaches to
graph rewriting.

Definition 4.4. Letm:C — Aandg: A— Bbe arrows in an arbitrary category
(mis not assumed to be monic). pushout complememtf the pair(m,g)
consists of arrowd : C — B andn: B — D for which the resulting square
commutes and is a pushout.

The conclusion of the following lemma is a crucial ingredient in many
applications of graph rewriting. It has also been assumed as an axiom [11]
in order to prove the concurrency theorem (cf. Theorem 5.9). It is important
mainly because it assures that once an occurrence of a left hand side of a
rewrite rule is found within a structure, then the application of the rewrite rule
results in a structure which is unique up to isomorphism (cf. 85). In other
words, rewrite rule application is functional up to isomorphism.

Lemma 4.5. Pushout complements of monos (if they exist) are unique up to
isomorphism.

Proof. Suppose that

m C f m C
AN YO
A B A B’
gNDZn gNDKn’

are pushouts and thatis mono. Consider the cube

C N

fB/ kl

/

D

in which the front right face is a pullback, ahd C — U is the map induced

by g andg’. Then the front faces and the back left face are pullbacks, hence
the back right face is also a pullback; and the bottom face is a pushout, hence
the top face is a pushout. But this implies thas invertible; by symmetry,

so too isl. The induced isomorphisin= k1 : C — C’ satisfies? j = nand

jf =f. O

UJ

10

The final lemma of this section will be used in Section 6 to show that
adhesive categories are high-level replacement systems:

Lemma 4.6. Consider a diagram

in which the marked morphisms are mono, the exterior is a pushout and the
right square is a pullback. Then the left square is a pushout, and so all squares
are both pullbacks and pushouts.

Proof. This amounts to stability of the exterior pushout under pullback along
w: D — F. The reader can verify this by examining the diagram below.

4.1 Algebra of subobjects

We can put a preorder on monomorphisms into an oljdeat an arbitrary
category by defining a monomorphisan A — Z to be less than or equal to
a monomorphisnb : B — Z precisely when there exists an arreowA — B
such thatoc = a. A subobject (0fZ) is an equivalence class with respect to
the equivalence generated by this preorder. For example, subobjedts in
are subsets while subobjects@Gmaph are subgraphs.

Here we shall demonstrate that unions of subobjects in adhesive categories
can be formed by pushout over their intersection This provides further evi-
dence of how pushouts behave in adhesive categories as well as making more
precise the intuition that the pushout operation “glues together” two structures
along a common substructure. As a corollary, it follows that in an adhesive
category the lattices of subobjects are distributive.

11

Let C be an adhesive category, afid fixed object ofC. We write SubZ)
for the category of subobjects &fin C; it has products (=intersections), given
by pullback inC. It has a top object, given ¥ itself. If C has a strict initial
object 0, then the unique map-9 Z is a monomorphism, and is the bottom
object of SubZ).

Theorem 4.7.For an object Z of an adhesive categ®@ythe category Sub(Z)
of subobjects of Z has binary coproducts: the coproduct of two subobjects is
the pushout irC of their intersection.

Proof. We shall show how to form binary coproducts (=unions) in S)b(
Leta: A— Z andb: B — Z be subobjects oZ, and form the intersection
ANB — Z, with projectionsp: ANB — A andq: AnB — B; and now the
pushout

ANB2B
Pl lv

in C. Letc:C — Z be the unique map satisfyirqu = a andcv=b. We
shall show that is a monomorphism, and so thais the coproducAUB in

Subg) of A andB. Suppose then thdt g: K — C satisfycf = cg. Form the
following pullbacks

L-5Kel M KMy Na ™M 2N
Al lf I o lg lo | | lmll |z
A—>C+—B A——~C+—B Ly —— KLy

|21T Tm2 T'zz

N21 7 M2 55 N2z

and note that each of the following pairs are the coprojections of a pushout,
hence each pair is jointly epimorphi@i, |2), (M, mp), (M1, My2), and(mp1, Mp2).
We are to show that = g; to do this, it will suffice to show thatm; = gny
andfm, = gmp; we shall prove only the former, leaving the latter to the reader.
To show thatf my = gy it will in turn suffice to show thaf mymy1 = gnmny

and fmymy2 = gmimyo.

