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Static Analysis of XML Transformations in Java

Christian Kirkegaard, Anders Møller∗, and Michael I. Schwartzbach

BRICS†, Department of Computer Science
University of Aarhus, Denmark

Abstract

XML documents generated dynamically by programs are typically rep-
resented as text strings or DOM trees. This is a low-level approach for
several reasons: 1) Traversing and modifying such structures can be te-
dious and error prone; 2) Although schema languages, e.g. DTD, allow
classes of XML documents to be defined, there are generally no auto-
matic mechanisms for statically checking that a program transforms from
one class to another as intended.

We introduce Xact, a high-level approach for Java using XML tem-
plates as a first-class data type with operations for manipulating XML
values based on XPath. In addition to an efficient runtime representa-
tion, the data type permits static type checking using DTD schemas as
types. By specifying schemas for the input and output of a program, our
algorithm will statically verify that valid input data is always transformed
into valid output data and that no errors occur during processing.

1 Introduction

Extensible Markup Language, XML [10], has since its introduction in 1998
gained considerable interest from industry and now plays an important role in
the exchange of a wide variety of data on the Web. Although XML, technically,
is merely a linear syntax for ordered labeled tree structures, it has proven useful
as a notation for structuring information in general.

The syntax of an XML-based language is specified using a vocabulary of
elements and attributes together with rules for constraining their use. There
exists a variety of schema languages, such as DTD [10], XML Schema [46], or
DSD2 [34], allowing the syntax to be formalized. An XML document is valid
relative to a given schema if all the syntactic requirements specified by the

∗Corresponding author. Email: amoeller@brics.dk
†This work is supported by Basic Research in Computer Science (www.brics.dk), funded

by the Danish National Research Foundation. Anders Møller is supported by the Carlsberg
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schema are satisfied in the document. The language L(S) of a schema S is the
set of XML documents that are valid relative to S.

A popular XML-based language is XHTML [38], the “XMLized” variant of
HTML. The XHTML language is widely used in interactive Web services where
the clients are human beings that use browsers to interact with the servers. A
recent trend is to move from interactive Web services towards application-to-
application Web services, where the clients are not humans with browsers but
general programs. This calls for specialized XML-based languages to mediate
communication between clients and servers. As an example, Amazon.com now
provides an XML interface [1] that allows other programs to search for product
information. These other programs may combine that information with data
from other sources, extract relevant parts and, for example, transform the results
into other XML documents to interact with yet another group of programs.

From this development, it is clear that XML already plays a central role in
representation of information on the Web and that transformation of XML data
is becoming a key aspect of Web service programming.

Existing general-purpose programming languages do not provide any special
support for XML transformations. With these languages, the programmer may
choose to model XML data either 1) as text strings, or 2) as DOM [2] tree
structures (or variants of that, such as JDOM [26]). The first approach is
often used for languages as XHTML where documents are being constructed
but rarely deconstructed, whereas the second is more used for languages and
transformation that involve both construction and deconstruction of documents.
We shall argue that both approaches are low-level in the sense that they are
often error-prone and tedious to use.

Our ultimate goal is to integrate XML into general-purpose programming
languages, in particular Java, to support more high-level definitions of XML
transformations and thereby make development of Web services easier and safer.

We wish to incorporate XML data as first-class values in Java. Since an
XML schema defines a class of XML documents, it is natural to view schemas
as types alongside the standard types such as integers and strings. An XML
transformation is defined by a program that as input takes one or more XML
documents xin

1 , . . . , xin
n and as output produces a new XML document xout . In

the same way the notion of types is normally used in programming for structur-
ing the code and detecting programming errors at an early stage, the program
may assume that each input document xin

i is valid relative to some input schema
Sin

i , and it is intended that the output document xout is always valid relative
to some output schema Sout . In this article we wish to:

1. incorporate XML into Java with a family of basic but high-level operations
for defining transformations, and

2. provide static type checking, that is, for the program, verify at compile-
time that xout ∈ L(Sout) given that xin

i ∈ L(Sin
i ) for each i.

In comparison, the existing approaches of using text strings or DOM trees do
not support static type checking.
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We work in the context of JWIG [16, 13], an extension of Java that, among
other features, provides a mechanism for construction of XML documents using
XML templates and plug operations, which we briefly recapitulate in Section 3.
Our previous results included a static analysis for checking that the constructed
documents are always valid relative to a given DSD2 schema. However, the
mechanism only supported construction of XML documents, not deconstruction.
This has shown to be sufficient for interactive Web services that dynamically
create XHTML documents, but, as explained earlier, application-to-application
Web services require general XML transformations, which also includes decon-
struction. Furthermore, the previous results were obtained under the assump-
tion that XML documents are built from a set of constant XML templates. This
is also a valid assumption for interactive Web services, but not for application-
to-application Web services, where the constituents of the result of an XML
transformation are often input from other Web services. In the present article
we generalize the previous results to general XML transformations that also
involve deconstruction and importing of XML templates.

Contributions

Our contributions in this article are the following:

• A survey of existing techniques for defining XML transformations;

• a novel data type with high-level operations for defining XML transfor-
mations in Java;

• a static analysis technique based on a notion of summary graphs;

• an algorithm for symbolic evaluation of XPath expressions [19] on sum-
mary graphs;

• an algorithm for converting DTD schemas into summary graphs; and

• experimental evidence that the approach is practically feasible.

Preliminary results were described in [14]. In a separate paper [15], we show that
our data type permits an efficient runtime representation. Although we focus on
Java, our ideas can be applied to other general-purpose high-level programming
languages since we do not depend on any Java-specific language constructs.

Overview

We first, in Section 2, describe related work on language support for XML
transformations and motivate the need for new solutions. Section 3 explains
our approach that involves DTD and XPath. The operations can be performed
efficiently with a suitable runtime representation, which we mention briefly and
describe in detail in a separate paper. In Section 4, we describe summary graphs,
a formalism that provides the foundation for the static program analysis, which
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we describe in Section 5. This analysis encompasses techniques for symboli-
cally evaluating XPath expressions on summary graphs and converting DTD
schemas into summary graphs. Our prototype implementation and a number of
benchmark tests of the analyzer are described in Section 6.

2 Related Work

There exists a wide range of approaches for defining XML transformations,
originating from database, hypertext, and programming language communities.
These approaches are in the following divided into techniques for general-purpose
programming languages and for tailor-made domain-specific languages. A gen-
eral introduction to the XML type checking problem is given in [41].

