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Abstract

A framework of Plotkin and Turi’s, originally aimed at provid-
ing an abstract notion of bisimulation, is modified to cover other
operational equivalences and preorders. Combined with bialge-
braic methods, it yields a technique for the derivation of syntactic
formats for transition system specifications which guarantee that
various operational preorders are precongruences. The technique
is applied to the trace preorder, the completed trace preorder and
the failures preorder. In the latter two cases, new syntactic for-
mats guaranteeing precongruence properties are introduced.

1 Introduction

Structural operational semantics [21, 2] is one of the most fundamental
frameworks for providing a precise interpretation of programming and
specification languages. Due to its flexibility and generality, it has gained
much popularity in the theory of concurrent processes. It is usually pre-
sented as a labelled transition system (LTS), in which states (sometimes

∗Basic Research in Computer Science (www.brics.dk),
funded by the Danish National Research Foundation.
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called processes) are closed terms over some syntactic signature, and
transitions are labelled with elements of some fixed set of actions. The
transition relation is in turn defined by a transition system specification,
i.e., a set of derivation rules.

Many operational equivalences and preorders have been defined on pro-
cesses. Among these are: bisimulation equivalence [19], simulation pre-
order, trace preorder, completed trace preorder, failures preorder [13, 23]
and many others (for a comprehensive list see [10]). In the case of pro-
cesses without internal actions, all of the above have been given modal
characterisations [10], obtained by considering appropriate subsets of the
Hennessy-Milner logic [12].

Reasoning about operational equivalences and preorders is significantly
easier when they are congruences (resp. precongruences). This facili-
tates compositional reasoning and full substitutivity. In general, opera-
tional equivalences are not necessarily congruences on processes defined
by operational rules. Similarly, operational preorders are not necessarily
precongruences. Proofs of such congruence results for given transition
system specifications can be quite demanding. This has been an acute
problem in the process calculus community and has led to new reasoning
approaches, for instance, the notion of barbed congruence [18].

One way to ensure congruential properties is to impose syntactic restric-
tions (called syntactic formats) on operational rules. Many such formats
have been developed. For bisimulation equivalence, the examples are: de
Simone format [27], GSOS [8], and ntyft/ntyxt [11], each of these gener-
alising the previous one. For trace equivalence, examples include [31, 5],
while several versions of decorated trace preorders have been provided
with formats in [6]. For an overview of the subject see [2]. Another
approach which generates LTS on which bisimulation is a congruence is
the smallest-contexts-as-labels approach [26, 17, 25].

The search for an abstract theory of processes, bisimulation and ’well-
behaved’ operational semantics has led to development of final coalge-
bra semantics [24], and — later — of bialgebraic semantics [29, 30] of
processes. In these frameworks, the notion of a transition system is
parametrised by a notion of behaviour. Bisimulation is modelled ab-
stractly as a span of coalgebra morphisms. The abstract notion spe-
cialises to the classical one, indeed, the class of finitely branching la-
belled transition systems is in 1-1 correspondence with the coalgebras of
the functor Pf(A × −), and to give a (classical) bisimulation relation is
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to give a span of coalgebra morphisms for this functor [3, 24]. Another
abstract approach to bisimulation is via open maps [15].

In [29, 30] it was shown how to define operational rules on an abstract
level. For abstract transition system specifications defined in this way,
bisimulation equivalence (defined abstractly, using spans of coalgebra
morphisms) is guaranteed to be a congruence.

At the core of this so-called abstract GSOS is the modelling of a transition
system specification as a natural transformation

λ : Σ(id×B)→ BT

where Σ is the syntactic endofunctor, T is the monad freely generated
from Σ, and B is some behaviour endofunctor. In the special case of the
behaviour endofunctor Pf(A×−), the abstract operational rules specialise
to GSOS rules.

The abstract framework which defines bisimulation as a span of coalgebra
morphisms is not sufficient for certain purposes [22] and in particular one
runs into problems when working with complete partial orders. Recently,
another abstract notion of bisimulation, based on topologies (or complete
boolean algebras) of tests, has been proposed [20, 28]. Again, for the
familiar process behaviour the novel abstract notion is equivalent to the
classical one.

In this paper we show that the latter abstract definition of bisimulation
can in fact be modified in a structured manner, to yield other known
operational equivalences and preorders. We illustrate this approach on
trace preorder, completed trace preorder and failures preorder (and re-
spective equivalences). This constitutes another systematic approach to
various operational preorders and equivalences, such as those based on
testing scenarios and modal logics [10], as well as quantales [1].

Although the framework is general, in this paper we shall concentrate on
the category of sets and functions, Set. We define the test-suite fibration
with total category Set∗ having as objects pairs consisting of a set X
and a test suite (a subset of PX) over X. We define a way of lifting the
abstract-GSOS framework to Set∗ by describing how to lift the syntax
functor Σ and the behaviour functor B. By changing how B lifts to Set∗

we alter the specialisation preorder of certain test suites in Set∗. In par-
ticular, taking particular liftings which strongly resemble fragments of
the Hennessy-Milner logic [12] causes the specialisation preorder to vary
between known operational preorders. The abstract framework guaran-
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tees precongruence properties. The only hurdle is proving that a partic-
ular transition system specification (natural transformation) λ lifts to a
natural transformation in Set∗:

λ : Σ∗(id×B∗)→ B∗T ∗.

The consideration of which properties λ must satisfy in order to lift pro-
vides us with syntactic sub-formats of GSOS which guarantee precon-
gruence properties for various operational preorders.

In this paper, we illustrate this approach by presenting precongruence
formats for the trace preorder, the completed trace preorder and the
failures preorder. The format derived for the trace preorder coincides
with the well known de Simone format [31] and we include it here as
an illustration of the technique on a relatively simple example. The
format derived for the completed trace preorder is, to the best of our
knowledge, the first such format published. The format derived for the
failures preorder is incomparable with the analogous format given in [6].

The structure of the paper is as follows. After §2 of preliminaries, we
present the three obtained syntactic formats in §3, together with some
examples and counterexamples from literature. The remaining sections
are devoted to proving that the presented formats are indeed precon-
gruence formats w.r.t. their respective preorders, and at the same time
to illustrating the method of deriving such formats from a given opera-
tional preorder. In §4, we recall the basics of bialgebraic semantics. In
§5, we present an abstract approach to operational preorders based on
the notion of a test suite. In §6, this approach is merged with the bial-
gebraic framework to yield a general way of checking whether a given
operational preorder is a congruence for a given transition system speci-
fication. Finally, in §7, we prove that the formats presented in §3 ensure
the respective precongruence results. We conclude in §8 by showing pos-
sible directions of future work.

Acknowledgements. Most of the contents of §5 and §6 is a modified
version of the framework developed (and, unfortunately, not yet pub-
lished) by Gordon Plotkin [20] and Daniele Turi [28]. We are indebted
to Mikkel Nygaard for reading the extended abstract of this report and
providing us with many helpful comments. The first author is also grate-
ful to Daniele Turi for introducing him to the subject and for inspiration,
and to Gordon Plotkin for discussions and encouragement.
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2 Preliminaries

A labelled transition system (LTS) is a set P of processes, a set A of
actions, and a transition relation I ⊆ P ×A×P . As usual, we write
p a I p′ instead of 〈p, a, p′〉 ∈ I . An LTS is finitely branching, if for
every process p there are only finitely many transitions p a I p′.

Given a set of actions A, three sets of modal formulae FTr, FCTr, and FFl

are given by the following BNF grammars:

FTr φ ::= > | 〈a〉φ
FCTr φ ::= > | 〈a〉φ | Ã
FFl φ ::= > | 〈a〉φ | Q̃

where a ranges over A, and Q ranges over subsets of A. Formulae in
FTr are called traces over A. Formulae in FCTr ended with Ã are called
completed traces, and formulae in FFl — failures.

Given an LTS, the satisfaction relation |= between processes and modal
formulae is defined inductively as follows:

p |= >
p |= 〈a〉φ ⇐⇒ p′ |= φ for some p′ such that p a I p′

p |= Q̃ ⇐⇒ there is no a ∈ Q, p′ ∈ P such that p a I p′

If p |= φ, we will say that φ is a trace (completed trace, failure) of p.

Then three operational preorders on the set of processes are defined: the
trace preorder vTr, the completed trace preorder vCTr, and the failures
preorder vFl:

p vW p′ ⇐⇒ (∀φ ∈ FW .p |= φ =⇒ p′ |= φ)

where W ∈ {Tr,CTr, Fl}.
In the context of structural operational semantics, processes are usually
closed terms over some signature. A signature Σ is a set (also denoted
Σ) of language constructs, together with an arity function ar : Σ → N.
For a given set X of variables, ΣX is the set of expressions of the form
f(x1, . . . , xar(f)), where f ∈ Σ and xi ∈ X. In other words,

ΣX ∼=
∐
f∈Σ

Xar(f)
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where
∐

denotes disjoint union. Given a signature Σ and a set X, the
set TΣX of terms over Σ with variables X is (isomorphic to) the least
fixpoint of the operator

ΦY = X + ΣY

where + denotes disjoint union of sets. When describing terms from
TΣX the injections ι1 : X → TΣX and ι2 : ΣTΣX → TΣX will often be
omitted, i.e., we will write f(x, y) rather than ι2(f(ι1(x), ι1(y))). Also
the subscript in TΣX will be omitted if Σ is irrelevant or clear from the
context. Elements of T∅ are called closed terms over Σ.

