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New Algorithms for Exact Satisfiability∗
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{jespermn,bolette,skjernaa}@brics.dk
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Abstract

The Exact Satisfiability problem is to determine if a CNF-
formula has a truth assignment satisfying exactly one literal in
each clause; Exact 3-Satisfiability is the version in which each
clause contains at most three literals. In this paper, we present
algorithms for Exact Satisfiability and Exact 3-Satisfiability run-
ning in time O(20.2325n) and O(20.1379n), respectively. The pre-
viously best algorithms have running times O(20.2441n) for Exact
Satisfiability (Monien, Speckenmeyer and Vornberger (1981)) and
O(20.1626n) for Exact 3-Satisfiability (Kulikov and independently
Porschen, Randerath and Speckenmeyer (2002)). We extend the
case analyses of these papers and observe, that a formula not sat-
isfying any of our cases has a small number of variables, for which
we can try all possible truth assignments and for each such as-
signment solve the remaining part of the formula in polynomial
time.
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1 Introduction
The Exact Satisfiability (XSAT) problem is a variant of Satisfia-
bility (SAT), where the difference is that in XSAT a clause is satisfied
if exactly one of its literals is true. Exact 3-Satisfiability (X3SAT)1

is the variant of XSAT in which each clause contains at most three liter-
als. XSAT is NP-complete even when restricted to clauses containing at
most three literals and all variables occurring only unnegated [8]. XSAT
with all variables occurring at most twice can be solved in polynomial
time [5]2.

XSAT can easily be solved in time O(2n) (we will ignore polynomial
factors when stating running times, since these are all exponential) by
enumerating all possible truth assignments to the n variables. In 1981,
Schroeppel and Shamir were the first to give a faster algorithm. Their
algorithm solves a class of problems of which XSAT and Knapsack are
the most prominent in time O(2n/2) and space O(2n/4) [9]. The same year,
Monien, Speckenmeyer and Vornberger [5] gave an algorithm solving only
XSAT, but in time O(20.2441n)3 using only polynomial space. This is the
previously best algorithm for XSAT.

X3SAT can of course be solved by an algorithm solving XSAT, but
in recent years faster algorithms for X3SAT have been designed. The
first was by Drori and Peleg [1] and runs in time O(20.2072n); several im-
provements followed and the previously best running time for X3SAT is
O(20.1626n) and was achieved independently by Kulikov [2] and Porschen,
Randerath and Speckenmeyer [6]4 in 2002.

Except for the algorithm by Schroeppel and Shamir [9], all the al-
gorithms above are branch-and-reduce algorithms. A branch-and-reduce
algorithm branches by making recursive calls on smaller formulas, such
that the original formula is satisfiable if and only if at least one of the
smaller formulas are satisfiable. In each branch, the algorithm reduces
the formula by replacing it with another formula that is satisfiable if
and only if the original formula is and that contains fewer variables.
Fast branch-and-reduce algorithms rely on good decisions about what to

1Exact 3-Satisfiability is also called One-In-Three Satisfiability.
2They state that a generalised version of XSAT with variables occurring at most

twice, called MAX({≤,=,≥}, ·, 2), reduces to Perfect Matching. The proof is in
the technical report [4].

3Note that [5] only states the time O(2n/4). The time complexity of O(20.2441n) is
proved in the technical report [4].

4See Porschen, Randerath and Speckenmeyer [7] for an extended abstract.
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branch on and good reduction rules.
In this paper, we present new branch-and-reduce algorithms for XSAT

and X3SAT running in time O(20.2325n) and O(20.1379n), respectively. We
introduce new reductions for both XSAT and X3SAT and improve the
case analyses by a more careful analysis of the worst cases, which for
some cases involves splitting them into more cases. Our main improve-
ment, however, lies in our handling of sparse formulas: if the number of
variables occurring at least three times in the formula is small, we can
enumerate all possible truth assignments to these variables. For each
assignment, the remaining formula contains only variables occurring at
most twice, so we can decide in polynomial time, if it is satisfiable [5].

2 Preliminaries

2.1 Definitions

We are given a set of variables, which we will denote by using the letters
x, y, z, w and u. A literal is either a variable x or the negation of a
variable x̄; we use x̃ to denote a literal that is either x or x̄. A clause is a
collection of literals, written as (x̃1, . . . , x̃l); we use the letter C to denote
clauses. Sometimes, we will think of a clause as a set of literals (actually
a multiset, since a clause can contain more than one of each literal); we
use (x̃, C) to denote a clause with x̃ and all the literals in C. A formula
is a set of clauses usually written as C1 ∧ C2 ∧ · · · ∧ Cm; we use the
letter F to denote formulas. In intermediate steps of our algorithm we
allow clauses to contain constants (true or false). The size of a formula
is the number of literals and constants contained in the formula.

XSAT is the problem of given a formula F with m clauses over n vari-
ables to decide, if there exists an assignment to the variables, such that
exactly one literal in each clause is true.

We let V (F ) denote the variables occurring in F . An (a, b)-occurrence
is a variable occurring a times unnegated and b times negated or vice
versa in F ; a unique variable is a variable occurring only once. We will
assume for simplicity, that when we look at a variable the first occurrence
is unnegated.

We let F [x � y] where y is either a constant or a literal denote F
with x replaced by y and x̄ replaced by ȳ; similarly, we let F [C � false]
denote F with all literals in C replaced by false and their negations by
true.
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In X3SAT, a cycle is a list of clauses (y1, z̃1, z2), (y2, z̃2, z3), . . . ,
(yk, z̃k, z1) where neighbour clauses and the first and last clause share a
variable and the zi’s are different variables.

2.2 Branching

Our algorithms make recursive calls on formulas with fewer variables.
If C is a clause in the formula and C ′ ( C then in a satisfying assign-
ment for the formula either all literals in C ′ are false or exactly one is
true. We use three different types of branches: branching on C ′ meaning
that the recursive calls are on C ′ ∧ F (in this case the formula can be
reduced immediately afterwards, such that there will be fewer variables
and clauses) and F [C ′ � false]; we will denote the first branch “setting
C ′ to true” and the second “setting C ′ to false”. We can also branch on
two variables x1, x2 meaning that the recursive calls are on F [x1 � true],
F [x2 � true] and F [x1, x2 � false]. Finally, we can branch on x1; the two
branches are then F [x1 � true] and F [x1 � false].

2.2.1 Sparse formulas

We call a formula k-sparse, if the number of variables occurring at least
three times is at most n/k. To decide if a k-sparse formula is satisfiable,
we enumerate all possible truth assignments to these n/k variables; for
each assignment, all variables in the remaining part of the formula occur
at most twice, so we can decide in polynomial time, if it is satisfiable.
The total running time is O(2n/k). We use this for XSAT with k = 5
and for X3SAT with k = 15

2
.

2.3 Branching vectors

In each branch of the algorithm, we remove a certain number of variables
using the reductions; then we get a recursion for the running time of
the form T (n) = T (n − t1) + T (n − t2) + · · · + T (n − tk). We call
t = (t1, t2, . . . , tk) the branching vector of this branch. The solution to
the recursion is T (n) = αn

t , where αt is the positive root of 1− 1
xt1

− 1
xt2

−
· · · − 1

xtk
; we call αt the value of t and the value of a branching vector

is decreasing as a function of the entries in the vector. Proofs of these
results can be found in a manuscript by Kullmann and Luckhardt [3].
The logarithms of the values of all branching vectors occurring in this
paper are either stated in Table 1 or are smaller than one of them by
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Table 1: Branching vectors and the logarithms of their values (rounded)
(a) XSAT

t log2(αt) t log2(αt)

(12, 1) 0.2302 (11, 11, 3) 0.2216
(8, 2) 0.2325 (10, 8, 4) 0.2325
(6, 3) 0.2315 (13, 7, 4) 0.2258
(5, 4) 0.2232

(b) X3SAT

t log2(αt)

(12, 4) 0.1379
(11, 5) 0.1317
(9, 6) 0.1353
(8, 7) 0.1336

monotonicity. The running time of the whole algorithm is O(2log2 α·n),
where α is the largest of the αt’s.

