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Abstract

Lambda-lifting is a program transformation used in compilers and in
partial evaluators and that operates in cubic time. In this article, we
show how to reduce this complexity to quadratic time, and we present a
flow-sensitive lambda-lifter that also works in quadratic time.

Lambda-lifting transforms a block-structured program into a set of
recursive equations, one for each local function in the source program.
Each equation carries extra parameters to account for the free variables
of the corresponding local function and of all its callees. It is the search
for these extra parameters that yields the cubic factor in the traditional
formulation of lambda-lifting, which is due to Johnsson. This search is
carried out by a transitive closure.

Instead, we partition the call graph of the source program into strongly
connected components, based on the simple observation that all functions
in each component need the same extra parameters and thus a transitive
closure is not needed. We therefore simplify the search for extra parame-
ters by treating each strongly connected component instead of each func-
tion as a unit, thereby reducing the time complexity of lambda-lifting
from O(n3 log n) to O(n2 log n), where n is the size of the program.

Since a lambda-lifter can output programs of size O(n2), we believe
that our algorithm is close to optimal.
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1 Lambda-lifting

1.1 Setting and background

Lambda-lifting: what. In the mid 1980’s, Augustsson, Hughes, Johnsson,
and Peyton Jones devised ‘lambda-lifting’, a meaning-preserving transformation
from block-structured programs to recursive equations [7, 23, 24, 32].

recursive equations

block-structured program

lambda
lifting

OO

Recursive equations provide a propitious format because they are scope free.
Today, a number of systems use lambda-lifting as an intermediate phase. For
example, partial evaluators such as Schism, Similix, and Pell-Mell lambda-lift
source programs and generate scope-free recursive equations [9, 11, 28]. Compil-
ers such as Larceny and Moby use local, incremental versions of lambda-lifting
in their optimizations [10, 33], and so did an experimental version of the Glas-
gow Haskell Compiler [35]. Hanus’s compiler for the functional logic language
Curry also uses lambda-lifting (personal communication to the first author,
FLOPS’02). Program generators such as Bakewell and Runciman’s least gen-
eral common generalization operate on lambda-lifted programs [8].

Lambda-lifting: how. Lambda-lifting operates in two stages: parameter lift-
ing and block floating.

scope-free
recursive equations

scope-insensitive
block-structured program

block
floating

OO

scope-sensitive
block-structured program

parameter
lifting

OO

lambda
lifting

EE

A block-structured program is scope-sensitive because of free variables in local
functions. Parameter lifting makes a program scope-insensitive by passing extra
variables to each function. These variables account both for the free variables of
each function but also for variables occurring free further in the call path. Block
floating erases block structure by making each local function a global recursive
equation.
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Parameter lifting. Parameter-lifting a program amounts to making all the
free variables of a function formal parameters of this function. All callers of
the function must thus be passed these variables as arguments as well. A set
of solutions is built by traversing the program. A solution pairs each function
with a least set of additional parameters. Each block of locally defined functions
gives rise to a collection of set equations describing which variables should be
passed as arguments to its local functions. The names of functions, however,
are not included in the sets, since all functions become globally visible when the
lambda-lifting transformation is complete. The solution of each set equation
extends the current set of solutions, which is then used to analyze the header
and the body of the block.

Block floating. After parameter lifting, a program is scope insensitive. Block
floating is thus straightforward: the program is merely traversed, all local func-
tions are collected and all blocks are replaced by their bodies. The collected
function definitions are then appended to the program as global mutually re-
cursive functions, making all functions globally visible.

Lambda-lifting: when. In a compiler, the effectiveness of lambda-lifting
hinges on the tension between passing many actuals vs. passing few actuals,
and between referring to an actual parameter vs. referring to a free variable.

In practice, though, programmers often stay away both from recursive equa-
tions and from maximally nested programs. Instead, they write in a mixed
style that both abides by Perlis’s epigram “If you have a procedure with ten
parameters, you probably missed some.” and by Turner’s recommendation that
good Miranda style means little nesting. In this mixed style, and to paraphrase
another of Perlis’s epigrams, one man’s parameter is another man’s free variable.

1.2 Three examples

We first illustrate lambda-lifting with the classical foldr functional, and then
with two examples involving multiple local functions and mutual recursion.
Throughout, we use Standard ML.