For a term t ∈ TX and a function σ : X → Y , t[σ] will denote the term
in TY resulting from t by simultaneously replacing every x ∈ X with
σ(x).

In the following, we assume a fixed, infinite set of variables Ξ, ranged
over by x1, x2, . . . , y1, y2, . . .. Terms with variables from Ξ will be typeset
t, t′, etc.

Let us fix an arbitrary set of labels A. For a signature Σ, a positive Σ-
literal is an expression t a I t′, and a negative Σ-literal is an expression
t a6 I, where t, t′ ∈ TΞ and a ∈ A. A transition rule ρ over Σ is an
expression H

α
, where H is a set of Σ-literals and α is a positive Σ-literal.

Elements of H are then called premises of ρ, and α — the conclusion of
ρ. The left-hand side and the right-hand side of the conclusion of ρ are
called the source and the target of ρ, respectively.

Similarly, a Σ-semiliteral is either a negative Σ-literal, or an expression
t a I , where t ∈ TΞ and a ∈ A. A positive literal t a I t′ completes
the semiliteral t a I , and we say that a negative literal completes itself.

A transition system specification over Σ is a set of transition rules over
Σ.

In the following definition assume a fixed signature Σ, and a finite set A.

Format 1 (GSOS). A transition system specification R is in GSOS [8]
format if every rule ρ ∈ R is of the form{

xi
aij I yij : i ≤ n, j ≤ mi

} ∪ {
xi
bik6 I : i ≤ n, k ≤ ni

}
f(x1, . . . , xn) c I t

with f ∈ Σ and n = ar(f), such that xi ∈ Ξ and yij ∈ Ξ are all distinct
and are the only variables that occur in ρ. In the following, we will

6



consider only image finite GSOS specifications, i.e. those with finitely
many rules for each construct f ∈ Σ and action c ∈ A.

Given a transition system specification R in GSOS format, one defines
a notion of a provable positive literal in a straightforward way. The set
of all provable literals forms a finitely branching LTS with closed terms
over Σ as processes, and with positive closed literals as transitions (for
details, see [2]).

An operational preorder v is a precongruence with respect to a transition
system specification R, if in the LTS induced by R, for each f ∈ Σ with
arity n, if t1 v t′1, . . . , tn v t′n, then f(t1, . . . , tn) v f(t′1, . . . , t

′
n).

The examples in §3 are based on basic process algebra BPA. Assuming
a finite set A of actions, its syntax Σ is defined by the BNF grammar

t ::= 0 | αt | t+t

and the transition system specification BPA over Σ is a collection of
rules

αx α I x

x α I x′

x + y α I x′
y α I y′

x + y α I y′

where α ranges over A. When presenting terms over the above syntax,
the trailing 0’s will be omitted. It is easy to see that BPA is in the
GSOS format.

3 Precongruence Formats

In this section we introduce the syntactic formats derived using the frame-
work described in the latter parts of the paper. The precongruence prop-
erties of these formats are formally stated in §7.

Format 2 (Tr-format). A set of GSOS rules R is in Tr-format, if for
each ρ ∈ R:

• all premises of ρ are positive,

• no variable occurs more than once in the left-hand sides of premises
and in the target.
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It is easy to see that this format coincides with the well-known de Simone
format [27]. The fact that this syntactic format ensures the trace preorder
to be a precongruence was first proved in [31].

We proceed to define an analogous syntactic format for the completed
trace preorder.

Definition 1 (CTr-testing set). A CTr-testing set over a set of variables
{x1, . . . , xn} is a set of semiliterals P of the form

P =
{
xi

ai6 I : i ∈ I } ∪ { xi a I : i ∈ J, a ∈ A }
where I, J ⊆ {1, . . . , n}.
Format 3 (CTr-format). A set of GSOS rules R is in CTr-format, if

1. For each rule ρ ∈ R:

• if ρ has a negative premise x a6 I, than for every label b ∈ A,
ρ has also the negative premise x b6 I,

• no variable occurs more than once in the target of ρ,

• no variable occurs simultaneously in the left-hand side of a
premise and in the target of ρ,

• no variable occurs simultaneously in the left-hand side of a
positive premise and in the left-hand side of any other premise
of ρ.

2. For each construct f(x1, . . . , xn) of the language, there exists a se-
quence P1, . . . , Pk of CTr-testing sets over {x1, . . . , xn}, such that

• For every (possibly renamed) rule ρ ∈ R with source f(x1, . . . , xn)
there exists a sequence p1, . . . pk of semiliterals from P1, . . . , Pk
respectively, such that for every i ∈ {1, . . . , k} there exists a
premise r of ρ such that r completes pi.

• For every sequence p1, . . . , pk of semiliterals from P1, . . . , Pk
respectively, there exists a (possibly renamed) rule ρ ∈ R
with source f(x1, . . . , xn) such that for each premise r of ρ
there exists an i ∈ {1, . . . , k} such that r completes pi.

Note, in particular, that if k = 0 then the first part of condition 2 above is
always true. Also, if k = 1 and P1 = ∅, then the second part of condition
2 is always true.
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Proposition 2. BPA is in CTr-format.

Proof. It is clear that all rules of BPA satisfy condition 1 of CTr-format.
For condition 2, consider a language construct a− corresponding to a ∈
A. Take k = 0 and check that condition 2 holds. For the binary construct
+, take k = 1 and P1 = { x a I : a ∈ A } ∪ { y a I : a ∈ A }.

The following example is taken from [2]. Assume A = {a, b}, and extend
BPA with an operational rule for the so-called encapsulation operator
∂{b}:

x a I y

∂{b}(x) a I ∂{b}(y)

Then it is easy to check that aa + ab ∼CTr a(a + b) but that ∂{b}(aa +
ab) 6vCTr ∂{b}(a(a + b)).

Another example of an operational construct that is not well behaved
with respect to completed traces is the synchronous composition, as
shown in [31]. Here, we add the rules

x α I x′ y α I y′

x× y α I x′ × y′

where α ranges over A = {a, b}. Here it is easy to see that aa × (aa +
ab) 6vCTr aa× a(a+ b).

These two examples have led the authors of [2] to speculate that one
cannot hope for a general syntactic congruence format for completed
trace equivalence.

Proposition 3. The semantics for the encapsulation operator ∂ and the
synchronous composition × are not in CTr-format.

Proof. Both semantics fail to satisfy condition 2 of CTr-format.

For the encapsulation operator, assume a sequence P1, . . . , Pk of CTr-
testing sets over {x}. From the first part of condition 2, we have x a I ∈
Pi for 1 ≤ i ≤ k. This, by definition of CTr-testing set, means that also
x b I ∈ Pi for 1 ≤ i ≤ k. Now take pi = x b I for 1 ≤ i ≤ k and see
that no rule satisfies the second part of condition 2.

For the synchronous composition operator, assume a sequence P1, . . . , Pk
of CTr-testing sets over {x, y}. From the first part of condition 2, we
have that for each 1 ≤ i ≤ k, x a I ∈ Pi or y a I ∈ Pi. By definition
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of a CTr-testing set, this means that for each 1 ≤ i ≤ k, x a I ∈ Pi or
y b I ∈ Pi. Now for each 1 ≤ i ≤ k, take pi to be x a I if x a I ∈ Pi,
and y b I otherwise. It is easy to see that no rule satisfies the second
part of condition 2 for this sequence of pi.

For a non-trivial example of a transition system specification in CTr-
format, extend BPA with sequential composition, defined by rules

x α I x′

x; y α I x′; y
x a6 I for all a ∈ A y α I y′

x; y α I y′

where α ranges over A.

Proposition 4. BPA extended with sequential composition is in CTr-
format.

Proof. Condition 1 of CTr-format is checked easily. For condition 2, it
is enough to check it for the sequential composition operator. Take k =
|A|+ 1, and

Pi = { x a I : a ∈ A } ∪ {x ai6 I} for 1 ≤ i < k
Pk = { x a I : a ∈ A } ∪ { y a I : a ∈ A }

It is straightforward to check that both parts of condition 2 hold for this
choice of Pi.

We proceed to define a precongruence syntactic format for the failures
preorder.

Definition 5 (Fl-testing set). An Fl-testing set over a set of variables
{x1, . . . , xn} is a set of semiliterals P of the form

P =
{
xi

ai6 I : i ∈ I } ∪ {
xi

bij I : 1 ≤ i ≤ n, 1 ≤ j ≤ mi

}
(where I ⊆ {1, . . . , n}, mi ∈ N), such that for any labels a, b ∈ A, if

xi
a I ∈ P and xi

b6 I ∈ P then xi
b I ∈ P .