First note thaafﬂ]_l =Cu f1|11 = Cf|1|11 = Cg|1|11 =Cgmm 1 =Ccuthm =
agim1, so thatfili; = g1 sincea is monic; thusfmmg = flqlg =
ufili1 = ugimy = g1 as required.

On the other handbfaol12 = cvhlio = cflali2 = cgllio = cgmimo =
cugimy2 = agim 2, So by the universal property of the pullba&k B, there
is a unique majh : Nj» — AN B satisfyingph = gimy2 andgh = fal12. Now

12

fm1m12 = f|2|12 = Vf2|12 = VC]h: Uph: ugimi2 = gnmy 2, and sofm1 =
gmy as claimed. As promised, we leave the proof thap = gnp to the
reader, and deduce that= g, so thatc is monic. O

Since pushouts are stable it follows that intersections distribute over unions:
Corollary 4.8. The lattice SulX) is distributive.

Proof. For subobjectaa: A— Z,b:B — Z andc: C — Z, construct the
pushout below left

ANBNC
ANBNC AﬂB/k‘/AﬂC
ANBT T ANC AN (BUC)
~— —
(ANB)U(ANC)

////BﬂC
c
TUele—

to obtain(ANB) U (ANC). Itis an easy exercise to show that the side faces
of the cube above right are all pullbacks, and therefore, that the top face is a
pushout. By the universal property of pushouts we have that

AN(BUC) = (ANB)U(ANC)

as subobjects. O

5 Double-Pushout Rewriting

Here we shall recall the basic notions of double-pushout rewriting [12, 6] and
show that it can be defined within an arbitrary adhesive category.
Henceforth we shall assume thais an adhesive category.

Definition 5.1 (Production). A productionp is a span
LK SR Q)
in C. We shall say thap is left-linear whenl is mono, andinear when both

| andr are mono. We shall I&? denote an arbitrary set of productions and let
p range over .

13

In order to develop an intuition of why a production is defined as a span,
we shall restrict our attention to linear production rules. One may then con-
siderK as a substructure of bothandR. We think ofL as the left-hand side
of the rewrite rulep, and therefore, in order to perform the rewrite, we need
to matchL as a substructure of a red€x The structurek, thought of as a
substructure oL, is exactly the part oE which is to remain invariant as we
apply the rule taC. Finally, parts ofR which are not irkK should be added to
produce the final result of the rewrite.

Thus, an application of a rewrite rule consists of three steps. First we
must matchL as a substructure of the red€x secondly, we delete all of
parts of the redex matched hywhich are not included iK. Thirdly, we add
all of R which is not contained i, thereby producing a new structube
The deletion and addition of structure is handled, respectively, by finding a
pushout complement and constructing a pushout.

We shall first clarify what is meant by matching a left-hand side of a
rewrite rule within a redex.

Definition 5.2 (Gluing Conditions). Given a productiorp as in (1), anatch
in Cis a morphismf : L — C. A matchf satisfies thgluing conditionswith
respect tq precisely when there exists an objécand morphismg: K — E
andv: E — C such that

is a pushout diagram. (In other words, there exists a pushout complement of
(f,1) in the sense of Definition 4.4.)

Definition 5.3 (Derivation). Given an objecC € C and a set of productions
P, we writeC——> ¢ D for a productiorp € P and a morphisnf : L — C if
(a) f satisfies the gluing conditions with respect,tand (b) there is a diagram

|
«—

LK
fl 9]
C« E

v

LR
lh
w D
in which both squares are pushouts.
The objectt in the above diagram can be thought of as a temporary state
in the middle of the rewrite process. Returning briefly to our informal de-

scription, it is the structure obtained frathby deleting all the parts df not
contained inK. Recall from Lemma 4.5 that if is mono (that is, ifp is

14

left-linear) thenE is unique up to isomorphism. Indeed,qdfis a left-linear
productionC —>p t D andC —> ¢ D’ then we must hav® = D’. This

is a consequence of Lemma 4.5 and the fact that pushouts are unique up to
isomorphism.

Definition 5.4 (Adhesive Grammar). An adhesive grammas is a pair(C, P)
whereC is an adhesive category aRds a set of linear productions.

Assuming that all the productions are linear allows us to derive a rich
rewriting theory on adhesive categories. Henceforward we assume that we
are working over an adhesive gramn@ar

5.1 Local Church-Rosser theorem

As shall be explained in section 6, adhesive categories with coproducts are
high-level replacement systems. In particular, we get the local Church-Rosser
theorem [17, 9].