XML data may be manipulated in several ways that are not all supported
equally well by every approach. In many actual XML transformations, the
input and output languages are different, i.e., described by different schemas.
However, often these languages are the same, for example if the transformation
consists of sorting a list of entries in a table but leaving the rest of the document
unmodified. Such transformations are often described more conveniently as in
situ modifications than as functions from input to output. Also, many programs
involving XML build documents from non-XML sources, extract information
from XML without producing XML output, or they interact with other systems
during the processing. Developing good support for XML in programming also
requires consideration of these pragmatic issues.

Techniques for general-purpose languages

The approaches of representing XML data as strings or DOM trees, as men-
tioned in the introduction, fit into the category of techniques for general-purpose
languages. Building XML documents by concatenating string fragments is com-
monly used in the presentation layer of interactive Web services, for example
with Servlets [43]. This primitive approach does not assist the programmer in
avoiding mismatching tags or improper escaping of special characters, and it
does not support deconstruction of documents.

Presently, there are XML libraries with parsers and DOM-like functionality
for all major (and also many less widely used) programming languages. Ex-
amples for Java include JDOM [26], TrAX [7], and JAXP [42]. Such libraries
view XML data as tree structures and provide operations for local traversal
and manipulation. This is a powerful approach that permits the full underlying
programming language to be involved in the XML processing. Wellformedness
of the involved XML data comes for free when working on the tree level. How-
ever, it is still a low-level approach for a number of reasons: 1) Traversing or
modifying a DOM tree is expressed via primitive operations, for example taking
a single step in the tree from an element to its first child element. More com-
plex operations therefore tend to require relatively much code, compared to e.g.
XSLT, which is described below. 2) There is no tool support for analyzing the
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programs at compile-time to verify that transformation output is guaranteed to
be valid at runtime or that the transformations succeed without runtime errors.
XML is regarded as one homogeneous type without considering schemas. The
processing is completely independent from the schema information, so, for ex-
ample, a schema may contain the information that A elements cannot occur as
children of B elements, but failed attempts to select an A child element of a B
element in a program will not be detected until runtime.

SAX [11] is event-based rather than tree-based. This approach is suitable for
streaming processing of large documents, but static validity is not considered.

To attack the problem of statically guaranteeing validity of the transforma-
tion output, a number of systems attempt to model XML transformation using
pre-existing type systems in general-purpose programming languages. Exam-
ples based on functional languages are HaXml [48] and WASH/CGI [45], both
embedding DTD into Haskell. In contrast to HaXml, WASH/CGI does not
support deconstruction of XML values. In return, WASH/CGI allows the use
of generic combinators, which the type-safe approach in HaXml does not.

With this approach, type checking of XML transformations comes for free via
the type system in the host language. However, these type systems are usually
not strong enough to capture all requirements specified in a schema without
sacrificing soundness, performance, or flexibility [25], even with a simple schema
language as DTD. Another problem is that type errors are reported at the level
of the underlying host language, which can make them difficult to understand
for the programmer.

Other systems are targeted at object-oriented languages, typically Java. Cas-
tor [22] and the more recent JAXB [44] are XML data binding frameworks for
Java. From a schema written in certain subsets of XML Schema they can gener-
ate a collection of Java classes representing an object model of the corresponding
XML documents. XML data may then be processed as Java objects at a higher
abstraction level than e.g. JDOM. Methods for marshalling and unmarshalling
are automatically generated, and the mapping between XML and Java can be
controlled by specifying explicit bindings. Relaxer [23] is a similar tool but for
the RELAX schema language. For all three systems, there is no static guaran-
tee that a constructed document will satisfy all the requirements of the given
schema.

The SNAQue tool [40] provides a variant of data binding that does not
take schemas into account. From an XML document and a programming lan-
guage type, it extracts a program value. Projector [20] is a related extension of
JavaScript mixing typed and untyped programming.

The approach described in [31] contains a data binding system for languages
with powerful types with streams, tuples, and unions, which allow schemas
to be encoded with high precision. A type checking algorithm is currently
being implemented but is yet unpublished. Many other data binding tools are
described in [8].
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Domain-specific languages

Domain-specific languages (DSLs) are tailor-made for specialized classes of tasks,
such as XML transformation. Although the formal expressive power of these
language of course does not exceed that of general-purpose languages, the ad-
vantages of DSLs are generally considered to be 1) high levels of abstraction
with language constructs and customized syntax that closely match the con-
cepts in the problem domain, and 2) specialized analyses for reasoning about
the behavior of programs.

The predominant DSL for XML transformation is XSLT [18], a declara-
tive language based on pattern matching and template instantiation. Although
designed primarily for hypertext stylesheet applications, it is more widely ap-
plicable, for example, for simple database operations. XSLT uses XPath for
pointing and pattern matching. Schemas for the input and output languages
are ignored by XSLT processors, so no type checking is performed.

Although DSLs for XML transformation certainly do have a raison d’être,
many have difficulties with the kinds of transformation mentioned earlier that
involve non-XML values or need to interact with other systems. XSLT is ex-
tensible, but only in the sense that individual implementors may add their own
extra functionality.

XQuery [6] can be viewed as a generalization of SQL to the richer data model
of XML. It is a functional language with optional types using a considerable
subset of XML Schema as basis for its type system [21], which supports static
type inference and checking. Although still at working draft level with many
open issues, XQuery is an ambitious project and receives much attention.

XDuce [25] is a simplistic functional language based on regular expression
types, which are a natural generalization of DTD schemas, and a corresponding
mechanism for pattern matching. It supports a local form of type inference
where types are specified explicitly for function arguments but inferred for pat-
tern matching. In its current version, XDuce does not have higher-order func-
tions or parametric polymorphism, and the type system does not model element
attributes or unordered data. CDuce [3] extends XDuce into a full program-
ming language and adds higher-order functions and other language features.
The ideas from XDuce, which have also influenced the design of the XQuery
type system, are currently being integrated into C# in the Xtatic project with
similar goals as ours [24].

XMλ [32] is a functional language related to HaXml and WASH/CGI. Its
type system uses a notion of type-indexed rows to model DTD. Whereas subtyp-
ing is an essential aspect in XDuce, XMλ is based on parametric polymorphism.
Apparently, no implementation of XMλ is available.

The language fxt [4] is closely related to XSLT but uses a strictly top-down
processing model and a clean pattern matching mechanism that corresponds to
regular languages. Another attempt to redesign XSLT is SXSLT [29], based on
Scheme. Both fxt and SXSLT focus on language design and, as XSLT, do not
provide type checking.

The type checking problem has been studied at a more theoretical level for
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k-pebble tree transducers [33], a framework for modeling decidable tree transfor-
mations in, for example, a predecessor of XQuery and a fragment of XSLT. A
less expressive formalism for top-down transformations is investigated in [30],
and another related approach is proposed in [47] for type checking a subset of
XSLT using tree automata.