Example 1: We consider the classical fold function for lists, defined with a
local function.

fun foldr f b xs

= let fun walk nil

= b

| walk (x :: xs)

= f (x, walk xs)

in walk xs

end

Lambda-lifting this block-structured program yields two recursive equations:
the original entry point, which now serves as a wrapper to invoke the other
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function, and the other function, which has been extended with two extra pa-
rameters.

fun foldr f b xs

= foldr_walk f b xs

and foldr_walk f b []

= b

| foldr_walk f b (x :: xs)

= f (x, foldr_walk f b xs)

Example 2: The following token program adds its two parameters.

fun main x y

= let fun add p

= add_to_x p

and add_to_x q

= q + x

in add y

end

Lambda-lifting this block-structured program yields three recursive equations:

fun main x y

= main_add x y

and main_add x p

= main_add_to_x x p

and main_add_to_x x q

= q + x

As a local function, add to x has a free variable, x, and thus it needs to be passed
the value of x. Since add calls add to x, it needs to pass the value of x to add to x

and thus to be passed this value, even though x is not free in the definition of
add. During parameter lifting, each function thus needs to be passed not only
the value of its free variables, but also the values of the free variables of all its
callees.

Example 3: The following token program multiplies its two parameters with
successive additions, using mutual recursion.

fun mul x y

= let fun loop z

= if z=0 then 0 else add_to_x z

and add_to_x z

= x + loop (z-1)

in loop y

end

Again, lambda-lifting this block-structured program yields three recursive equa-
tions:
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fun mul x y

= mul_loop x y

and mul_loop x z

= if z=0 then 0 else mul_add_to_x x z

and mul_add_to_x x z

= x + mul_loop x (z-1)

As before, the free variable x of add to x has to be passed as a formal parameter,
through its caller loop. When add to x calls loop recursively, it must pass the
value of x to loop, so that loop can pass it back in the recursive call.

This third example illustrates our key insight: during parameter lifting, mu-
tually recursive functions must be passed the same set of variables as parameters.

1.3 Overview

Lambda-lifting, as specified by Johnsson, takes cubic time (Section 2). In this
article, we show how to reduce this complexity to quadratic time (Section 3). We
also present a flow-sensitive extension to lambda-lifting, where flow information
is used to eliminate redundant formal parameters generated by the standard
algorithm (Section 4).

Throughout the main part of the article, we consider Johnsson’s algorithm
[24, 25]. Other styles of lambda-lifting, however, exist: we describe them as
well, together with addressing related work (Section 5).

2 Lambda-lifting in cubic time

2.1 Johnsson’s parameter-lifting algorithm

Johnsson’s algorithm descends recursively through the program structure, cal-
culating the set of variables that are needed by each function. This is done
by solving set equations describing the dependencies between functions. These
dependencies may be arbitrarily complex, since a function can depend on any
variable or function that is lexically visible to it. In particular, mutually re-
cursive functions depend upon each other, and so they give rise to mutually
recursive set equations.

The mutually recursive set equations are solved using fixed-point iteration.
A program containing m function declarations gives rise to m set equations. In
a block-structured program the functions are distributed across the program, so
we solve the set equations in groups, as we process each block of local functions.
Each set equation unifies O(m) sets of size O(n), where n is the size of the
program. However, the total size of all equations is bounded by the size of the
program n, so globally each iteration takes time O(n log n). The number of
set union operations needed is O(n2), so the time needed to solve all the set
equations is O(n3 log n), which is the overall running time of lambda-lifting.
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2.2 An alternative specification based on graphs

Rather than using set equations, one can describe an equivalent algorithm using
graphs. We use a graph to describe the dependencies between functions. Peyton
Jones names this representation a dependency graph [32], but he uses it for a
different purpose (see Section 5.1). Each node in the graph corresponds to a
function in the program, and is associated with the free variables of this function.
An edge in the graph from a node f to a node g indicates that the function f

depends on g, because it refers to g. Mutually recursive dependencies give rise
to cycles in this graph. Rather than solving the mutually recursive equations
using fixed-point iteration, we propagate the variables associated with each node
backwards through the graph, from callee to caller, merging the variable sets,
until a fixed point is reached.

2.3 Example

Figure 1 shows a small program, defined using three mutually recursive func-
tions, each of which has a different free variable.