Before presenting this theorem we need to recall briefly the notions of
parallel-independent derivation and sequential-independent derivation. The
reader may wish to consult [6] for a more complete presentation.

A parallel-independent derivatiois a pair of derivations

C > py,fr D1 and C—o pz,szZ

as illustrated in diagram (2) which satisfy an additional requirement, namely
the existence of morphismrs: L1 — E ands: L, — E; which render the
diagram commutative, in the sense that= f; andvis= fo.

R1<—K1 L2<—K2%R2
| gll ij [[)
Vi

D1 i E>

Similarly, asequential-independent derivatiahustrated in diagram (3), is a
derivation
C—=p,, 1, D1 — .1 D

where there additionally exist arrows: R; — E3 ands' : L, — E; such that
wis = ffandvsr’ = hy.

L2<—K2—>R2

L]_ % Kl
fl gll m lgz lh/z (3)

V1 E3 W3 D

15

The statement of the theorem below differs from those previously pub-
lished in the literature in that we do not need coproducts to establish the

equivalence of the first 3 items.
Theorem 5.5 (Local Church-Rosser).The following are equivalent

1. C—=>>p, 1, D1 and C—>p, 1, D2 are parallel-independent deriva-
tions

2. C—pp, 1, Drand Dy —p,. 1 D are sequential-independent deriva-
tions

3. C—>p,. 1, D2and b, —py 1 D are sequential-independent deriva-
tions.

If moreoverC is extensive then we may add
4. C—=>p, 4 p, (1,1, D is @ derivation.

Proof. (1)=(2): Suppose th& —>p, 1, D1 andC —i>p, , D2 are parallel-
independent derivations. Form the pullbggkoelow.

E;HiG L1<|—1K1 L1<|—1K1 K1£>R1
SO | w4 6
C E, Ey +—|-%— K> E; & G +ko- Ko Ko ko G —e33 E3
=T W wfwde e o & |
C<T1E1<T|—2 C<T1E1<T|—2 RZT>E4W—4>D

(i) (i) (iii) (iv)
The two regions in(ii) are pushouts [cf. diagram (3)]. Combining the two
diagrams givetiii) , with k; andk, obtained by the universal property @f
and satisfyingmk; = g1 anderk, = go. Regions (1), (1), andk are pushouts
by Lemma 4.6, and one now goes on to const{itby taking successive

pushouts.
The sequential-independent derivatOn—:>p, 1, D1 — 15 D may

now be constructed with the pushout squares below.

L1<|—1K1£>R1 L2<£K2£>R2
A SN S
Eo <& G-—e E3 Ei<e1—- G-e E4
Vzl ‘%1 lva Wll %3 lW4
C<TlE1W1>D1 D1<WE3W—3>D

16

(2)=(1): Suppose th&d —>p, 1, D1 andDy —>p, py Dare sequential-
independent derivations. Form the pullbggkoelow.

|I—>e3 Es K1£>R1 K1£>Rl K1I—l>|-l
a v g v 5 @ |r G
Ko —o0—|— E Ko ko~ F —e33 E Ko k> F - E
E D 2% 3 2 3 2 2
P Psonf wdo oonl & |w
¥ <
LZ?Elwal LZ?Elwal RZT>E4W4D2

(i) (ii) (iii) (iv)
The two regions ir(ii) are pushouts [cf. diagram (3)]. Combining the two
diagrams givetiii) , with k; andk, obtained by the universal property @f
and satisfyingsk, = g, andejk; = g1. Regions (1), (¥), andd are pushouts
by Lemma 4.6, and one now goes on to const{itby taking successive
pushouts.

The parallel independent derivatioBs—>p, ¢, D1 andC —>p, 1, D2
may now be constructed with the pushout squares below.

L1<|—1K1£>R1 L2<£K2rH2R2
A O
Eo «&— F —e3s E3 Eij«e-F e Ey
I -
CTE]_WD]_ D1<WE3W3>D2

The proof of (13=(3) is similar; the proof of (1(4) is a straightforward
exercise in the theory of extensive categories. O

In fact, the proof that (B>(2) remains valid more generally in the context
of left-linear productions, but the proof of the converse requires linearity.

