’re19 48by  02-£0-SH SOlddg

sBuls ul Buiyayey uisned Jo uonenend fensed i1se4

BRI

Basic Research in Computer Science

Fast Partial Evaluation of
Pattern Matching in Strings

Mads Sig Ager
Olivier Danvy
Henning Korsholm Rohde

BRICS Report Series RS-03-20
ISSN 0909-0878 May 2003




Copyright (© 2003, Mads Sig Ager & Olivier Danvy &
Henning Korsholm Rohde.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work

is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS

Department of Computer Science
University of Aarhus

Ny Munkegade, building 540
DK-8000 Aarhus C

Denmark

Telephone: +45 8942 3360
Telefax:  +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLSs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/03/20/



Fast Partial Evaluation
of Pattern Matching in Strings *

Mads Sig Ager, Olivier Danvy, and Henning Korsholm Rohde

BRICST
Department, of Computer Science
University of Aarhust

April 2003

Abstract

We show how to obtain all of Knuth, Morris, and Pratt’s linear-time
string matcher by partial evaluation of a quadratic-time string matcher
with respect to a pattern string. Although it has been known for 15 years
how to obtain this linear matcher by partial evaluation of a quadratic one,
how to obtain it in linear time has remained an open problem.

Obtaining a linear matcher by partial evaluation of a quadratic one is
achieved by performing its backtracking at specialization time and memo-
izing its results. We show (1) how to rewrite the source matcher such that
its static intermediate computations can be shared at specialization time
and (2) how to extend the memoization capabilities of a partial evaluator
to static functions. Such an extended partial evaluator, if its memoiza-
tion is implemented efficiently, specializes the rewritten source matcher in
linear time.

*To appear in the proceedings of the ACM SIGPLAN 2003 Workshop on Partial Evaluation
and Semantics Based Program Manipulation (PEPM), San Diego, California, June 7, 2003.
fBasic Research in Computer Science (www.brics.dk),
funded by the Danish National Research Foundation.
Ny Munkegade, Building 540, DK-8000 Aarhus C, Denmark.
E-mail: {mads,danvy,hense}@brics.dk



Contents

1 Introduction 3
2 Obtaining a specialized matcher that works in linear time 3
3 Linear-time specialization 5
3.1 Compositional backtracking . . . .. .. ... .. ... ... .. 6
3.2 Strengthening the memoization capabilities of the specializer 7
3.3 Specializing the staged matcher in linear time . . . . . . . . . .. 8
4 From Morris-Pratt to Knuth-Morris-Pratt 9
5 Related work 10
6 Conclusion and perspectives 10
A Partial evaluation of staged string matchers 11
List of Figures
1 A staged quadratic-time string matcher . . . . .. ... ... .. 4
2 Sharing of computations with compositional backtracking 6
3 Compositional backtracking suitable for fast partial evaluation 8
4 Backtracking also using one character of negative information . . 9
5 A brute-force quadratic-time string matcher . . . . . .. .. ... 12
6 A specialized linear-time matcher . . . . . . .. ... ... 13



1 Introduction

For 15 years now, it has been a traditional exercise in partial evaluation to
obtain Knuth, Morris, and Pratt’s string matcher by specializing a quadratic-
time string matcher with respect to a pattern string [11, 21]. Given a quadratic
string matcher that searches for the first occurrence of a pattern in a text, a
partial evaluator specializes this string matcher with respect to a pattern and
yields a residual program that traverses the text in linear time. The problem
was first stated by Yoshihiko Futamura in 1987 [15] and since then, it has given
rise to a variety of solutions [2, 3, 10, 13, 14, 15, 16, 19, 25, 28, 29, 32, 33].

For 15 years, however, it has also been pointed out that the solutions only
solve half of the problem. Indeed, the Knuth-Morris-Pratt matcher first pro-
duces a ‘next’ table in time linear in the length of the pattern and then traverses
the text in time linear in the length of the text. In contrast, a partial evalua-
tor does not specialize a string matcher in linear time. This shortcoming was
already stated in Consel and Danvy’s first report of a solution [10] and it has
been mentioned ever since, up to and including Futamura’s keynote speech at
ASTA-PEPM 2002 [13].

In this article, we solve the remaining half of the problem.

