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Recent Advances in Σ-definability over

Continuous Data Types∗

Margarita Korovina

June, 2003

Abstract

The purpose of this paper is to survey our recent research in computability
and definability over continuous data types such as the real numbers, real-valued
functions and functionals. We investigate the expressive power and algorithmic
properties of the language of Σ-formulas intended to represent computability
over the real numbers. In order to adequately represent computability we ex-
tend the reals by the structure of hereditarily finite sets. In this setting it is
crucial to consider the real numbers without equality since the equality test is
undecidable over the reals. We prove Engeler’s Lemma for Σ-definability over
the reals without the equality test which relates Σ-definability with definability
in the constructive infinitary language Lω1ω. Thus, a relation over the real num-
bers is Σ-definable if and only if it is definable by a disjunction of a recursively
enumerable set of quantifier free formulas. This result reveals computational as-
pects of Σ-definability and also gives topological characterisation of Σ-definable
relations over the reals without the equality test. We also illustrate how com-
putability over the real numbers can be expressed in the language of Σ-formulas.

1 Introduction

Study of computability properties of continuous objects such as reals, real-valued
functions and functionals is one of the fundamental areas of Computer Science mo-
tivated by applications from Engineering; where the vast majority of objects are of
a continuous nature. The classical theory of computation, which works with discrete
structures, is not suitable for formalisation of computations that operate on real-
valued data. Since computational processes are discrete in their nature and objects
we consider are continuous, formalisation of computability of such objects is already a
challenging research problem. This has resulted in various concepts of computability
over continuous data types [4, 6, 12, 11, 15, 18, 22, 27, 26, 32, 37]. If we consider
the case of the real numbers there are at least two main nonequivalent models of
computability. The first one is related to abstract finite machines and schemes of
computations (e.g. [4, 16, 31, 29, 35] ) where real numbers are considered as basic
entities which can be added, multiplied, divided or compared in a single step, and
computations are finite processes. In this approach equality is usually used as a basic

∗This research was partially supported by the Danish Natural Science Research Council, Grant
no. 21-02-0474.
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relation, consequently a computable function can be discontinuous. It differs from
the situation in concrete computability over the reals, particularly, in computable
analysis. The second model ( e.g. [6, 12, 11, 15, 18, 22, 32, 37]) is closely related to
computable analysis. In this approach real numbers are given by appropriate repre-
sentations and computations are infinite processes which produce approximations to
the results. This model is more satisfying conceptually, conforming to our intuition
of reals, but depends on representations of the reals. In some cases it is not clear
which representations are preferable. In this paper we survey the logical approach to
computability on continuous structures, which have been first proposed in [27, 26].
On the one hand, the logical approach agrees with the second model mentioned above
(i.e. mathematical intuition), on the other hand it does not depend on representations
of reals.

In order to introduce the logical approach to computability over continuous data
types we consider the following problems.

1. Which data structures are suitable for representing continuous objects?

2. Which logical language is appropriate to express computability on continuous
data types?

3. Can we treat inductive definitions using this language?

4. What is the expressive power of this language?

In this paper we represent continuous data types by suitable structures without
the equality test. This is motivated by the following natural reason. In all effective
approaches to exact real number computation via concrete representations [15, 18, 32],
the equality test is undecidable. This is not surprising, because an infinite amount of
information must be checked in order to decide that two given real numbers are equal.
In order to do any kind of computation or to develop a computability theory, one has
to work within a structure rich enough for information to be coded and stored. For
this purpose we extend a structure A by the set of hereditarily finite sets HF(A). The
idea that the hereditarily finite sets over A form a natural domain for computation
is discussed in [1, 14, 33]. Note that such or very similar extensions of structures are
used in the theory of abstract state machines [3, 2], in query languages for hierarchic
databases [7], and in Web-like databases [33].

In order to express computability on continuous data types we use the language
of Σ-formulas. This approach is based on definability and has the following beneficial
features.

• Notions of Σ-definable sets or relations generalise those of computable enumer-
able sets of natural numbers.

• It does not depend on representations of elements of structures.

• It is flexible: sometimes we can change the language of the structure to obtain
appropriate computability properties.

• We can employ model theory to study computability.

• One can treat inductive definitions using Σ-formulas.
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• Formulas can be seen as a suitable finite representation of the relations they
define.

Now we address problems 3-4, listed above, regarding the language of Σ-formulas.
These problems are closely related to the well-known Gandy’s Theorem which states
that the least fixed point of any positive Σ-operator is Σ-definable. Gandy’s Theorem
was first proven for abstract structures with the equality test (see [1, 14, 17]). In
our setting it is important to consider structures without the equality test. Let us
note that in all known proofs of Gandy’s Theorem so far, it is the case that even
when the definition of a Σ-operator does not involve equality, the resulting Σ-formula
usually does. Only recently we have shown in [25, 24] that it is possible to overcome
this problem. In particular we have proved that Gandy’s Theorem holds for abstract
structures without the equality test. The following several applications of Gandy’s
Theorem demonstrate its significance. One of them is that we can treat inductive
definitions using Σ-formulas. The role of inductive definability as a basic principle
of general computability is discussed in [20, 30]. It is worth noting that for finite
structures the least fixed points of definable operators give an important and well
studied logical characterisation of complexity classes [10, 21, 36]. For infinite struc-
tures fixed point logics are also studied e.g. [8]. In the case of the real numbers, as
in the case of discrete structures, inductive definitions allow us to define universal
Σ-predicates. Another application is that Gandy’s Theorem can be used to reveal
algorithmic aspects of Σ-definability.

In order to investigate algorithmic aspects of Σ-definability over the reals without
the equality test we use a suitable fragment of the constructive infinite language Lω1ω

[1, 34]. Certain fragments of constructive Lω1ω have been used to study the expres-
sive power of formal approaches to computability such as search computability [30],
’While’-computability [35], ∀-recursiveness [28], dynamic logics [19] and fixed-point
logics [10]. We show that a relation over the real numbers is Σ-definable if and only
if it is definable by a disjunction of a recursively enumerable set of quantifier free for-
mulas. Let us note that the proof of the ’if’ direction follows from Engeler’s Lemma
for Σ-definability, which have been recently proved for the reals without equality in
[23], and the proof of the ’only if’ direction uses methods based on Gandy’s Theorem.
It is worth noting that both of the directions of this characterisation are important.
Engler’s Lemma gives us an effective procedure which generates quantifier free formu-
las approximating Σ-relations. The converse direction provides tools for descriptions
of the results of effective infinite approximating processes by finite formulas.
For an illustration of the concepts of the logical approach, we consider computability
on the real numbers. We show that computability of continuous objects, i.e. real
numbers, real-valued functions, can be characterised by finite Σ-formulas.

The structure of this paper is as follows. In Section 2 we recall the notion of
Σ-definability. In Section 3 we show that we can treat inductive definitions using
Σ-formulas. Section 4 introduces a certain fragment of the constructive infinite logic.
In Section 5 we present a characterisation of the expressive power of Σ-definability
on the reals without the equality test. Section 6 illustrates how computability on the
real numbers can be expressed in the language of Σ-formulas. We conclude with a
discussion of future work.
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2 Σ-definability over the Real Numbers

2.1 Basic Definitions and Notions

We start by introducing basic notations and definitions. Let us consider an abstract
structure A in a finite language σ0 without the equality test.

In order to do any kind of computation or to develop a computability theory one
has to work within a structure rich enough for information to be coded and stored. For
this purpose we extend the structure A by the set of hereditarily finite sets HF(A).