Format 4 (Failures Format). A set of GSOS rules R is in Fl-format,
if

1. For each rule ρ ∈ R:
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• no variable occurs more than once in the target of ρ,

• no variable occurs simultaneously in the left-hand side of a
premise and in the target of ρ,

• no variable occurs simultaneously in the left-hand side of a
positive premise and in the left-hand side of any other premise
of ρ.

2. For each construct f(x1, . . . , xn) of the language, and for each set of
labels Q ⊆ A, there exists a sequence P1, . . . , Pk of Fl-testing sets
over {x1, . . . , xn}, such that

• For every (possibly renamed) rule ρ ∈ R with the conclu-
sion f(x1, . . . , xn) a I t with a ∈ Q and an arbitrary t, there
exists a sequence p1, . . . , pk of semiliterals from P1, . . . , Pk re-
spectively, such that for every i ∈ {1, . . . , k} there exists a
premise r of ρ such that r completes pi.

• For every sequence p1, . . . , pk of semiliterals from P1, . . . , Pk re-
spectively, there exist a label a ∈ Q, a term t, and a (possibly
renamed) rule ρ ∈ R with the conclusion f(x1, . . . , xn) a I t

such that for each premise r of ρ there exists an i ∈ {1, . . . , k}
such that r completes pi.

Proposition 6. BPA is in Fl-format.

Proof. Again, clearly all rules of BPA satisfy condition 1 of Fl-format.
For condition 2, consider a language construct a− corresponding to a ∈
A. For any Q ⊆ A, if a ∈ Q then take k = 0 and check that condition
2 holds. Similarly, if a 6∈ Q, take k = 1 and P1 = ∅. For the binary
construct +, given Q ⊆ A, take k = 1 and

P1 = { x a I : a ∈ Q } ∪ { y a I : a ∈ Q }

and check that condition 2 holds.

In [7] it was shown that the failures preorder is not a precongruence for
BPA extended with sequential composition.

Proposition 7. If A contains at least two different labels a, b, then BPA
extended with sequential composition is not in Fl-format.
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Proof. Condition 2 of Fl-format fails for the sequential composition op-
erator. Indeed, take Q = {a} and assume a sequence P1, P2, . . . , Pk of
Fl-testing sets over {x, y}. Consider the first part of condition 2 applied
to the first rule for the sequential operator instantiated with α = a. It
is easy to see that x a I ∈ Pi for all 1 ≤ i ≤ k. Similarly, applying the
same condition to the second rule (instantiated with α = a), one sees

that for all 1 ≤ i ≤ k, either y a I ∈ Pi or x b6 I ∈ Pi for some b ∈ A.
This means that there exists a sequence p1, . . . , pk such that pi ∈ Pi and
pi 6= x a I for all 1 ≤ i ≤ k.

Now from the second part of condition 2 applied to this sequence it
follows that for some 1 ≤ i ≤ k, pi = x b6 I for some b 6= a. This means
that x b6 I ∈ Pi, and since x a I ∈ Pi, by definition of Fl-testing set
also x b I ∈ Pi.
Now take

p′i =

{
x b I if pi = x b6 I
pi otherwise

The second part of condition 2 fails for this sequence. In the first rule
(necessarily instantiated with α = a), the premise x a I x′ does not
complete any p′i. In the second rule (also necessarily instantiated with

α = a), the premise x b6 I does not complete any p′i.

The Fl-format excludes many examples of transition system specifica-
tions that behave well with respect to the failures preorder. Many of
these examples are covered by the ‘failure trace format’ introduced in
[6]. However, the latter format excludes also some examples covered by
Fl-format. Indeed, assume a, b ∈ A and extend BPA with two unary
constructs g, h and operational rules

x α I x′

g(x) α I h(x′)
x a6 I

h(x) b I 0

where α ranges over A.

Proposition 8. BPA extended with g and h as above, is in Fl-format.

Proof. Condition 1 of Fl-format is obviously satisfied, and it is enough
to check condition 2 for constructs g and h only.

For g, for any Q ⊆ A take k = 1 and P1 = { x a I : a ∈ Q }. It is easy
to see that condition 2 holds. For h, for any Q ⊆ A, if b ∈ Q then take
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k = 1 and P1 = {x a6 I}. If b 6∈ Q, take k = 1 and P1 = ∅. Condition 2
is also satisfied.

However, the rules above are not in the ‘failure trace format’ proposed
in [6]. This means that Fl-format is incomparable with that format.

4 An Abstract Approach

In this section we shall recall the foundations needed for the framework
described in §5 and §6. First, we briefly recall how LTS can be described
as coalgebras for a specific behaviour endofunctor and briefly recall final
coalgebra semantics. We then proceed to recall several notions from the
abstract approach to operational semantics of Plotkin and Turi [30].

In the following, P : Set → Set will denote the (covariant) powerset
functor. The (covariant) finite powerset functor Pf : Set → Set takes a
set to the set of its finite subsets.

The reader is referred to [16] for any unexplained categorical notation
used henceforward.

4.1 Coalgebras

There is a bijection between the set of finitely branching LTS over a fixed
set of actions A and the coalgebras of the functor Pf(A × −). Indeed,
given an LTS 〈P,A, I〉 let

h : P → Pf(A× P )

be defined by h(p) = { 〈a, p′〉 : p a I p′ }.
The functor Pf(A×−) has a final coalgebra ϕ : S → Pf(A×S), that is, a
terminal object in the category of Pf(A×−)-coalgebras and Pf(A×−)-
coalgebra morphisms. The carrier S of this coalgebra may be described
as the set of synchronisation trees with edges having labels from A, quo-
tiented by bisimulation [4, 29].
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4.2 GSOS is natural

In the following we specialise the framework of [30] to the category Set
and behaviour functor Pf(A×−). Any syntactic signature Σ determines
a so-called syntactic endofunctor Σ : Set→ Set which acts on sets by
sending

Σ : X 7→
∐
f∈Σ

Xar(f)

and the action on functions is the obvious one. The functor Σ freely
generates a monad 〈T, µ, η〉 : Set→ Set. It turns out that TX is (iso-
morphic to) the set of all terms over Σ with variables from X.

The following theorem is from [30].

Theorem 9. There is a correspondence between sets of rules in the
GSOS format (Format 1) and natural transformations

λ : Σ(id×Pf(A×−))→ Pf(A× T−)

Moreover, the correspondence is 1-1 up to equivalence of sets of rules.

Proof. Here we only show how to construct a natural transformation λ
from a set of rules R. Given a function symbol f ∈ Σ with arity n and a
set X, a rule ρ in the GSOS format (Format 1)

{
xi

aij I yij : i ≤ n, j ≤ mi

} ∪ {
xi
bik6 I : i ≤ n, k ≤ ni

}
f(x1, . . . , xn) c I t

defines a map ρX : (X ×P(A×X))n → Pf(A× TX) as follows: 〈c, t〉 ∈
ρX 〈xi, βi〉i≤n iff there exists σ : Ξ→ X satisfying

1. σ(xi) = xi

2. ∀i ≤ n ∀j ≤ mi 〈aij , σ(yij)〉 ∈ βi
3. ∀i ≤ n ∀k ≤ ni ∀x ∈ X 〈bij , x〉 /∈ βi
4. t[σ] = t

Then given a set R of rules in the GSOS format we can define a function
λX : Σ(X × Pf(A × X)) → Pf(A × TX) by defining for each f ∈ Σ a
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function fX : (X ×Pf(A×X))n → Pf(A× TX) as follows:

fX : 〈xi, Ui〉i≤n 7→
⋃
ρ∈R

ρ a rule for f

ρX〈xi, βi〉i≤n

Finally, λX is determined uniquely by the fXs since it is a function from
a coproduct.

4.3 λ-models

We shall now recall some central results of [30].

Assume a natural transformation λ : Σ(id×B) → BT . A λ-model is a
pair

ΣX
h−→ X

g−→ BX

which satisfies g ◦ h = Bh] ◦ λX ◦ Σ 〈id, g〉, where h] : TX → X is the

inductive extension of h. A λ-model morphism between ΣX
h−→ X

g−→
BX and ΣX ′ h′−→ X ′ g′−→ BX ′ is a morphism f : X −→ X ′ which is
simultaneously a Σ-algebra morphism and a B-coalgebra morphism, ie.
h′ ◦ Σf = g ◦ h and g′ ◦ f = Bf ◦ g. Let λ-Mod denote the category of
λ-models and λ-model morphisms.

Theorem 10. Suppose that C is a category, Σ is an endofunctor which
freely generates a monad T and B is an endofunctor which cofreely gen-
erates a comonad D. Then the following hold:

1. λ-Mod has an initial and final object,

2. the carrier and algebra part of the initial λ-model is the initial
Σ-algebra,

3. the carrier and coalgebra part of the final λ-model is the final B-
coalgebra and

4. the coalgebra part of the initial λ-model is the so-called intended
operational model of λ.