We can describe the dependencies between the local block of functions using
set equations, as shown in Figure 2. To solve these set equations, we need
to perform three fixed-point iterations, since there is a cyclic dependency of
size three. Similarly, we can describe these dependencies using a graph, also
shown in Figure 2. The calculation of the needed variables can be done using
this representation, by propagating variable sets backwards through the graph.
A single propagation step is done by performing a set union over the variables
associated with a node and the variables associated with its successors. Similarly
to the case of the set equations, each node must be visited three times before a
fixed point is reached.

When the set of needed variables has been determined for each function,
solutions describing how each function must be expanded with these variables

fun main x y z n

= let fun f1 i

= if i=0 then 0 else x + f2 (i-1)

and f2 j

= let fun g2 b = b * j

in if j=0 then 0 else g2 y + f3 (j-1)

end

and f3 k

= let fun g3 c = c * k

in if k=0 then 0 else g3 z + f1 (k-1)

end

in f1 n

end

Figure 1: Three mutually recursive functions
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Sf1 = {x} ∪ Sf2

Sf2 = {y} ∪ Sf3

Sf3 = {z} ∪ Sf1




Sg2 = {j}
Sg3 = {k}

(f1, {x})

		
(f2, {y})

44

{{vv
vvv

v
(f3, {z})

ii

##HH
HHHH

(g2, {j}) (g3, {k})

Figure 2: Dependencies between the local functions in Figure 1

fun main x y z n

= f1 x y z n

and f1 x y z i

= if i=0 then 0 else x + f2 x y z (i-1)

and f2 x y z j

= if j=0 then 0 else g2 y j + f3 x y z (j-1)

and g2 b j

= b * j

and f3 x y z k

= if k=0 then 0 else g3 z k + f1 x y z (k-1)

and g3 c k

= c * k

Figure 3: Lambda-lifted counterpart of Figure 1

are added to the set of solutions. The result is shown in Figure 3.

3 Lambda-lifting in quadratic time

We consider the variant of the parameter-lifting algorithm that operates on a
dependency graph. It propagates needed variables backwards through the graph
since the caller needs the variables of each callee.

It is our observation that functions that belong to the same strongly con-
nected component of the call graph must be parameter-lifted with the same set
of variables (as was illustrated in Section 1.2). We can thus treat these functions
in a uniform fashion, by coalescing the strongly connected components of the
dependency graph. Each function must define at least its free variables together
with the free variables of the other functions of the strongly connected compo-
nent. Coalescing the strongly connected components of the dependency graph
produces a DAG with sets of function names for nodes. A breadth-first back-
wards propagation of variables can then be done in linear time, which eliminates
the need for a fixed-point computation.
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3.1 Complexity analysis

The parameter-lifting algorithm must first construct the dependency graph,
which takes time O(n log n), where n is the size of the program. The strongly
connected components of the graph can then be computed in time O(n). The
ensuing propagation requires a linear number of steps since we are now operating
on a DAG. Each propagation step consists of a number of set-union operations,
each of which takes O(n log n) time, i.e., the time to unify two sets of variables
of size O(n). Globally, a number of set-union operations linear in the size of the
program needs to be performed, yielding a time complexity of O(n2 log n). The
overall running time is thus O(n2 log n), where n is the size of the program.

3.2 Lower bound

Consider a function with m formal parameters {v1, . . . , vm} that declares m
mutually recursive local functions, each of which has a different variable from
{v1, . . . , vm} as a free variable. The size of the program n is O(m). The output
program contains the m functions, each of which needs to be expanded with
the m formal parameters of the enclosing function. The output program is
therefore of size O(m2), which is also O(n2). One thus cannot perform lambda-
lifting faster than O(n2). Since one needs O(n log n) time to compute the sets
of free variables of the program, our complexity of O(n2 log n) must be close to
optimal.

3.3 Contribution

Our contribution is

• to characterize the fixed-point operations on the set equations as propa-
gation through the dependency graph, and

• to recognize that functions in the same strongly connected component
require the same set of variables.

We can therefore first determine which variables need to be known by each
function in a strongly connected component, and then add them as formal pa-
rameters to these functions. In each function, those variables not already passed
as parameters to the function should be added as formal parameters.

This approach can be applied locally to work like Johnsson’s algorithm,
processing each block independently. It can also be applied globally to the
overall dependency graph. The global algorithm, however, must explicitly limit
the propagation of free variables, so that they are not propagated beyond their
point of definition.