The idea that the hereditarily finite sets over A form a natural domain for com-
putation is quite classical and is developed in detail in [1, 14].

Note that such or very similar extensions of structures with equality are used in
the theory of abstract state machines [3, 2] and in query languages for hierarchic
databases [7].

We will construct the set of hereditarily finite sets over the model without equal-
ity. This structure permits us to define the natural numbers, and to code and store
information via formulas.

We construct the set of hereditarily finite sets, HF(A), as follows:

1. HF0(A) 
 A,

2. HFn+1(A) 
 Pω(HFn(A)) ∪ HFn(A), where n ∈ ω and for every set B, Pω(B)
is the set of all finite subsets of B.

3. HF(A) 

⋃

n∈ω HFn(A).

We define HF(A) as the following model:

HF(A) 
 〈HF(A), U, S, σ0, ∅,∈〉
 〈HF(A), σ〉 ,

where the constant ∅ stands for the empty set, the binary predicate symbol ∈ has
the set-theoretic interpretation. Also we add predicates symbols U for urelements
(elements from A) and S for sets. Let us denote S(HF(A)) 
 HF(A) \ A.

The natural numbers 0, 1, . . . are identified with the (finite) ordinals in HF(A)
i.e. ∅, {∅, {∅}}, . . . , so in particular, n + 1 = n ∪ {n} and the set ω is a subset of
HF(A).
For our convenience, we use variables subject to the following conventions:

r, x, y, z, . . . range over A (urelements),
i, j, k, l,m, n, . . . range over ω (natural numbers),
α, β, κ, . . . range over HF(∅),
f, g, p, q, s, t, u, v, w, . . . range over S(HF(A)) (sets),
L,M,N,R,X, Y, Z, . . . range over A

∗ (nonempty finite sets over A),
A,B,C,D,U, V,W, . . . range over HF(A∗) (finite sets which do not contain ele-

ments of A as members) and
a, b, c, d, k, . . . range over HF(A).

Different sorts for variables can been seen as a syntactic sugar, which can be elim-
inated, since, as we will see below, structures A, A

∗, HF(A∗), ω, HF(n) are ∆0-
definable subsets of A. We use the same letters as for variables to denote elements
from the corresponding structures.

The notions of a term and an atomic formula are given in the standard manner.
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The set of ∆0-formulas is the closure of the set of atomic formulas under ∧,∨,¬,
and bounded quantifiers (∃a ∈ s) and (∀a ∈ s), where (∃a ∈ s) Ψ denotes ∃a(a ∈
s ∧ Ψ) and (∀a ∈ s) Ψ denotes ∀a(a ∈ s→ Ψ).

The set of Σ-formulas is the closure of the set of ∆0 formulas under ∧,∨, (∃a ∈ s),
(∀a ∈ s), and ∃.

We are interested in Σ-definability of sets on An which can be considered as gen-
eralisation of recursive enumerability. The analogy of Σ-definable and recursive enu-
merable sets is based on the following fact. Consider the structure HF = 〈HF(∅),∈〉
with the hereditarily finite sets over ∅ as its universe and membership as its only
relation. In HF the Σ-definable sets are exactly the recursively enumerable sets.

The notion of Σ-definability has a natural meaning also in the structure HF(A).

Definition 2.1 1. A relation B ⊆ HF(A)n is ∆0 (Σ)-definable, if there exists a ∆0

(Σ)-formula Φ(ā) such that

b̄ ∈ B ↔ HF(A) |= Φ(b̄).

2. A function f : HF(A)n → HF(A)m is ∆0 (Σ)-definable, if there exists
a ∆0 (Σ)-formula Φ(c̄, d̄) such that

f(ā) = b̄↔ HF(A) |= Φ(ā, b̄).

Note that the sets A and ω are ∆0-definable. This fact makes HF(A) a suitable
domain for studying subsets of A

n and operators of the type

Γ : P(An)→ P(An).

In the following lemma we introduce some ∆0-definable and Σ-definable predicates
that we will use later.

Lemma 2.2 1. The predicates R(a) 
 a ∈ A, S(a) 
 a is a set, and n ∈ ω are
∆0-definable.

2. The following predicates are ∆0-definable: u = v, u = v ∩ t, u = v ∪ t, u =<
v, t >, u = v \ t (recall that all variables u, v, t range over sets).

3. A function f : ωn → ωm is computable if and only if it is Σ-definable.

4. Every B ⊂ INn is recursively enumerable if and only if it is Σ-definable.

5. All arithmetic operations on ordinals are Σ-definable.

6. Let Fun(g) mean that g is a finite function i.e.

g = {〈u, v〉 | for every u there exists a unique v }

then the predicate Fun(g) is ∆0-definable.

7. If HF(A) |= Fun(g) then the domain of g, denoted by δg, is ∆0-definable.
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Proof. Proofs of all properties are straightforward except (3) which can be found
in [14]. �

For finite functions Fun(f) let us denote f(u) = v if 〈u, v〉 ∈ f .
The following proposition states that we have full collection on HF(A).

Proposition 2.3 (Collection.) For every formula Φ the following claim holds. If
HF(A) |= (∀a ∈ u)∃bΦ(a, b) then there is a set t such that

HF(A) |= (∀a ∈ u) (∃b ∈ t)Φ(a, b) and
HF(A) |= (∀b ∈ t) (∃a ∈ u)Φ(a, b).

Proof. The claim follows from the definition of HF(A). Indeed, if u ∈ HF(A)
consists of k elements a1, . . . , ak and for each of these ai there is an bi such that
Φ(ai, bi) holds. Then all b1, . . . , bk occur in HFn(A) for some n, hence {b1, . . . , bk} ∈
HFn+1(A). �

Proposition 2.4 (Σ-reflection principle) Every Σ-formula Φ(ā) is equivalent to
a formula of the type ∃uΨ(u, ā), where Ψ is a ∆0-formula.

2.2 The least fixed points of effective operators

Now we recall the notion of Σ-operator and prove Gandy’s theorem for structures
without the equality test.

Let Φ(a1, . . . , an, P ) be a Σ-formula where P occurs positively in Φ and the arity
of Φ is equal to n.

We think of Φ as defining a Σ-operator

Γ : P(HF(A)n)→ P(HF(A)n)

given by
Γ(Q) = {ā| (HF(A), Q) |= Φ(ā, P )},

where for every set B, P(B) is the set of all subsets of B.
Since the predicate symbol P occurs only positively we have that the corresponding

operator Γ is monotone i.e. for any sets from A ⊆ B follows Γ(A) ⊆ Γ(B).
By monotonicity, the operator Γ has the least (w.r.t. inclusion) fixed point which

can be described as follows.
We start from the empty set and apply operator Γ until we reach the fixed point:

Γ0 = ∅, Γn+1 = Γ(Γn), Γγ = ∪n<γΓn, (1)

where γ is a limit ordinal.
One can easily check that the sets Γn form an increasing chain of sets: Γ0 ⊆ Γ1 ⊆

. . . . By set-theoretical reasons, there exists the least ordinal γ such that Γ(Γγ) = Γγ .
This Γγ is the least fixed point of the given operator Γ.

In order to study the least fixed points of arbitrary Σ-operators (without the
equality test), we first consider Σ-operators of the type

Γ : P(S(HF(A))n)→ P(S(HF(A))n).
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Then we will show how the least fixed points of arbitrary Σ-operators can be con-
structed using the least fixed points of such operators. Note that, as S(HF(A)) is
closed under pairing, S(HF(A))n ⊆ S(HF(A)) for n > 0. Moreover, S(HF(A))n is
a Σ-definable subset of HF(A). So, without loss of generality we can consider the case
n = 1.