In [39], a simple XML transformation system based on macro expansion is
described, and it is shown that exact type checking with DTD is decidable for
this system. The query language loto-ql permits inference of output schemas
from input schemas using a generalization of DTD to context-free languages [37].

Finally, we mention the recent XOBE language [28], which is closely related
to our approach. XOBE is also an extension of Java, it has a notion of XML tem-
plates resembling that of JWIG, and it too uses XPath to select parts of XML
trees. XOBE uses a type system based on regular hedge grammars, whereas
we rely on dataflow analysis using summary graphs to obtain static guarantees.
However, there are a number of more essential differences: XML trees in XOBE
can only be constructed bottom-up. In contrast, the template mechanism in
JWIG is higher-order in the sense that templates can contain named gaps that
can be filled in any order, possibly with templates containing other gaps. Also, a
template in XOBE always has exactly one root element; JWIG templates allow
sequences of elements and character data at the top level. XOBE requires all
variables to be explicitly typed with element names, unlike our approach. Lists
of mixed elements cannot be built dynamically in XOBE since it only supports
lists of elements of the same type. Finally, our gapify construct, which we de-
scribe later, has no counterpart in XOBE. These issues make our mechanism
considerably more flexible in practice.

Our approach

We present a technique, Xact, that combines 1) a full integration of XML values
and highly flexible operations for XML transformation into an existing high-level
language, and 2) static guarantees of type safety of the transformations.

We choose to build on Java since this language is already widely used in
development of Web services. Using a general-purpose language allows mixing
XML manipulations with other functionality, for example, accessing data bases
or communicating on the Internet. Our starting point is the XML template
mechanism in JWIG. We use XPath for selecting fragments of XML values.
XPath has already proven useful for this purpose in, e.g., XSLT and XQuery.

Our approach to providing static guarantees is based on dataflow analysis
rather than type systems. Dataflow analysis works on control-flow graphs, which
allows flow sensitivity, whereas type systems typically work on abstract syntax
trees. Our analysis is reminiscent of type inference since variable declarations
do not have explicit types.

By building on an imperative language, our mechanism is operational and
in that respect closer to, for example, JDOM, than to a declarative language as
XQuery. However, an important design choice is that our data type for XML
templates is immutable [5]. There are several reasons for this choice: As in pure
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functional languages, having no side-effects often permits a cleaner programming
style. For example, there is no need for explicit copying of values, thread safety
comes for free, and the use of value factories is allowed. Furthermore, since side-
effects can be difficult to control, having immutable data avoids a significant
class of programming errors. Finally, the crucial point in our situation is that
immutability is a necessity for development of a feasible program analysis. It
would not be possible to transfer our program analysis techniques to a mutable
data type as, e.g., JDOM.

3 XML Operations using DTD and XPath

We represent XML values as XML templates in the style of JWIG [16]. An
XML template is a wellformed XML fragment that may contain named gaps
where other templates or strings may be inserted. The gaps may appear in
place of elements or attribute values. In JWIG, this has proven to constitute
an intuitive and flexible mechanism for XML document construction.

Formally, XML templates are derived by xml in the following grammar:

xml : str (character data)
| <name atts> xml </name> (element)
| <[g]> (template gap)
| xml xml

atts : name="str" (attribute constant)
| name=[g] (attribute gap)
| atts atts
| ε

Here, str denotes an arbitrary Unicode string, name is an identifier, and g
is a gap name. Actual XML values must of course be further constrained to
be wellformed according to the XML 1.0 specification [10]. Moreover, in this
description we abstract away all inlined DTD information, comments, and pro-
cessing instructions. Compared to the description in [16], we here omit code
gaps.

In this article, we extend the JWIG mechanism with operations for decon-
structing and importing XML data. These operations are based on DTD and
XPath, which we briefly describe in the following to explain the terminology
that we use.

DTD

The DTD formalism is a simple schema language for XML and is described in
the XML specification [10]. A DTD schema is a grammar for a class of XML
documents defining for each element the required and permitted child elements
and attributes. The contents of an element is the sequence of its immediate
children. It is specified using a restricted form of regular expression over element
names and #PCDATA, which refers to arbitrary character data. Attributes can
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be declared as required or optional for a given element, and their values can be
constrained to finite collections of fixed strings. We ignore the special attribute
types ID, IDREF, ENTITY, etc.

The following example is a DTD schema for collections of recipes:

<!DOCTYPE collection [

<!ELEMENT collection (title,recipe*)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT recipe (title,ingredient*,preparation)>

<!ELEMENT ingredient (ingredient*,preparation)?>

<!ATTLIST ingredient name CDATA #REQUIRED

amount CDATA #IMPLIED

unit CDATA #IMPLIED>

<!ELEMENT preparation (step*)>

<!ELEMENT step (#PCDATA)>

]>

This data model support both simple ingredients, consisting of a name and
possibly an amount and a unit, and composite ingredients, which are described
recursively by sub-recipes. The following small example is valid according to
the schema:

<collection>

<title>Tiny Example</title>

<recipe>

<title>Cucumber Sandwich</title>

<ingredient name="cucumber"/>

<ingredient name="crustless bread">

<ingredient name="bread" amount="1" unit="loaf"/>

<preparation>

<step>Cut one slice of the bread.</step>

<step>Cut the crust from the slice.</step>

</preparation>

</ingredient>

<ingredient name="mayo" amount="2" unit="dollop"/>

<preparation>

<step>Spread the mayo on the bread.</step>

<step>Slice the cucumber.</step>

<step>Place cucumber slices on the bread.</step>

</preparation>

</recipe>

</collection>

The JWIG validity analysis described in [16] uses a more powerful schema lan-
guage, DSD2 [34], which is capable of capturing more complex syntactic re-
quirements than DTD. The main reason for using DTD here is that our gen-
eralization of the XML cast operation, as explained in the following sections,
requires translation from schemas into our summary graphs, which can be done
straightforwardly and precisely for DTD.
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XPath

XPath [19] is a simple but versatile DSL for addressing elements, attribute
values, and character data—generally called nodes—in XML documents. It has
proven powerful as a sub-language, for example in XSLT, for locating document
fragments and as a pattern matching mechanism.

An XPath expression can, relative to an evaluation context, evaluate to a
boolean, a number, a string, or a set of nodes. A node set expression is called
a location path and consists of a sequence of location steps, each having three
parts: 1) an axis, for example child or following-sibling, which selects
a set of nodes relative to the context node, 2) a node test, which filters the
selected nodes by considering their type or name, and 3) a number of predicates,
which are boolean expressions that perform a further, potentially more complex,
filtration. Thus, the result of evaluating a location step on a specific node is a set
of nodes. A whole location path is evaluated compositionally left-to-right. As an
example, the following expression selects all amount attributes in ingredient
elements that have a name="salt" attribute and occur within recipe elements
that have a title child with contents soup:

child::recipe[string(child::title/child::text())="soup"]/

descendant-or-self::ingredient[string(attribute::name)="salt"]/

attribute::amount

where we assume that the initial context node is a collection element. The
string() function extracts the string value of a node.