Prerequisites: We expect a passing familiarity with partial evaluation and
string matching as can be gathered in Jones, Gomard, and Sestoft’s text-
book [21] or in Consel and Danvy’s tutorial notes [11]. In addition, we distin-
guish between the Knuth-Morris-Pratt matcher and the Morris-Pratt matcher
in that the former uses one character of negative information whereas the lat-
ter does not [7]. Our string matchers are expressed in a first-order subset of
the Scheme programming language [23]. They are specialized using polyvariant
program-point specialization [27], where certain source program points (special-
ization points) are indexed with static values and kept in a ‘seen-before’ list
(i.e., memoized), and residual program points are mutually recursive functions.

In the rest of this article, we use the terms “partial evaluator” and “(pro-
gram) specializer” interchangeably.

2 Obtaining a specialized matcher that works in
linear time

The essence of obtaining a linear-time string matcher by partial evaluation of
a quadratic-time string matcher is to ensure that backtracking is carried out at
specialization time. To obtain this effect, one can either rewrite the matcher so
that backtracking only depends on static data (such a rewriting is known as a
binding-time improvement or a staging transformation [27]) and use a simple
partial evaluator [4, 10], or keep the matcher as is and use a sophisticated partial
evaluator [13, 29, 32]. In this article, the starting point is a staged quadratic-
time matcher and a simple memoizing partial evaluator, such as Similix, where
specialization points are dynamic conditionals or dynamic functions [6].



(define (main pattern text)
(match pattern text 0 0))
(define (match pattern text j k)
(if (= (string-length pattern) j)
-k 3
(if (= (string-length text) k)
-1
(compare pattern text j k))))
(define (compare pattern text j k)
(if (equal? (string-ref pattern j) (string-ref text k))
(match pattern text (+ j 1) (+ k 1))
(let ([s (rematch pattern j)1)
Gf (=s -1
(match pattern text 0 (+ k 1))
(compare pattern text s k)))))
(define (rematch pattern i)

Gf (=1 0
-1
(letrec ([try (lambda (jp kp)
(if (= kp 1)
jp

(if (equal? (string-ref pattern jp)
(string-ref pattern kp))
(try (+ jp 1D (+ kp 1))
(try 0 (+ (- kp jp) 1IN
(try 0 1))))

Figure 1: A staged quadratic-time string matcher

main is the matcher’s entry point which directly calls match.

e match checks whether matching should terminate, either because an oc-
currence of the pattern has been found in the text or because the end of
the text has been reached. If not, compare is called to perform the next
character comparison. For simplicity, we assume that string-length
works in constant time; otherwise, we would compute the lengths once
and pass them as parameters.

compare checks whether the jth character of the pattern matches the
kth character of the text. If so, match is called to match the rest of the
pattern against the rest of the text. If not, rematch is called to backtrack
based on the part of the pattern that did match the text.

rematch backtracks based on a part of the pattern. It returns an index
corresponding to the length of the longest proper prefix that is also a
suffix of the given part of the pattern. If such a prefix does not exist
it returns -1. The returned index corresponds to the index returned by
the Morris-Pratt failure function [1]. The local recursive function try
finds the length of the longest proper prefix of the pattern that is also a
suffix by successively trying each proper prefix.




Figure 1 displays a staged matcher similar to the ones developed in the
literature [1, 4, 10, 21] (see Appendix A for a more complete picture). Matching
is done naively from left to right. After a mismatch the pattern is shifted one
position to the right and matching resumes at the beginning of the pattern.
Since we know that a prefix of the pattern matches a part of the text, we
use this knowledge to continue matching using the pattern only. This part
of matching performs backtracking and is done by the rematch function. The
matcher is staged because backtracking only depends on static data. The key
to linear-time string matching is that backtracking can be precomputed either
into a lookup table as in the Morris-Pratt matcher or into a residual program
as in partial evaluation.

If a specializer meets certain requirements, specializing the matcher of Fig-
ure 1 with respect to a pattern string yields a linear-time matcher that behaves
like the Morris-Pratt matcher. Specifically, the specializer must compute static
operations at specialization time and generate a residual program where dy-
namic operations do not disappear, are not duplicated, and are executed in the
same order as in the source program.