3 The algorithms
Both our algorithms have the following structure: first, the algorithm re-
duces the formula using the reductions from Section 3.1. If the reduced
formula (we call a formula reduced, if none of the reductions from Sec-
tion 3.1 is applicable) contains no clauses it is satisfied and if it contains
the empty clause it can not be satisfied. If the formula only contains
variables that occur at most twice in the formula, the algorithm decides
in polynomial time if the formula is satisfiable; otherwise, the algorithm
branches depending on whether the formula contains certain subformu-
las. The algorithm branches on the first matching case, which means
that when it is in one case, no part of the formula matches any previous
cases. The cases are described for XSAT in Section 3.2 and for X3SAT
in Section 3.3. For simplicity, we ignore symmetries when this does not
lead to confusion, so if we have two variables y1 and y2 or two clauses C1

and C2 that occur symmetrically and one of them has a certain property,
we will just assume it is either.

3.1 Reductions

In this section, we present the reductions that are used in our algo-
rithms; first, we present some common reductions used in both algorithms
and then specific ones for the two algorithms. The reduction procedure
for XSAT uses reductions (1) to (13) and the reduction procedure for
X3SAT uses (1) to (8) and (14) and (15). The reductions are applied
repeatedly top-down until no reduction applies. If any of the reductions
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either assign a variable both true and false or a constant is assigned its
opposite value, the reduction procedures replace the whole formula with
the empty clause.

When we branch, we call the algorithms recursively on smaller for-
mulas. We show how to apply specific reductions to remove the stated
number of variables. One can also show that applying the reductions
top-down leads to the same or better branching vectors.

3.1.1 Common reductions

The common reductions are standard reductions also used by, e.g., Ku-
likov [2]. F denotes the entire left hand side of the reduction.

(true, C) ∧ F ′ → F ′[C � false] (1)
(false, C) ∧ F ′ → C ∧ F ′ (2)

(x) ∧ F ′ → F ′[x � true] (3)
(x, y) ∧ F ′ → F ′[y � x̄] (4)

(x, x, C) ∧ F ′ → F [x � false] (5)
(x, x̄, C) ∧ F ′ → F ′[C � false] (6)

(x, y, C) ∧ (x, ȳ, C ′) ∧ F ′ → F [x � false] (7)
(x, y, C) ∧ (x̄, ȳ, C ′) ∧ F ′ → F [y � x̄] (8)

3.1.2 Reductions for XSAT

Reduction (9) removes variables x that only occur unnegated and only
in clauses with a unique variable or with literal y (and y is in no clauses
without x). Note, that either k or l can be zero.

(x, y, C1) ∧ · · · ∧ (x, y, Ck) ∧ (x, u1, C
′
1) ∧ · · · ∧ (x, ul, C

′
l) ∧ F ′

x, y /∈ V (F ′), ui unique
→

F [x � false]
(9)

Reduction (9) is not used for X3SAT, as (14) or (15) can be used instead.
Reductions (10) and (11) are called resolution; resolution is a well-

known technique for removing variables occurring both unnegated and
negated and can also be used for solving SAT formulas. The idea is, that
we can remove a variable x occurring both unnegated and negated and
make all possible combinations of the clauses that contained x and the
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clauses that contained x̄. If x is an (a, b)-occurrence, this will replace a+b
clauses with ab clauses, so we only use it for (a, 1)- and (2, 2)-occurrences.

(x̄, C) ∧ (x, C1) ∧ · · · ∧ (x, Ck) ∧ F ′

x /∈ V (F ′)

→
(C, C1) ∧ · · · ∧ (C, Ck) ∧ F ′ (10)

(x̄, C1) ∧ (x̄, C2) ∧ (x, C ′
1) ∧ (x, C ′

2)
x /∈ V (F ′)

∧ F ′ →

(C1, C
′
1) ∧ (C1, C

′
2)∧(C2, C

′
1) ∧ (C2, C

′
2) ∧ F ′

(11)

Resolution is not used for X3SAT, as it creates clauses with more than
three variables.

Reduction (12) removes clauses that have another clause as subset,
and (13) reduces the formula if a clause shares all but one variable with
another.

C ∧ C ′ ∧ F ′
C⊆C′

→ C ∧ F ′[C ′ \ C � false] (12)

(x, C ′) ∧ (C, C ′) ∧ F ′ → (x, C ′) ∧ (x̄, C) ∧ F ′ (13)

Reduction (12) and (13) are not used for X3SAT as (14) handles the
same cases when the clauses have size three.

Lemma 1. In a reduced XSAT formula, for all pairs of clauses, each
has at least two variables that do not occur in the other.

Proof. All clauses contain at least three literals by (3) and (4), so we
only need to consider clauses having at least two variables in common.
Common variables must occur the same (unnegated or negated) by (7)
and (8). No clause is a subset of another by (12), and for any pair of
clauses both have at least two literals that do not occur in the other
by (13), so the lemma is true.

3.1.3 Reductions for X3SAT

Reduction (14) is also a standard reduction, but we only use it for
X3SAT. Reduction (15) reduces formulas containing two variables that
only occur unnegated and only in clauses with a unique variable, except
for one clause, where one occurs unnegated and the other negated. Note,
that both variables can be unique themselves.

(x, y, z1) ∧ (x, y, z2) ∧ F ′ → (x, y, z1) ∧ F ′[z2 � z1] (14)
(x̄1, x2, y) ∧ F ′

x1 and x2 only occur unnegated and
in clauses with a unique variable in F ′

→ F [x2 � false] (15)

7



Remark. A reduced X3SAT formula contains no constants or 1- or 2-
clauses by (1) to (4) and no two clauses have more than one variable in
common by (7), (8) and (14); also, no clause has more than one unique
variable and all (a, 0)- and (a, 1)-occurrences that are not unique are in
a clause with no unique variables by (15).

3.1.4 Soundness and complexity

The following lemma states that the reductions are sound, that is, the
reduced formula is satisfiable if and only if the original formula is.

Lemma 2. Reductions (1) to (15) are sound.

Proof. To prove that (1) to (8) and (10) to (14) are sound we just note,
that exactly one literal from a clause must be true and exactly one of x
and x̄ must be true.

In (9), x can be assumed to be false, as a satisfying assignment with x
true can be changed to a satisfying assignment with x false by making y
and the unique variables true instead. Similarly in (15), a satisfying
assignment with x2 true must have x1 true, and it can be changed by
setting x1 and x2 false and all the unique variables true.

The next two lemmas show, that during the reduction procedures
the size of the formula is never larger than the maximum of the size of
the original formula and 2mn. We use this to show, that the reduction
procedures run in polynomial time in the size of the formula.

Lemma 3. When the reduction procedures run on a formula F with
m clauses and n variables the intermediate formulas are never larger
than max(|F |, 2mn).

Proof. For X3SAT it is obvious that the size of the formula is never
larger than max(|F |, 3m).

For XSAT, none of the reductions increases the number of variables
or clauses in the formula. The reduction procedure first applies reduc-
tions (1) to (6), which all decrease the size of the formula. After it has
run, the formula contains no constants and no variable occurs more than
once in the same clause; thus, the size of the formula is at most mn.

The only reductions which can make the formula larger are resolution
((10) and (11)), but the number of literals in a clause after resolution is
still bounded by 2n and will be reduced to n before we perform resolution
again; thus, after the first applications of (1) to (6), the size of the formula
is always bounded by 2mn.

8



Lemma 4. The reduction procedures run in polynomial time in the size
of the formula.

Proof. For each reduction, the algorithm can in polynomial time in the
size of the formula check whether it is applicable and if so apply it.

Resolution ((10) and (11)) removes a variable from the formula, so
they can be applied at most n times, since no reduction add variables.
All the other reductions reduce the size of the formula (for (13) just note
that C ′ has size at least two by (4)). Since the size of the formula is at
most max(|F |, 2mn), the reduction procedures run in polynomial time
in |F |.

3.2 The algorithm for XSAT

In this section, we present our algorithm for XSAT and show that it
achieves a branching vector of (8, 2) corresponding to a running time of
O(20.2325n). The previously best algorithm is by Monien et al. [5] and
has worst case branching vector (11, 1) corresponding to a running time
of O(20.2441n).