In our application of XPath, we restrict ourselves to the child, descendant-
or-self, and attribute axes. This means that all evaluation is then top-
down, which is sufficient for all the transformations we mention in Section 6
and simplifies both the runtime system and the analyzer. A similar approach is
taken in the fxt language [4]. Conveniently, XPath offers some syntactic sugar
for these axes: child is the default axis, descendant-or-self may be written
as //, and attribute may be written as @. The example above may then be
abbreviated as follows:

recipe[title/text()="soup"]//ingredient[@name="salt"]/@amount

where we also use an implicit coercion rule converting nodes to their textual
contents.

Basic XML Operations

The class XML, which represents XML templates, allows several operations that
are shown in Figure 1.

The const operation constructs an XML template from the syntax generated
by the xml nonterminal in the previously described grammar; the toString
operation translates in the opposite direction. The argument to const must be
a constant.
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static XML const(String s)
– creates an XML template from a constant string

String toString()
– converts this XML template into its textual representation

XML plug(Gap g, XML x)
– inserts a copy of x into every occurrence of g in a copy of

this template
XML plug(Gap g, String s)

– as the previous, but for a string
XML plug(Gap g, XML[] xs)

– inserts the template items in xs into the g gaps in a copy of
this template

XML plug(Gap g, String[] ss)
– as the previous, but for a string array

XML close()
– removes all open template gaps and all attributes with open gaps

XML[] select(XPath p)
– returns all sub-templates selected by p

XML[] cut(XPath p)
– as select, but only returns maximal disjoint sub-templates

XML gapify(XPath p, Gap g)
– copies this template and converts all sub-templates selected by

p into g gaps
static XML smash(XML[] xs)

– merges the templates in xs into one template by concatenating them
String text()

– returns the concatenation of all character data at the top level of
this template

XML cast(DTD d)
– throws a runtime exception if this template is invalid relative to d

static XML get(String s, DTD d)
– converts s into a template and checks validity relative to d

XML analyze(DTD d)
– instructs the analyzer to verify that this template is valid

relative to d

Figure 1: Methods in the XML interface for performing basic XML template
operations.
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The plug operation is defined in four variants accepting strings, templates,
or arrays of these. In the array versions, all occurrences of the named gap are in
document order plugged with the values occurring in the array. If the lengths
do not match, then superfluous array values are ignored and remaining gaps
are plugged with the empty template. For the case where an element contains
multiple attribute gaps, these are ordered lexicographically by attribute name.
In the non-array version, all occurrences of the named gap are plugged with
the given value. Attempts to plug templates into attribute gaps will result in
runtime errors. A gap that has not been plugged is said to be open. The close
operation closes all gaps by removing template gaps and for each attribute gaps,
the entire attribute is removed.

The select, cut, and gapify operations first find the node set indicated
by the XPath expression using an implicit root node as evaluation context. In
select and cut, the subtrees rooted by nodes in this set are copied in document
order to form the resulting template array. Attribute gaps in the node set are
ignored, and for normal attributes, their values are converted into character
data. In gapify, the selected nodes and their sub-trees are each replaced by
a gap with the given name. For cut and gapify, if one selected node is an
ancestor of another, then only the ancestor is considered. This means that cut
always returns disjoint subtrees in contrast to the variant select, which may
return overlapping subtrees.

The smash operation concatenates an array of templates into a single tem-
plate. The text operation concatenates all character data occurring at the top
level.

The cast operation checks that the template is valid according to the given
DTD schema and throws an exception otherwise. The get operation converts
a non-constant string into a template that is then validated according to the
given DTD. The analyze operation has no effect at runtime but instructs the
analyzer to verify that the template is valid relative to the given DTD.

All arguments of types Gap, XPath, and DTD are required to be constant.
Note that, e.g., all JDOM operations trivially are special cases of these

operations – except that our data type is immutable, as explained earlier.
An XML transformation typically has the following form:

String transform(String s) {

XML x = XML.get(s, DTD.make("http://.../input.dtd"));

...

return x.analyze(DTD.make("http://.../output.dtd"))

.close().toString();

}

where input and output XML is represented textually.
The program analysis described later will at compile time check that 1) each

analyze operation is valid in the sense that the given template at runtime is
guaranteed to be valid relative to the DTD schema, and 2) each plug operation
always succeeds, that is, the gap is guaranteed to be present and templates are
never plugged into attribute gaps. Furthermore, if the analysis detects that an
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XPath expressions in a select, cut, or gapify operations will never select any
nodes, a warning is issued.

Syntactic Sugar

The JWIG language permits some syntactic sugar on top of the basic operations.
First, we allow special syntax for template constants, which may be written
in [[...]] without the otherwise mandatory escape characters. Similarly,
arguments of types Gap and XPath may be written directly without explicit calls
to constructors. Also, if f is a local method accepting exactly one argument
of type XML and whose result is of type XML, then []f abbreviates a new local
method that accepts and returns arguments of type XML[] and applies f to each
array entry. Finally, we allow the simple abbreviations:

x.roots() ≡ x.select(*)
x.attribute(a) ≡ smash(x.select(@a)).text()
x.chardata() ≡ smash(x.select(text())).text()
x.has(p) ≡ x.select(p).length>0
x.size() ≡ x.roots().length
x.delete(p) ≡ x.gapify(p,g).plug(g,"")
x.apply(p,f) ≡ x.gapify(p,g).plug(g,[]f(x.cut(p)))

The operations satisfy some simple equations, which may further elucidate their
semantics:

x.toString() = const(x.toString()).toString()
x = smash(x.roots())
x = x.gapify(p,g).plug(g,x.cut(p))

Consider a method upperTitle that creates a copy of a recipe collection in
which all titles are raised to upper case. The following sugared syntax:

XML toUpper(XML x) {

return [[<title><[t]></title>]].plug(t, x.chardata().toUpperCase());

}

XML upperTitle(XML x) {

return x.apply(//title, []toUpper);

}

then abbreviates the more cumbersome basic syntax:

XML toUpper(XML x) {

return XML.const("<title><[t]></title>")

.plug(new Gap("t"),

XML.smash(x.select("text()")).text().toUpperCase());

}

XML toUpperArray(XML[] x) {

XML[] y = new XML[x.length];

for (int i=0; i<x.length; i++) y[i]=toUpper(x[i]);
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return y;

}

XML upperTitle(XML x) {

return x.gapify("//title", new Gap("n"))

.plug(new Gap("n"),

toUpperArray(x.cut("//title")));

}

These syntactic extension to Java can be implemented using the Metafront
tool [9].