Let us formulate some properties of Σ-operators which we will use below. The
following proposition states that each element from the value of a Σ-operator on a
Σ-set can be obtained as an element of the value of this operator on a finite subset of
the set.

Proposition 2.5 If Q is a Σ-definable subset of S(HF(A)) and w ∈ Γ(Q) then there
exists p ∈ S(HF(A)) such that p ⊆ Q and w ∈ Γ(p).

Proof. We prove the proposition for the more general case where we allow param-
eters from S(HF(A)) to occur into the formula defining our operator.

Let Φ(b̄, u, P ) be a Σ-formula defining our operator Γ, where b̄ = b1, . . . , bn are
parameters from S(HF (A)). And let Q be a Σ-definable subset of S(HF (A)) and
w ∈ Γ(Q). We need to prove that there exists p ∈ S(HF (A)) such that p ⊆ Q and
w ∈ Γ(p).

We prove the claim by induction on the structure of Φ.
If Φ(b̄,u, P ) 
 P (u) and (HF(A), Q) |= P (w) then the set p 
 {w} is a required

one.
If Φ is an atomic formula which does not contain P then the set p 
 ∅ is a required

one.
For the induction step let us consider all possible cases.
1. Suppose Φ(b̄, u, P ) 
 (∀a ∈ bj)Ψ(a, b̄, u, P ) and

(HF(A), Q) |= (∀a ∈ bj)Ψ(a, b̄, w, P ).

By induction hypothesis,

(HF(A), Q ) |= (∀a ∈ bj) ∃s
(
Ψ(a, b̄, w, P )

)P (t)

t∈s
∧ s ⊆ Q.

Using Proposition 2.3, we find an element q such that

(HF(A), Q) |= (∀a ∈ bj) (∃s ∈ q)
((

Ψ(a, b̄, w, P )
)P (t)

t∈s
∧ s ⊆ Q

)
∧

(∀s ∈ q) (∃a ∈ bj)
((

Ψ(a, b̄, w, P )
)P (t)

t∈s
∧ s ⊆ Q

)
.

Let p 
 ∪q.
By definition, for all a ∈ bj there exists s ⊆ p such that

(HF(A), s) |= (
Ψ(a, b̄, w, P )

)P (t)

t∈s
.

So we have
(HF(A), p) |= Ψ(a, b̄, w, P ) for all a ∈ bj .

In other words,
(HF(A), p) |= (∀a ∈ bj)Ψ(a, b̄, u, P ).

7



By construction the set p is a required one.
2. The case Φ(b̄, u, P ) 
 (∃a ∈ bj)Ψ(a, b̄, u, P ) is similar to the case above.
3. Suppose Φ(b̄, u, P ) 
 ∃aΨ(a, b̄, u, P ) and

(HF(A), Q) |= Ψ(b′, b̄, w, P ).

By induction hypothesis, there exists p0 ⊆ Q such that p0 ∈ S(HF(A)) and

(HF(A), p0) |= Ψ(b′, b̄, w, P ).

The set p 
 p0 is a required one.
4. Suppose Φ(b̄, u, P ) 
 Ψ1(b̄, u, P ) ∧Ψ2(b̄, u, P ) and

(HF(A), Q) |= Ψ1(b̄, w, P ) ∧Ψ2(b̄, w, P ).

By induction hypothesis, there exist p1 ⊆ Q and p2 ⊆ Q such that p1 ∈ S(HF(A)),
p2 ∈ S(HF(A)) and

(HF(A), p1) |= Ψ1(b̄, w, P )

and
(HF(A), p2) |= Ψ2(b̄, w, P ).

The set p 
 p1 ∪ p2 is a required one.
5. The case Φ(b̄, u, P ) 
 Ψ1(b̄, u, P ) ∨Ψ2(b̄, u, P ) is similar to the case above. �

Proposition 2.6 Let Γ : P(S(HF(A))) → P(S(HF(A))) be a Σ-operator. The rela-
tion u ∈ Γ(v) is Σ-definable.

Proof. Let Φ(t, P ) be a Σ-formula which defines the operator Γ. Suppose u ∈ Γ(v).
By definition,

u ∈ {t| (HF(A), v) |= Φ(t, P )}.
It means that

(HF(A), v) |= Φ(u, P ).

So we have
(HF(A)) |= (Φ(u, P ))P (t)

t∈v .

It is easy to see that the relation u ∈ Γ(v) is defined by Σ-formula Φ(u, P )P (t)
t∈v . �

Now we are ready to prove Gandy’s theorem for Σ-operators of the type

Γ : P(S(HF(A)))→ P(S(HF(A))).

Theorem 2.7 Let Γ : P(S(HF(A))) → P(S(HF(A))) be a Σ-definable operator.
Then the least fixed-point of Γ is Σ-definable.

Proof. We will prove that the least fixed point of the operator Γ is Γω, where Γω is
defined as follows: Γ0 = ∅, Γn = Γ(Γn−1) for a finite ordinal n, and Γω =

⋃
m<ω Γm.

Let us show Σ-definability of Γn for every finite ordinal n. For this purpose we
introduce the following family of finite functions:
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X0 = < ∅, ∅ >,
Xn = {f |Fun(f) and δf = n+ 1, f(0) = ∅,

f is monotonic and for any m ≤ n
the following is true:f(m) ⊆

⋃
l<m

Γ(f(l)}

where n > 0.
From the definitions Xn and Γ it follows that Xn is Σ-definable for all n ∈ ω,

moreover there exists a Σ-formula ψ(n, u) such that

HF(A) |= ψ(n, u)↔ u ∈ Xn.

Below we will use the following useful properties of the families Xn:

1. Let w be a finite subset of Xn. Let us define f∗(m) 
 ∪f∈wf(m) for all m ≤ n.
Then f∗ ∈ Xn.

2. If f ∈ Xn and m ≤ n. Then f � (m+ 1) ∈ Xm.

3. Let f ∈ Xm and m ≤ n.

Define a function

f∗(l) =
{

f(l), if l ≤ m
f(m), if m < l ≤ n.

Then f∗ ∈ Xn.

4. Let f ∈ Xn and b ∈ Γ(f(m)) where m ≤ n.

Define a function

f∗(l) =
{
f(l), if l ≤ n
{b}, if l = n+ 1.

Then f∗ ∈ Xn+1.

Using these properties let us show that:

u ∈ Γn iff HF(A) |= ∃f (f ∈ Xn ∧ u ∈ f(n)) (2)

by induction on n. For n = 0 we have Γn = ∅ and therefore (2) holds.
Assume that (2) holds for n let us prove that (2) holds for n+ 1.
To prove from left to right let us consider an element u ∈ Γn+1 = Γ(Γn). By

induction hypothesis we have that u1 ∈ Γn iff ∃g (g ∈ Xn ∧ u1 ∈ g(n)) . So the set Γn

is Σ-definable. By Proposition 2.5 it follows that there exists v ∈ S(HF(A)) such that
v ⊆ Γn and u ∈ Γ(v).
By induction hypothesis and the condition v ⊆ Γn,

HF(A) |= (∀t ∈ v) ∃g (g ∈ Xn ∧ t ∈ g(n)) .

Using Proposition 2.3, we find an element w such that

HF(A) |= (∀t ∈ v) (∃g ∈ w) (g ∈ Xn ∧ t ∈ g(n)) ∧
(∀g ∈ w) (∃t ∈ v) (g ∈ Xn ∧ t ∈ g(n)) .
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Starting from the finite subset w ⊆ Xn, we define the function g0 as follows:

g0(l) = ∪g∈wg(l), l ≤ n.