5.2 Concurrency Theorem

The original concurrency theorems were proved for graph grammars [8] and
later generalised to high level replacement structures (cf. 86) in [11] which
satisfy additional axiom sets, there called HLR2 and HLR2*. Roughly, the
concurrency theorem states that given two derivations in a sequence, together
with information about how they are related, one may construct a single
derivation which internalises the two original derivations and performs them
“concurrently”. Moreover, one may reverse this process and deconstruct a

17

concurrent derivation into two related sequential derivations. Here we state
and prove the concurrency theorem for adhesive grammars without the need
for extra axioms.

We shall first need to recall the notions of dependency relation, dependent
derivation and concurrent production.

Definition 5.6 (Dependency Relation).Suppose thap; and p, are linear
productions. Adependency relatiofor (p1, p2) is an objeciX together with
arrowss: X — Rq andt : X — Lo for whichry, s, t, andl, can be incorporated
into a diagram

S t
Kl E} R1 H f. I—2 <|£ K2 (4)
g’lEi, N /2/ El/@l’z
1 Wfl D \/2 2

in which all three regions are pushouts.

Definition 5.7 (Dependent Derivation). Consider a derivatio@ —>p, ,
D1 —=p, 1, D as illustrated ir(i) below

2N
r |2
I1 rp lo ro Kl — Rl h& fé L2 — K2
Li+< K =R hy f Lo+~ Ko 5 Ry ol \ / 1ld
fil &l N 12 |h E; D/ E}
C Ty E; e D1 Vi Es Wi D e W) f A o
Ei —— D1 —E

() (ii)

and a dependency relatiof for (p;, p2). The derivation is said to bX-
dependenif h;s= fot and there exist morphisnes : E; — E; andey : E; —
E, satisfyinge g} = g1 andexg, = g2, and if moreover the unique map:
D' — D; satisfyingdh; = hy anddf} = f, also satisfiesiw) = wie; and
dv, = voe, (seefii)).

Definition 5.8 (Concurrent Production). Given a dependency relatiohfor
(p1, P2), the X-concurrent production fx p2 is the span

v A
C/ ¢ P/ 3 D/

18

obtained by taking the bottom row of the following extension of Diagram (4)

X
S t
I I
L1<—1K1£>R1 h L2<—2K22>R2

/ f/
ot le NS Y gl

C + E; D’ E,— D
Vi 1'W\ﬁy 2"‘/2
u P’ v

in which 1 and % are pushouts apit a pullback.
Theorem 5.9 (Concurrency Theorem).

1. Given an X-dependent derivation-G4>p, 1, D1—>p, 1, D there ex-
ists an X-concurrent derivation C&—>p, ., p, D

2. Given an X-concurrent derivation-&—>p,.,p, D, there exists an X-
dependent derivation G&—>p, f, D1—>p, 1, D.

Proof. 1. Suppose that we have ahdependent-derivation, as in the solid
part of the diagram

X

S t

L1 eL Ky LRy

(iii) L2£K2£>R2
o0 g N, L, Mg K

f, C/ <V, Ei " 1 D/1 2\/2 Eé Wy D' hy
c M) & (i) i i) & (i d

D1 E2W—2>5

V1 Wy V2

inwhich(iii) , (i)+(vi), (i)+(vii) , (iv)+(viii) , (v)+(ix), (ii), and(iv) are pushouts,
so that alsdvii) and(viii) are pushouts. Fill in the dotted parts of the diagram
to obtain further pushout®), (v), (vi), and(ix).

By Lemma 4.2 bothv; andv,, are monomorphisms, and now by Lemma 4.3
both (vii) and (viii) are pullbacks. Consider the cube in which bottom and
front left faces are the pullbacKsii) and(viii), and the remaining faces are
constructed so as to be pullbacks. Since the bottom face is also a pushout, so
is the top face. Similarly, since the front left face is a pushout, so is the back

19

right face.

. %1

2. Suppose that we have anconcurrent derivatio@ —>p, ., p, f D, as
illustrated by the solid part of the diagram below left.