Proof. See [30]. In particular, if C = Set and B = Pf(A× −), then the
intended operational model of λ is the LTS generated by the GSOS rules
associated to λ.
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If the conditions of Theorem 10 hold and ψ : ΣN → N is the initial
Σ-algebra and ϕ : S → BS is the final B-coalgebra then there exists a
Σ-algebra δ : ΣS → S and a B-coalgebra ε : N → BN so that 〈ψ, ε〉
is the initial object of λ-Mod and 〈δ, ϕ〉 is the final object of λ-Mod.
Then, by initiality (or finality) there exists a unique λ-model morphism
k : N → S as illustrated below:

ΣN

ψ
��

Tk // ΣS

δ
��

N

ε

��

k // S

ϕ

��

BN
Bk

// BS.

In the following, we shall use the fact that theorem 10 applies to Set, Σ
and Pf(A×−).

5 Process Equivalences from Fibred Func-

tors

In this section, we introduce the central concept of a test suite fibration.
This is a modification of the yet unpublished framework [20, 28] due to
Plotkin and Turi. In that approach, the test suites (Definition 11) are
necessarily topologies, that is, they satisfy certain closure properties. We
relax this definition and require only that a test suite contains the largest
test. This modification allows us to consider operational preorders and
equivalences different from bisimulation. Also, the original framework
was developed largely for Cppo-enriched categories, here we deal pri-
marily with Set.

We define 2 = {tt, ff}. Given a function f : X → Y and subsets V ⊆ X,
V ′ ⊆ Y , we shall use f(V ) to denote the set { y ∈ Y : ∃x ∈ X. fx = y }
and similarly f−1(V ′) to denote {x ∈ X : fx ∈ V ′ }. Given a set τ ⊆
PX, the specialisation preorder of τ is defined by

x ≤τ x′ iff ∀V ∈ τ. x ∈ V ⇒ x′ ∈ V
We will sometimes omit the subscript in ≤τ , where τ will be clear from
the context.
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For an introduction to fibrations and related terminology, the reader is
referred to the first chapter of [14].

Definition 11 (Test suite). A test on a set X is a function V : X → 2.
We say that an element x passes a test V iff V x = tt. A test suite on
X is a collection of tests on X which includes the maximal test, that is,
the function constant at tt. Let X∗ denote the poset of test suites on X
ordered by inclusion.

We can define a functor (−)∗ : Setop → Pos which sends a set to the
poset of test suites X∗ and sends a function f : X → Y to f ∗ : Y ∗ → X∗

defined by
f ∗τ ′ = {V ′ ◦ f : V ′ ∈ τ ′ } .

Intuitively, we usually think of tests on X as subsets of X. Then f ∗ is the
pre-image operation, taking each test on Y to the test on X which maps
to Y via f . This intuition poses no problem since there is a canonical iso-
morphism between the sets of subsets V ⊆ X and functions V : X → 2.
Thus we shall sometimes use set-theoretical notation when talking about
tests, that is, we shall make use of notions such as membership, union
and cartesian product. Similarly, we shall usually denote the maximal
test on X as simply X. We shall, however, be careful to indicate when
we are using set-theoretical notation as opposed to similar operations on
functions.

Definition 12 (Test suite fibration). A fibration of test suites for
(−)∗ is the fibration obtained using the Grothendieck construction, ie.
the total category Set∗ has

• objects: pairs 〈X, τ 〉 where X ∈ Set and τ ∈ X∗, τ is a test suite.

• arrows: 〈X, τ 〉 f−→ 〈X ′, τ ′〉 iff f : X → X ′ and f ∗τ ′ ⊆ τ .

It is then a standard result that the obvious forgetful functor U : Set∗ →
Set taking 〈X, τ〉 to X is a fibration.

It will be useful to define various operations on test suites τ . Letting
∇ : 2 + 2→ 2 be the codiagonal and ∧ : 2× 2→ 2 be logical-and, we let

τ ⊕ τ ′ = {∇ ◦ (V + V ′) : V ∈ τ, V ′ ∈ τ ′ }
τ ⊗ τ ′ = {∧ ◦ (V × V ′) : V ∈ τ, V ′ ∈ τ ′ }
τ 1 τ ′ = {V ◦ π1 : V ∈ τ } ∪ {V ′ ◦ π2 : V ′ ∈ τ ′ } .
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It is easy to check that given two test suites, families τ ⊕ τ ′, τ ⊗ τ ′

and τ 1 τ ′ are test suites. Intuitively, given test suites τ and τ ′ on X
and Y , τ ⊕ τ ′ is the test suite on X + Y obtained by taking (disjoint)
unions of tests from τ on X and τ ′ on Y , τ ⊗ τ ′ is the test suite on
X × Y consisting of tests built by performing a test from τ on X and
simultaneously performing a test from τ ′ on Y and accepting when both
tests accept; finally, τ 1 τ ′ is the test on X × Y which consists of either
a test from τ on X or a test from τ ′ on Y .

Proposition 13. The category Set∗ has coproducts and products:

〈X, τ〉+ 〈Y, τ ′〉 = 〈X + Y, τ ⊕ τ ′〉
〈X, τ〉 × 〈Y, τ ′〉 = 〈X × Y, τ 1 τ ′〉

Proof. For the product, the projections are the projections in Set,

〈X, τ〉 π1←− 〈X × Y, τ 1 τ ′〉 π2−→ 〈Y, τ ′〉
and clearly π∗

1τ = {V ◦ π1 : V ∈ τ } ⊆ τ 1 τ ′ and similarly π∗
2τ

′ ⊆
τ 1 τ ′. The universal property follows from the universal property in
Set, indeed, given 〈Z, τ ′′〉 and morphisms f : 〈Z, τ ′′〉 → 〈X, τ 〉 and
g : 〈Z, τ ′′〉 → 〈Y, τ〉 the morphism induced by the universal property in
Set, 〈f, g〉 : 〈Z, τ ′′〉 → 〈X × Y, τ 1 τ ′〉 is defined in Set∗:

〈f, g〉∗ (τ 1 τ ′) = 〈f, g〉∗ ({V ◦ π1 : V ∈ τ } ∪ {V ′ ◦ π2 : V ′ ∈ τ ′ })
= {V ◦ f : V ∈ τ } ∪ {V ′ ◦ g : V ′ ∈ τ }
⊆ τ ′′ ∪ τ ′′ = τ ′′ (as f and g are morphisms in Set∗)

For the coproduct, the injections are similarly the underlying injections

〈X, τ〉 i1−→ 〈X + Y, τ ⊕ τ ′〉 i2←− 〈Y, τ ′〉
indeed, i∗1(τ ⊕ τ ′) = {∇ ◦ (V +W ) ◦ i1 : V ∈ τ, W ∈ τ ′ } = τ and simi-
larly i∗2(τ ⊕ τ ′) = τ ′. The universal property also follows easily from the
one in Set.

In the following it will be also useful to use the following tensor product
on Set∗:

〈X, τ 〉 ⊗ 〈Y, τ ′〉 = 〈X × Y, τ ⊗ τ ′〉

Let B : Set → Set be some behaviour endofunctor. A lifting of B to
Set∗ is an endofunctor B∗ : Set∗ → Set∗ such that, for some BX : X∗ →

18



(BX)∗ we have B∗ 〈X, τ 〉 = 〈BX,BXτ 〉 and B∗f = Bf . It turns out that
there are many possible choices for BX giving different liftings of the be-
haviour endofunctor B to Set∗. One systematic way to construct such
liftings is via families of functions from B2 to 2. Intuitively, such func-
tions correspond to modalities like those in the Hennessy-Milner logic.
In the original framework due to Plotkin and Turi [20, 28] the canonical
choice of all functions from B2 to 2 is taken.

For any X, let ClX : PPX → X∗ denote a closure operator. We shall
only demand that for all f : X → Y and Z some set of subsets of Y we
have ClX f

∗Z = f ∗ ClY Z (with the obvious extension of the domain of
f ∗ to all sets of subsets). Intuitively, a closure operator corresponds to
a set of propositional connectives.

Given an arbitrary family W of functions B2→ 2, we define an operator
BW
X : X∗ → (BX)∗ as follows:

BW
X (τ) = ClBX {w ◦BV : w ∈W and V ∈ τ } .

We are now in a position to construct a lifting of B to Set∗. Indeed,
we let BW 〈X, τ〉 =

〈
BX,BW

X τ
〉

and BW f = Bf . One needs to check
that for any f : 〈X, τ〉 → 〈X ′, τ ′〉, Bf :

〈
BX,BW

X τ
〉 → 〈

BX ′, BW
X′τ ′

〉
is

a morphism in Set∗. Indeed,

(Bf)∗BW
X′τ ′ = (Bf)∗ ClBX′ {w ◦BV ′ : w ∈W , V ′ ∈ τ ′ }

= ClBX(Bf)∗ {w ◦BV ′ : w ∈ W , V ′ ∈ τ ′ }
= ClBX {w ◦BV ′ ◦Bf : w ∈W , V ′ ∈ τ ′ }
= ClBX {w ◦B(V ′ ◦ f) : w ∈W , V ′ ∈ τ ′ }
⊆ ClBX {w ◦BV : w ∈W , V ∈ τ } (f∗τ ′ ⊆ τ)

= BW
X τ

Theorem 14. Suppose that B : Set→ Set has a final coalgebra

ϕ : S → BS.