3.4 The new algorithm

We operate on programs conforming to the simple syntax of Figure 4.
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p ∈ Program ::= {d1, . . . , dm}
d ∈ Def ::= f ≡ λv1. . . . λvn.e
e ∈ Exp ::= e0 . . . en

| LetRec {d1, . . . , dk} e0

| If e0 e1 e2

| f
| v
| literal

v ∈ Variable
f ∈ FunctionName∪ PredefinedFunction

Figure 4: Simplified syntax of source programs

The set FV(f) denotes the set of free variables in the function f , and the set
FF(f) denotes the set of free functions in f (note that FV(f) ∩ FF(f) = ∅). In
our algorithm, we assume variable hygiene, i.e., that no name clashes can occur.
Figure 5 shows our (locally applied) O(n2 log n) parameter-lifting algorithm. It
makes use of several standard graph and list operations that are described in
the appendix. Figure 6 shows the standard linear-time (globally applied) block-
floating algorithm. Johnsson’s original lambda-lifting algorithm includes steps
to explicitly name anonymous lambda expressions and replace non-recursive let
blocks by applications. These steps are trivial and omitted from the figures.

When parameter-lifting a set of mutually recursive functions {f1, . . . , fk},
and some function fi defines a variable x that is free in one of its callees fj , a
naive algorithm expands the parameter list of the function with x. The sets Pfi

used in our parameter-lifting algorithm serve to avoid this problem.

3.5 Revisiting the example of Section 2.3

Applying the algorithm of Figure 5 to the program of Figure 1 processes the
main function by processing its body. The letrec block of the body is processed
by first constructing a dependency graph similar to that shown in Figure 2
(except that we simplify the description of the algorithm to not include the sets
of free variables in the nodes). Coalescing the strongly connected components
of this graph yields a single node containing the three functions. Since there is
only a single node, the propagation step only serves to associate each function
in the node with the union of the free variables of each of the functions in the
component. These variable sets directly give rise to a new set of solutions.

Each of the functions defined in the letrec block and the body of the letrec
block are traversed and expanded with the variables indicated by the set of solu-
tions. Block floating according to the algorithm of Figure 6 yields the program
of Figure 3.
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parameterLiftProgram :: Program → Program
parameterLiftProgram p = map (parameterLiftDef ∅) p

parameterLiftDef :: Set(FunName,Set(Variable)) → Def → Def
parameterLiftDef S (f ≡ λv1. . . . λvn.e) =

applySolutionToDef S (f ≡ λv1. . . . λvn.(parameterLiftExp S e))

parameterLiftExp :: Set(FunName,Set(Variable)) → Exp → Exp
parameterLiftExp S (e0 . . . en) =

let e′i = parameterLiftExp S ei, for each ei ∈ {e0, . . . , en}
in (e′0 . . . e′n)

parameterLiftExp S (LetRec {d1, . . . , dk} e0) =
let G = ref (∅, ∅)

Vfi = ref (FV(fi)), for each (di = (fi ≡ λv1. . . . λvn.e)) ∈ {d1, . . . , dk}
Pfi = {v1, . . . , vn}, for each (di = (fi ≡ λv1. . . . λvn.e)) ∈ {d1, . . . , dk}

in foreach fi ∈ {f1, . . . , fk} do
foreach g ∈ FF(fi) ∩ {f1, . . . , fk} do

Graph.add-edge G fi g
let (G′ as (V ′, E′)) = Graph.coalesceSCC G

succp = {q ∈ V ′|(p, q) ∈ E′}, for each p ∈ V ′

Fp =
⋃

q∈succp
q, for each p ∈ V ′

propagate :: List(Set(FunName)) → ()
propagate [ ] = ()
propagate (p :: r) =

let V = (
⋃

f∈p
Vf ) ∪ (

⋃
g∈Fp

Vg)

in foreach f ∈ p do
Vf := V \Pf ;

(propagate r)
in (propagate (List.reverse (Graph.breadthFirstOrdering G′)));

let S′ = S ∪ {(f1, Vf1), . . . , (fk, Vfk
)}

fs = map (parameterLiftDef S′) {d1, . . . , dk}
e′0 = parameterLiftExp S′ e0

in (LetRec fs e′0)
parameterLiftExp S (If e0 e1 e2) =

let e′i = parameterLiftExp S ei, for each ei ∈ {e0, e1, e2}
in (If e′0 e′1 e′2)

parameterLiftExp S f = applySolutionToExp S f
parameterLiftExp S v = v
parameterLiftExp S (x as literal) = x

applySolutionToDef :: Set(FunName,Set(Variable)) → Def → Def
applySolutionToDef (S as {. . . , (f, {v1, . . . , vn}), . . .}) (f ≡ λv′