By Property (1) of Xn which is mentioned above, g0 ∈ Xn. It is easy to check the
following inclusion v ⊆ g0(n). Indeed, if t ∈ v then there exists g ∈ w such that
t ∈ g(n) ⊆ g0(n).
Define a function

f(l) =
{
g0(l), if l ≤ n
{u}, if l = n+ 1.

From Property (4) of Xn follows that f ∈ Xn+1 and moreover u ∈ f(n+ 1) holds by
the definition of f . So f is a required one.

To prove from right to left let us suppose there exists f such that

(f ∈ Xn+1 ∧ u ∈ f(n+ 1)) .

By the definition of Xn+1, u ∈ Γ(f(m)) for some m ≤ n.
Let us check the inclusion : f(m) ⊆ Γm. For this purpose we consider f1 = f �

(m+1). From Property (2) of Xm follows that f1 ∈ Xm. So, for all v ∈ f1(m) we have
HF(A) |= ∃f (f ∈ Xm ∧ v ∈ f(m)) . By induction it means that f1(m) = f(m) ⊆ Γm.

The operator Γ is monotone, so we have

u ∈ Γ(f(m)) ⊆ Γ(Γm) ⊆
⋃

m<n+1

Γ(Γm) = Γn+1.

Thus we have proven that Γn is Σ-definable for all n ∈ ω. Consequently,

u ∈ Γω ↔ ∃n∃f (f ∈ Xn ∧ u ∈ f(n)) (3)

is Σ-definable.
To check that Γω is a fixed point i.e. Γ(Γω) ⊆ Γω let us consider u ∈ Γ(Γω). From

(3) it follows that Γω is Σ-definable. From Proposition 2.5 it follows that there exists
v ∈ S(HF(A)) such that v ⊆ Γω and u ∈ Γ(v). It is easy to check that v ⊆ Γm for
some m ∈ ω. From this we have that u ∈ Γ(Γm) ⊆ Γω. By monotonicity of Γ, the set
Γω is the least fixed point. So the least fixed point of the operator Γ is Σ-definable.
�

Now we consider arbitrary Σ-operators on the structure A without the equality
test.

Theorem 2.8 Let Γ : P(HF(A)n) → P(HF(A)n) be an arbitrary Σ-operator. Then
the least fixed-point of Γ is Σ-definable.

Proof.
Without loss of generality let us consider the case n = 1. For simplicity of notation,

we will give the construction only for that case, since the main ideas are already
contained here. Let Φ(r, P ) define the operator Γ. We construct a new Σ-operator
F : P(S(HF(A)))→ P(S(HF(A))) such that

r ∈ Γn ←→ ∃u (u ∈ Fn ∧ r ∈ u) .

10



For this purpose we define the following formula with a new unary predicate
symbol Q:

Ψ(u,Q) = (∀r ∈ u) (Φ(r, P ))P (t)
∃vQ(v)∧t∈v .

It is easy to see that Ψ induces a Σ-operator F given by

F (D) = {u|(HF(A), D) |= Ψ(u,Q)}.
Let us show that

r ∈ Γn ↔ ∃u(u ∈ Fn ∧ r ∈ u) (4)

by induction on n. For n = 0 we have Γn = Fn = ∅ and therefore (4) holds.
Assume that (4) holds for n let us prove that (4) holds for n+ 1. In other words

we need to prove that

(HF(A),Γn) |= Φ(r, P )↔
(HF(A), Fn) |= ∃u

(
r ∈ u ∧ (∀r′ ∈ u) (Φ(r′, P ))P (t)

∃vQ(v)∧t∈v

)
.

Since the first formula does not contain Q and the second formula does not contain
P it is sufficient to consider one structure (HF(A),Γn, Fn) and prove that

(HF(A),Γn, Fn) |= Φ(r, P )↔
(HF(A),Γn, Fn) |= ∃u

(
r ∈ u ∧ (∀r′ ∈ u) (Φ(r′, P ))P (t)

∃vQ(v)∧t∈v

)
.

To prove from left to right let us consider r ∈ HF(A) such that

(HF(A),Γn, Fn) |= Φ(r, P ).

Consider the formula (Φ(r, P ))P (t)
∃vQ(v)∧t∈v then by induction hypothesis we have that

(HF(A),Γn, Fn) |= ∀r′ (P (r′) ↔ ∃u(u ∈ Q ∧ r′ ∈ u) ) (5)

and therefore (by replacement lemma) we have

(HF(A),Γn, Fn) |= (Φ(r, P ))P (t)
∃vQ(v)∧t∈v .

Now it is easy to check that

(HF(A),Γn, Fn) |= ∃u
(
r ∈ u ∧ (∀r′ ∈ u) (Φ(r′, P ))P (t)

∃vQ(v)∧t∈v

)

taking u = {r}.
To prove from right to left let us consider r ∈ HF(A) such that

(HF(A),Γn, Fn) |= ∃u
(
r ∈ u ∧ (∀r′ ∈ u) (Φ(r′, P ))P (t)

∃vQ(v)∧t∈v

)
.

From this we have that

(HF(A),Γn, Fn) |= (Φ(r, P ))P (t)
∃vQ(v)∧t∈v

11



and from (5) (by replacement lemma) we obtain that

(HF(A),Γn, Fn) |= Φ(r, P ).

Now from Theorem ?? it follows that the least fixed point of the operator F is
Σ-definable and therefore the the least fixed point of the operator Γ is also Σ-definable.

�

3 Expressive Power of Σ-definability over the Reals

In this section we consider the standard model of the real numbers

〈IR, 0, 1,+, ·, <〉 = 〈IR, σ0〉 ,
denoted also by IR, where + and · are regarded as the usual arithmetic operations on
the real numbers. We use the language of strictly ordered rings, so we assume that
the predicate < occurs positively in all formulas.

We use the same letters as for variables to denote elements from the corresponding
structures.

A formula in the form p1(x̄) < p2(x̄), where p1 and p2 are polynomials with
coefficients in IN, is called an atomic strict semi-algebraic (<algebraic ) formula.

The set of atomic formulas is the union of the set of atomic <algebraic formulas
and the formulas of the type N ∈M , where M ranges over sets.

The closure of the atomic <algebraic formulas under finite conjunctions and
disjunctions forms the set of <algebraic formulas.

The notion of ∆0-formula is the same as in Section 1.
We assume that predicates from the language σ0 can occur only positively in our
formulas.

With every atomic <algebraic formula p1(x1, . . . , xn) < p2(x1, . . . , xn) we asso-
ciate the following formula, called a lifted atomic <algebraic formula:

p1(X1, . . . , Xn) < p2(X1, . . . , Xn) 

(∀x1 ∈ X1) . . . (∀xn ∈ Xn) p1(x1, . . . , xn) < p2(x1, . . . , xn).

The terms p1(X̄) and p2(X̄) are called lifted polynomials. In a similar way, we can
also associate with each <algebraic formula a lifted <algebraic formula, i.e., the
lifted <algebraic formulas are the closure of lifted atomic <algebraic formulas under
finite conjunctions and disjunctions.

The notion of Σ-formula is the same as in Section 1.
In the following lemmas we obtain some properties of <algebraic and lifted

<algebraic formulas that will be used later.

Lemma 3.1 If B ⊂ IRn is definable by an <algebraic formula then it is open.