3.2.1 Variables occurring both unnegated and negated

If the formula F contains a variable occurring both unnegated and ne-
gated, it must occur at least three times unnegated and twice negated
or vice versa; otherwise, it would have been removed by resolution ((10)
or (11)). Let x be the corresponding literal occurring at least three
times unnegated and twice negated as in the clauses in Figure 1. The

(x, C1) (x̄, C ′
1)

(x, C2) (x̄, C ′
2)

(x, C3)

x = true : C1 = C2 = C3 = false
x = false : C ′

1 = C ′
2 = false

Figure 1: Branching on at least a (3, 2)-occurrence x.

algorithm branches on x. By Lemma 1 and a simple counting argument,
C1, C2 and C3 must contain at least six different variables in total and
C ′

1 and C ′
2 at least four; thus, branching on x yields a branching vector

of at least (7, 5).
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3.2.2 Two clauses having at least two variables in common

Suppose F contains two clauses having more than one variable in common
as in Figure 2, with C1 and C2 not having any variables in common and
|C| ≥ 2. By Lemma 1, also |C1|, |C2| ≥ 2. If the two clauses are not

(C, C1)

(C, C2)

C = true : C1 = C2 = false, this removes |C1|+ |C2|
variables plus one if |C| = 2 (by (4))

C = false : this removes |C| variables plus one
for each Ci with |Ci| = 2 (by (4))

Figure 2: Two clauses having at least two variables in common.

two 5-clauses having exactly two variables in common, the algorithm
branches on C as shown in the figure. Since C, C1 and C2 all have size
at least two, this removes at least four variables when C is set to true
and two when C is set to false. Now, if any of the clauses are 2-clauses
this removes one extra variable in one branch and if they are at least
3-clauses we remove at least one more in the other branch. All in all we
get branching vectors of at least (5, 4), (6, 3) or (7, 2), but (7, 2) only if
we had two 5-clauses having two variables in common. Having excluded
that case, which we deal with later, we have (8, 2) as the worst case.

3.2.3 Variables occurring at least four times

If F contains a variable x occurring at least four times and either with
at least eleven different variables or in a 3-clause, the algorithm branches
on x. If it occurs with eleven different variables, this yields a branching
vector of at least (12, 1) and if x is in a 3-clause, we get a branching
vector of at least (9, 2), since x must occur with at least eight different
variables by Lemma 1.

If F contains a variable x occurring at least four times that does not
satisfy the previous case, we pick four of the clauses containing x; since
the only clauses having more than one variable in common are 5-clauses
having two variables in common, these must be 5-clauses pairwise having
two variables in common as in Figure 3. Then the algorithm branches
on (x, y1). When it is set to true, y1 is removed by (4) and the six
other variables in the first two clauses are set to false by (6). The last
two clauses reduce to (x, y2, z3) and (x, y2, z4), but then z3 = z4 by (13)
and (4). So we get a branching vector of at least (8, 2).
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(x, y1, y3, y5, z1)

(x, y1, y4, y6, z2)

(x, y2, y3, y6, z3)

(x, y2, y4, y5, z4)

(x, y1) = true : y3 = y4 = y5 = y6 = z1 = z2 = false,

y1 = x̄, z3
(13)
= z4

Figure 3: A (4, 0)-occurrence x with only ten variables.

Lemma 5. If a reduced formula does not satisfy any of the previous cases
and it contains two variables x and y that occur in a clause together and
they both also occur in a clause without the other, setting (x, y) to true
removes both x and y.

Proof. When the algorithm sets (x, y) to true then y = x̄ by (4) and
this makes x a (1, 1)-, (2, 1)- or (2, 2)-occurrence, which we remove by
resolution ((10) or (11)).

3.2.4 Two 5-clauses having exactly two variables in common

Suppose F contains two 5-clauses having two variables in common as
the first two clauses in Figure 4(a). If both x1 and x2 occur in a clause

(x1, x2, y1, y2, y3)

(x1, x2, y4, y5, y6)

(x1, y1, C
′)

(a) The third clause contains y1.

(x1, x2, y1, y2, y3)

(x1, x2, y4, y5, y6)

(x1, z1, z2, z3)

(b) The third clause contains no y’s.

Figure 4: Two 5-clauses having two variables in common.

without the other, the algorithm branches on (x1, x2). Setting it to true
removes all eight variables in the two clauses by Lemma 5, so this yields
a branching vector of at least (8, 2).

By (9), at least one of x1 and x2 must occur in another clause, so
assume we have another clause with x1. Then x1 is a (3, 0)-occurrence
and occurs in no other clauses. The third clause with x1 can have at most
one variable in common with each of the first two clauses apart from x1

and if there is such a variable, the third clause must be a 5-clause.

The third clause contains y1 as in Figure 4(a). Now, C ′ contains
three variables, one of which can be y4, y5 or y6. If neither y2 nor y3

11



are unique, the algorithm branches on (y2, y3); setting it to true removes
both y2 and y3 by Lemma 5, and x1, x2 and y1 and setting (y2, y3) to false
removes y2 and y3, so we have the clauses in Figure 5; then we apply the
reductions shown in the figure and remove x2 and y1. In total, we get a

(x1, x2, y1)

(x1, x2, y4, y5, y6)

(x1, y1, C
′)

2×(13)→
(x1, x2, y1)

(ȳ1, y4, y5, y6)

(x̄2, C
′)

2×(10)→ (x1, y4, y5, y6, C
′)

Figure 5: The clauses from Figure 4(a) when y2 = y3 = false.

branching vector of at least (5, 4).
In the other case, one of y2 and y3 (say y3) is unique, but not y2 by (9).

Now, y1 occurs in no other clauses; otherwise, x1 and y1 are two variables
occurring twice together and both in a clause without the other, which
is the first case above. The algorithm branches on y2. Setting it to true
removes at least seven variables, since y2 occurs in another clause. Setting
y2 to false leaves the three clauses in Figure 6, where y3 is unique, and x1,
x2 and y1 only occur in these three clauses; then we replace those three

(x1, x2, y1, y3)

(x1, x2, y4, y5, y6)

(x1, y1, C
′)

→
(x2, y4, y5, y6)

(y1, C
′)

Figure 6: Equivalent clauses.

clauses by the two clauses on the right: any truth assignment satisfying
the original formula with x1 true will satisfy the new formula if y1 and
x2 are both changed to true and a satisfying assignment with x1 false
will also satisfy the new formula. On the other hand, a satisfying truth
assignment to the new formula with both x2 and y1 true is a satisfying
assignment to the original formula if x1 is set to true and x2, y1 and y3

are set to false. All other assignments satisfying the new formula can be
changed to satisfy the original one by setting x1 to false and choosing y3

such that (x2, y1, y3) is satisfied. By doing this replacement, both x1 and
y3 are removed, so we get a branching vector of at least (7, 3).

The third clause with x1 contains none of the y’s. If the third
clause is not a 4-clause, the algorithm branches on x1. If the third clause
is a 3-clause, this yields a branching vector of at least (10, 2) and if the
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third clause is at least a 5-clause, this yields a branching vector of at
least (12, 1).

The remaining case is depicted in Figure 4(b); none of the zi’s is
unique by (9), since the two other clauses with x1 contains x2, which is
in no other clauses. If one of z1, z2 and z3 occurs three times, say z1, the
algorithm branches on x1, z1. Setting x1 to true removes eleven variables,
setting z1 to true removes at least eight and setting both to false removes
all four variables in the third clause by Lemma 5. So we get a branching
vector of at least (11, 8, 4).

In the last case, z1, z2 and z3 all occur exactly twice in F ; then the
algorithm branches on (x1, z1). All four variables in the third clause are
removed in both branches by Lemma 5. Let the other clause containing z1

be (z1, C
′). If it is a 3-clause, we remove an extra variable setting z1

to false. If the clause contains one of the y’s, we get a clause where
this y occurs twice, when we set (x1, z1) to true and the variable is
removed by (5). Both cases result in a branching vector of at least (5, 4).
Otherwise, (z1, C

′) is at least a 4-clause containing none of the y’s, but in
that case when we set (x1, z1) to true and apply (10), we get the clauses
(C ′, x2, y1, y2, y3) and (C ′, x2, y4, y5, y6). These two clauses contain at
least seven variables each and have all but three of them in common.
We then further branch on (C ′, x2) and get a branching vector of at
least (6, 4) (see Figure 2). In total, we get a branching vector of at least
(10, 8, 4) ((4, 4) followed by (6, 4) in one branch).

3.2.5 Variables occurring three times

If F contains a variable occurring three times and not in three 4-clauses
or two 4-clauses and a 5-clause, the algorithm branches on it. This yields
a branching vector of at least (7, 4), (8, 3), (9, 2) or (12, 1) depending on
the number of 3-clauses the variable is in.