1. . . . λv′
n.e) =

(f ≡ λv1. . . . λvn.λv′
1. . . . λv′

n.e)
applySolutionToDef S d = d

applySolutionToExp :: Set(FunName,Set(Variable)) → Exp → Exp
applySolutionToExp (S as {. . . , (f, {v1, . . . , vn}), . . .}) f = (f v1 . . . vn)
applySolutionToExp S e = e

Figure 5: Parameter lifting: free variables are made parameters
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blockFloatProgram :: Program → Program
blockFloatProgram p = foldr makeUnion (map blockFloatDef p) ∅
blockFloatDef :: Def → (Set(Def),Def)
blockFloatDef (f ≡ λv1. . . . λvn.e) = let (Fnew,e′) = blockFloatExp e

in (Fnew, f ≡ λv1. . . . λvn.e′)

blockFloatExp :: Exp → (Set(Def),Exp)
blockFloatExp (e0 . . . en) =

let (Fi, e
′
i) = blockFloatExp ei, for each ei ∈ {e0, . . . , en}

Fnew= foldr (∪) {F1, . . . , Fn} ∅
in (Fnew,e′0 . . . e′n)

blockFloatExp (LetRec {d, . . .} e0) =
let (Fnew, e) = blockFloatExp (LetRec {. . .} e0)
in ({d} ∪ Fnew, e)

blockFloatExp (LetRec ∅ e0) = blockFloatExp e0

blockFloatExp (If e0 e1 e2) =
let (Fi, e

′
i) = blockFloatExp ei, for each ei ∈ {e0, e1, e2}

in (F0 ∪ F1 ∪ F2,(If e
′
0 e′1 e′2))

blockFloatExp f = (∅, f)
blockFloatExp v = (∅, v)
blockFloatExp (x as literal) = (∅, x)

makeUnion :: ((Set(Def),Def),Set(Def)) → Set(Def)
makeUnion ((Fnew, d), S) = Fnew ∪ {d} ∪ S

Figure 6: Block floating: block structure is flattened

4 Flow-sensitive lambda-lifting in quadratic time

The value of a free variable might be available within a strongly connected
component under a different name. Johnsson’s algorithm (and therefore our
algorithm as well), however, includes all the variables from the outer scopes as
formal parameters because it only looks at their name. It therefore can produce
redundant lambda-lifted programs with aliasing.

4.1 A simple example of aliasing

The following token program adds its parameter to itself.

fun main x

= let fun add y

= x + y

in add x

end

In the definition of add, the free variable x is an alias of the formal parameter y.
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Lambda-lifting this program yields two recursive equations:

fun main x

= main_add x x

and main_add x y

= x + y

The extraneous parameter afflicting the second recursive equation corresponds
to the aliasing mentioned above.

In extreme cases, the number of extraneous parameters can explode: consider
the lower bound example of Section 3.2, where if the n formal parameters had
been aliases, there would have been O(n2) extraneous parameters. Such extra
parameters can have a dramatic effect. For example, Appel’s compiler uses
algorithms that are not linear on the arity of source functions [2]. Worse, in
partial evaluation, one of Glenstrup’s analyses is exponential in the arity of
source functions [20].

4.2 A solution

Improving the lambda-lifting algorithm would require us to look at the flow
graph, as we did for lambda-dropping [15]. Variables coming from an outer scope
that are present in a strongly connected component and that retain their identity
through all recursive invocations do not need to be added as formal parameters.
Doing so would solve the aliasing problem and yield what we conjecture to be
“optimal lambda-lifting.”

When performing lambda-lifting we do not need to take into account ap-
plications of higher-order functions, as illustrated in Example 1 of Section 1.1.
(Doing so would lead us towards defunctionalization [14, 34].) Therefore, a sim-
ple first-order flow-analysis which can be computed in time O(n log n), where n
is the size of the program, is sufficient for flow-sensitive lambda-lifting.

4.3 An algorithm

The parameter-lifting algorithm presented in Figure 5 can be modified to per-
form flow-sensitive lambda lifting. Given a program annotated with the results
of a first-order flow-analysis, parameter lifting proceeds as in the flow-insensitive
case, except that a free variable already available as a formal parameter is not
added to the set of solutions, but is instead substituted with the formal pa-
rameter that it aliases. The block-lifting algorithm remains unchanged. Since
first-order flow analysis information can be computed in time O(n log n), the
time complexity of the complete lambda-lifting algorithm remains unchanged.
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4.4 Revisiting the example of Section 4.1

Getting back to the token program of Section 4.1, a flow-sensitive lambda-lifter
would yield the following recursive equations.

fun main x

= main_add x

and main_add x

= x + x

This lambda-lifted program does not have redundant parameters.