X
S t S t
| | |
LKy 2R, LietKy 3Ry Lo <2 Ko 3 Ry

o f;
N] |’ \{’1 y : h
HloG| w Dy | B @ e
¥ \ ow, Y, C' v B —w— D} «—v,— Ey W, DY
C/ +— El —u F)/ —— E2 — Dl Cl (I) g/l (V) g,l (VI) % (IV) ld

CJ/ (I) %1 (“) E (“I) % (IV) éd C (V_l El Wl 5 Dl PR 2 E2 — D

Lk, AR

We construct pushout$) and (iii) and obtainvy andw, using the univer-
sal properties. It now follows thdt) and (iv) are also pushouts. Now con-
struct the pushouy); since(ii)+(v) and(iii) are pushouts, there is a unique
map Vv, : E; — D1 so that(vi) is a pushout andiii)+(vi) equals(ii)+(Vv).
The diagram on the right now provides the requikedependent derivation
C_{>p170fi D1 _l>p27d1fé D. |

6 Relation with High-Level Replacement Systems

High-level replacement systems [9, 10, 11] or HLRS encompass several at-
tempts to isolate general categorical axioms which lead to categories in which
one can define double-pushout graph rewriting and prove useful theorems
such as the local Church-Rosser theorem and the concurrency theorem.
HLRS have axioms which are parametrised over an arbitrary class of mor-
phismsM . Here we give a simplified version of the definition which appears

20

in [9]. The simplification is that we tak®1 to be the class of monomor-
phisms: we justify this by noting that this is the case in the majority of exam-
ples.

Definition 6.1 (High-Level Replacement System)A high-level replace-
ment system is a categoBssatisfying the following axioms:

1. pairsC +— A — Bwith at least one of the arrows mono have a pushout;
. pairsB — D « C with both morphisms mono have pullbacks;
. monos are preserved by pushout;

2

3

4. finite coproducts exist;

5. pushouts of monos are pullbacks;
6

. pushout-pullback decomposition holds: that is, given a diagram

ASBLE
Lo Is I
CyDwF

if the marked morphisms are mono, the whole rectangle is a pushout
and the right square is a pullback, then the left square is a pushout.

Lemma 6.2. Any adhesive category with an initial object is an HLRS.
Proof. This follows immediately from Lemmas 4.2, 4.3, and 4.6. O

The axioms listed above are enough to prove the local Church-Rosser the-
orem (cf. Theorem 5.5), buiot the concurrency theorem (cf. Theorem 5.9).
To prove the latter, extra axioms had to be introduced in [11], such as the
conclusion of the following lemma. Interestingly, it is almost the dual of the
main axiom of adhesive categories.

Lemma 6.3 (Cube-pushout-pullback-lemma [11]).Given a cube in which

all arrows in the top and bottom faces are mono, if the top face is a pullback
and the front faces are pushouts, then the bottom face is a pullback if and only
if the back faces are pushouts.

21

Proof. Since the front faces are pushouts along monomorphisms, they are
also pullbacks.

If the bottom face is a pullback, then the back faces are pushouts by sta-
bility of the pushouts on the front faces. Suppose conversely that the back
faces are pushouts; since they are pushouts along monomorphisms, they are
also pullbacks. One now simply “rotates the cube”: since the front right and
back left faces are pushouts, and the top and back right faces are pullbacks, it
follows by adhesiveness that the bottom square is a pullback. O

7 Conclusions and future work

We introduced the notions of van Kampen (VK) square and adhesive cate-
gory. VK squares are “well-behaved pushouts”, and a category is adhesive
when pushouts along monos are VK. Adhesive categories are closely related
to extensive categories.

Double-pushout (D-p) rewriting can be defined in an arbitrary adhesive
category. We introduced adhesive grammars, which are adhesive categories
with a set of linear productions. Adhesive grammars have sufficient structure
for the development of a rich rewriting theory. In particular, we proved the
local Church-Rosser and the so-called concurrency theorem within the setting
of adhesive grammars. We have also shown that adhesive categories satisfy
many of the axioms [9, 11] which were proposed in order to prove these the-
orems. Thus, we have arrived at a class of categories which supports such
a theory of D-p rewriting, however, we believe that adhesive categories are
mathematically elegant and less ad-hoc than previous proposals.

In order to back this claim and to further develop the theory of adhesive
categories, we have demonstrated a number of useful properties. For instance,
subobject union is formed as a pushout over the intersection, and subobject
intersection distributes over subobject union. We have provided some closure
properties which allow the construction of new adhesive categories from old.
Any elementary topos is adhesive, but there are examples of adhesive cate-
gories which are not toposes. Adhesive categories include many well-known
notions of graph structures used in computer science.