3 Linear-time specialization

As already shown in the literature [1, 17], each specialized version of a staged
matcher such as that of Figure 1 has size linear in the length of the pattern.
For two reasons, however, specialization does not proceed in time linear in the
length of the pattern. The first reason is that for every position in the pattern,
the specializer blindly performs the backtracking steps of the staged quadratic
matcher. These backtracking steps are carried out by static functions which
are not memoization points and whose results are not memoized. But even
if the results were memoized, the backtracking steps would still be considered
unrelated because of the index that caused the mismatch. The second reason
is connected to an internal data structure of the specializer. Managing the
seen-before list, which is really a dictionary, as a list is simply not fast enough.

In order to achieve linear-time specialization the matcher must be rewritten
such that the backtracking steps become related, the memoization capabilities
of the specializer must be extended to handle static functions, and the imple-
mentation of the memoization must be efficient.

Terminology: For the purpose of analysis, static backtracking is a mathemat-
ical function that takes a string—a problem—and returns a (possibly empty)
prefix of that string—the solution—such that the solution is the longest proper
prefix of the problem that is also a suffix of the problem. A subproblem is a
prefix of a problem. A computation is the computational steps involved in ap-
plying static backtracking to a given problem. Given a pattern, backtracking at
position i is the computation where the problem is the prefix of length ¢ of the
pattern.



3.1 Compositional backtracking

We relate backtracking at different positions by expressing the backtracking
compositionally, i.e., by expressing a solution to a problem in terms of solutions
to its subproblems. Backtracking is performed by the rematch function and we
rewrite it so that it becomes recursive and unaware of its context (thus avoiding
continuations or the index that originally caused a mismatch).

Figure 2 illustrates how to express backtracking compositionally and how
it enables sharing of intermediate computations at specialization time. For the
pattern abacababb, the backtracking at positions 3, 7, and 8 are the computations

mismatch at position 8

abacababc???2?2?272
- = = = = = = = =

/I\resume at position 2

Figure 2: Sharing of computations with compositional backtracking

The top tape represents a text (part of which is abacababc); the other tapes rep-
resent the pattern abacababb. Each box represents a computation. The top line
of each box is the problem, and the bottom line is the corresponding solution.
For computation C each of the comparisons performed during backtracking are
shown and numbered.




marked with A, B, and C, respectively. In general, backtracking at position i is
always the first part of backtracking at position i+1, and ideally the solution to
the first computation can directly be extended to a solution to the second one.

Let us consider what to do if the solution cannot be extended. The solution
given by computation B, aba, is an example of this, since comparison 8 fails
and therefore abac is not the solution to computation C. However, the solution
aba is by definition the longest proper prefix of abacaba that is also a suffix.
Since the solution aba is a prefix, it is also a subproblem, namely the problem
of computation A, and since it is a suffix, part of the continued backtracking
(comparisons 9 and 10) is identical to computation A. Computation A can
therefore be shared. In the same manner as before, we try to extend the solution
given by computation A, a, to the solution to computation C. In this case the
solution can be extended to ab.

In short, the key observation is that the solution given by computation B is
equal to the problem in computation A, and therefore computation A can be
shared within computation C. The solution to static backtracking on a given
problem can therefore be expressed in terms of solutions to static backtracking
on subproblems.

By expressing backtracking compositionally, we obtain the staged matcher
displayed in Figure 3, which is suitable for fast partial evaluation. The rematch
function has been rewritten to use a local recursive function, try-subproblem,
that tries to extend the solutions to subproblems to a full solution. The back-
tracking part of the matcher now allows sharing of computations.

3.2 Strengthening the memoization capabilities of the spe-
cializer

Despite the further rewriting, the specializer is still not able to exploit the com-
positional backtracking. The reason is that the specializer only memoizes at
specialization points. Since specialization points are dynamic conditionals or
dynamic functions, and the recursive backtracking is purely static, the special-
izer does not memoize the results.

What is needed is static memoization, where purely static program points
are memoized and used within the specialization process itself. The results of
purely static functions should be cached and used statically to avoid redoing past
work. In the partial evaluator, static memoization is then essentially the same
as the usual—dynamic—memoization. As usual with tabulation techniques,
the requirements imposed on both types of memoization are that initialization,
insertion and retrieval can be done in constant time (amortized). For the string
matchers presented in this article these requirements can be met by a dictionary
that uses a (growing) hash-table and a collision-free hash function based on the
pattern and the index into the pattern. To avoid rehashing the pattern at all
memoization points, we must remember hash values for static data. In general,
more advanced hashing mechanisms would be needed and the time complexities
of initialization, insertion and retrieval would be weakened from constant time
to expected constant time.