Lemma 3.2 Let Φ(x̄) be an <algebraic formula and Φlifted(X̄) be the corresponding
lifted <algebraic formula. If Ri = {ri} for i = 1 . . . n, then

HF(IR) |= Φ(r̄)↔ Φlifted(R̄).
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Lemma 3.3 Let Φ(x̄) be an <algebraic formula and Φlifted(X̄) be the corresponding
lifted <algebraic formula. Then for all x̄ ∈ IRn we have

HF(IR) |= Φ(x1, . . . , xn)↔ ∃X1 . . . ∃XnΦlifted(X1, . . . , Xn) ∧
∧
i≤n

(xi ∈ Xi) .

Lemma 3.4 Let Φlifted(X̄) be a lifted <algebraic formula and Y1 ⊆ Z1, . . . , Yn ⊆
Zn. If HF(IR) |= Φlifted(Z1, . . . , Zn), then HF(IR) |= Φlifted(Y1, . . . , Yn).

Lemma 3.5 Let Φlifted(Ȳ ) be a lifted <algebraic formula. If for some X1, . . . , Xn

we have HF(IR) |= Φlifted(X1, . . . , Xn), then for all m > 0 there exist Y1, . . . , Yn

of cardinality m such that for all i, j ≤ n Yi = Yj ↔ Xi = Xj and HF(IR) |=
Φlifted(Y1, . . . , Yn).

Lemma 3.6 Let Φ be an existentially quantified <algebraic formula. Then there
exists an <algebraic formula Ψ such that HF(IR) |= Φ(x̄)↔ Ψ(x̄). Moreover Ψ can
be constructed effectively from Φ.

Let us note that proofs of all lemmas are straightforward except Lemma 3.6 which
follows from the finiteness theorem [5, 9].

3.1 Gandy’s Theorem and Inductive Definitions over the Reals

The following is an immediate corollary of Theorem 2.7.

Theorem 3.7 (Gandy’s Theorem for HF(IR)) Let Γ : P(HF(IR)n)→ P(HF(IR)n)
be an effective operator. Then the least fixed-point of Γ is Σ-definable and the least
ordinal such that Γ(Γγ) = Γγ is less or equal to ω.

Proof. The claim follows from Theorem 2. �

Definition 3.8 A relation B ⊂ IRn is called Σ-inductive if it is the least-fixed point
of an effective operator.

Corollary 3.9 Every Σ-inductive relation is Σ-definable.

3.2 Universal Σ-predicate for <algebraic Formulas

In order to obtain a result on the existence of a universal Σ-predicate for the <algebraic
formulas, we first construct a universal Σ-predicate for the lifted <algebraic formulas.
For this purpose we prove Σ-definability of the truth of lifted <algebraic formulas.

In this section we fix a standard effective Gödel numbering of the terms and for-
mulas of the language σ by finite ordinals which are elements of HF(∅). Let dΦe, dpe
denote the codes of a formula Φ and a term p respectively. It is worth noting that
the type of an expression is effectively recognisable by its code. We also can obtain
effectively from the codes of expressions the codes of their subexpressions and vice
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versa. Since equality is ∆0-definable in HF(∅), we can use the well-known character-
isation which states that all effective procedures over ordinals are Σ-definable. Thus,
for example, the following predicates

Codeelem(n, i, j) 
 n = dXi < Xje,
Codesum1(n, i, j, k) 
 n = dp+ q < fe ∧ i = dpe ∧ j = dqe ∧ k = dfe,
Code∧(n, i, j) 
 n = dΦ ∧Ψe ∧ j = dΦe ∧ j = dΨe

are Σ-definable. Hence, in Σ-formulas we can use such predicates.
With every element A ∈ HF(IR) we associate an interpretation γA of variables

X1, X2, . . . such that

γA(X) =




N if 〈dXe, N〉 ∈ A and
for any 〈dXe,M〉 ∈ A, we have M = N

∅ otherwise.

Let V be a set of variables. An interpretation γA is called correct for V if for all
X ∈ V we have γA(X) 6= ∅. Let Int denote the set of elements A ∈ HF(IR) with the
following property: if 〈i,X〉 and 〈i, Y 〉 belong to A, then we have X = Y . It is easy
to see that this set is ∆0-definable by the following formula:

Int(A) 
 (∀U ∈ A) (∀W ∈ A) (∀V1 ∈ U) (∀V2 ∈ U) (∀i ∈ V1) (∀X ∈ V2)
(∀V3 ∈W ) (∀Y ∈ V3) ((U = 〈i,X〉 ∧W = 〈i, Y 〉)→ X = Y ) .

Theorem 3.10 There exists a binary Σ-definable predicate Tr such that for any n ∈
ω and A ∈ HF(IR) we have that (n,A) ∈ Tr if and only if n is the Gödel number of
a lifted <algebraic formula Φ, γA is a correct interpretation for free variables of Φ
and HF(IR) |= Φ[γA].

Proof. The predicate Tr is the least fixed point of the operator defined by the
following formula:

Φ(n,U, P ) 
 Φproper(n) ∨ Φelem(n,U) ∨Φsum(n,U, P ) ∨
Φmult(n,U, P ) ∨ Φ∧(n,U, P ) ∨ Φ∨(n,U, P ),

where n, U are free variables and P is a new predicate symbol. The formula Φ(n,U, P )
represents the inductive definition of the truth of the lifted <algebraic formulas, where
the immediate subformulas have the following meaning. The formulas Φproper(n) and
Φelem(n,U) define the basis of the inductive definition. In other words, the formula
Φproper(n) represents the truth of the proper formulas, i.e., 0 < 1 and 1 < 0; the
formula Φelem(n,U) represents the truth of the elementary formulas, i.e., the formulas
of the type, Xi < 0, 0 < Xi, 1 < Xi and Xi < 1. The formulas Φsum(n,U, P ) and
Φmult(n,U, P ) represent the inductive steps for sum and multiplication. Finally, the
formulas Φ∧(n,U, P ) and Φ∨(n,U, P ) represent the inductive steps for conjunctions
and disjunctions. Let us show how to construct these formulas. The ∆0-formula
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Φproper(n) is obvious. The Σ-formula Φelem(n,U) can be given as follows.

Φelem(n,U) 
 ∃i∃j∃L∃M ( ( n = dX < Y e ∧ i = dXe ∧ j = dY e ∧
U = {〈i, L〉 , 〈j,M〉} ∧ L < M ) ∨
(n = dX < 0e ∧ i = dXe ∧ U = {〈i, L〉} ∧ L < 0) ∨
(n = d0 < Xe ∧ i = dXe ∧ U = {〈i, L〉} ∧ 0 < L) ∨
(n = dX < 1e ∧ i = dXe ∧ U = {〈i, L〉} ∧ L < 1) ∨
(n = d1 < Xe ∧ i = dXe ∧ U = {〈i, L〉} ∧ 1 < L) ) .

Now we construct a Σ-formula Φsum1(n,U, P ) which represents the case when n is
the code of a formula of the type: p+ q < f , where p, q and f are lifted polynomials.
Let nextvar(dΨe, l) denote the Σ-definable predicate which means that if m is the
maximal index of variables which occur in Φ, then l = m+ 1. The formula Φsum can
be given as follows.

Φsum1(n,U, P ) 
 ∃i∃j∃k∃l∃m∃s∃V ∃W∃Y ∃L∃M∃N ( n = dp+ q < fe ∧
i = dpe ∧ j = dqe ∧ k = dfe ∧
nextvar(n, l) ∧m = l + 1 ∧ s = m+ 1 ∧
P (dp < Xle, V ) ∧ P (dq < Xme,W ) ∧ P (dXs < fe, Y ) ∧
〈i, L〉 ∈ V ∧ 〈j,M〉 ∈ W ∧ 〈k,N〉 ∈ Y ∧ L+M < N ∧
U = (V ∪W ∪ Y ) ∧ Int(U) ) .