We believe that adhesive categories will be useful in the development of
specific graphical models of computation and the development of semantic
techniques for reasoning about such models. The rewriting theory needs to
be developed further, with, for example, the construction of canonical de-
pendency relations from derivations [11]. A possible direction for future
work is to examine whether adhesive categories have enough structure so

22

that groupoidal relative pushouts [26] can be constructed in cospan bicate-
gories over adhesive categories. Such cospan bicategories provide a way of
understanding graphs in a modular fashion and will provide a general class of
models which should include bigraphs [21] as examples. Another question to
be resolved is whether demanding the good behaviour of pushouts only along
some class of monomorphisms will result in further interesting categories.

AcknowledgementThe second author would like to thank Vladimiro Sas-
sone for many discussions in the early stages of this project. Thanks also
go to Marco Carbone, Paulo Oliva, Mogens Nielsen and especially Mikkel
Nygaard for reading early drafts and providing many valuable comments and
suggestions.

References

[1] P. Baldan, A. Corradini, H. Ehrig, M. &we, U. Montanari, and F. Rossi. Con-
current semantics of algebraic graph transformations. In H. Ehrig, H.-J. Kre-
owski, U. Montanari, and G. Rozenberg, editdfgndbook of Graph Gram-
mars and Computing by Graph Transformatiorolume 3, chapter 3, pages
107-187. World Scientific, 1999.

[2] R. Brown and G. Janelidze. Van Kampen theorems for categories of covering
morphisms in lextensive categoriels.Pure Appl. Algebral19:255-263, 1997.

[3] A.Carboni, S. Lack, and R. F. C. Walters. Introduction to extensive and distribu-
tive categoriesJournal of Pure and Applied Algebyr&4(2):145-158, February
1993.

[4] L. Cardelli. Bitonal membrane systems. Draft, 2003.

[5] L. Cardelli and A. D. Gordon. Mobile ambients. Foundations of Software
Science and Computation Structures, FOSSACSS@&nger Verlag, 1998.

[6] A. Corradini, H. Ehrig, R. Heckel, M. Lowe, U. Montanari, and F. Rossi. Al-
gebraic approaches to graph transformation part i: Basic concepts and double
pushout approach. In G. Rozenberg, editdgndbook of Graph Grammars
and Computing by Graph Transformatiomolume 1, pages 162—-245. World
Scientific, 1997.

[7] V. Danos and C. Laneve. Graphs for core molecular biologyintarnational
Workshop on Computational Methods in Systems Biology, CMSR(IB.

[8] H. Ehrig. Introduction to the algebraic theory of graph grammarsldnint.
Workshop on Graph Grammarsecture Notes in Computer Science LNCS 73,
pages 1-69. Springer Verlag, 1979.

23

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

H. Ehrig, M. Gajewsky, and F. Parisi-Presicce. High-level replacement systems
with applications to algebraic specificaitons and petri nets. In H. Ehrig, H.-
J. Kreowsky, U. Montanari, and G. Rozenberg, editbtandbook of Graph
Grammars and Computing by Graph Transformatimelume 3, chapter 6,
pages 341-400. World Scientific, 1999.

H. Ehrig, A. Habel, H.-J. Kreowski, and F. Parisi-Presicce. From graph gram-
mars to high level replacement systems. 16t Graph Grammar Workshop
volume 73 ofLecture Notes in Computer Scienpages 1-69. Springer Verlag,
1991.

H. Ehrig, A. Habel, H.-J. Kreowski, and F. Parisi-Presicce. Parallelism and
concurrency in high-level replacement systeMath. Struct. in Comp. Science
1, 1991.

H. Ehrig, M. Pfender, and H.J. Schneider. Graph-grammars: an algebraic ap-
proach. InlEEE Conf. on Automata and Switching Theopages 167-180,
1973.

U. Montanari F. Gadducci. A concurrent graph semantics for mobile ambients.
In Mathematical Foundations of Programming Semantics MFPS/6lLime 45
of ENTCS Elsevier, 2001.

F. Gadducci and R. Heckel. An inductive view of graph transformation. In
Workshop on Algebraic Development Technigpeges 223-237, 1997.

J. C. Godskesen, T. Hildebrandt, and V. Sassone. A calculus of mobile re-
sources. Irint. Conf. on Concurrency Theory, CONCUR ,@®lume 2421 of
Lecture Notes in Computer Scien@ages 272-287. Springer, 2002.