5 Related work

We review alternative approaches to handling free variables in higher-order,
block-structured programming languages, namely supercombinator conversion,
closure conversion, lambda-dropping, and incremental versions of lambda-lifting
and closure conversion. Finally, we address the issues of formal correctness and
typing.

5.1 Supercombinator conversion

Peyton Jones’s textbook describes the compilation of functional programs to-
wards the G-machine [32]. Functional programs are compiled into supercombi-
nators, which are then processed at run time by graph reduction. Supercombi-
nators are closed lambda-expressions. Supercombinator conversion [17, 23, 31]
produces a series of closed terms, and thus differs from lambda-lifting that pro-
duces a series of mutually recursive equations where the names of the equations
are globally visible.

Peyton Jones also uses strongly connected components for supercombinator
conversion. First, dependencies are analyzed in a set of recursive equations.
The resulting strongly connected components are then topologically sorted and
the recursive equations are rewritten into nested letrec blocks. There are two
reasons for this design:

1. it makes type-checking faster and more precise; and

2. it reduces the number of parameters in the ensuing supercombinators.

Supercombinator conversion is then used to process each letrec block, starting
outermost and moving inwards. Each function is expanded with its own free
variables, and made global under a fresh name. Afterwards, the definition of
each function is replaced by an application of the new global function to its
free variables, including the new names of any functions used in the body. This
application is mutually recursive in the case of mutually recursive functions,
relying on the laziness of the source language; it effectively creates a closure for
the functions.
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Peyton Jones’s algorithm thus amounts to first applying dependency analysis
to a set of mutually recursive functions and then to perform supercombinator
conversion. As for dependency analysis, it is only used to optimize type checking
and to minimize the size of closures.

In comparison, applying our algorithm locally to a letrec block would first
partition the functions into strongly connected components, like dependency
analysis. We use the graph structure, however, to propagate information, not
to obtain an ordering of the nodes for creating nested blocks. We also follow
Johnsson’s algorithm, where the names of the global recursive equations are
free in each recursive equations, independently of the evaluation order. Instead,
Johnsson’s algorithm passes all the free variables that are needed by a function
and its callees, rather than just the free variables of the function.

To sum up, Peyton Jones’s algorithm and our revision of Johnsson’s algo-
rithm both coalesce strongly connected components in the dependency graph,
but for different purposes, our purpose being to reduce the time complexity of
lambda-lifting from cubic to quadratic.

5.2 Closure conversion

The notion of closure originates in Landin’s seminal work on functional pro-
gramming [26]. A closure is a functional value and consists of a pair: a code
pointer and an environment holding the denotation of the variables that occur
free in this code. Efficient representations of closures are still a research topic
today [37].

Closure conversion is a key step in Standard ML of New Jersey [5, 6], and
yields scope-insensitive programs. It is akin to supercombinator conversion,
though rather than creating a closure through a mutually recursive application,
the closure is explicitly created as a vector holding the values of the free variables
of the possibly mutually recursive functions.

In his textbook [32], Peyton Jones concluded his discussion between lambda-
lifting and supercombinator/closure conversion by pointing out a tension be-
tween

• passing all the [denotations of the] free variables of all the callees but not
the values of the mutually recursive functions (in lambda-lifting), and

• passing all the values of the mutually recursive functions but not the free
variables of the callees (in closure conversion).

He left this tension unresolved, stating that future would tell which algorithm
(lambda-lifting or closure conversion) would prevail.

Today we observe that in the compiler world (Haskell, ML, Scheme), closure
conversion has prevailed, with only one exception in Scheme [10]. Conversely,
in the program-transformation world [9, 11, 28], lambda-lifting has prevailed.
We also observe that only for lambda-lifting has an inverse transformation been
developed: lambda-dropping.
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5.3 Lambda-dropping

Lambda-dropping is the inverse of lambda-lifting [15]:

scope-free
recursive equations

block
sinking

��
lambda

dropping

��

scope-insensitive
block-structured program

block
floating

OO

parameter
dropping

��
scope-sensitive

block-structured program

lambda
lifting

EE

parameter
lifting

OO

Block floating is reversed by block sinking, which creates block structure by
making functions used in only one function local to this function. Parameter
lifting is reversed by parameter dropping, which removes redundant formal pa-
rameters that are originally defined in an outer scope and that always take on
the same value.