In a similar way, we can produce a Σ-formula Φsum2(n,U, P ) which represents the
case when n is the code of a formula of the type: p < q+f , where p, q and f are lifted
polynomials. Put Φsum(n,U, P ) 
 Φsum1(n,U, P )∧Φsum2(n,U, P ). In the same way,
we can produce the Σ-formula Φmul(n,U, P ) which represents the inductive steps for
multiplication.

The Σ-formula Φ∧ can be constructed as follows:

Φ∧(n,U, P ) 
 ∃i∃j n = dϕ ∧ ψe ∧ i = dϕe ∧ j = dψe ∧ P (i, U) ∧ P (j, U).

In a similar way, we can produce the Σ-formula Φ∨(n,U, P ) which represents the
inductive steps for disjunctions.

From Gandy’s theorem (c.f. Section 2.2) it follows that the least fixed point Tr
of the effective operator defined by Φ is Σ-definable.

�

Theorem 3.11 For every n ∈ ω there exists a Σ-formula Univ∗n(m,X1, . . . , Xn) such
that for any lifted <algebraic formula Φ(X1, . . . , Xn)

HF(IR) |= Φ(R1, . . . , Rn)↔ Univ∗n(dΦe, R1, . . . , Rn).

Proof. It is easy to see that the following formula defines a universal Σ-predicate
for the lifted <algebraic formulas of arity n

Univ∗n(m,X1, . . .Xn) 
 ∃U (U = {〈1, X1〉 , . . . , 〈n,Xn〉} ∧ Tr(m,U)) .

�
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Theorem 3.12 For every n ∈ ω there exists a Σ-formula Univn(m,x1, . . . , xn) such
that for any <algebraic formula Φ(x1, . . . , xn)

HF(IR) |= Φ(r1, . . . , rn)↔ Univn(dΦe, r1, . . . , rn).

Proof. From the properties of the standard Gödel numbering it follows that the
code of an <algebraic formula can be effectively constructed from the code of the
corresponding lifted formula and vice versa. Let f : ω → ω be a recursive function
which maps the code of an <algebraic formula to the code of the corresponding
lifted formula. Then the following formula defines a universal Σ-predicate for the
<algebraic formulas of arity n.

Univn(m, x̄) 
 ∃X1 . . .∃Xn∃k f(m) = k ∧Univ∗n(k, X̄) ∧
∧
i≤n

(xi ∈ Xi) .

�

4 Expressive Power of Σ-definability over the Reals

4.1 Constructive Infinitary Language Lω1ω

In order to study the expressive power of Σ-formulas, we will consider a suitable
fragment Lal

ω1ω of the constructive infinitary language Lω1ω (cf. [13] ) described below.
Informally, the language Lal

ω1ω is obtained by extending the <algebraic formulas to
allow formulas with effective infinite disjunctions but only finitely many variables;
that is, formulas of the form

∨
i∈I Φi, where {Φi|i ∈ I} is an effectively indexed

family of <algebraic formulas, possibly infinite. The meaning of these formulas is as
follows: HF(IR) |= ∨

i∈I Φi if and only if for at least one i ∈ I we have HF(IR) |= Φi.
Formally, we propose the inductive definition of formulas as follows. Let Var be

a fixed finite set of variables. The set LVar of formulas over Var includes the set
of <algebraic formulas all of the variables of which belong to Var . In addition, if
{Φi|i ∈ I} is an indexed family of formulas of LVar and I is recursively enumerable,
then

∨
i∈I Φi is a formula of LVar . The language Lal

ω1ω is the union of all LVar for all
finite sets Var of variables which range over IR.

Let us discuss the computational meaning of the formula Φ(x̄) =
∨

i∈L Φi(x̄). Each
formula Φi(x̄) represents a simple approximation of the relation definable by Φ(x̄) and
there exists a Turing machine that computes these approximations (i.e., enumerates
Φi(x̄)). A universal Turing machine and a universal Σ-predicate for <algebraic
formulas can then be used to enumerate and check validity of each approximation Φi.

4.2 Engeler’s Lemma for Σ-definability

In this section we prove Engeler’s lemma for Σ-definability which states that if a
relation M ⊂ IRn is Σ-definable, then it is definable by a formula of Lal

ω1ω which can
be constructed effectively from the corresponding Σ-formula.

In order to work effectively with elements of the structures HF(IR) and HF(IR∗),
we represent every element in a regular way. For this, we enrich the language σ to σ′
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by the additional functions: singleton {U} and binary union U1∪U2. Note that these
functions will be eliminated in the resulting formulas of Engeler’s Lemma. Below a
term in the language {{, },∪} is called a structural term. With every α ∈ HF(n) we
associate a structured term defined as follows:

tα(x1, . . . , xn) =
{
xi if α = i
{tα1(x̄)} ∪ · · · ∪ {tαk

(x̄)} if α = {α1, . . . , αk}.
Lemma 4.1 1. For every element M ∈ HF(IR) there exist a structural term

tα(x1, . . . , xk) and a substitution τ : {x1, . . . , xk} → IR such that M is rep-
resented by tα(x̄)τ .

2. For every element U ∈ HF(IR∗) there exist a structural term tβ(N1, . . . , Nl) and
a substitution ν : {N1, . . . , Nl} → IR∗ such that U is represented by tβ(N̄)ν.

If τ(Ni) = ri for i ≤ k and ν(Nj) = Rj for j ≤ l, then we write t(r1, . . . , rk) and
t(R1, . . . , Rl) instead of tα(N̄)τ and tβ(N̄)ν respectively.

Lemma 4.2 Let tβ(X̄) and tγ(X̄) be structural terms and R̄ ∈ HF(IR∗)n.
If tβ(R̄) represents U1, tγ(R̄) represents U2 and HF(IR) |= U1 ∈ U2, then we have
HF(IR) |= tβ(b̄) ∈ tγ(b̄) for every b̄ ∈ HF(IR)n such that for all i, j ≤ n bi = bj ↔
Ri = Rj.

With every Σ-formula Φ(x̄) we associate a lifted Σ-formula Φlifted(X̄) obtained
from Φ by replacing every variable ranging over HF(IR) by a variable ranging over
HF(IR∗); every variable ranging over IR by a variable ranging over IR∗. For ex-
ample, ∃U (∀Y ∈ U) p1(Y, X̄) < p2(Y, X̄) is the lifted Σ-formula corresponding to
∃M (∀y ∈M) p1(y, x̄) < p2(y, x̄).

Proposition 4.3 Let Φlifted(X̄) be the lifted Σ-formula corresponding to a Σ-formula
Φ(x̄). Then we have

HF(IR) |= Φ(x1 . . . , xn)↔ ∃X1 . . .∃Xn Φlifted(X̄) ∧
∧
i≤n

(xi ∈ Xj) .