A (3,0)-occurrence in three 4-clauses. Suppose F contains a (3, 0)-
occurrence x, which is in three 4-clauses as in Figure 7(a). Not all the
clauses can contain a unique variable or F would have been reduced
by (9), so assume that the first clause contains no unique variables. If y1

occurs with at least four other variables, we branch on x, y1. Setting x
to true removes ten variables, setting y1 to true removes at least eight
and setting both to false removes four by Lemma 5. In total, we get a
branching vector of at least (10, 8, 4).
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(x, y1, y2, y3)

(x, y4, y5, y6)

(x, y7, y8, y9)

(a) A (3, 0)-occurrence
in three 4-clauses.

(x, y1, y2, y3) (y1, z1, z2, z3)

(x, y4, y5, y6) (y2, z4, z5, z6)

(x, y7, y8, y9) (y3, z7, z8, z9)

(b) The variables y1, y2 and y3

are all (2, 0)-occurrences.

Figure 7: A (3, 0)-occurrence x in three 4-clauses.

We can assume now, that y1, y2 and y3 are all (2, 0)-occurrences and
that their other clause is at most a 4-clause; otherwise, we have the
previous case. If y1 is in a 3-clause, the algorithm branches on (x, y1); in
both branches all variables in the clause with x and y1 are removed by
Lemma 5. Setting (x, y1) to false also removes one of the other variables
from the 3-clause by (4). This yields a branching vector of at least (5, 4).

If none of the previous cases applies, the other clauses containing y1,
y2 and y3 must be the ones in Figure 7(b), where some of the z’s can be
one of y4 up to y9 and some of them can be the same variable. By (9), at
most one zi from each clause is unique. Suppose two zi’s from different
clauses (say z1 and z4) are unique; then branching on (y1, y2) will remove
x, y1, y2 and y3 in both branches and setting (y1, y2) to true also makes
z1 and z4 end up in the same clause and one is removed by (9). This also
yields a branching vector of at least (5, 4).

We can assume now, that say z1, z2 and z3 are not unique and if any
of them are a y, then z1 is y4. The algorithm branches on (y1, z1); in both
branches y1, z1, z2 and z3 are removed. If z1 was y4, setting (y1, z1) to
true makes y4 = ȳ1, so x is false by (7). This yields a branching vector
of at least (5, 4). If z1 is not y4, setting (y1, z1) to false reduces the first
clause with x to (x, y2, y3). The algorithm then branches on x, which
yields a branching vector of at least (9, 3), since when x is set to false, y2

and y3 are removed by Lemma 5. In total, this yields a branching vector
of at least (13, 7, 4).

A (3,0)-occurrence in two 4-clauses and a 5-clause. We have
now removed all (3, 0)-occurrences except those in two 4-clauses and one
5-clause. If we have such a variable x and one of the 4-clauses contains
another (3, 0)-occurrence y1 we branch on x, y1. Setting one of the (3, 0)-
occurrences to true removes eleven variables and setting both to false
removes three, so we get a branching vector of at least (11, 11, 3).

If we have a (3, 0)-occurrence x in two 4-clauses and a 5-clause and
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one of the 4-clauses contains only (2, 0)-occurrences other than x, we
branch as in the previous section. The only difference having a 5-clause
instead of a 4-clause makes, is that setting x to true removes an extra
variable.

Sparse formulas. The only remaining case with variables occurring
more than twice is a (3, 0)-occurrence in two 4-clauses and one 5-clause,
where both 4-clauses contain a unique variable and the other variables
in the 4-clauses occur twice in F . Then F is 5-sparse, i.e., it contains at
least four variables occurring at most twice for each variable occurring
three times: we only count the variables in the 4-clauses. Each variable
occurring three times occurs with two unique variables and four (2, 0)-
occurrences in the two 4-clauses. The (2, 0)-occurrences might be in
another clause with a variable occurring three times, but if this clause
is a 4-clause it can contain at most one (3, 0)-occurrence. Thus, we
have at least two (2, 0)-occurrences and two unique variables for each
variable occurring at least three times, so the formula is 5-sparse and the
algorithm solves the remaining formula in time O(2n/5), where n is the
number of remaining variables.

3.3 The algorithm for X3SAT

In this section, we give our algorithm for X3SAT and show that it
achieves a branching vector of (12, 4) corresponding to a running time
of O(20.1379n). The previously best algorithms are by Kulikov [2] and
Porschen, Randerath and Speckenmeyer [6] and have branching vec-
tor (9, 4) corresponding to a running time of O(20.1626n).

Extra reductions For X3SAT we have some extra reductions which
are only needed to remove certain cycles. We do not use them in the
reduction procedure, but rather apply them, when they are needed.

We are concerned with cycles because, if we have k clauses and a
variable in each is set to false, we would normally remove another variable
from each of the remaining 2-clauses by (4), but if some of the clauses
form a cycle on the variables not set to false, we may remove one less
variable. As an example, F [z1 � z2, z2 � z3, . . . , zk−1 � zk, zk � z1] only
removes k − 1 variables from F .

Reductions (19) and (23) do not remove any variables and we will also
refer to them as transformations. They are only used, when they allow
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us to apply another reduction or get a previous case: this means that we
call the algorithm recursively on the reduced formula; either a variable
is removed by the reduction procedure or the algorithm will branch on
one of the previous cases.

The first two reductions remove k-cycles with k or k − 1 negations,
the third some special k-cycles.

(y1, z̄1, z2) ∧ (y2, z̄2, z3) ∧ · · · ∧ (yk, z̄k, z1) ∧ F ′ →
F [y1, y2, . . . , yk � false]

(16)

(y1, z1, z2) ∧ (y2, z̄2, z3) ∧ · · · ∧ (yk, z̄k, z1) ∧ F ′ → F [z1 � false] (17)
(ỹ1, z̃1, z2) ∧ (ỹ2, z̃2, z3) ∧ · · · ∧ (ỹk, z̃k, z1) ∧ F ′

yi occur unnegated in a clause with the literal x and the
parities of k and the number of negations are different

→ F [x � false] (18)

If there is a 3−cycle with one negation, we can use (19) to either add
a clause with the three variables not on the cycle or if all the four clauses
are there remove any one of them. If the 3-cycle has a unique variable
in the clause without the negated variable, we can remove this clause
by (20). If u is not unique, but also occurs in (ū, y2, y3), but in no other
clauses, we can remove that clause by (19) and still use this reduction.

(y1, z1, z2) ∧ (y2, z2, z3) ∧ (y3, z̄3, z1) ∧ F ′ ↔
(y1, z1, z2) ∧ (y2, z2, z3) ∧ (y3, z̄3, z1) ∧ (ȳ1, y2, y3) ∧ F ′ (19)

(u, z1, z2) ∧ (y2, z2, z3) ∧ (y3, z̄3, z1)
u unique

∧ F ′ →
(y2, z2, z3) ∧ (y3, z̄3, z1) ∧ F ′ (20)

If two 3-cycles without negations share two clauses, we can reduce
the formula by (21) or (22).

(y1, z1, z2) ∧ (y2, z2, z3) ∧ (y3, z3, z1) ∧ (y1, y2, z4) ∧ F ′ →
(z1, z2, z3) ∧ F ′[y1 � z3, y2 � z1, y3 � z2, z4 � z2]

(21)

(y, z1, z2)∧ (y, z3, z4)∧ (y, z5, z6)∧ (z1, z3, z5)∧F ′ → F [y � false] (22)

If we have a 3-cycle with no negations and one of the variables is
unique, we can transform the formula by (23).

(y1, z1, z2) ∧ (y2, z2, z3) ∧ (u, z3, z1) ∧ F ′

u unique
→

(y1, z1, z2) ∧ (y2, z2, z3) ∧ (ȳ1, z3, u) ∧ F ′
(23)
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If there is a 4-cycle with two negations and the negated variables
occur nowhere else, the formula can be reduced by (24) or (25) (w is a
new variable).

(y1, z1, z2) ∧ (y2, z̄2, z3) ∧ (y3, z3, z4) ∧ (y4, z̄4, z1)
z2,z4 /∈V (F ′)

∧ F ′ →

(w, z1, z3) ∧ (w̄, y1, y2) ∧ (w̄, y3, y4) ∧ F ′
(24)

(y1, z1, z2) ∧ (y2, z2, z3) ∧ (y3, z̄3, z4) ∧ (y4, z̄4, z1)
z3,z4 /∈V (F ′)

∧ F ′ →

(y1, z1, z2) ∧ (ȳ1, y2, w) ∧ (w̄, y3, y4) ∧ F ′
(25)

Lemma 6. Reductions (16) to (25) are sound.