The following complete example implements the recursive TREE Q6 query
from the XQuery use cases [12]:

XML summary(XML[] x) {

XML y[] = new XML[x.length];

for (int i=0; i<x.length; i++)

y[i] = [[<section id=[id] difficulty=[diff]>

<title><[t]></title>

<figcount><[f]></figcount>

<[s]>

</section>]]

.plug(id, x[i].attribute(id))

.plug(diff, x[i].attribute(difficulty))

.plug(t, x[i].select(section/title))

.plug(f, x[i].select(section/figure).length)

.plug(s, summary(x[i].select(section/section));

return XML.smash(y);

}

String Q6(String s) {

XML x = XML.get(s, DTD.make("book.dtd"));

return [[<toc><[t]></toc>]]

.plug(t, summary(x.select(book/section)))

.analyze(DTD.make("Q6.dtd")).toString();

}

The structure of this code is similar to the XQuery version.

Runtime Representation

We show in a separate paper [15] that our data type for XML templates per-
mits an efficient runtime representation, despite being immutable. We use a
lazy non-copying data structure in which operations are merely noted to have
happened until their effects are required to be observed. We obtain nearly opti-
mal asymptotic complexities of the basic operations, since plug and individual
moves from a parent node to its first child and from a node to its next sib-
ling happen in amortized almost constant time. The toString operation is
performed in linear time in the size of the resulting string. The complexity of
select, cut, and gapify is bounded by the evaluation time for the associated
XPath expression. All this assumes that we avoid a pathological case where
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templates containing only gaps are nested to an unbounded depth. We expect
that a tuned implementation will compare favorably with the runtime perfor-
mances of JDOM, XSLT, or XDuce. The analyze operation has no effect at
runtime. The cast and get operations perform a linear time DTD validation.

4 Summary Graphs

To obtain static guarantees, we apply the standard dataflow analysis frame-
work [36, 27]. This involves three steps: 1) obtaining an abstract control-flow
graph for the given program; 2) defining a lattice modeling the abstract data
that the analysis manipulates; and 3) describing all kinds of operations in the
control-flow graph in terms of transfer functions that operate on the lattice
values.

The construction of control-flow graphs from Java programs is described in
detail in [16]. We use a different family of statements here, but the overall
approach is the same and we do not describe it further—however, we note that
arrays are modeled by merging their entries and using weak updating. Our
lattice is a variant of the summary graph lattice defined in [16] – we here use a
notion of normalized summary graphs, as defined below. The transfer functions
are described in Section 5.

Given a program and all DTD schemas it refers to in cast and get oper-
ations, we fix a number of sets and functions that are used by all summary
graphs that occur during the analysis: The sets E, A, and G contain the ele-
ment names, attribute names, and gap names, respectively, that occur in the
program and in the schemas. Let NE , NA, NT , and NC be finite disjoint sets of
element, attribute, template, and chardata nodes, respectively.

• NE contains a node for each occurrence of an element in a template con-
stant in the program and one for each element description in the schemas.
The function name : NE → E returns the corresponding element name.

• NA contains a node for each occurrence of an attribute in a template con-
stant and one for each attribute description in the schemas. The function
name : NA → A returns the corresponding attribute name. Each element
node is associated a set of attribute nodes, attr : NE → 2NA corresponding
to the element attributes.

• NT contains a node for each node in NE , one for each template constant,
one for each occurrence of select, cut, smash, or gapify, and one for
each sub-expression of the content model descriptors in the schemas. Each
element node is associated a template node, contents : NE → NT , corre-
sponding to the element contents. Each template node has a sequence of
gaps, gaps : NT → G∗, which we define in Section 5.

• NC contains a node for each maximal chardata sequence in a template
constant and one for each occurrence of plug, select, cut, and #PCDATA.
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The set of all nodes is N = NE ∪ NA ∪ NT ∪ NC . Note that two elements that
have identical names but occur in distinct template constants are modeled by
distinct element nodes. This ensures an important form of polyvariance in the
analysis.

A (normalized) summary graph SG is then a structure:

SG = (R, T, S, P )

where:

R ⊆ NE ∪ NT is a set of root nodes,
T ⊆ NT × G × (NT ∪ NE ∪ NC) is a set of template edges,
S : NC ∪ NA → REG is a string edge map, and
P : G → 2NA∪NT × 2NA∪NT × Γ × Γ is a gap presence map.

Here Γ = 2{OPEN,CLOSED} is the gap presence lattice whose ordering is set in-
clusion. The set REG is a finite family of regular languages over the Unicode
alphabet obtained by a separate analysis of string operations [17].

Intuitively, the language L(SG) of a summary graph SG is the set of XML
templates that can be obtained by unfolding it, starting from a root node and
plugging elements, templates, and strings into gaps according to the edges. A
template edge (n1, g, n2) ∈ T informally means that n2 may be plugged into the
g gaps in n1, and a string edge S(n) = L means that every string in L may be
plugged into the gap in n.

We need the gap presence map to determine where edges should be added
when modeling plug operations, to model the removal of gaps with the close
operation, to detect when plug operations may fail because the specified gaps
have already been closed, and to model and check XPath evaluations. Given that
P (g) = (p1, p2, p3, p4), let open(P (g)) = p1, removed(P (g)) = p2, tgaps(P (g)) =
p3, agaps(P (g)) = p4. Informally, the open and removed components specify
which nodes may contain open or removed g gaps, and tgaps and agaps describe
the presence of template gaps and attribute gaps, respectively. The value OPEN

means that the gaps may be present, and CLOSED means that they may be
absent.

As a example, we can define a summary graph whose language is the set
of ul lists with zero or more li items that each contain a string from some
language L: Assume that the fixed structure is given by NE = {1, 4}, NA = ∅,
NT = {2, 3, 5}, NC = {6}, contents(1) = 2, contents(4) = 5, attr(1) = attr(4) =
∅, name(1) = ul , name(4) = li , gaps(2) = items , gaps(3) = g · items , and
gaps(5) = text . Now define the summary graph (R, T, S, P ):

R = {1}
T = {(2, items , 3), (3, items , 3), (3, g , 4), (5, text , 6)}
S(6) = L
P (text ) = P (g) = (∅, ∅, {CLOSED}, {CLOSED})
P (items ) = ({2, 3}, ∅, {OPEN}, {CLOSED})
This can be illustrated as follows:
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n ∈ EE SG ` contents(n) ⇒ d name(n) = e attr(n) = {a1, . . . , ak} SG ` ai ⇒ bi

SG ` n ⇒ <e b1 . . . bk> d </e>

n ∈ EC s ∈ S(n)
SG ` n ⇒ s

n ∈ EA name(n) = a s ∈ S(n)
SG ` n ⇒ a="s"

n ∈ EA name(n) = a n ∈ open(P (g))
SG ` n ⇒ a=[g]

n ∈ EA n ∈ removed(P (g))
SG ` n ⇒ ε

n ∈ ET gaps(n) = g1 . . . gk SG, gi ` di

SG ` n ⇒ d1 . . . dk

(n, g, m) ∈ T SG ` m ⇒ d

SG, g ` n ⇒ d

n ∈ open(P (g))
SG, g ` n ⇒ <[g]>

n ∈ removed(P (g))
SG, g ` n ⇒ ε

Figure 2: Inference rules for unfolding of summary graphs.

items

items

itemsg
g

text
text

Lul li

1 2 3 4 5 6
items

items items

The boxes represent element nodes, rounded boxes are template nodes, the cir-
cle is a chardata node, and the dots represent potentially open template gaps.