(define (main pattern text) ...) ;;; as in Fig.1
(define (match pattern text j k) ...) ;35 as in Fig.1
(define (compare pattern text j k) ...) ;;; as in Fig.1

(define (rematch pattern i)

Gf (=1 0
-1
(letrec ([try-subproblem
(lambda (j)
Gf (=3 -1

0
(if (equal? (string-ref pattern j)
(string-ref pattern (- i 1)))
+3 1D
(try-subproblem (rematch pattern j)))))]1)
(try-subproblem (rematch pattern (- i 1))))))

Figure 3: Compositional backtracking suitable for fast partial evaluation

Compared to Figure 1, rematch has been rewritten to allow sharing of computa-
tions. It calls itself recursively to find the solution to the immediate subproblem.
The local recursive function try-subproblem then tries to extend the solution to
the immediate subproblem to a solution to the original problem. If the solution
cannot be extended, rematch is called to find the next candidate solution.

3.3 Specializing the staged matcher in linear time

Given these efficient memoization capabilities, the rewritten matcher can be
specialized in linear time. Each of the linear number of residual versions of
compare and match can clearly be generated in constant time. We therefore only
have to consider specializing the rematch function.

Since rematch always calls itself recursively on the immediate subproblem
and all results are memoized, we only need to ensure that backtracking with
respect to the largest problem, i.e., backtracking at position i, where i is the
length of the pattern, is done in linear time. Recursive calls and returns take
linear time. For a given subproblem at j, however, try-subproblem may be
unfolded up to j times. Unfolding only occurs more than once if the solution
to the subproblem cannot be extended to a full solution, that is, if the j-1ist
character causes a mismatch. Therefore, the additional time spent in all calls
to try-subproblem is proportional to the overall number of mismatches during
backtracking. Since backtracking is just (staged) brute-force string matching,
the number of mismatches is clearly no greater than the length of the pattern.

Generating the residual versions of the rematch function can therefore also
be done in linear time and the entire specialization process takes linear time.



4 From Morris-Pratt to Knuth-Morris-Pratt

The Morris-Pratt matcher and the Knuth-Morris-Pratt matcher differ in that
the latter additionally uses one character of negative information [7]. Therefore,
the Knuth-Morris-Pratt matcher statically avoids repeated identical mismatches
by ensuring that the character at the resume position is not the same as the
character at the mismatch position.

Extending the result to the Knuth-Morris-Pratt matcher is not difficult.
The only caveat is that we cannot readily use backtracking at position i in
backtracking at position i+1, because with negative information the solution at
i is never a part of the solution at i+1. Instead, we observe that the solution to
the simpler form of backtracking where the negative information is omitted—
Morris-Pratt backtracking—is indeed always a part of the solution.

(define (main pattern text) ...) ;5; as in Fig.1
(define (match pattern text j k) ...) ;55 as in Fig.1
(define (rematch pattern i) ...) ;;; as in Fig.3

(define (compare pattern text j k)
(if (equal? (string-ref text k)
(string-ref pattern j))
(match pattern text (+ j 1) (+ k 1))
(let ([s (rematch-neg pattern j)1)
Gf (=s -1

(match pattern text 0 (+ k 1))
(compare pattern text s k)))))

(define (rematch-neg pattern i)
Gf (=1 0)
-1
(let ([j (rematch pattern i)])
(if (equal? (string-ref pattern j)
(string-ref pattern i))
(rematch-neg pattern j)

NN

Figure 4: Backtracking also using one character of negative information

Compared to Figure 3, a wrapper function rematch-neg for rematch has been
added. compare calls rematch-neg instead of rematch. rematch-neg calls rematch
to compute the solution to Morris-Pratt backtracking. It then checks whether
this solution is also a solution to Knuth-Morris-Pratt backtracking by perform-
ing an extra character comparison. If the solution to Morris-Pratt backtracking
is not a solution to Knuth-Morris-Pratt backtracking (the character comparison
fails) rematch-neg calls itself recursively to compute the solution.




The matcher in Figure 4 uses this observation. Based on Morris-Pratt back-
tracking as embodied in the rematch function of Figure 3, the rematch-neg func-
tion computes the solution to Knuth-Morris-Pratt backtracking. If both rematch
and rematch-neg are statically memoized, evaluating them for all positions at
specialization time can be done in linear time.