Proof. Let Φ(x̄) be a Σ-formula. By the Σ-reflection principle (c.f. Section 2.2.),
the formula Φ(x̄) can be represented in the form:

Φ(x̄) 
 ∃cΦ′(c, x̄) ∧
∧
i≤n

(xi ∈ c) 
 ∃cΦ′′(c, x̄), (6)

where Φ′ and Φ′′ are ∆0-formulas. The corresponding lifted formula Φlifted(X̄) is
obtained from Φ by replacing every variable ranging over HF(IR) by a variable ranging
over HF(IR∗); every variable ranging over IR by a variable ranging over IR∗, i.e.,

Φlifted(X̄) 
 ∃U Φ′
lifted(U, X̄) ∧

∧
i≤n

(Xi ∈ U) 
 ∃U Φ′′
lifted(U, X̄). (7)

→) Suppose (6) is valid in HF(IR) and d, r̄ satisfy the formula Φ′′(c, x̄). In order to
construct some V and R̄ which satisfy the corresponding lifted Σ-formula, we use the
operation up defined by induction:

up(a) =
{ {a} if a ∈ IR
{up(a1), . . . up(al)} if a = {a1, . . . , al}.
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We put V = up(d), R1 = up(r1),. . . , Rn = up(rn). By Lemma 3.2 and Lemma 4.2,
V and R1, . . . , Rn satisfy the formula Φ′′

lifted(U, X̄).
←) Suppose (7) is valid in HF(IR) and V , R1, . . . , Rn satisfy the given formula
Φ′′

lifted(U, X̄). By Lemma 4.1, the set V can be represented by tβ(R1, . . . , Rm), where
{R1, . . . , Rn} ⊆ {R1, . . . , Rm}. From Lemma 4.2 it follows that if V = tβ(R1, . . . , Rm)
satisfies the following requirement:

there exist r1 ∈ R1, . . . rm ∈ Rm such that
ri = rj ↔ Ri = Rj for all i, j ≤ m, (8)

then tβ(r̄) and r1, . . . , rn satisfy Φ′′(c, x̄). Let us note that V may not satisfy (8),
for example, if V = {{r1, r2}, {r1}, {r2}}, where r1 6= r2 6= r3. The problem here is
that the number of elements in the sets is too small to pick different representatives.
In this case we construct R′1, . . . R

′
n and V ′ from R1, . . . , Rn and V which satisfy the

formula Φ′′
lifted(U, X̄) and the requirement (8). It can be done using Lemma 3.5.

Indeed, there exist R′1 . . . , R′m such that

1. for every i ≤ m we have |R′i| ≥ m;

2. for every i, j ≤ m R′i = R′j if and only if Ri = Rj ;

3. for every <algebraic subformula φalg(Ȳ , X̄) of the formula Φ′′ and every sub-
stitution τ : {Ȳ , X̄} → {R1, . . . , Rm} we have

HF(IR) |= φalg(Ȳ , X̄)τ ↔ HF(IR) |= φalg(Ȳ , X̄)τ ′,

where τ ′ : {Ȳ , X̄} → {R′1, . . . , R′m} is a substitution such that τ ′(Yk) = R′j ↔
τ(Yk) = Rj and τ ′(Xl) = R′i ↔ τ(Xl) = Ri for all i, j, k, l ≤ m.

By construction, tβ(R′1, . . . , R
′
m) and R′1, . . . , R

′
n satisfy Φ′′

lifted(U, X̄) and (8).
Now every R′i contains enough elements to choose ri from R′i under the condition

ri = rj ↔ Ri = Rj . It is easy to see that tβ(r̄) and r1, . . . , rn satisfy Φ′′(c, x̄).
�

In the following proposition the lifted <algebraic atomic formulas and the ∆0-
formulas of the type X = Y 
 (∀x ∈ X)x ∈ Y ∧ (∀y ∈ Y ) y ∈ X and ¬X = Y 

(∃x ∈ X)x /∈ Y ∨ (∃y ∈ Y ) y /∈ X are considered as basic formulas.

Proposition 4.4 Let Φ(X1, . . . , Xn) be a lifted Σ-formula. There exists a construc-
tive infinite formula Ψ 


∨
i∈ω Ψi such that:

• HF(IR) |= Φ(X̄)↔ Ψ(X̄).

• Every Ψi(X̄) is a formula of the form ∃Ym1 . . . ∃YmiΨ′
i(Ȳ , X̄), where Ψ′ is a fi-

nite conjunction of basic formulas whose quantifiers range over IR∗.

Proof. Let Φ(X) 
 ∃UΦ′(U, X̄), where Φ′ is a ∆0-formula. In order to obtain the
required formula, we first construct an equivalent infinite formula in the language σ′

(e.g. σ′ = σ ∪ {{, },∪}) without unbounded quantifiers. Then we prove by induction
the existence of an equivalent infinite formula without bounded quantifiers. After that
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we eliminate {, },∪,∅, ∈ from the obtained formula. By Lemma 3.2, every U ∈ HF(IR∗)
can be represented by tβ(Y1, . . . Yn) for some Y1 ∈ IR∗, . . . Yn ∈ IR∗. Put

Φ∗(X) 

∨
n∈ω

∨
β∈HF(n)

∃Y1 . . .∃Yn Φ′(tβ(Y1, . . . , Yn), X̄)



∨
n∈ω

∨
β∈HF(n)

∃Y1 . . .∃Yn Φ′
β(Ȳ , X̄),

where every Φ′
β is a ∆0-formula with quantifiers bounded by subterms of tβ . Since

for every U there exists a term tβ which codes the structure of U , the formula Φ∗ is
equivalent to the given one.

Without loss of generality every formula Φ′
β can be represented as follows.

Φ′
β(Ȳ , X̄) 


(
QU1 ∈ tγ1(Ȳ )

)
. . .

(
QUm ∈ tγm(Ȳ )

)
φβ(Ū , Ȳ , X̄)



(
QU ∈ tγ1(Ȳ )

)
φ′β(Ū , Ȳ , X̄),

where Q is the quantifier ∃ or ∀ and tγi is a subterm of tβ for all i ≤ k. Using induction
on the length of the quantifier prefix and the depth of the term which bounds the first
quantifier in the quantifier prefix, we show how to obtain an equivalent quantifier free
formula. We proceed by induction on the pairs 〈m,n〉 with the lexicographic order,
where m is the length of the quantifier prefix of Φ′

β and n is the depth of tγ1 . Let >
denote a logical truth which can be represented by the formula 0 < 1 and ⊥ denote
a logical false which can be represented by the formula 1 < 0.

The cases 〈0, 0〉, 〈0, n〉 are obvious. In the case 〈m, 0〉 the formula Φ′
β can be

represented in the form Φ′
β 
 (QU1 ∈ ∅) φ′β or Φ′

β 
 (QU1 ∈ X) φ′β . If Q is the
existential quantifier, then put Ψβ 
 ⊥. If Q is the universal quantifier, then put
Ψβ 
 >.

Consider the inductive step 〈m,n〉 → 〈m,n+ 1〉. The first possibility is that
Φ′

β 

(∃U1 ∈ tγ1(Ȳ )

)
φ′β(U1, Ȳ , X̄) and tγ1(Ȳ ) = t′γ1

(Ȳ )∪ t′′γ1
(Ȳ ). Let us consider the

formula
(∃U1 ∈ t′γ1

(Ȳ )
)
φ′β(U1, Ȳ , X̄)∨ (∃U1 ∈ t′′γ1

(Ȳ )
)
φ′β(U1, Ȳ , X̄) which is equiva-

lent to Φ′
β . The complexity of t′γ1

and t′′γ1
is less than n+ 1. By inductive hypothesis,

there exists a formula Ψβ without quantifiers which is equivalent to Φ′
β . The second

possibility with a bounded universal quantifier can be considered in a similar way.
Consider the inductive step 〈m,n〉 → 〈m+ 1, k〉.