The family of summary graph structures forms a lattice using a pointwise
subset ordering. For a fixed program, the lattice has finite height.

The unfolding of summary graphs can be formalized as:

unfold(SG) = {d | ∃r ∈ R : SG ` r ⇒ d}
where the unfolding relation, ⇒, is defined by induction in the structure of the
summary graph according to Figure 2. We define the language of a summary
graph as:

L(SG) = {close(d) | d ∈ unfold(SG)}
where close(d) removes all occurrences of template gaps and attribute gaps.

Compared with the definition of summary graphs in [16], a node now corre-
sponds to at most one chardata sequence, element, or attribute—corresponding
to the possible targets of XPath evaluation. Furthermore, we have added the
removed component of the gap presence map to model the close operation.
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5 Modeling XML Operations
on Summary Graphs

Our dataflow analysis associates a summary graph SG with every XML variable
and expression at every program point. The analysis is conservative meaning
that unfold(SG) contains all XML templates that may occur at that point at
runtime.

The essence of the dataflow analysis is the definition of transfer functions
for the XML operations. Let ∆ denote an environment that maps each XML
variable to a summary graph. The transfer function for an assignment x=exp is:

∆ 7→ ∆[x 7→ ∆̂(exp)]

and for all other statements, it is the identity function. The function ∆̂ extends
∆ to XML expressions according to the expression kind:

const: We show below how to construct a summary graph SGxml for a given
template constant [[xml]].

plug: All four variants of plug operations are modeled essentially as in [16], so
we omit the formal definition here. A template plug invocation
exp1.plug(g, exp2) is modeled by adding template edges from nodes with
open g gaps in ∆̂(exp1) to roots in ∆̂(exp2). A string plug is modeled by
collecting the possible strings into the associated chardata node. The new
removed component of the gap presence map of the result is defined in the
same way as the open component.

close: To model the removal of gaps, we define ∆̂(exp.close()) = (R, T, S,

λh.(∅, removed(P (h))∪open(P (h)), {CLOSED}, {CLOSED})) where ∆̂(exp) =
(R, T, S, P ).

select, cut, and gapify: The modeling of these operations is based on a tech-
nique for symbolic XPath evaluation on summary graphs described later
in this section.

smash: To model an instance of the smash operation, let n denote its tem-
plate node and define gaps(n) = g1g2 where g1 and g2 are fresh unique
gap names. If ∆̂(exp) = (R, T, S, P ) then we define ∆̂(smash(exp)) =
({n}, T ′, S, P ′), where T ′ and P ′ are copies of T and P , respectively, with
the following modifications: (n, g1, m) ∈ T ′ for each m ∈ R, (n, g2, n) ∈ T ′,
and n ∈ open(P (gi)) and n ∈ tgaps(P (gi)) for i = 1, 2.

cast and get: The difficult part of modeling these operations is to construct a
summary graph SGD for a given DTD D such that L(SGD) = L(D). We
show below how this can be achieved.

All transfer functions can be shown to be monotone.
Once the summary graphs are constructed, the analyze invocations are

checked using a variation of the validation algorithm from [16], which validates
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the summary graph for the XML expression relative to the DTD. The original
algorithm works on non-normalized summary graphs and DSD2 schemas, but
it is easily adjusted to the present setting. This is a conservative analysis of
the summary graph: if it returns “valid”, then it is guaranteed that all XML
templates at that point are valid at runtime; otherwise, a useful error message
is provided.

To check that plug invocations always succeed, we inspect the associated
summary graphs as in [16]. To check that XPath expressions in select, cut,
and gapify invocations may potentially hit some nodes, we inspect the status
maps that are generated by the symbolic evaluation presented later.

Using similar arguments as in [16], the theoretical worst-case complexity of
the entire analysis can be shown to be O(n8) where n is the total size of the
program and the relevant DTD schemas. Despite this high theoretical bound,
the analysis appears efficient in practice, as shown in Section 6.

Summary Graphs for XML Template Constants

Given a template constant xml , we wish to construct a summary graph SGxml

such that unfold(SGxml) = {xml}. This is trivial for the non-normalized sum-
mary graphs in [16] where each template constant corresponds to an individual
summary graph node. For normalized summary graphs, the desired summary
graph SGxml = (R, T, S, P ) is the least one that satisfies the following con-
straints:

• For each element <e . . . >d1 . . . dk</e> in the template, let n denote the
template node of the contents d1 . . . dk and define gaps(n) = g1 . . . gk

where gi = hi if di = <[hi]> and otherwise gi is a fresh unique gap name.
For each i, add (n, gi, mi) ∈ T where mi is the element node or chardata
node of di.

• For the toplevel template contents corresponding to the template node r,
we define gaps(r) and add template edges in the same way as for element
contents, and we define R = {r}.

• For every attribute a="s" corresponding to an attribute node n, add
S(n) = {s}, and similarly for chardata.

• For every attribute gap a=[g] corresponding to an attribute node n, add
n ∈ open(P (g)) and agaps(P (g)) = {OPEN}.

• For every template gap <[g]> belonging to a template node n, add n ∈
open(P (g)), tgaps(P (g)) = {OPEN}.

• Unless defined otherwise above, agaps(P (g)) and tgaps(P (g)) are set to
{CLOSED}.
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Converting DTD Schemas to Summary Graphs

A given DTD D referred to from the program being analyzed is in Section 4
associated a subset of the summary graph nodes. In the following, we derive
a summary graph SGD = (R, T, S, P ) using those nodes such that L(SGD) =
L(D), that is, it is an exact model of D.

As for template constants, we construct the summary graph as the least
solution to a set of constraints. The algorithm runs in linear time in the size
of D. First, define R = {r} where r is the element node of the DOCTYPE root
element. For all g ∈ G, define agaps(P (g)) = tgaps(P (g)) = {CLOSED}.