5 Related work

The Knuth-Morris-Pratt matcher has been reconstructed many times in the
program-transformation community since Knuth’s own construction (he ob-
tained it by calculating it from Cook’s construction [24, page 338]). Examples
of the methods used are Dijkstra’s invariants [12], Bird’s recursion introduction
and tabulation [5], Takeichi and Akama’s equational reasoning [33], Colussi’s
Hoare logic [9], and Herndndez and Rosenblueth’s logic-program derivation [18].

Bird’s recursion introduction and tabulation is our closest related work. Bird
derives the Morris-Pratt matcher from a quadratic time stack algorithm using
recursion introduction. The recursive failure function he derives is essentially the
same as the rematch function of Figure 3. Bird then tabulates the failure function
to obtain the linear time preprocessing phase of the Morris-Pratt matcher.

Takeichi and Akama’s equational reasoning is our second closest related
work. By hand (i.e., without using a partial evaluator), they transform a quad-
ratic-time functional string matcher into the linear-time Morris-Pratt matcher.
As part of the transformation, they isolate a function equivalent to the Morris-
Pratt failure function. Using partial parameterization and memoization data
structures, this function is tabulated in time linear in the size of a pattern
string, thereby obtaining the Morris-Pratt matcher.

6 Conclusion and perspectives

We have shown how to obtain all of Knuth, Morris, and Pratt’s linear-time string
matcher by partial evaluation of a quadratic-time string matcher with respect to
a pattern string. Obtaining a linear-time string matcher by partial evaluation
was already known, but obtaining it in linear time was an open problem.

To this end, we have rewritten the staged matcher so that its backtracking is
compositional, thereby enabling sharing of computations at specialization time.
We have also identified that the sharing of dynamic computations as achieved
with the traditional seen-before list [21] is not enough; static computations must
also be shared. The concepts involved—staging, i.e., binding-time separation,
and sharing of computations as in dynamic programming—have long been recog-
nized as key ones in partial evaluation [3, 26]. They are, however, not sufficient
to obtain linear-time string matchers in linear time. In addition, the static com-
putations must be shared by memoization, and both the static and the dynamic
memoization mechanisms must be efficient. Static memoization in itself is no
silver bullet: a program must be (re)written so that static computations can

10



be shared—which still requires some degree of insight from the programmer;
otherwise, as usual with tabulation techniques, memoization is just a waste of
resources.

Independently of partial evaluation, we can also consider the staged match-
ers by themselves. To this end, we can express them as functional programs with
memo-functions, i.e., in some sense, as fully lazy functional programs. These
programs, given efficient memoization capabilities, are the lazy-functional equiv-
alent of the Morris-Pratt and Knuth-Morris-Pratt imperative matchers. (Holst
and Gomard as well as Kaneko and Takeichi made a similar observation [19, 22].)
In particular, these programs work in linear time.

Finally, we would like to point out that the Knuth-Morris-Pratt matcher is
not an end in itself. Fifteen years ago, this example was used to show that
partial evaluators needed considerable power (be it polyvariant program-point
specialization or generalized partial computation) to produce efficient special-
ized programs. It gave rise to the so-called KMP test [30, 31]. What our work
shows today is that a partial evaluator needs even more power (static memoiza-
tion and efficient data structures) to operate efficiently. Such an efficient partial
evaluator remains to be implemented.

Acknowledgments: We are grateful to Julia Lawall for many useful com-
ments. This article has also benefited from the anonymous reviewers’ com-

ments. This work is supported by the ESPRIT Working Group APPSEM 11
(http://www.appsem.org).

A Partial evaluation of staged string matchers

We provide a more complete view of partial evaluation of staged string matchers
(see also Section 2). The fundamental starting point is always a brute-force
quadratic-time string matcher, such as the one in Figure 5. The corresponding
ending point is always a specialized linear-time string matcher, such as the one
in Figure 6, which is specialized to match the pattern abac. Here, the specialized
matcher behaves exactly like the Morris-Pratt matcher for the pattern abac.

As it happens, specializing the brute-force quadratic matcher using a sim-
ple memoizing partial evaluator, such as Similix, does not yield a linear-time
matcher (only a linear-sized one). One way to overcome this problem is to
rewrite or stage the quadratic matcher such that backtracking only depends on
static data and therefore can be computed by the partial evaluator. However,
partial evaluation then takes quadratic time, because the overall workload has
not been reduced—only moved.