Lambda-lifting simplifies the structure of a program. However, a program
transformation that employs lambda-lifting as a preprocessing phase tends to
output a lambda-lifted program rather than a block-structured one. For one
point, the resulting programs are less readable. For another point, compilers
are often geared for source programs with few parameters.1 Therefore, increased
numbers of formal parameters often form a major overhead in procedure invo-
cation at run time. Against these odds, lambda-dropping can be applied to
re-create block structure and reduce the number of formal parameters.

A few years ago, Appel has pointed out a correspondence between imperative
programs in SSA form and functional programs using block structure and lexical
scope [3]. Specifically, he has shown how to transform an SSA program into its
functional representation.2 We were struck by the fact that this transformation
corresponds to performing block sinking on the recursive equations defining the
program. As for the transformation into optimal SSA form (which diminishes
the number of Φ-nodes), it is equivalent to parameter dropping. This made us
conclude that lambda-dropping can be used to transform programs in SSA form
into optimal SSA form [15].

This conclusion prompted us to improve the complexity of the lambda-
dropping algorithm to O(n log n), where n is the size of the program, by using
the dominance graph of the dependency graph. We then re-stated lambda-
lifting in a similar framework using graph algorithms, which led us to the result
presented in the present article.

1For example, the magic numbers of parameters, in OCaml, are 0 to 7.
2The point is made comprehensively in his SIGPLAN Notices note, which is also available

in his home page [4].
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Even with the improvement presented in this article, we are still left in an
asymmetric situation where lambda-lifting and lambda-dropping do not have
the same time complexity. With some thought, though, this asymmetry is not
so surprising, since lambda-dropping is applied to the output of lambda-lifting,
and the complexity is measured in terms of the size of the output program. Mea-
suring the complexity of lambda-dropping in terms of the size of the program
before lambda-lifting yields a relative time complexity of lambda-dropping of
O((n2) log(n2)), which is O(n2 log n), a fitting match for the O(n2 log n) time
complexity of lambda-lifting.

5.4 Flow sensitivity, revisited

We observe that lambda-dropping is flow sensitive, in the sense that it removes
the aliased parameters identified as a possible overhead for lambda-lifting in Sec-
tion 4. Therefore flow-sensitive lambda-lifting can be achieved by first lambda-
dropping the program, and then lambda-lifting the result in the ordinary flow-
insensitive way. Since the time complexity of lambda-dropping is lower than the
time complexity of lambda-lifting, using lambda-dropping as a preprocessing
transformation does not increase the overall time complexity of lambda-lifting.

5.5 Mixed style

In order to preserve code locality, compilers such as Twobit [10] or Moby [33]
often choose to lift parameters only partially. The result is in the mixed style
described at the end of Section 1.1.

In more detail, rather than lifting all the free variables of the program to
become formal parameters, parameter lifting is used incrementally to transform
programs by lifting only a subset of the free variables of each function. If a func-
tion is to be moved to a different scope, however, it needs to be passed the free
variables of its callees as parameters. As was the case for global lambda-lifting,
propagating the additional parameters through the dependency graph requires
cubic time. To improve the time complexity, our quadratic-time parameter-
lifting algorithm can be applied to the subsets of the free variables instead. The
improvement in time complexity for incremental lambda-lifting is the same as
what we observed for the global algorithm.

We note that a partial version of closure conversion also exists, namely Steck-
ler and Wand’s [38], that leaves some variables free in a closure because this
closure is always applied in the scope of these variables. We also note that
combinator-based compilers [41] could be seen as using a partial supercombina-
tor conversion.

5.6 Correctness issues

Only idealized versions of lambda-lifting and lambda-dropping have been for-
mally proven correct. Danvy has related lambda-lifted and lambda-dropped
functionals and their fixed point [13]. Fischbach and Hannan have capitalized
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on the symmetry of lambda-lifting and lambda-dropping to formalize them in
a logical framework, for a simply typed source language [18].

Overall, though, and while there is little doubt about Johnsson’s original
algorithm, its semantic correctness still remains to be established.