Proof. In (16), the z’s are either all true or all false or there would be a
clause with two true literals. So the y’s must be false.

In (17), if z1 is true z2 must be false, but then also z3 must be false
and the remaining z’s must be false; then in the last clause, both z1

and z̄k are true, which is a contradiction.
Reduction (18) is proved with a simple counting argument: let n1 be

the number of y’s that are negated and n2 the number of z’s occurring
negated. In a satisfying assignment with x true, n1 of the clauses will
be satisfied by the y’s, n2 of the clauses will be satisfied by the z’s oc-
curring negated, and an even number of clauses will be satisfied by the
z’s occurring only unnegated. This is only possible, if the parities of k
and n1 + n2 are the same.

To prove the soundness of (19), we prove that all assignments satis-
fying the left hand side of the reduction will also satisfy the right hand
side (the opposite is trivial). If y1 is true, z1 and z2 must be false and y2

and y3 must have different values, so (ȳ1, y2, y3) is satisfied. If y1 is false,
z2 = z̄1 and y2 and y3 are both false by (8), so (ȳ1, y2, y3) is also satisfied
in this case.

As u is unique in (20), the first clause just ensures that z1 and z2 are
not both true, but this is also ensured by the two other clauses, as z1 is
in a clause with z̄3 and z2 with z3, so we can remove the first clause.

In (21), setting y1 = z̄3 leads to a contradiction: by the first and
second clause z2 is false and by the second and fourth clause y2 is false,
which makes z3 true; now, z1 should both be false (by the third clause)
and true (by the first clause), so in a satisfying assignment y1 = z3; then
y2 = z1 by the first and second clause, z4 = z2 by the second and fourth
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clause and y3 = z2. With these substitutions all four clauses have become
(z1, z2, z3), and three of the copies are discarded.

In (22), setting y to true will set all the z’s to false, but then the
clause with only z’s is not satisfied; thus, y must be false.

In (23), the last clause on the left just ensures that not both z1 and z3

are true and the last clause on the right that not both ȳ1 and z3 are true.
But by the first two clauses z1 and z3 are both true if and only if ȳ1

and z3 are both true, so we can replace the last clause on the left by the
last clause on the right.

In (24), as z2 does not occur elsewhere the first two clauses just ensure,
that exactly one of y1, y2, z1 and z3 is true. This is also achieved by the
clauses (w1, z1, z3) and (w̄1, y1, y2) (w1 is a new variable). Similarly, the
last two clauses can be replaced by (w2, z1, z3) and (w̄2, y3, y4), but then
w1 = w2 by (14) and we get the three clauses on the right hand side
of (24). Similarly in (25), the last three clauses just ensure that exactly
one of y2, y3, y4, z1 and z2 is true, but this can also be expressed by the
clauses (w1, z1, z2), (w̄1, y2, w2) and (w̄2, y3, y4); then w1 = y1 by (14), so
we get the three clauses on the right hand side.

3.3.1 General branching

Now, we state our algorithm for X3SAT. If we have an (a, b)-occurrence x
occurring in the clauses in Figure 8, we let Y1 = {y1, y2, . . . } be the set of
variables that occur in a clause with x, Y2 = {y′1, y′2, . . . } those that occur
in a clause with x̄ and Y = Y1 ∪ Y2. We let y’s be variables in Y1, y′’s be

(x, y1, y2) (x̄, y′1, y
′
2)

(x, y3, y4) (x̄, y′3, y
′
4)

...
...

(x, y2a−1, y2a) (x̄, y′2b−1, y
′
2b)

x = true : y1 = y2 = · · · = y2a−1 = y2a = false,
y′2 = ȳ′1, y

′
4 = ȳ′3, . . . , y2b = ȳ′2b−1

x = false : y2 = ȳ1, y4 = ȳ3, . . . , y2b = ȳ2b−1,

y′1 = y′2 = · · · = y′2a−1 = y′2a = false

Figure 8: Branching on an (a, b)-occurrence x.

variables in Y2, z’s be variables that are not x and not in Y and w’s be
variables that are not x. By looking at x̄ instead of x we swap Y1 and Y2.

If we branch on x in Figure 8, we get a branching vector of at least
(2a + b + 1, 2b + a + 1) from the above clauses. If a + b ≥ 5, this yields
a branching vector of at least (11, 6), (10, 7) or (9, 8). For variables
occurring fewer times, we also need to consider the other clauses in which
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the y’s occur. We start with a lemma showing some cases, in which we
can reduce F .

Lemma 7. If a reduced formula F contains a clause with three variables
from Y that is not (ȳ1, y3, y5) or if F contains a clause (ȳ1, ȳ3, z1) or
(ỹ1, ỹ

′
1, z1), where at least one of y1 and y′1 is negated, F can be reduced.

Proof. If F contains a clause with y1 and y′1 where at least one of them
is negated or with y1 and y3 where both of them are negated, it contains
a 3-cycle with two or three negations and we reduce it by (16) or (17).
If F contains the clause (y1, y

′
1, y3), we add the clause (y2, y

′
2, ȳ3) by (19)

and have the previous case. The only case left is if F contains the clause
(y1, y3, y5); then x must be false by (22).

If x is a (3, 1)-occurrence or a (2, 2)-occurrence, one of the variables
in one clause with x̄ say y′1 must occur in another clause by (15) and
the clause must be (ỹ′1, w, z1) by Lemma 7, since y′1 can not occur with
two other y′’s as x only occurs negated in at most two clauses. From
the clauses in Figure 8, we get a branching vector of at least (8, 6) or
(7, 7), but setting x to false, also removes z1 by (1) or (4) and we get a
branching vector of at least (8, 7). Now, we have removed all variables
occurring at least four times in the formula, except (4, 0)-occurrences.

3.3.2 Branching on (2,1)-occurrences

By (15), at least one y from each clause with x and two from one are in
other clauses. We want to show, that in all cases we can either reduce F
or branch on x and get a branching vector of at least (8, 7) or (9, 6).
From the clauses with x, we get a branching vector of at least (6, 5) (see
Figure 8). We want to show, that we can always remove at least four
more variables in total in the two branches from the other clauses with
the variables from Y . First, we prove two lemmas showing, when we can
reduce the formula.

Lemma 8. If a reduced formula F contains the clause (ỹ1, ỹ
′
1, z1) and a

clause containing z1 and a variable from {y1, y2, y
′
1, y

′
2} and the clauses

are not (y1, y
′
1, z1) and (y2, y

′
2, z̄1), F can be reduced.

Proof. By Lemma 7, if the first clause is not (y1, y
′
1, z1), F can be reduced.

If F does not contain the clause (y2, y
′
2, z̄1), we add it by (19) and since

the second clause was not this one we have two clauses sharing at least
two variables and we reduce F by one of (7), (8) or (14).
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(x, y1, y2) (y1, y
′
1, z1)

(x, y3, y4)

(x̄, y′1, y
′
2)

(a)

(x, y1, y2) (ȳ1, y3, z1)

(x, y3, y4)

(x̄, y′1, y
′
2)

(b)

(x, y1, y2) (y1, y3, z1)

(x, y3, y4)

(x̄, y′1, y
′
2)

(c)

Figure 9: A (2, 1)-occurrence x and a clause with two variables from Y .

Lemma 9. If a reduced formula F contains the clause (ỹ1, ỹ3, z1) and a
clause containing z1 and a variable from {y1, y2, y3, y4} and the clauses
are not (ȳ1, y3, z1) and (y2, ȳ4, z1), F can be reduced.

Proof. By Lemma 7, at most one of y1 and y3 is negated. Suppose one is
negated, then we have the clauses in Figure 9(b). If the other clause is
not (y2, ȳ4, z1), we add this clause by (19). Now, the other clause with z1

and one of the y’s will share at least two variables with one of the other
two clauses with z1 and we reduce by one of (7), (8) or (14).

Suppose we have the clauses in Figure 9(c). By symmetry, we can
assume that the second clause with z1 is (ỹ2, z̃1, w). If none of y2 and z1

is negated, we reduce F by (21) and if both are negated there is a 3-cycle
with two negations, so we reduce F by (17). If only one is negated we
have a 3-cycle with one negation and we add a clause with x and y3

by (19), where one of them is negated and reduce F by (7).

Note, that we can not have a clause with three variables from Y
when x is a (2, 1)-occurrence, by Lemma 7.