This work describes how to actually reduce the workload by further rewriting
the staged matcher (Figure 3) and by enhancing the memoization capabilities
of the partial evaluator (see Section 3).

11



(define (main pattern text)
(main pattern text 0 0))

(define (match pattern text j k)
(if (= (string-length pattern) j)
- k3
(if (= (string-length text) k)
-1
(compare pattern text j k))))

(define (compare pattern text j k)
(if (equal? (string-ref pattern j)
(string-ref text k))
(match pattern text (+ j 1) (+ k 1))
(match pattern text 0 (+ (- k j) 1))))

Figure 5: A brute-force quadratic-time string matcher

e main is the matcher’s entry point which directly calls match.

e match checks whether matching should terminate, either because an
occurrence of the pattern has been found in the text or because the
end of the text has been reached. If not, compare is called to perform
the next character comparison. Again, for simplicity, we assume that
string-length works in constant time.

e compare checks whether the jth character of the pattern matches the
kth character of the text. If so, match is called to match the rest of the
pattern against the rest of the text. If not, the whole pattern and the
corresponding part of the text are restored, the text position is incre-
mented by one character, and match is called to restart matching.

Pictorially, the situation is as follows:

. staging . O(n?) PE .
Figure 5 ——— Figure 1 — — — — — —'— — — — — > Figure 6
7
r e
7
e
rewriting (Sec. 3.1) Phd O(n) PE (Sec. 3.2)

e
Figure 3

The matchers in Figures 1, 3, and 5 perform the exact same sequence of character
comparisons; they differ only in where they fetch the text characters during
backtracking.

12



(define (maingp,c text)
(matchg 0))
(define (matchg text k)
(if (= (string-length text) k)
-1
(comparep text k)))
(define (compareg text k)
(if (equal? #\a (string-ref text k))
(match; text (+ k 1))
(matchp text (+ k 1))))
(define (match; text k)
(if (= (string-length text) k)
-1
(compare; text k)))
(define (compare; text k)
(if (equal? #\b (string-ref text k))
(matchs text (+ k 1))
(comparep text k)))
(define (matchs text k)
(if (= (string-length text) k)
-1
(compares text k)))
(define (compares text k)
(if (equal? #\a (string-ref text k))
(matchs text (+ k 1))
(matchy text (+ k 1))))
(define (matchs text k)
(if (= (string-length text) k)
-1
(compares text k)))
(define (compares text k)
(if (equal? #\c (string-ref text k))
(- (+k 1) 4
(compare; text k)))

Figure 6: A specialized linear-time matcher

The connection to the matchers in Figures 1, 3, and 5 is:

e For all strings text,
(maingpac text) = (main "abac" text).

e For all strings text, integers k, and i € {0, 1,2, 3},
(match; text k) = (match "abac" text 7 k)

e For all strings text, integers k, and i € {0, 1,2, 3},
(compare; text k) = (compare "abac" text i k).

13




References

1]

[10]

[11]

[12]

Mads Sig Ager, Olivier Danvy, and Henning Korsholm Rohde. On obtaining
Knuth, Morris, and Pratt’s string matcher by partial evaluation. In Chin
[8], pages 32-46. Extended version available as the technical report BRICS-
RS-02-32.

Maria Alpuente, Moreno Falaschi, Pascual Julian, and German Vidal. Spe-
cialization of inductively sequential functional logic programs. In Charles
Consel, editor, Proceedings of the ACM SIGPLAN Symposium on Partial
Evaluation and Semantics-Based Program Manipulation, pages 151-162,
Amsterdam, The Netherlands, June 1997. ACM Press.

Torben Amtoft. Sharing of Computations. PhD thesis, DAIMI, Department
of Computer Science, University of Aarhus, 1993. Technical report PB-453.

Torben Amtoft, Charles Consel, Olivier Danvy, and Karoline Malmkjeer.
The abstraction and instantiation of string-matching programs. In Tor-
ben A. Mogensen, David A. Schmidt, and 1. Hal Sudborough, editors, The
Essence of Computation: Complexity, Analysis, Transformation. Essays
Dedicated to Neil D. Jones, number 2566 in Lecture Notes in Computer
Science, pages 332—-357. Springer-Verlag, 2002. Extended version available
as the technical report BRICS RS-01-12.