We have Φ′
β 


(∃U1 ∈ {t(Ȳ )}) φ′β(U1, Ȳ , X̄). Let us consider φ′β(t(Ȳ ), Ȳ , X̄) which
is equivalent to Φ′

β . The complexity of the quantifier prefix is less then m + 1. By
inductive hypothesis, there exists a formula Ψβ without quantifiers which is equivalent
to Φ′

β . The case, when Φ′
β 


(∀U1 ∈ {t(Ȳ )}) φ′β(U1, Ȳ , X̄), is similar.
Now we eliminate {, },∪, ∅, ∈ from every formula Ψβ . It is easy to see that for

any terms tγ(Ȳ , X̄) and tκ(Ȳ , X̄) of the language σ′ it is possible to write effectively
χ∈(Ȳ , X̄) and χ=(Ȳ , X̄) such that χ∈(Ȳ , X̄) and χ=(Ȳ , X̄) are finite disjunctions
of finite conjunctions of basic formulas and the formula tγ ∈ tκ is equivalent to
χ∈(Ȳ , X̄) and the formula tγ = tκ is equivalent to χ=(Ȳ , X̄). For example, it is
easy to see that the formula {Y1} ∪ {Y2} ∈ {{{Y3} ∪ {Y4}}} ∪ {{Y5}} is equivalent to
(Y1 = Y3 ∧ Y2 = Y4) ∨ (Y1 = Y4 ∧ Y2 = Y3).

Using these formulas we transform every formula Ψβ into Ψ′
β without occurrences

of {, },∪, ∅, ∈.
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Put
Ψ(X) 


∨
n∈ω

∨
β∈HF(n)

∃Y1 . . . ∃Yn Ψ′
β(Ȳ , X).

By construction, Ψ has the required form.
�

Now we are ready to prove Engeler’s Lemma for Σ-definability over the reals.

Theorem 4.5 (Engeler’s Lemma for Σ-definability) If a relation B ⊂ IRn is
Σ-definable, then it is definable by a formula of Lal

ω1ω. Moreover this formula can be
constructed effectively from the corresponding Σ-formula.

Proof. Suppose M is defined by a Σ-formula Φ(x̄). By Proposition 4.3 and
Proposition 4.4, there exists an effective sequence {Ψi}i∈ω such that

HF(IR) |= Φ(x̄)↔
∨
i∈ω


∃X1 . . . ∃Xn Ψi(X̄) ∧

∧
j≤n

xj ∈ Xj


 ,

where every Ψi(X̄) is a formula of the form ∃Ym1 . . . ∃YmiΨ′
i(Ȳ , X̄), and Ψ′ is a finite

conjunction of lifted <algebraic formulas and formulas of the type Xj = Yi, Yi = Yj ,
¬Xj = Yi and ¬Yi = Yj .

Now we show that for every i ∈ ω there exists an existential quantified <algebraic
formula ϕi in the language σ0 = {0, 1,+, ·, <} such that

HF(IR) |= ϕi(x̄)↔ HF(IR) |=

∃X1 . . .∃XnΨi(X̄) ∧

∧
j≤n

xj ∈ Xj


 . (9)

For this purpose, in every Ψi we first eliminate subformulas of the type Xj = Yk and
Yj = Yk in the following way. For all j and k, such that there exists a subformula
Xj = Yk, we replace all occurrences of Yk by Xj , the subformula Xj = Yk by > and
eliminate the quantifier over Yi. For all i and k such that, there exists Yj = Yk for
some j and k > j, we replace all occurrences of Yk by Yj , the subformula Yj = Yk by
> and eliminate the quantifier over Yk. It is easy to see that the resulting formula
Ψ′

i(X̄) is equivalent to Ψi(X̄). Now if Xj = Xk occurs in Ψ′
i(. . . , Xj, . . . , Xk, . . . ) then

we replace Ψ′
i by Ψ′

i(. . . , Xj , . . . , Xj , . . . ) ∧ Ψ′
i(. . . , Xk, . . . , Xk, . . . ) and remove all

Xj = Xk from this formula. Let us argue that the obtained formula Ψ′′
i is equivalent

to Ψ′
i in the following sense

HF(IR) |= ∀x1 . . .∀xn




∃X1 . . . ∃XnΨ′

i(X̄) ∧
∧
j≤n

xj ∈ Xj


↔


∃X1 . . .∃XnΨ′′

i (X̄) ∧
∧
j≤n

xj ∈ Xj





 .

Implication from left to right is obvious. In order to prove implication from right to
left, we need to show that if for x1, . . . , xn there exist X1, . . . , Xn such that Ψ′′

i (X̄)∧
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∧
j≤n xj ∈ Xj, then there existX ′

1, . . . , X
′
n such thatX ′

j = X ′
k and Ψ′

i(X̄ ′)∧∧
j≤n xj ∈

X ′
j. For this we can take X ′

j = X ′
k = Xj ∪ Xk. In the same way we can eliminate

all subformulas of the form Xj = Xk obtaining a formula Ψ′′′. We then construct
formulas ϕi from Ψ′′′

i by replacing X by x, Yi by yi and subformulas of the type
¬x = y by x < y ∨ x > y. From the definition of a lifted <algebraic formula and
Proposition 4.3 it follows that the formula ϕi satisfies (9). In order to complete the
proof, using Lemma 3.6, we construct an effective sequence {ϕ′i}i∈ω of <algebraic
formulas such that

HF(IR) |= Φ(x)↔
∨
i∈ω

ϕ′i(x).

�

4.3 Characterisation Theorem for Σ-definability

Let us prove the converse statement of Engeler’s Lemma for Σ-definability.

Theorem 4.6 If a relation B ⊂ IRn is definable by a formula of Lal
ω1ω, then it is Σ-

definable. Moreover Σ-formula can be constructed effectively from the corresponding
formula of Lal

ω1ω.

Proof. Let M ⊂ IRn be definable by
∨
dΨe∈I Ψ(x̄), where J is recursively enu-

merable. By Theorem 3.12, there exists a universal Σ-predicate Univn(m, x̄) for
<algebraic formulas with variables from {x1, . . . , xn}.

Put
Φ(x̄) 
 ∃i (i ∈ I) ∧ Univn(i, x̄).

It can be shown that Φ is a required Σ-formula.
�

Theorem 4.7 (Characterisation of Σ-definability) A relation B ⊂ IRn is Σ-
definable if and only if it is definable by a formula of Lal

ω1ω.

These results reveal algorithmic aspects of Σ-definability. Indeed, suppose Φ(x̄) is
a Σ-formula which defines a relation over the reals and we have HF(IR) |= Φ(x̄) ↔∨
dΨe∈I Ψ(x̄). Then each <algebraic formula Ψ(x̄), such that dΨe ∈ I, represents

a simple approximation of the relation definable by Φ(x̄) and there exists a Turing
machine that computes these approximations (i.e., enumerates Ψ(x̄)). A universal
Turing machine and a universal Σ-predicate for <algebraic formulas can then be
used to enumerate and check validity of each approximation Ψ.

We also obtain the following topological characterisation of Σ-definability over the
reals.

Theorem 4.8 1. A set B ⊂ IRn is Σ-definable if and only if it is an effective
union of open semi-algebraic sets.

2. A relation B ⊂ IRn is Σ-definable if and only if there exists an effective sequence
{Ci}i∈ω of open semi-algebraic sets such that

(a) It monotonically increases: Ci ⊆ Ci+1, for i ∈ ω;
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(b) B =
⋃

i∈ω Ci.

Corollary 4.9 Every Σ-definable subset of IRn is open.

Let ΣIR denote the set of all Σ-definable subsets of IRn, where n ∈ ω.

Corollary 4.10 1. The set ΣIR is closed under finite intersections and effective
infinite unions.

2. The set ΣIR is closed under Σ-inductive definitions.

3. The set ΣIR is closed under projections.
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