5.7 Typing issues

Fischbach and Hannan have shown that lambda-lifting is type-preserving for
simply typed programs [18]. Thiemann has pointed out that lambda-lifted ML
programs are not always typeable, due to let polymorphism [40]. Here is a very
simple example. In the following block-structured program, the locally defined
function has type ’a -> int.

fun main ()

= let fun constant x

= 42

in (constant 1) + (constant true)

end

The corresponding lambda-lifted program, however, is not typeable because of
ML’s monomorphic recursion rule [30]. Since constant is defined recursively, its
name is treated as lambda-bound, not let-bound:

fun main ()

= (constant 1) + (constant true)

and constant x

= 42

The problem occurs again when one of the free variables of a local recursive
function is polymorphically typed.

To solve this problem, one could think of making lambda-lifting yield not just
one but several groups of mutually recursive equations, based on a dependency
analysis [32]. This would not, however, be enough because a local polymorphic
function that calls a surrounding function would end up in the same group of
mutually recursive equations as this surrounding function.

There is no generally accepted solution to the problem. Thiemann proposes
to parameter-lift some function names as well, as in supercombinator conver-
sion [40]. Fischbach and Hannan propose to use first-class polymorphism instead
of let-polymorphism [18]. Yet another approach would be to adopt a polymor-
phic recursion rule, i.e., to shift from the Damas-Milner type system to the
Milner-Mycroft type system, and to use a dependency analysis as in a Haskell
compiler. Milner-Mycroft type inference, however, is undecidable [22] and in
Haskell, programmers must supply the intended polymorphic type; correspond-
ingly, a lambda-lifter should then supply the types of lifted parameters, when
they are polymorphic.

18



6 Conclusion and future work

We have shown that a transitive closure is not needed for lambda-lifting. In this
article, we have reformulated lambda-lifting as a graph algorithm and improved
its time complexity from O(n3 log n) to O(n2 log n), where n is the size of the
program. Based on a simple example where lambda-lifting generates a program
of size O(n2), we have also demonstrated that our improved complexity is close
to optimal.

The quadratic-time algorithm can replace the cubic-time instances of lambda-
lifting in any partial evaluator or compiler, be it for global or for incremental
lambda-lifting.

As for future work, we are investigating lambda-lifting in the context of
object-oriented languages. Although block structure is instrumental in object-
oriented languages such as Java, Beta and Simula [12, 21, 27], existing work on
partial evaluation for object-oriented languages has not addressed the issue of
block structure [36]. Problems similar to those found in partial evaluation for
functional languages appear to be unavoidable: residual methods generated in
a local context may need to be invoked outside of the scope of their class. Side
effects, however, complicate matters.
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and to Andrzej Filinski for a clarification about ML typing. Thanks are also
due to the anonymous referees for very perceptive and useful reviews.
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A Graph and list utilities

The algorithm for parameter lifting, in Figure 5, makes use of a number of graph
and list procedures. These procedures are specified in Figure 7.

Graph.add-edge :: Graph(α) → (α, α) → (α, α)
Graph.add-edge G (n1, n2) : Updates G to contain the nodes n1 and n2 as

well as an edge between the two.

Graph.coalesceSCC :: Graph(α) → Graph(Set(α))
Graph.coalesceSCC G : Returns G with its strongly connected components

coalesced into sets [1].

Graph.breadthFirstOrdering :: Graph(α) → List(α)
Graph.breadthFirstOrdering G : Returns a list containing the nodes of G, in

a breadth-first ordering.

List.reverse :: List(α) → List(α)
List.reverse L : Returns L with its elements reversed.

Figure 7: Graph and list procedures

19



References

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,
Techniques and Tools. World Student Series. Addison-Wesley, Reading,
Massachusetts, 1986.

[2] Andrew W. Appel. Compiling with Continuations. Cambridge University
Press, New York, 1992.

[3] Andrew W. Appel. Modern Compiler Implementation in {C, Java, ML}.
Cambridge University Press, New York, 1998.

[4] Andrew W. Appel. SSA is functional programming. ACM SIGPLAN No-
tices, 33(4):17–20, April 1998.

[5] Andrew W. Appel and Trevor Jim. Continuation-passing, closure-passing
style. In Michael J. O’Donnell and Stuart Feldman, editors, Proceedings
of the Sixteenth Annual ACM Symposium on Principles of Programming
Languages, pages 293–302, Austin, Texas, January 1989. ACM Press.

[6] Andrew W. Appel and David B. MacQueen. Standard ML of New Jersey. In
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