Richard S. Bird. Improving programs by the introduction of recursion.
Communications of the ACM, 20(11):856-863, November 1977.

Anders Bondorf. Similix 5.1 manual. Technical report, DIKU, Computer
Science Department, University of Copenhagen, Copenhagen, Denmark,
May 1993. Included in the Similix 5.1 distribution.

Christian Charras and Thierry Lecroq. Exact string matching algorithms.
http://www-igm.univ-mlv.fr/“lecroq/string/, 1997.

Wei-Ngan Chin, editor. ACM SIGPLAN Asian Symposium on Partial Fval-
uation and Semantics-Based Program Manipulation, Aizu, Japan, Septem-
ber 2002. ACM Press.

Livio Colussi. Correctness and efficiency of pattern matching algorithms.
Information and Computation, 95:225-251, 1991.

Charles Consel and Olivier Danvy. Partial evaluation of pattern matching
in strings. Information Processing Letters, 30(2):79-86, January 1989.

Charles Consel and Olivier Danvy. Tutorial notes on partial evalua-
tion. In Susan L. Graham, editor, Proceedings of the Twentieth Annual
ACM Symposium on Principles of Programming Languages, pages 493-501,
Charleston, South Carolina, January 1993. ACM Press.

Edsger W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

14



[13]

[14]

[15]

[17]

[18]

[21]

[22]

Yoshihiko Futamura, Zenjiro Konishi, and Robert Gliick. Automatic gen-
eration of efficient string matching algorithms by generalized partial com-
putation. In Chin [8], pages 1-8.

Yoshihiko Futamura, Zenjiro Konishi, and Robert Gliick. Program transfor-
mation system based on generalized partial computation. New Generation
Computing, 20(1):75-99, 2002.

Yoshihiko Futamura and Kenroku Nogi. Generalized partial computation.
In Dines Bjgrner, Andrei P. Ershov, and Neil D. Jones, editors, Partial
Evaluation and Mized Computation, pages 133-151. North-Holland, 1988.

Robert Gliick and Andrei Klimov. Occam’s razor in metacomputation:
the notion of a perfect process tree. In Patrick Cousot, Moreno Falaschi,
Gilberto Filé, and Antoine Rauzy, editors, Proceedings of the Third In-
ternational Workshop on Static Analysis WSA’93, number 724 in Lecture
Notes in Computer Science, pages 112-123, Padova, Italy, September 1993.
Springer-Verlag.

Bernd Grobauer and Julia L. Lawall. Partial evaluation of pattern matching
in strings, revisited. Nordic Journal of Computing, 8(4):437-462, 2002.

Manuel Herndndez and David A. Rosenblueth. Development reuse and
the logic program derivation of two string-matching algorithms. In Harald
Sendergaard, editor, Proceedings of the Third International Conference on
Principles and Practice of Declarative Programming, pages 38-48, Firenze,
Italy, September 2001. ACM Press.

Carsten K. Holst and Carsten K. Gomard. Partial evaluation is fuller
laziness. In Hudak and Jones [20], pages 223-233.

Paul Hudak and Neil D. Jones, editors. ACM SIGPLAN Symposium on
Partial Evaluation and Semantics-Based Program Manipulation, SIGPLAN
Notices, Vol. 26, No 9, New Haven, Connecticut, June 1991. ACM Press.

Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evaluation
and Automatic Program Generation. Prentice-Hall International, London,
UK, 1993. Available online at http://www.dina.kvl.dk/~sestoft/pebook/.

Keiichi Kaneko and Masato Takeichi. Derivation of a Knuth-Morris-Pratt
algorithm by fully lazy partial computation. Advances in Software Science
and Technology, 5:11-24, 1993.

Richard Kelsey, William Clinger, and Jonathan Rees, editors. Revised®
report on the algorithmic language Scheme. Higher-Order and Symbolic
Computation, 11(1):7-105, 1998.

Donald E. Knuth, James H. Morris, and Vaughan R. Pratt. Fast pattern
matching in strings. STAM Journal on Computing, 6(2):323-350, 1977.