Then ϕ :
〈
S,MW

〉→ 〈
BS,BW

S M
W

〉
is a final BW coalgebra where MW

is the least fixpoint of the operator Φ(τ) = ϕ∗BW
S τ on S∗.

Proof. First, by definition ϕ∗(BW
S M) = M and therefore ϕ is a morphism

in Set∗.
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Suppose that h : 〈X, τ〉 → 〈
BX,BW

X τ
〉

is an arbitrary BW -coalgebra.
Then h : X → BX is a B-coalgebra and we have a unique k : X → S
such that Bk ◦ h = ϕ ◦ k:

X
k //

h
��

S

ϕ

��

BX
Bk

// BS.

It remains to verify that k is a morphism in the total category. Thus we
have to show that k∗M ⊆ τ . We do this by proving that k∗M is the least
prefixpoint of the operator Φ′(τ) = h∗BW

X τ . First notice that

Φ′(k∗τ) = h∗BW
X k

∗τ

= ClBX {w ◦B(V ◦ k) ◦ h : w ∈W and V ∈ τ }
= ClBX {w ◦BV ◦Bk ◦ h : w ∈W and V ∈ τ }
= ClBX {w ◦BV ◦ ϕ ◦ k : w ∈W and V ∈ τ } (diagram)

= k∗ϕ∗BW
S τ

= k∗Φ(τ)

Then ⋃
n∈N

Φ′n∅ =
⋃
n∈N

Φ′nk∗∅ =
⋃
n∈N

k∗Φn∅ = k∗(
⋃
n∈N

Φn∅) = k∗M

We know that since h is a BW coalgebra that h∗BW
X τ = Φ′(τ) ⊆ τ . Thus

it follows immediately that k∗M ⊆ τ .

Suppose that B : Set → Set lifts to a functor BW : Set∗ → Set∗ with
BW defined as before.

Theorem 15. Take any coalgebra h : X → BX, and let k : X → S be
the unique coalgebra morphism from h to the final B-coalgebra. Then
k∗M (where 〈S,M〉 is the carrier of the final BW -coalgebra) is the least
test suite τ on X such that h : 〈X, τ 〉 → 〈

BX,BW
X τ

〉
is a morphism in

Set∗.

Proof. Immediate from the proof of Theorem 14, where we showed that
k∗M was the least prefixpoint of Φ′(τ) = h∗BW

X τ .
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From now on we shall assume a finite set of labels A and confine our
attention to the endofunctor BX = Pf(A×X) on Set.

Assuming a ∈ A and Q ⊆ A, let w〈a〉, wrQ : B2→ 2 denote the functions

w〈a〉X =

{
tt if 〈a, tt〉 ∈ X
ff otherwise,

wrQX =

{
tt if ∀a ∈ Q ∀v ∈ 2 〈a, v〉 /∈ X
ff otherwise.

In particular, wrAX = tt iff X = ∅.
We shall now define three subsets of maps B2→ 2:

• Tr =
{
w〈a〉 : a ∈ A}

• CTr = Tr ∪ {wrA}
• Fl = Tr ∪ {wrQ : Q ⊆ A }

The set Tr together with the closure operator Cl>X(τ) = τ ∪ {X}, de-
termines BTr

X for any X and therefore determines a lifting of B to BTr :
Set∗ → Set∗.

Similarly, CTr with Cl> and and Fl with Cl> determine liftings BCTr and
BFl respectively.

The following Theorems 16, 17 and 18 show that the three liftings as
defined above cause the specialisation preorders in the final BTr, BCTr and
BFl-coalgebras to coincide with the trace, the completed trace and the
failures preorders. We use these facts to prove Theorem 19 which states
that given any B-coalgebra (LTS) h : X → Pf(A×X), the specialisation
preorder on k∗M where k is the unique morphism to the final coalgebra
given by finality, coincides with the operational preorder corresponding
to the choice of the lifting of B.

Theorem 16. In the final BTr-coalgebra, the specialisation preorder co-
incides with the trace preorder.

Proof. Let ϕ :
〈
S,MTr

〉 → 〈
BS,BTr

S M
Tr

〉
be the final coalgebra of BTr,

constructed as in Theorem 14.
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Let α range over traces over the alphabet A. Let Sα denote the set of
synchronisation trees in which α is a possible trace.

We know that MTr =
⋃
n Φn(∅) where Φ(τ) = ϕ∗B>

S τ . We shall show by
induction that

Φn(∅) = {Sα : |α| < n } .
The proposition holds trivially for n = 1 as Φ(∅) = ClTr(∅) = {S} =
{Sε} = {Sα : |α| < 1 }.
Now

Φn+1(∅) = ϕ∗BTr
S Φn(∅)

=
{
w〈a〉 ◦ Pf(A× Sα) ◦ ϕ : a ∈ A, |α| < n

} ∪ {S}
using the induction hypothesis. We need to understand the synchroni-
sation trees which pass w〈a〉 ◦ Pf(A × Sα) ◦ ϕ. Unpacking the definition
yields

(w〈a〉 ◦ P(A× Sα) ◦ ϕ)s = tt⇔ 〈a, tt〉 ∈ (P(A× Sα) ◦ ϕ)s

⇔ 〈a, s′〉 ∈ ϕs, s′ ∈ Sα
⇔ s a I s′, s′ ∈ Sα
⇔ s ∈ Saα

Clearly we have {Sα : |α| < n+ 1 } = {Saα : a ∈ A and |α| < n }∪{S}
and so we have established the property.

Now:

s ≤ s′ iff ∀V ∈M (s ∈ V ⇒ s′ ∈ V )

iff ∀α (s ∈ Sα ⇒ s′ ∈ Sα)

iff ∀α (s |= α⇒ s′ |= α)

iff s vTr s
′.

Suppose that Q ⊆ A and let SαQ̃ denote the set of synchronisation trees

which have αQ̃ as a failure.

Theorem 17. In the final BCTr-coalgebra, the specialisation preorder
coincides with the completed trace preorder.
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Proof. We shall show by induction that for n ≥ 2

Φn(∅) = {Sα : |α| < n } ∪ {SαÃ : |α| < n− 1 }

Indeed, we have

Φ2(∅) = Φ({S})
=

{
w〈a〉 ◦ Pf(A× S) ◦ ϕ : a ∈ A} ∪ {S} ∪ {wrA ◦ Pf(A× S) ◦ ϕ}

= {Sα : |α| < 2 } ∪ SεÃ
since wrA ◦P(A×S) ◦ϕ = SεÃ is the singleton set containing the (equiv-
alence class of) synchronisation tree with one node and no transitions.

Now

Φn+1(∅) = Φ(Φn(∅))
= Φ({Sα : |α| < n } ∪ {SαÃ : |α| < n− 1 }) (ind. hyp.)

=
{
w〈a〉 ◦ Pf(A× Sα) ◦ ϕ : a ∈ A and |α| < n

} ∪ S
∪ {

w〈a〉 ◦ Pf(A× SαÃ) ◦ ϕ : a ∈ A and |α| < n− 1
}

∪ {wrA ◦ Pf(A× Sα) ◦ ϕ : |α| < n }
∪ {wrA ◦ Pf(A× SαÃ) ◦ ϕ : |α| < n− 1 }

= {Sα : |α| < n + 1 } ∪ {SaαÃ : a ∈ A and |α| < n− 1 } ∪ SεÃ
= {Sα : |α| < n + 1 } ∪ {SαÃ : |α| < n }

It follows that:

s ≤ s′ iff ∀V ∈M (s ∈ V ⇒ s′ ∈ V )

iff ∀α (s ∈ Sα ⇒ s′ ∈ Sα) ∧ ∀α (s ∈ Sα,A ⇒ s′ ∈ Sα,A)

iff ∀α (s |= α⇒ s′ |= α) ∧ ∀α (s |= αÃ⇒ s′ |= αÃ)

iff s vCTr s
′.

Theorem 18. In the final BFl-coalgebra, the specialisation preorder co-
incides with the failures preorder.