For each ELEMENT corresponding to an element node p, we let n = contents(p)
and encode the content model recursively in its structure using the template
node n associated to each sub-expression. For each rule, g is a fresh gap name,
and unless otherwise mentioned, gaps(n) = g:

#PCDATA: Add (n, g, m) ∈ T where m is the chardata node for #PCDATA. Let
S(m) = Σ∗.

ANY: As the rule for #PCDATA, but we also add (n, g, m) ∈ T for each element
node m.

EMPTY: For the empty content model, we let gaps(n) = ε.

E: A single element name E is modeled by adding (n, g, m) ∈ T with m being
the element node of E.

(C1,...,Ck): A sequence corresponds to defining gaps(n) = g1 · · · gk and
(n, gi, mi) ∈ T where mi is the template node of Ci.

(C1|...|Ck): A choice corresponds to adding (n, g, m) ∈ T for each template
node m of C1, . . . , Ck.

(C)?: For optional contents, let (n, g, m) ∈ T for the template node m of C
and add m ∈ removed(P (g)).

(C)+: A repetition of one or more items is encoded by defining gaps(n) =
g1g2 and adding (n, g1, m) ∈ T with m being the template node of C,
(n, g2, n) ∈ T , and n ∈ removed(P (g2)).

(C)*: As the previous rule but adding n ∈ removed(P (g1)).

For each ATTLIST describing an attribute A corresponding to an attribute node
n, let S(n) = {s1, . . . , sk} if the valid values of A are described by an enumera-
tion s1, . . . , sk, and let S(n) = Σ∗ otherwise. If A is declared as #IMPLIED, then
add n ∈ removed(P (g)) for some g.

This construction indicates that our analysis can be extended to more ex-
pressive schema languages than DTD. For example, we immediately support
unrestricted regular expressions as content models and arbitrary regular lan-
guages for describing valid character data and attribute values; however, we
defer a full generalization to, for example, the DSD2 schema language, which,
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as previously mentioned, our algorithm for validating summary graphs relative
to schemas already supports.

Symbolic XPath Evaluation

To model the XML operations that involve XPath, we symbolically evaluate a
given XPath location path p on a summary graph SG = (R, T, S, P ). This eval-
uation is expressed by a function eval that maps (SG , p) into a status map of the
form NE ∪ NA ∪ NC → S where S = {ALL, SOME, DEFINITE, NONE, DONTKNOW}.
For a concrete unfolding x ∈ L(SG), a given element, attribute, or chardata
node n from SG may correspond to a number of XML tree nodes in x. A con-
crete evaluation of p on x may select only some of those nodes. Informally, the
possible values of eval(SG , p)(n) have the following meaning:

ALL: in every unfolding, every tree node corresponding to n is selected by p;

SOME: in every unfolding, at least one tree node corresponding to n is selected
by p;

DEFINITE: the conditions for ALL and SOME are both satisfied;

NONE: in every unfolding, no tree node corresponding to n is selected by p; and

DONTKNOW: none of the above can be determined.

These five values form a partial order, v, with DONTKNOW as top element and
ALL and SOME above DEFINITE:

NONE

DONTKNOW

DEFINITE

ALL SOME

To initialize the XPath evaluation, we modify SG by introducing a dummy
root element root and a dummy template node t where contents(root) = t and
gaps(t) = g, adding {(root , g, n) | n ∈ R} to T , and changing R to {root}. In
the following, SG refers to this modified summary graph.

We define eval as an evaluation of the given location path relative to an
initial status map σSG

0 :

eval(SG , p) =
(
pathSG

p (σSG
0 )

)
[root 7→ NONE]

σSG
0 (n) =

{
DEFINITE if n = root
NONE otherwise

The notation f [x 7→ y] denotes the function that is equal to f except that it
maps x to y. A location path p = s1/. . . /sk is evaluated compositionally on
each step:

pathSG
s1/.../sk

= stepSG
sk

◦ · · · ◦ stepSG
s1
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where a single step s = axis::test[pred] is evaluated by considering each of the
three constituents:

stepSG
axis::test[pred] = filterSG

pred ◦ filterSG
test ◦ moveSG

axis

Recall that axis is either child, descendant-or-self, or attribute, test is
either text(), node(), *, or an element or attribute name, and pred is either a
nested location path or an expression of another type.

We define a reachability relation, , as the reflexive transitive closure of the
following rules: n  contents(n), n  a for all a ∈ attr(n), and n  m for all
(n, g, m) ∈ T . The function moveSG

axis is then defined as follows:

moveSG
axis(σ)(n) =



ALL if ∀m : root  m ∧ m
?
.axis n ⇒ σ(m) v ALL

SOME if ∃m : root  m ∧ m
!
.axis n ∧ σ(m) v SOME

DEFINITE if the conditions for ALL and
SOME are both satisfied

NONE if ∀m : root  m ∧ m
?
.axis n ⇒ σ(m) = NONE

DONTKNOW otherwise

The relation m
?
.axis n is satisfied if there exists an unfolding starting from m

and considering only the nodes corresponding to axis such that n is involved.

Conversely, m
!
.axis n means that every unfolding involves n if starting from m

and considering only the nodes that correspond to axis . We omit the formal
definition, which is straightforward but tedious.

The function filterSG
test changes the status of a node n to NONE if the kind

and name of n does not match test .
If pred is a location path p′, then filterSG

pred will recursively apply path as
follows: Define σ′′ = pathSG

p′ (σ′) where σ′(n) = σ(n) and σ′(m) = NONE for
m 6= n, and:

filterSG
p′ (σ)(n) =


NONE if σ(n) = NONE or ∀m : σ′′(m) = NONE

σ(n) if ∃m : σ′′(m) v SOME

DONTKNOW otherwise

This definition can be extended to also precisely model negated predicates and
unions of node sets. If pred is not a location path, then filterSG

pred changes the
status of a node n to DONTKNOW unless its status is already NONE.