Suppose F contains the clauses in Figure 9(a); using (19) we can
transform F to contain one or both of (y1, y

′
1, z1) and (y2, y

′
2, z̄1). Now,

if there is only one other clause, C, with variables from Y , we reduce F :
we can choose to let F contain one of the above clauses such that at
most three variables from Y occur in this clause and C and reduce F
by (15). Suppose that F contains two other clauses with variables from
Y and that they contain different z’s, none of which is z1; then branching
on x yields (8, 7) or (9, 6): in both branches, y1 or y′1 is set to false in
(y1, y

′
1, z1), so z1 is removed by (4). In each of the other clauses, one

variable is removed when the y is set to either true or false.
Suppose, on the other hand, that F does not contain two such clauses;

then z1 is in no more clauses with y1, y2, y′1 or y′2 by Lemma 8 and if it is
in a clause with y3, the clause contains no other variable from Y . Suppose
F contains the clause (ỹ3, z̃1, z2); then z1 can be in no more clauses with
variables from Y . F must contain another clause with a variable from Y
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and since it does not contain z1 or any z3, it must contain z2 and two
variables from Y . Using Lemma 8 and 9, we have that this clause must
be (y1, y

′
2, z2) or (y2, y

′
1, z̄2) (or (y′1, y2, z2) or (y′2, y1, z̄2), which we handle

similarly) and we add the other by (19). Now, we have the clauses in
Figure 10, but then we have a 3-cycle with two negations which we remove

(x, y1, y2) (y1, y
′
1, z1) (ỹ3, z̃1, z2) (y1, y

′
2, z2)

(x, y3, y4) (y2, y
′
2, z̄1) (y2, y

′
1, z̄2)

(x̄, y′1, y
′
2)

Figure 10: A special case for (2, 1)-occurrence x, in which we can reduce.

by (17): the 3-cycle contains the bottom clause in the fourth column, the
clause in the third column and one of the clauses in the second column
(which one depends on whether z1 is negated in (ỹ3, z̃1, z2)).

If the two other clauses with variables from Y do not contain z1 and
not two different z’s, they must be of the form (ȳ1, y3, z2) and (y2, ȳ4, z2)
or (y3, y

′
1, z2) and (y4, y

′
2, z̄2) by Lemma 8 and 9, but then we remove one

of the clauses by (19) and have the previous case with only one other
clause with variables from Y . This completes all cases with the clauses
in Figure 9(a).

Suppose F contains the clauses in Figure 9(b). If y1 is only in the
clause (ȳ1, y3, z1) and the one with x, we replace the first clause by
(y2, ȳ4, z1) by applying (19) twice and reduce F by (20). If y1 is in
another clause, it must be a (2, 1)-occurrence and since x and y3 are in
a clause together, we have the previous case.

Suppose F contains the clauses in Figure 9(c). If y2 is unique, we
transform F by (23) and replace the clause (x, y1, y2) by (x, z̄1, y2), but
then we have the previous case. Now, y2 and symmetrically y4 must occur
in another clause. If they occur together in a clause, they must occur
unnegated or we have the previous case, but then we reduce F by (21).
The clauses with y2 and y4 do not contain z1 by Lemma 9 and no y′ or
negated y by the previous cases, so they must contain two different z’s.
As before, this yields a branching vector of at least (9, 6) branching on x.

If no two variables from Y occur in the same clause, we get (9, 6) or
(8, 7) branching on x: at least two of the variables in Y1 and at least
one of those in Y2 must be in another clause, which removes at least two
extra variables in the true branch and one in the false branch. Now, at
least one more of the variables from Y must be in another clause. This
removes an extra variable in one branch, unless there are three clauses
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with a variable from Y1 and the z’s in these three clauses form a 3-cycle,
but then F can be reduced by Lemma 10.
Lemma 10. If a reduced formula F contains a 3-cycle consisting of the
clauses (ỹ1, z̃1, z2), (ỹ2, z̃2, z3) and (ỹ3, z̃3, z1), F can be reduced.
Proof. If more than one of the z’s are negated, F is reduced by (16)
or (17), and if exactly one is negated, we use (19) to add a clause with
y1, y2 and y3, but y1 and y2 are already together in a clause with x, so we
can reduce F . If none of the z’s is negated we look at whether y1 and y2

are negated. If both are negated we have a 3-cycle with two negations,
which we reduce by (17) and if none of them is negated, the formula is
reduced by (21). If either y1 or y2 is negated, we add a clause with x, z1

and z3 by (19) where one of z1 and z3 are negated and reduce the formula
by (7).

3.3.3 Branching on (4,0)-occurrences

To get the desired branching vector for (4, 0)-occurrences, we show that
if there are no variables occurring both unnegated and negated except
(1, 1)-occurrences, we can extend Lemma 7 and reduce in all cases with
a clause with three y’s.
Lemma 11. If a reduced formula F containing only (a, 0)- and (1, 1)-
occurrences contains a clause (ỹ1, ỹ3, ỹ5) or a clause (ȳ1, ỹ3, w), F can be
reduced.
Proof. The only case not covered by Lemma 7 is if F contains the clause
(ȳ1, y3, w), where w is either y5 or a z. Now, y1 must be a (1, 1)-
occurrences so we replace this clause by (y2, ȳ4, w) by applying (19) twice
and then reduce F by (20).

If x is a (4, 0)-occurrence, branching on x yields a branching vector
of at least (9, 5) from the clauses in Figure 8. At least five of the y’s
must occur in another clause, but then they must occur with at least
two different z’s or we reduce F by Lemma 9 or 11. When we set x to
true all the y’s are false and at least two z’s are removed and we get a
branching vector of at least (11, 5).

3.3.4 Branching on (3,0)-occurrences

When we look at a (3, 0)-occurrence x, we know by Lemma 11 that no
three variables from Y occur together and if two occur together they
must both occur unnegated.
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F contains a clause with two variables from Y. Suppose F con-
tains the clause (y1, y3, z1) and two of y2, y4 and z1 are unique, then we
use (23) (with the other unique variable as y2 in (23)) and remove one of
the unique variables by (20), and if only one of them is negated, we use
(23) and get a (2, 1)-occurrence, which is a previous case. If z1 is in a
clause with any of the variables y1, y2, y3 or y4, we reduce F by Lemma 9.
If two of y1, y2, y3 and y4 occur together in a second clause they must
both be unnegated by Lemma 11, but then we reduce F by (14), (21)
or (22), so we must have the clauses in Figure 11, where z2 is a new

(x, y1, y2) (y1, y3, z1)

(x, y3, y4) (ỹ2, w, z2)

(x, y5, y6)

y2 = true : x = y1 = false, y4 = ȳ3, y6 = ȳ5, z1 = ȳ3

y2 = false : y1 = x̄, y3
(7)
= false, y4 = x̄, z1 = ȳ1

ỹ2 = true : w = z2 = false
ỹ2 = false : z2 = w̄

Figure 11: A clause with two y’s. We branch on y2.

variable, and w can be either y5 (it can not be negated by Lemma 11)
or z3 (another new variable). If w is y5, the clause has two y’s and z2 can
not be unique by the above. The algorithm branches on y2. Let us first
look at what happens in the first four clauses; setting y2 to true removes
the six variables depicted in Figure 11, and setting y2 to false makes
y1 = x̄. Then we have the two clauses (x, y3, y4) and (x̄, y3, z1) which
makes y3 false by (7) and we remove the last two variables in Figure 11
for at total of five variables. Now, we look at what happens with the
clause (ỹ2, w, z2); when ỹ2 is set to false, we remove z2, and when ỹ2 is
set to true, both w and z2 are set to false. This removes two additional
variables in this branch: w is either y5 or z3, but neither has gotten a
value in any of the branches. Now, either z2 is in another clause or w is
z3 and is in another clause. This clause can at most contain one of y1,
y2, y3, y4 or z1 by Lemma 9, so we remove an extra variable from this
clause when z2 or z3 is set to false. In total, we remove three variables
in one branch and one in the other. This yields a branching vector of at
least (9, 6) or (8, 7).