Proof. We shall show by induction for n ≥ 2 that

Φn(∅) = {Sα : |α| < n } ∪ {
SαQ̃ : |α| < n− 1 and Q ⊆ A

}
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We have

Φ2(∅) = Φ({S})
=

{
w〈a〉 ◦ Pf(A× S) ◦ ϕ : a ∈ A} ∪ {S}
∪ {wrQ ◦ Pf(A× S) ◦ ϕ : a ∈ A and Q ⊆ A }

= {Sα : |α| < 2 } ∪ {
SεQ̃ : Q ⊆ A

}
Now,

Φn+1(∅) = Φ(Φn(∅))
= Φ({Sα : |α| < n } ∪ {

SαQ̃ : |α| < n− 1 and Q ⊆ A
}

)

=
{
w〈a〉 ◦ Pf(A× Sα) ◦ ϕ : a ∈ A and |α| < n

} ∪ S
∪ {

w〈a〉 ◦ Pf(A× SαQ̃) ◦ ϕ : a ∈ A, |α| < n− 1 and Q ⊆ A
}

∪ {wrQ ◦ Pf(A× Sα) ◦ ϕ : |α| < n and Q ⊆ A }
∪ {

wrQ ◦ Pf(A× SαQ̃′) ◦ ϕ : |α| < n− 1 and Q,Q′ ⊆ A
}

= {Sα : |α| < n+ 1 }
∪ {

SaαQ̃ : a ∈ A, |α| < n− 1 and Q ⊆ A
} ∪ {

SεQ̃ : Q ⊆ A
}

= {Sα : |α| < n+ 1 } ∪ {
SαQ̃ : |α| < n and Q ⊆ A

}
Noticing that Sα = Sα∅̃ we can write

MFl =
⋃
n

Φn(∅) =
⋃
n

{
SαQ̃ : |α| < n and Q ⊆ A.

}

It is easy to see that:

s ≤ s′ iff ∀V ∈M (s ∈ V ⇒ s′ ∈ V )

iff ∀α,Q ⊆ A (s ∈ SαQ̃ ⇒ s′ ∈ SαQ̃)

iff ∀α,Q ⊆ A (s |= αQ̃⇒ s′ |= αQ̃)

iff s vFl s
′.

Theorem 19. Suppose that h : X → P(A × X) is a coalgebra (LTS),
ϕ : S → BS is the final B-coalgebra and that k : X → S is the unique
morphism given by finality. Then x ≤ x′ according to the specialisation
preorder of
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• k∗(MTr) iff x vTr x
′

• k∗(MCTr) iff x vCTr x
′

• k∗(MFl) iff x vFl x
′.

Proof. We shall prove the first item, the other two are similar. We have

x ≤ x′ ⇔ ∀V ∈MTr (x ∈ h∗V ⇒ x′ ∈ h∗V )

⇔ ∀V ∈MTr (hx ∈ V ⇒ hx′ ∈ V )

⇔ kx vTr kx
′ (Theorem 16)

⇔ x vTr x
′

where the last step follows from the fact that k is a coalgebra morphism
and therefore { 〈x, kx〉 : x ∈ X } is a bisimulation [24].

6 Application: Congruence Formats from

Bialgebras

To lift the bialgebraic framework to the total category Set∗, we need a
way to lift the syntactic and the behaviour functors together with the
natural transformation λ. Various ways to lift the behaviour B were
shown in the previous section, now we proceed to show a lifting of the
syntactic functor.

Given a syntactic endofunctor Σ on Set:

ΣX =
k∐
i=1

Xni

define an endofunctor Σ∗ on Set∗: Σ∗ 〈X, τ 〉 = 〈ΣX,ΣXτ〉, where

ΣXτ = Cl∪
( k⊕

i=1

τ⊗ni

)

where Cl∪ is the closure under arbitrary unions, and we write τ⊗ni for
τ ⊗ τ ⊗ · · · ⊗ τ︸ ︷︷ ︸

ni times

. On arrows, given f : 〈X, τ 〉 → 〈X ′, τ ′〉, we define simply

Σ∗f = Σf . Preservation of identities and composition follows from the
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fact that Σ is a functor. It suffices to show that Σf is a morphism in
Set∗, and indeed

(Σf)∗ΣX′τ ′ = (Σf)∗ Cl∪
( k⊕

i=1

τ ′⊗ni

)

= Cl∪(Σf)∗
( k⊕

i=1

τ ′⊗ni

)

= Cl∪
( k⊕

i=1

(f ∗τ ′)⊗ni

)

⊆ Cl∪
( k⊕

i=1

τ⊗ni

)
(since f ∗τ ′ ⊆ τ)

= ΣXτ

Theorem 20. Suppose that an endofunctor F lifts to a endofunctor F ∗,
and has an initial algebra ψ : FN → N . Then ψ : 〈FN, FNP 〉 → 〈N,P 〉
is the initial F ∗ algebra where P is the greatest fixpoint of the operator
Ψ(τ) = (ψ−1)∗FNτ .

Proof. First, by definition ψ∗P = ψ∗(ψ−1)∗FNP = FNP and therefore ψ
is a morphism in the total category.

Suppose that h : 〈FX, FXτ〉 → 〈X, τ〉 is any F ∗-algebra. Then h∗τ ⊆
FXτ and h : FX → X is an F -algebra, and we have a unique k : N → X
such that h ◦ Fk = k ◦ ψ:

FN
Fk //

ψ
��

FX

h
��

N
k

// X

It remains to verify that k is a morphism in the total category, i.e., that
k∗τ ⊆ P . This is done by proving that k∗τ is a postfixpoint of Ψ:

Ψ(k∗τ) = (ψ−1)∗FN(k∗τ)

⊇ (ψ−1)∗(Fk)∗(FX(τ)) (functoriality of F )

⊇ (ψ−1)∗(Fk)∗h∗τ

= k∗τ
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P , as the greatest fixpoint of Ψ, is also the greatest postfixpoint of Ψ,
hence k∗τ ⊆ P .

Corollary 21. For any syntactic endofunctor Σ, the functor Σ∗ freely
generates a monad T ∗ that lifts the monad T freely generated by Σ.

Proof. By definition, T ∗ 〈X, τ〉 is the carrier of the initial (〈X, τ 〉+Σ∗−)-
algebra. Since Σ∗ lifts Σ, by Theorem 20 we know that this initial algebra
exists, and it is of the form T ∗ 〈X, τ〉 = 〈TX, TXτ〉, where ψ : X +
ΣTX → TX is the initial (X + Σ−)-algebra, and TXτ is the greatest fix
point of the operator

Ψτ ′ = (ψ−1)∗(τ ⊕ ΣTXτ
′)

A similar corollary about a behaviour BW cofreely generating a comonad
DW can be drawn from Theorem 14. These two corollaries allow us to
apply Theorem 10 for the category Set∗ and endofunctors Σ∗ and BW .

The following theorem is a crucial property of the endofunctor Σ∗. In-
deed, varying the definition of Σ∗ in our framework would lead to defini-
tion of various precongruence formats, but only as long as the following
property holds.

Theorem 22. For any Σ∗-algebra h : 〈ΣX,ΣXτ 〉 → 〈X, τ 〉, the special-
isation preorder ≤τ is a precongruence on h : ΣX → X.

Proof. Take f : Xn → ΣX to be one of the coproduct injections to
ΣX, and consider elements x1, y1, . . . , xn, yn of X such that xi ≤τ yi for
i = 1..n. This means that

〈x1, . . . , xn〉 ≤τ⊗n 〈y1, . . . , yn〉

Observe that the closure operator Cl∪ does not change specialisation
preorders: for any test suite τ , we have ≤Cl∪ τ=≤τ . Hence

f 〈x1, . . . , xn〉 ≤ΣXτ f 〈y1, . . . , yn〉

Now since h is a morphism in the total category, we know that h∗τ ⊆
ΣXτ , hence

f 〈x1, . . . , xn〉 ≤h∗τ f 〈y1, . . . , yn〉
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and
h(f 〈x1, . . . , xn〉) ≤τ h(f 〈y1, . . . , yn〉)

We now have the technology needed to prove the main result of this
section.

Consider a natural transformation λ : Σ(id×B)→ BT . By Theorem 10,
the coalgebraic part of the initial λ-model has N = T∅ as its carrier,
and it is the intended operational model of λ. If B = Pf(A × −), then
the intended operational model is the LTS generated by GSOS rules
associated to λ. Let k : N → S be the final coalgebra morphism from
the intended operational model to the final B-coalgebra. Assume B lifts
to some B∗ as before, and let 〈S,M〉 be the carrier of the initial B∗-
coalgebra.

Theorem 23. If λ lifts to a natural transformation in the total category:

λ : Σ∗(id×B∗)→ B∗T ∗.

then the specialisation preorder on k∗M is a precongruence on N .

Proof. By Theorem 10, there exists an initial λ-model (in Set∗)

Σ∗ 〈N,P 〉 ψ−→ 〈N,P 〉 ε−→ B∗ 〈N,P 〉
and a final λ-model (in Set∗)

Σ∗ 〈S,M〉 δ−→ 〈S,M〉 ϕ−→ B∗ 〈S,M〉
where ψ : Σ∗ 〈N,P 〉 → 〈N,P 〉 and ϕ : 〈S,M〉 → B∗ 〈S,M〉 are respec-
tively the initial Σ∗-algebra and the final B∗-coalgebra. By initiality (or
finality) there exists a unique morphism k : 〈N,P 〉 → 〈S,M〉 of λ-models
so that (i) below is commutative.