From this definition of eval , we can model select:

∆̂(exp.select(p)) =({t},
T ∪ {(t, g, c)} ∪ {(t, g, n) | n ∈ HITS ∩ NE},
S

[
c 7→ ⋃

S(m)
m∈HITS∩(NC∪NA)

]
,

P ′[g 7→ (∅,REMOVE , {CLOSED}, {CLOSED})])
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The nodes t and c are the associated template node and chardata node, re-
spectively, where gaps(t) = g for a fresh gap name g. The summary graph
SG = (R, T, S, P ) is obtained from ∆̂(exp) by adding the dummy root, as ex-
plained above. The sets HITS and REMOVE are defined by:

HITS = {n | eval (SG, p)(n) 6= NONE}

REMOVE =

{
∅ if ∀n ∈ HITS : eval(SG , p)(n) v SOME

{t} otherwise

Intuitively, the t node collects all nodes that may be selected, and the c node
collects the values of selected attributes and character data. The gap g may be
removed in t if it is possible that no element nodes are selected. The modified
gap presence map P ′ models the disappearance of gaps in fragments that are
not selected:

P ′(h) =
(
open(P (h))\DEAD ,
removed(P (h))\DEAD ,
GAPS tgaps(h),
GAPS agaps(h)

)
GAPS γ(h) =


{OPEN} if γ(P (h)) = {OPEN} ∧ open(P (h)) ⊆ LIVE
{CLOSED} if γ(P (h)) = {CLOSED} ∨ open(P (h)) ⊆ DEAD
{OPEN, CLOSED} otherwise

where, informally, LIVE ⊆ N contains a node n if for every unfolding of SG all
instances of n are certain to be retained by the operation; and similarly, DEAD
contains the nodes that are certain to be removed.

The modeling of gapify is defined similarly:

∆̂(exp.gapify(p, g)) =(
R,
T \ {(n, h, m) ∈ T | m ∈ ALL}

∪ {(n, h, t) | (n, h, m) ∈ T ∧ m ∈ HITS},
S[n 7→ ∅ for each n ∈ ALL ∩ (NC ∪ NA)],
P ′[g 7→ (open(P (g)) ∪ {t} ∪ (HITS ∩ NA),

removed(P (g)),
merge(ANY NE∪NC , tgaps(P (g))),
merge(ANY NA , agaps(P (g))))

])
where t is the associated template node, gaps(t) = g, and ALL and ANY are
defined by:

ALL = {n | eval (SG, p)(n) v ALL}

ANY M =


{OPEN} if ∃n ∈ M : eval(SG , p)(n) v SOME

{CLOSED} if ∀n ∈ M : eval(SG , p)(n) = NONE

{OPEN, CLOSED} otherwise
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and the function merge is the same as in [16]:

merge(γ1, γ2) =

{
{OPEN} if γ1 ={OPEN} ∨ γ2 ={OPEN}
γ1 ∪ γ2 otherwise

Intuitively, the t node represents the newly constructed template gaps. Template
edges into nodes that are certain to be selected are removed, and new template
edges to the t node are added in place of all potentially selected nodes. The
string edge map is modified by removing all strings that belong to chardata and
attribute nodes that are certain to be selected. For the gap presence of g we
add t and all potentially selected attribute nodes to the open component; for
the tgaps component, we consider the possibility that a template gap has been
added; and similarly for the agaps component for attribute gaps. For other
gaps, we use P ′ as in select.

The cut operation can be modeled in the same way as select. However, it
is possible to increase precision for both cut and gapify by also modeling the
property of the semantics of these operations that an XML tree node is never
considered selected if an ancestor is. We model this property by inserting an
application of a function sharpen to the result of each application of eval (SG, p).
Intuitively, sharpen traverses SG from the roots and, for instance, converts ALL

to NONE for a node n if it is able to determine that n has an ancestor of status
ALL in every possible unfolding. Due to the limited space, we omit the full
definition.

6 Implementation and Experiments

We have developed a prototype implementation of the runtime system and the
analysis algorithms. Our experiments mainly focus on exposing the expressive
power of our language design and the feasibility and precision of our analysis.

We have collected a number of small benchmark applications, inspired by
typical tasks performed in other languages such as XSLT, XQuery, JDOM, and
XDuce.

The ToUpper benchmark is from Section 3 and changes all XML recipe titles
to upper case. The AddrBook1 benchmark is the standard XDuce example, and
the AddrBook2 benchmark is a variation with a more realistic XML design. The
BankServlet is a Servlet that produces an XHTML account summary from an
XML database. The Recipes benchmark emulates an XSLT stylesheet pro-
ducing XHTML from XML recipes; however, our version statically guarantees
that the output is valid XHTML. The Article benchmark manipulates articles
represented in XML. The BCedit benchmark from [35] is originally based on
JDOM and implements a graphical editor on XML business cards. The Tree
benchmark implements all queries in the corresponding XQuery use case [12].
Finally, HTML2latex is a benchmark from the CDuce project [3].
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Example Lines Input Output Time False Errors

ToUpper 26 25 25 3.0 0

AddrBook1 32 4 3 3.6 0

AddrBook2 17 5 4 2.8 0

BankServlet 65 5 1,201 5.4 0

Recipes 137 25 1,201 44.6 0

Article 123 8 1,235 5.6 0

BCedit 183 9 9 6.5 0

Tree 73 15 24 5.2 0

HTML2latex 159 1,201 0 11.0 0

In this table, “Lines” is the the number of lines in a desugared self-contained
application, “Input” is the total number of lines of the DTD schemas involved in
cast and get operations, “Output” is the the total number of lines of the DTD
schemas involved in analyze operations, and the analysis time in measured in
seconds. The memory consumption ranges from 40 to 270 MB. The precision
of our analysis is reflected in the number of false errors flagged during analysis,
which in all cases turns out to be zero. Furthermore, during the programming
of the examples, the analysis found several actual errors that were subsequently
corrected.

All experiments are performed on a 1 GHz Pentium III with 1 GB RAM run-
ning Linux and J2SE. The source for all benchmarks is available from
http://www.brics.dk/Xact/.

The analysis is seen to be quite efficient on a wide range of benchmarks. On
a subjective note, the Xact language is easy to use. It often produces programs
that are as concise and readable as more specialized notations. For example,
the six queries themselves in the Tree benchmark are written in 33 lines of code,
compared to 45 lines in XQuery. At the same time our solutions are statically
validated, in stark contrast to e.g. XSLT and JDOM solutions.

7 Conclusion

We have presented the Xact system, which provides a high-level approach for
manipulating XML data in Java and a program analysis for statically validating
the generated documents. Experiments indicate that the language design allows
a concise programming style and that the analysis is efficient enough to be
practically feasible.

In our future work, we will attempt to generalize the present results in
various directions: We believe that XSLT stylesheets can be statically validated
with the summary graph technique presented here and that it is possible to
use a more powerful schema language, such as DSD2, as XML types. This will
include support for XML namespaces, which is not relevant when using DTD.

We plan to integrate Xact into frameworks for making Web services, in
particular JWIG and Servlets, and to make the system available as a stand-
alone package for XML transformation in Java.

25



References

[1] Amazon.com. Amazon web services. http://associates.

amazon.com/exec/panama/associates/join/developer/resources.html,
2002.

[2] Vidur Apparao et al. Document Object Model (DOM)
level 1 specification, October 1998. W3C Recommendation.
http://www.w3.org/TR/REC-DOM-Level-1/.
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