Cycles At this point, the only clauses containing y’s except the clauses
with x contain only one y. By (15), at least four of the y’s are not unique,
so there must be at least four such clauses. We want to branch on x;
when we set it to true, all the y’s are set to false and the literals from
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clauses with unnegated y’s are set to the negation of each other and the
ones from clauses with negated y’s are set to false. This removes at least
as many extra variables as there are clauses with y’s, unless some of these
clauses form a cycle as in Figure 12. We are only concerned with 3-, 4-

(x, y1, y2) (ỹ1, z̃1, z2)

(x, y3, y4) (ỹi, z̃2, z3)

(x, y5, y6) (ỹj, z̃3, z1)

(a) 3-cycle.

(x, y1, y2) (ỹ1, z̃1, z2)

(x, y3, y4) (ỹi, z̃2, z3)

(x, y5, y6) (ỹj, z̃3, z4)

(ỹk, z̃4, z1)

(b) 4-cycle.

(x, y1, y2) (ỹ1, z̃1, z2)

(x, y3, y4) (ỹi, z̃2, z3)

(x, y5, y6) (ỹj, z̃3, z4)

(ỹk, z̃4, z5)

(ỹl, z̃5, z1)

(c) 5-cycle.

Figure 12: Cycles.

and 5-cycles; we can not have 2-cycles, as these would have been removed
by (7), (8) or (14) and if we have at least a 6-cycle, we remove at least
five z’s, when we set x to true, but this yields a branching vector of at
least (12, 4), which is what we are after.

Lemma 12. If a reduced formula does not satisfy any of the previous
cases, the same y can not occur twice in a 3-, 4- or 5-cycle.

Proof. If a y occurs twice in a 3-, 4- or 5-cycle, it occurs at least three
times in F so it must be a (3, 0)-occurrence. It can not occur in two
neighbouring clauses on the cycle by (7) and (14); since we are dealing
with at most 5-cycles, it must then occur in two clauses (y1, z̃1, z2) and
(y1, z̃3, z4), where z2 and z3 are together in another clause on the cycle.
Then y1 is a (3, 0)-occurrence with two of the variables it occurs with
occurring together in another clause, but that is a previous case.

Lemma 13. If a reduced formula F containing only (a, 0)- and (1, 1)-
occurrences contains two clauses (ỹi, z1, z2) and (ỹj, z̃2, z3), where at least
two of yi, yj and z2 are negated, we can reduce F .

Proof. If yi and yj are from the same clause with x, that clause and the
two clauses in the lemma form a 3-cycle with two or three negations, so
we can reduce F by (16) or (17). If yi and yj are from different clauses
with x, the clauses form a 4-cycle with two or three negations together
with the two clauses where yi and yj occur with x, and we reduce F
by (17), (24) or (25), since we do not have (2, 1)-occurrences.

In the following, we show how to deal with the remaining cases of 3-,
4- and 5-cycles.
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3-cycles. If F contains a 3-cycle as in Figure 12(a), the y’s must be
from different clauses with x by Lemma 10. If the cycle contains more
than one negated z, the formula is reduced by (16) or (17) and if there
is exactly one negated z, we add a clause with three y’s by (19). If this
clause does not contain exactly one negation, we reduce F by Lemma 7;
otherwise, the negated y has become a (2, 1)-occurrence, which is a pre-
vious case. Now, suppose that none of the z’s is negated; if at least two
of the y’s are negated, we reduce F by Lemma 13 and if none of the y’s is
negated we reduce F by (18). So assume the cycle consists of the clauses
in Figure 13; then we branch on y1 and get a branching vector of at least

(x, y1, y2) (ȳ1, z1, z2)

(x, y3, y4) (y3, z2, z3)

(x, y5, y6) (y5, z3, z1)

y1 = true : x = y2 = false, y4 = ȳ3, y6 = ȳ5, z2 = z̄1,

z3
(7)
= false, y3 = z̄2, y5 = z̄1

y1 = false : y2 = x̄, z1 = z2 = false,
y3 = y5 = z̄3, y4 = y6

Figure 13: A 3-cycle with only y1 negated. We branch on y1.

(9, 7), as shown in the figure. The (7) above the equality means, that
this follows from (7): since z2 = z̄1, we get two clauses with z1 and z3

and z1 is negated in one of them.

4-cycles. Suppose F contains a 4-cycle as in Figure 12(b). If there are
two or more negated z’s, we reduce the formula by (16), (17), (24) or (25),
since F contains no (2, 1)-occurrences. If there is only one negated z, the
two y’s in the clauses with the negated variable must be unnegated by
Lemma 13; let these clauses be (y1, z1, z2) and (yi, z̄2, z3). If an even
number of the y’s are negated, we reduce the formula by (18); otherwise,
there must be exactly one negated y and the cycle looks like the one in
Figure 14(a), but then x = z1. Suppose x = z̄1; then we replace z1 by x̄

(x, y1, y2) (y1, z1, z2)

(x, y3, y4) (yi, z̄2, z3)

(x, y5, y6) (ȳj, z3, z4)

(yk, z4, z1)

(a) x = z1.

(x, y1, y2) (y1, z1, z2)

(x, y3, y4) (y2, z2, z3)

(x, y5, y6) (y3, z3, z4)

(yi, z4, z1)

(b) z2 = z4.

(x, y1, y2) (y1, z1, z2)

(x, y3, y4) (y3, z2, z3)

(x, y5, y6) (y2, z3, z4)

(y4, z4, z1)

(c) Remove last clause.

Figure 14: 4-cycles.
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and get that both y1 and yk are in clauses with both x and x̄, so they
must be false by (7), but then z2 = x, so yi must also be false by (7).
Now, both z3 and z4 must be equal to x, but then x must be false by (5)
and yj must also be false. This is a contradiction: since none of the y’s
are the same by Lemma 12, at least two of them are from the same clause
with x, but they are all false and so is x.

Suppose that none of the z’s is negated. If an odd number of the y’s
are negated we reduce F by (18) and if two y’s in neighbouring clauses
are negated, we reduce F by Lemma 13. If two y’s in “opposite” clauses
on the cycle are negated, x must be false: if x is true, all y’s are set to
false and by the two clauses with negated y’s all the z’s are set to false,
but then the other two y’s must be true, a contradiction, so x must be
false. In the remaining cases, none of the y’s is negated. If two y’s in
neighbouring clauses are from the same clause with x we have the cycle
in Figure 14(b), but then z2 = z4: suppose z2 = z̄4; then z1 and z3 must
be false by (7), but then y1 = y2 = z̄2 = z4 = ȳ3. Then y1 and y2 must
be false, but then both x and y3 must be true, a contradiction.

Lemma 14. If a reduced formula F contains a 4-cycle as in Figure 14(c),
F is satisfiable iff F with the last clause on the cycle removed is satisfi-
able.

Proof. It is trivially true, that if F is satisfiable, so is F with the last
clause removed. Suppose that F without the last clause is satisfied. If
x is true, all the y’s are false, so from the other three clauses, we have
that z1 = z̄2 = z3 = z̄4 so the fourth clause is satisfied. If x is false,
y1 = ȳ2, so exactly one of the z’s are true; if it is one of z1 or z4, y3 must
be true by the second clause so y4 must be false and if it is one of z2

or z3, y3 must be false and hence y4 must be true by their common clause
with x. In both cases, the last clause is satisfied.

The only remaining 4-cycles have no negations and no y occurring
more than once. Then at least two of the y’s must be from the same clause
with x and they are not in neighbour clauses on the cycle. If the other
two y’s are also from the same clause with x, we transform F by removing
the last clause on the cycle by Lemma 14. If they are not from the same
clause with x the 4-cycle must look like the one in Figure 14(c), except
y4 is replaced by y5. Then we add the clause (y4, z4, z1) by Lemma 14
and get that y4 = y5 by (14).
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F contains a clause with a negated variable from Y. There must
be at least four clauses with variables from Y other than the ones with x.
We branch on x; setting it to false removes four variables and setting it
to true sets all the y’s to false and in each of the other clauses with y’s
either sets one of the z’s to the negation of the other or both to false.
This removes at least twelve variables, as at least one y is negated and
the z’s do not form a 3- or 4-cycle.