0. H. Jensen and R. Milner. Bigraphs and transitions.Ptimciples of Pro-
gramming Languages, POPL '0BCM Press, 2003.

H.-J. Kreowski. Transformations of derivation sequences in graph grammars.
In Lecture Notes in Computer Sciengelume 56, pages 275-286, 1977.

S. Lack and P. Sobatski. Toposes are adhesive. Manuscript, 2003.

[19] J. Lambek and P. J. Scotintroduction to higher order categorical logiaol-

ume 7 ofCambridge studies in advanced mathematiCambridge University
Press, 1986.

[20] J. Leifer and R. Milner. Deriving bisimulation congruences for reactive systems.

In Int. Conf. on Concurrency Theory, CONCUR Q@@cture Notes in Computer
Science, pages 243-258. Springer, 2000.

24

[21]

[22]

[23]

[24]

[25]

[26]

R. Milner. Bigraphical reactive systems: Basic theory. Technical Report 523,
Computer Laboratory, University of Cambridge, 2001.

R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, (Parts |
and I). Information and ComputatiqriL00:1-77, 1992.

U. Montanari, M. Pistore, and F. Rossi. Modelling concurrent, mobile and
coordinated systems via graph transformations. In H. Ehrig, H.-J. Kreowski,
U. Montanari, and G. Rozenberg, editorandbook of Graph Grammars and
Computing by Graph Transformatipiwvolume 3, chapter 4, pages 189-268.
World Scientific, 1999.

J. Power and K. Tourlas. An algebraic foundation for graph-based diagrams
in computing. InMathematical Foundations of Programming Semantics MFPS
'01, volume 45 ofElectronic Notes in Computer Sciendgsevier, 2001.

V. Sassone and P. Soboski. Deriving bisimulation congruences: 2-categories
vs. precategories. IRoundations of Software Science and Computation Struc-
tures FOSSACS 'Q3volume 2620 ofLecture Notes in Computer Science
Springer Verlag, 2003.

V. Sassone and P. Sobpnski. Deriving bisimulation congruences using 2-
categoriesNordic Journal of Computingl0(2):163-183, 2003.

25

Recent BRICS Report Series Publications

RS-03-31 Stephen Lack and Pawet Sobawski. Adhesive CategorieOc-
tober 2003. 25 pp.

RS-03-30 Jesper Makholm Byskov, Bolette Ammitzbgll Madsen, and
Bjarke Skjernaa. New Algorithms for Exact Satisfiability Oc-
tober 2003. 31 pp.

RS-03-29 Aske Simon Christensen, Christian Kirkegaard, and Anders
Mgller. A Runtime System for XML Transformations in Java
October 2003. 15 pp.

RS-03-28 Zolén Esik and Kim G. Larsen. Regular Languages Definable
by Lindstrom Quantifiers August 2003. 82 pp. This report su-
persedes the earlier BRICS report RS-02-20.

RS-03-27 Luca Aceto, Willem Jan Fokkink, Rob J. van Glabbeek, and
Anna Ingolfsdotti. Nested Semantics over Finite Trees are
Equationally Hard. August 2003. 31 pp.

RS-03-26 Olivier Danvy and Ulrik P. Schultz. Lambda-Lifting in
Quadratic Time August 2003. 23 pp. Extended version of a pa-
per appearing in Hu and Rodriguez-Artalejo, editors, Sixth In-
ternational Symposium on Functional and Logic Programming
FLOPS '02 Proceedings, LNCS 2441, 2002, pages 134-151.
This report supersedes the earlier BRICS report RS-02-30.

RS-03-25 Biernacki Dariusz and Danvy Olivier.From Interpreter to Logic
Engine: A Functional Derivation June 2003.

RS-03-24 Mads Sig Ager, Olivier Danvy, and Jan Midtgaard. A Func-
tional Correspondence between Call-by-Need Evaluators and
Lazy Abstract MachinesJune 2003. 13 pp.

RS-03-23 Korovin Margarita. Recent Advances irk-Definability over
Continuous Data TypesJune 2003. 26 pp.

RS-03-22 Ivan B. Dam@rd and Mads J. Jurik. Scalable Key-Escrow
May 2003. 15 pp.

RS-03-21 Ulrich Kohlenbach. Some Logical Metatheorems with Applica-
tions in Functional Analysis May 2003. 55 pp. Slighly revised
and extended version to appear infransactions of the Ameri-
can Mathematical Society