Σ∗ 〈N,P 〉
ψ

��

Σ∗k // Σ∗ 〈S,M〉
δ

��

〈N,P 〉
ε

��

k // 〈S,M〉
ϕ

��

B∗ 〈N,P 〉
B∗k

// B∗ 〈S,M〉
(i)

Σ∗ 〈N, k∗M〉
ψ

��

Σ∗k // Σ∗ 〈S,M〉
δ

��

〈N, k∗M〉
ε

��

k // 〈S,M〉
ϕ

��

B∗ 〈N, k∗M〉
B∗k

// B∗ 〈S,M〉
(ii)
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Our goal is to show that (ii) above a diagram in Set∗. If all the mor-
phisms are defined then its commutativity follows from the commuta-
tivity of (i). By Theorem 15, ε : 〈N, k∗M〉 → B∗ 〈N, k∗M〉 is a B∗-
coalgebra.

Now

ψ∗k∗M = (Σ∗k)∗δ∗M

= (Σk)∗δ∗M

⊆ (Σk)∗(ΣSM) (since δ is in Set∗)

⊆ ΣX(k∗M) (since Σ∗ is a functor)

Thus ψ : 〈N, k∗M〉 → B∗ 〈N, k∗M〉 is a Σ∗-algebra and by Theorem 22
the specialisation preorder of k∗M is a precongruence.

7 Precongruence Formats for (almost) Free

In this section we consider a syntactic endofunctor Σ with a freely gen-
erated monad T , the behaviour functor BX = Pf(A ×X), and a set R
of GSOS rules with the corresponding natural transformation

λ : Σ(id×B)→ BT

The purpose is to describe syntactic conditions on R that would ensure
that λ lifts to a natural transformation

λ : Σ∗(id×BW )→ BWT ∗

where W ∈ {Tr,CTr, Fl}. As a consequence of Theorem 23, such syn-
tactic conditions ensure that the respective operational preorders are
precongruences.

Theorem 24. If R is in Tr-format (Format 2), then

λ : Σ∗(Id×BTr)→ BTrT ∗

is a natural transformation in Set∗.

Proof. It is enough to ensure that given an object 〈X, τ〉 in Set∗,

λ : Σ∗(〈X, τ〉 × BTr 〈X, τ〉)→ BTrT ∗ 〈X, τ 〉
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is a morphism in Set∗; in other words, that for every test V ∈ BTr
TXTXτ ,

λ−1V is a test in ΣX×BX(τ 1 BTr
X τ).

To do this, it will be useful to understand the nature of tests in ΣXτ ,
TXτ and BTr

TXTXτ , for a given 〈X, τ〉.
Definition 25. For a syntactic Σ, a set X and a test suite τ on X, a
basic flat τ -check on ΣX is a term

γ ∈ Στ

A term t ∈ ΣX passes a basic flat τ -check γ, if t can be obtained from γ
by replacing every V ∈ τ by some x ∈ V .

The set of terms passing a given basic flat τ -check γ is denoted υ(γ).
Sets of this kind will be called basic flat τ -tests on ΣX.

Lemma 26. For any Σ, 〈X, τ〉, tests from ΣXτ are exactly all unions of
basic flat τ -tests on ΣX.

Proof. Take any test

V ∈
k⊕
i=1

τ⊗ni

By definition, V = V1 + · · · + Vk, where Vi ∈ τ⊗ni . Then for every
1 ≤ i ≤ k,

Vi = U1 × · · · × Uni
where Uj ∈ τ

(in the above, + and × denote disjoint union and cartesian product on
sets). Note that γ = ιi 〈U1, . . . , Uni

〉 is a basic flat τ -check, and

ιi(Vi) = υ(γ)

where ιi : Xni → ΣX is the i-th coproduct injection into ΣX. Finally

V = V1 + V2 · · ·+ Vk = ι1(V1) ∪ ι2(V2) ∪ · · · ∪ ιk(Vk)
which completes the presentation of V as a union of basic flat τ -tests.

Definition 27. For a set X and a test suite τ on X, a basic term τ -check
is a term

c ∈ Tτ
A term t ∈ TX passes a basic term τ -check c, if t can be obtained from
c by replacing every V ∈ τ by some x ∈ V .

The set of terms passing a given basic term τ -check c is denoted υ(c).
Sets of this kind will be called basic term τ -tests on TX.
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Lemma 28. For any Σ, 〈X, τ〉, every test in TXτ is a union of basic
term τ -tests on TX.

Proof. Recall from Corollary ?? that TXτ is the greatest fix point of the
operator Ψ:

Ψτ ′ = (ψ−1)∗(τ ⊕ ΣTXτ
′)

The proof proceeds by constructing for all n and for any test V ∈
Ψn(PTX), a family Γn(V ) of basic term τ -checks from Tnτ such that

V ∩ TnX =
⋃

γ∈Γn(V )

υ(γ)

where TnX denotes the set of Σ-terms of depth at most n.

Given this construction, for any test V ∈ TXτ we have

V =
⋃
n∈N

⋃
γ∈Γn(V )

υ(γ)

which will complete the proof.

The families Γn(V ) are constructed by induction on n. For the base case,
take Γ0(V ) = ∅ for any V . Indeed,

V ∩ T0X = V ∩ ∅ =
⋃
γ∈∅

υ(γ)

For the induction step, take a test V ∈ Ψn(PTX). By definition, V =
V ′ + V ′′ (+ denotes disjoint union of sets), where V ′ ∈ τ , and V ′′ ∈
ΣTXΨn−1(PTX). By Lemma 26, for some indexing set I

V ′′ =
⋃
i∈I
υ(δi)

where each δi is a basic flat Ψn−1(PTX)-check on ΣTX, i.e.

δi ∈ Σ(Ψn−1(PTX))

By the inductive assumption, for every test U ∈ Ψn−1(PTX) there exist
a family Γn−1(U) of basic term τ -checks such that

U ∩ Tn−1X =
⋃

u∈Γn−1(U)

υ(u)
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Now for any δi as above, take δ′i = δi[σ], where

σ(U) =
⋃

u∈Γn−1(U)

υ(u)

is a substitution from Ψn−1(PTX) to PTX. Obviously, each δ′i is a basic
flat (PTX)-check and

υ(δ′i) = υ(δi) ∩ ΣTn−1X
ι2(υ(δ′i)) = ι2(υ(δi)) ∩ TnX

where ι2 : ΣTX → TX is the coproduct inclusion.

Moreover, for any δi as above, consider the family of basic term τ -checks:

Θ(δi) = { ι2(δi[σ
′]) : σ′(U) ∈ Γn−1(U) } ⊆ Tnτ

where ι2 : ΣTn−1τ → Tnτ is the coproduct inclusion, and σ′ ranges on
substitutions from Ψn−1(PTX) to Tn−1τ .

From definition of υ, it is easy to see that⋃
γ∈Θ(δi)

υ(γ) = ι2(υ(δ′i))

Now take
Γn(V ) = {ι1(V ′)} ∪

⋃
i∈I

Θ(γi)

and check that

V ∩ TnX = (V ′ + V ′′) ∩ TnX
= (ι1(V ′) ∪ ι2(V ′′)) ∩ TnX
= (ι1(V ′) ∩ TnX) ∪ (ι2(V

′′) ∩ TnX)

= ι1(V ′) ∪
(⋃
i∈I
ι2(υ(δi)) ∩ TnX

)
= υ(ι1(V

′)) ∪
(⋃
i∈I
ι2(υ(γ′i))

)
= υ(ι1(V

′)) ∪
(⋃
i∈I

⋃
γ∈Θ(δi)

υ(γ)
)

This completes the induction step, and the proof of Lemma 28.
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Definition 29. For a given 〈X, τ〉, a basic positive τ -check on BX is an
expression of the form a IV , where a ∈ A and V ∈ τ . A set β ∈ BX
passes such a check, if there is some 〈a, x〉 ∈ β such that x ∈ V . As
usual, the test on BX associated to a basic positive τ -check c is denoted
υ(c) and is called a basic positive τ -test.

Similarly, for a given 〈X, τ 〉, a basic positive term τ -check on BTX is an
expression of the form a I γ, where a ∈ A and γ is a basic term τ -test
on TX. The definition of passing and of the basic positive term τ -test
υ( a I γ) is as usual.

Lemma 30. A test in BTr
TXTXτ is either the always true test BTX, or

a union of basic positive term τ -tests.