5-cycles. If F contains a 5-cycle as in Figure 12(c), none of the y’s
is negated by the previous case; also, none of the y’s are the same by
Lemma 12, so there must be four clauses on the 5-cycle, as in Figure 15,
that contain only y’s from two clauses with x. The y’s will always satisfy

(x, y1, y2) (y1, z1, z2)

(x, y3, y4) (yi, z̃2, z3)

(x, y5, y6) (yj, z̃3, z4)

(yk, z̃4, z5)

An even number of the z’s are negated : z1 = z5

An odd number of the z’s are negated : z1 = z̄5

Figure 15: Four clauses from a 5-cycle.

an even number of these clauses: if x is true, they satisfy zero and if x is
false they satisfy two, as they pairwise become each other’s negation,
since they were from only two different clauses with x. Now, let us look
at z2, z3 and z4. The negated ones will always satisfy exactly one of
the clauses and the unnegated will either satisfy zero or two; thus, if
the number of negated z’s is odd, z1 and z5 must satisfy an odd number
of the clauses for F to be satisfiable, so z1 = z̄5 and if the number of
negated z’s is even, z1 = z5 by the same argument. In both cases, we
have reduced F .

F contains at least five clauses with y’s and z’s. Since the clauses
do not form 3-, 4- or 5-cycles at this point, branching on x yields at
least (12, 4).

F contains exactly four clauses with y’s and z’s. As at least four
variables from Y occur in clauses without x and no two variables from Y
occur together, there must be exactly four such clauses. Furthermore, two
of the variables from Y are unique, and the others are (2, 0)-occurrences;
otherwise, there would be more than four clauses with variables from Y .
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Since there are no cycles, we have already seen how to get (11, 4) branch-
ing on x. If the formula is 15

2
-sparse, we can solve the remaining formula

in time O(2
2n
15 ) = O(20.13333n). We want to branch on formulas with too

many (3, 0)-occurrences; we either prove that we remove an extra variable
when branching on x or we branch on a different variable.

Suppose x1 is a (3, 0)-occurrence occurring in the three first clauses in
Figure 16. The other clause with y3 contains no unique variable by (15).
If it contains a variable x2, that only occurs in other clauses with unique
variables as in Figure 16, we branch on x1; setting it to true removes

(x1, y1, y2) (x2, y3, z)

(x1, y3, u1)

(x1, y5, u2)

All other clauses with x2

contain a unique variable.

Figure 16: Unique variables.

eleven variables and setting it to false removes x1, y2, u1 and u2, but
then y3 is unique, so all clauses with x2 contain a unique variable and we
set x2 to false by (15). Then also z = ȳ3 and we get a branching vector
of at least (11, 6).

If another (3, 0)-occurrence x2 occurs with one of the variables from Y
it must be either y1 or y2: suppose x2 is in a clause with y3. Now,
y3 is a (2, 0)-occurrence with a unique variable in its clause with x, so
its other clause can not contain unique variables; then the remaining
clauses with x2 must contain unique variables, but that is the previous
case. Suppose y1 is in a clause with x2, then that clause can not contain
a unique variable, as this would also be the previous case (by looking at
x2 instead of x1). The two other clauses with x2 must then contain a
unique variable, so they do not contain y3 or y5 and if they contain y2, we
have a (3, 0)-occurrence with two of the variables it occurs with occurring
together in another clause, which is a previous case. So we must have
the clauses in Figure 17 (to easier distinguish variables occurring with
different (3, 0)-occurrences, we use y′ and y′′ to denote variables occurring
with other (3, 0)-occurrences than x1 in the rest of this section). Then
we branch on y2; setting it to true removes eight variables as shown in
Figure 17 and setting it to false we get z4 = z̄3 and y1 = x̄1, as shown in
the figure. Then we have x̄1 in a clause with x2 and both of them only
occur unnegated in clauses with unique variables elsewhere, so x2 is set
to false by (15), and we remove the remaining variables in the figure for
a branching vector of at least (8, 7).
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(x1, y1, y2) (y1, x2, y
′
2) (x2, y

′
3, u

′
1)

(x1, y3, u1) (y2, z3, z4) (x2, y
′
5, u

′
2)

(x1, y5, u2) (y3, z5, z6)

(y5, z7, z8)

y2 = true : x1 = y1 = z3 = z4 = false,
u1 = ȳ3, u2 = ȳ5, y

′
2 = x̄2

y2 = false : y1 = x̄1, z4 = z̄3,

x2
(15)
= false, y′2 = x1,

u′1 = ȳ′3, u
′
2 = ȳ′5

Figure 17: One variable from Y occurs with another (3, 0)-occurrence.

Now, no variable from Y occurs with another (3, 0)-occurrence. Sup-
pose both z5 and z6 occur with a (3, 0)-occurrence. Then z5 and z6 can
not be negated, as a (3, 0)-occurrence where one of the variables it oc-
curs with occurs negated in another clause is a previous case; also, the
clause with z5 and z6 contains y3, which is only in one other clause and
that clause contains a unique variable, so if the clause with z5 (or z6)
and the (3, 0)-occurrence contains a unique variable, we have the case in
Figure 16 (with the (3, 0)-occurrence as x1 and z5 as y3). Now, z5 and z6

can not occur in another clause together, so we must have the clauses
in Figure 18. We branch on z6; setting it to true removes nine variables

(x1, y1, y2) (y1, z1, z2) (x2, z5, y
′
2) (x3, z6, y

′′
2)

(x1, y3, u1) (y2, z3, z4) (x2, y
′
3, u

′
1) (x3, y

′′
3 , u

′′
1)

(x1, y5, u2) (y3, z5, z6) (x2, y
′
5, u

′
2) (x3, y

′′
5 , u

′′
2)

(y5, z7, z8)

z6 = true : y3 = z5 = x3 = y′′2 = false, u′′1 = ȳ′′3 , u
′′
2 = ȳ′′5 , u1 = x̄1, y

′
2 = x̄2

z6 = false : y′′2 = x̄3, z5 = ȳ3, x2
(15)
= false, y′2 = y3, u

′
1 = ȳ′3, u

′
2 = ȳ′5

Figure 18: Both z5 and z6 occur with a (3, 0)-occurrence.

as shown in the figure, and setting z6 to false sets y′′2 = x̄3 and z5 = ȳ3.
Now, x2 is in a clause with ȳ3 and both variables only occur unnegated in
clauses with unique variables elsewhere, so we set x2 to false by (15) and
remove y′2, u′1 and u′2. In total, we get a branching vector of at least (9, 7).

Sparse formulas. Now, no y can occur with another (3, 0)-occurrence,
so there are at least six variables occurring at most twice for each (3, 0)-
occurrence. Also, as z5 and z6 (and by symmetry z7 and z8) do not both
occur with a (3, 0)-occurrence, we can assume that neither z5 nor z7 occur

29



with a (3, 0)-occurrence. As they both occur at most twice, they are in
clauses with at most four different variables; thus, we count each of them
as one fourth of a variable for each of the (3, 0)-occurrences, whose y they
occur with. This means, that there are at least six and a half variables
occurring at most twice for each (3, 0)-occurrence; thus, the formula is
15
2
-sparse and we solve it in time O(2

2n
15 ) = O(20.13333n).

4 Conclusion
The main result of this paper is the following theorem.

Theorem 1. The presented algorithms for XSAT and X3SAT run in
time O(20.2325n) and O(20.1379n), respectively.

Proof. When our algorithms are applied to a formula F with m clauses
and n variables, the sizes of the intermediate formulas are never larger
than max(|F |, 2mn): they are never larger during the reduction pro-
cedures by Lemma 3 and after the reduction procedures have run, the
formula has size at most mn. In some of the branches we add a clause,
but when we call the algorithm recursively, the reduction procedure will
remove a clause, so the size is never larger than max(|F |, 2mn), which
is polynomial in the size of the original formula. Also, no reduction or
branching adds variables. The number of recursive calls are at most
O(20.2325n) and O(20.1379n), respectively, by Section 3.2 and Section 3.3.
For each recursive call, the reduction procedure runs in polynomial time
in the size of the formula by Lemma 4 and we can in polynomial time
decide, which case to branch on. Since we ignore the polynomial factors,
we get the stated running times.

Both our algorithms are extensions of known branch-and-reduce al-
gorithms. One important addition to the algorithms are new reductions,
which limit the number of possible structures of the formula. The other
important addition is the concept of sparse formulas, which in certain
situations enables us to simply enumerate all possible assignments to the
variables we would otherwise branch on and leaves us with a problem
that is solvable in polynomial time. One could hope that the concept of
sparse formulas is also useful in other algorithms.
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RS-03-28 Zolt́an Ésik and Kim G. Larsen. Regular Languages Definable
by Lindström Quantifiers. August 2003. 82 pp. This report su-
persedes the earlier BRICS report RS-02-20.

RS-03-27 Luca Aceto, Willem Jan Fokkink, Rob J. van Glabbeek, and
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