15



[25]

[29]

[30]

Laura Lafave and John P. Gallagher. Constraint-based partial evaluation of
rewriting-based functional logic programs. In Norbert E. Fuchs, editor, 7th
International Workshop on Program Synthesis and Transformation, num-
ber 1463 in Lecture Notes in Computer Science, pages 168-188, Leuven,
Belgium, July 1997. Springer-Verlag.

Torben A. Mogensen. Binding Time Aspects of Partial Fvaluation. PhD
thesis, DIKU, Computer Science Department, University of Copenhagen,
Copenhagen, Denmark, March 1989.

Torben A. Mogensen. Glossary for partial evaluation and related topics.
Higher-Order and Symbolic Computation, 13(4):355-368, 2000.

Christian Queinnec and Jean-Marie Geffroy. Partial evaluation applied to
pattern matching with intelligent backtrack. In Proceedings of the Second
International Workshop on Static Analysis WSA’92, volume 81-82 of Bi-
gre Journal, pages 109-117, Bordeaux, France, September 1992. TRISA,
Rennes, France.

Donald A. Smith. Partial evaluation of pattern matching in constraint logic
programming languages. In Hudak and Jones [20], pages 62-71.

Morten Heine Sgrensen. Turchin’s supercompiler revisited. an operational
theory of positive information propagation. Master’s thesis, DIKU, Com-
puter Science Department, University of Copenhagen, April 1994. DIKU
Rapport 94/17.

Morten Heine Sgrensen, Robert Gliick, and Neil Jones. Towards unifying
partial evaluation, deforestation, supercompilation, and GPC. In Donald
Sannella, editor, Proceedings of the Fifth Furopean Symposium on Program-
ming, number 788 in Lecture Notes in Computer Science, pages 485-500,
Edinburgh, Scotland, April 1994. Springer-Verlag.

Morten Heine Sgrensen, Robert Gliick, and Neil D. Jones. A positive su-
percompiler. Journal of Functional Programming, 6(6):811-838, 1996.

Masato Takeichi and Yoji Akama. Deriving a functional Knuth-Morris-
Pratt algorithm. Journal of Information Processing, 13(4):522-528, 1990.

16



Recent BRICS Report Series Publications

RS-03-20 Mads Sig Ager, Olivier Danvy, and Henning Korsholm Ro-
hde. Fast Partial Evaluation of Pattern Matching in Strings
May 2003. 16 pp. Final version to appear in Leuschel, editor,
ACM SIGPLAN Workshop on Partial Evaluation and Semantics-
Based Program Manipulation PEPM '03 Proceedings, 2003.
This report supersedes the earlier BRICS report RS-03-11.

RS-03-19 Christian Kirkegaard, Anders Mgller, and Michael I.
Schwartzbach.Static Analysis of XML Transformations in Java
May 2003. 29 pp.

RS-03-18 Bartek Klin and Pawet Sobodiski. Syntactic Formats for Free:
An Abstract Approach to Process EquivalenceApril 2003.

41 pp.

RS-03-17 Luca Aceto, Jens Alsted Hansen, Anna liadfsdottir, Jacob
Johnsen, and John KnudsenThe Complexity of Checking Con-
sistency of Pedigree Information and Related Problemdarch
2003. 31 pp. This paper supersedes BRICS Report RS-02-42.

RS-03-16 Ilvan B. Dam@rd and Mads J. Jurik. A Length-Flexible
Threshold Cryptosystem with Application8larch 2003. 19 pp.

RS-03-15 Anna Inglfsdbttir. A Semantic Theory for Value—Passing Pro-
cesses Based on the Late Approadiarch 2003. 48 pp.

RS-03-14 Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan
Midtgaard. From Interpreter to Compiler and Virtual Machine:
A Functional Derivation. March 2003. 36 pp.

RS-03-13 Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan
Midtgaard. A Functional Correspondence between Evaluators
and Abstract MachinesMarch 2003. 28 pp.

RS-03-12 Mircea-Dan Hernest and Ulrich Kohlenbach. A Complexity
Analysis of Functional Interpretations February 2003. 70 pp.

RS-03-11 Mads Sig Ager, Olivier Danvy, and Henning Korsholm Rohde.
Fast Partial Evaluation of Pattern Matching in Strings Febru-
ary 2003. 14 pp. This report is superseded by the later report
BRICS RS-03-20.

RS-03-10 Federico Crazzolara and Giuseppe MiliciaWireless Authenti-
cation in x-Spaces February 2003. 20 pp.