Proof. If a test V ∈ BTr
TXTXτ is not equal to BTX, then

V = w〈a〉 ◦BV ′ = { β ∈ BTX : 〈a, t〉 ∈ β, t ∈ V ′ }
for some V ′ ∈ TXτ . But then, by Lemma 28, V ′ is a union of basic term
τ -tests:

V ′ =
⋃
i∈I
υ(γi)

hence

V =
⋃
i∈I
{ β ∈ BTX : 〈a, t〉 ∈ β, t ∈ υ(γi) } =

⋃
i∈I
υ( a I γi)

We shall now prove Theorem 24. By Lemma 30, it is enough to show
that for any 〈X, τ 〉, and for any given basic positive term τ -check a I γ,
there exists a family of basic flat (τ 1 BTr

X τ)-checks δ1, δ2, . . . , δm such
that

λ−1υ( a I γ) =
m⋃
i=1

υ(δi)

To achieve this, fix a basic positive term τ -check a I γ, and take any
rule ρ ∈ R, which has the conclusion of the form

f(x1, . . . xn) a I t

for some construct f with arity n, and such that t can be obtained from
γ by replacing each V ∈ τ with some x ∈ Ξ. Since no variable occurs in
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t more than once, this gives a function σ : Ξ → τ such that γ = t[σ].
Without loss of generality, assume that σ(x) = X if x does not occur in
t.

Now for each 1 ≤ i ≤ n take a test Vi ∈ τ 1 BXτ as follows:

• If xi does not occur in any premise of ρ, then take Vi = σ(xi)×BX.

• If xi occurs in a premise xi
bi I yi, then take Vi = X×υ( bi Iσ(yi))

Note that the syntactic restrictions of the Tr-format ensure that the above
definition is complete and unambiguous.

Having defined the tests Vi, consider a basic flat τ 1 BXτ -check

δρ = f 〈V1, . . . , Vn〉
We will show that υ(δρ) = ρ−1

X υ( a I γ). To this end, take any

r = f 〈〈x1, β1〉 , . . . , 〈xn, βn〉〉 ∈ Σ(X × BX)

and check that the following are equivalent:

r passes δρ

⇐⇒ 〈xi, βi〉 ∈ Vi for all 1 ≤ i ≤ n

⇐⇒ For each 1 ≤ i ≤ n, either xi does not occur in any premise and
xi ∈ σ(xi), or xi occurs in a premise xi

bi I yi and 〈bi, yi〉 ∈ βi for
some yi ∈ σ(yi)

⇐⇒ θ mapping each xi to xi, and yi to yi satisfies the conditions de-
scribed in the proof of Theorem 9. Moreover, θ(x) ∈ σ(x) for all
x ∈ Ξ.

⇐⇒ 〈a, t[θ]〉 ∈ ρXr, and t[θ] passes γ.

⇐⇒ ρXr passes a I γ.

This shows that υ(δρ) = ρ−1
X υ( a I γ).

Now by definition of λ from the family of ρX for ρ ∈ R,

λ−1(υ( a I γ)) =
⋃
ρ

υ(ρX)
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where the summation is made over all rules ρ with the conclusion as
described above.

This completes the proof of Theorem 24.

Theorem 31. If R is in CTr-format, then

λ : Σ∗(Id× BCTr)→ BCTrT ∗

is a natural transformation in Set∗.

Proof. As before, we show that for any 〈X, τ 〉, for every test V ∈ BCTr
TXTX

there is a test V ′ ∈ ΣX(τ 1 BCTr
X τ) such that λ−1V = V ′.

Definition 32. For a set of labels Q ⊆ A, the Q-failure check is denoted
Q6 I. Instead of A6 I, we will sometimes write 6 I. For any set X, a
set β ∈ BX passes the Q-failure check if

β ∩ { 〈a, t〉 : a ∈ Q } = ∅

For any X, the test on BX associated to the Q-failure check will be

denoted υ( Q6 I), and will be called the Q-failure test.

Lemma 33. A test V ∈ BCTr
TXTX is either the always true test BTX, or

the A-failure test υ( 6 I), or a union of basic positive term τ -tests.

Proof. If a test V ∈ BCTr
TXTXτ is not equal to BTX, then either V =

w〈a〉 ◦BV ′ for some V ′ ∈ TXτ , or V = wrA ◦BV ′ for some V ′ ∈ TXτ . In
the former case, V is a union of basic positive term τ -tests, as shown in
Lemma 30. In the latter case,

wrA ◦BV ′ = {∅} = υ( 6 I)

To prove Theorem 31, it is enough to consider single basic positive term
τ -tests on BTX, and the A-failure test on BTX. For the positive tests,
we proceed as in the proof of Theorem 24, except that when constructing
the tests Vi we consider one additional case:

• If xi occurs in ρ in a negative premise xi
a6 I (and hence, it occurs

in a premise xi
b6 I for any b ∈ A), then take Vi = X × υ( 6 I).

35



The syntactic restrictions of CTr-format ensure that the definition of Vi’s
extended this way is complete and unambiguous.

The rest of the argument remains as in the case of Tr-format.

For the A-failure test υ( 6 I) on BTX, for any language construct
f(x1, . . . , xn) take a sequence of CTr-testing sets P1, . . . , Pkm that satisfy
the condition described in the definition of CTr-format. For each Pi and
each variable xj , define a test Vij ∈ τ 1 BCTr

X τ as follows:

• If, for some a ∈ A, both xj
a I and xj

a6 I belong to Pi, then
take Vij = ∅.
• If, for all a ∈ A, xj

a I ∈ Pi, and if for all b ∈ A, xj
b6 I 6∈ Pi,

then take Vij = X × υ( 6 I).

• If, for all a ∈ A, xj
a I 6∈ Pi, and if for some b ∈ A, xj

b6 I ∈ Pi,
then take Vij = X × υ( b IX).

Note that the definition of a CTr-testing set ensures that the above defi-
nition is complete and unambiguous.

Now for any Pi consider the basic flat τ 1 BCTr
X τ -check

δfi = f 〈Vi1, . . . , Vin〉

Recall the definition of the function fX in the proof of Theorem 9. We
will now show that

kf⋃
i=1

υ(dfi) = f−1
X υ( 6 I)

To this end, consider any r ∈ Σ(X ×BS) of the form

r = ιm 〈〈x1, β1〉 , . . . , 〈xn, βn〉〉
and assume that fXr does not pass 6 I, i.e., that fXr 6= ∅. This means
that there exists a rule ρ ∈ R with source f(x1, . . . , xn), and a substitution
σ : Ξ→ X such that

σxi = xi
∀i ≤ n∀j ≤ mi. 〈aij , σ(yij)〉 ∈ βi
∀i ≤ n∀j ≤ ni∀x ∈ X. 〈bij , x〉 6∈ βi

where mi, ni, aij , bij, yij are taken from ρ.
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By the first part of condition 2 of CTr-format, there exists a sequence
p1, . . . , pkf such that pi ∈ Pi and each pi is completed by some premise
of ρ. Take any 1 ≤ i ≤ kf. In ρ there is a premise that completes
pi. If pi is a positive semiliteral xj

c I (for some xj , c), then βj 6= ∅,
hence 〈xj , βj〉 6∈ Vij and r does not pass dfi. Similarly, if pi is a negative
semiliteral xj

c6 I, then βj = ∅ and again 〈xj , βj〉 6∈ Vij and r does not
pass dfi.

Conversely, assume that r does not pass dfi for any 1 ≤ i ≤ kf. This
means that for each i, there is a j such that 〈xj , βj〉 6∈ Vij . For each
1 ≤ i ≤ kf, take pi to be any element of Pi that has the respective xj on
the left-hand side. By the second part of condition 2 of CTr-format, there
exists a rule ρ ∈ R with source f(x1, . . . , xn), such that each premise of ρ
completes some pi. This means that there exists a substitution σ : Ξ→ X
satisfying all the conditions mentioned above, hence fXr 6= ∅ and fXr
does not pass 6 I.

From this, by definition of λ as in the proof of Theorem 9,

⋃
f∈Σ

kf⋃
i=1

υ(dfi) = λ−1υ( 6 I)

This completes the proof of Theorem 31.

Theorem 34. If R is in Fl-format, then

λ : Σ∗(Id×BFl)→ BFlT ∗

is a natural transformation in Set∗.

Proof. As before, we show that for any 〈X, τ 〉, for every test V ∈ BFl
TXTX

there is a test V ′ ∈ ΣX(τ 1 BFl
Xτ) such that λ−1V = V ′.

As before, we begin with a characterisation of tests in BFl
TXTX :

Lemma 35. A test V ∈ BFl
TXTX is either the always true test BTX, or

the Q-failure test υ( 6 I) for some Q ⊆ A, or a union of basic positive
term τ -tests.

Proof. As in the proof of Lemma 33.

The proof proceeds much the same as in Theorem 31. For the positive
tests V , we proceed as in the proof of Theorem 24, except that when
constructing the tests Vi we consider one additional case:
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• If xi occurs in ρ in some negative premises, then take Vi = X ×
υ(Qi6 I), where Qi =

{
a ∈ A : xi

a6 I is a premise in ρ
}

.

Again, the syntactic restrictions of Fl-format ensure that the definition
of Vi’s extended this way is complete and unambiguous.

The rest of the argument remains as in the case of Tr-format.

For the Q-failure test υ( Q6 I) for some Q ⊆ A, we proceed as in the
proof of Theorem 31, except that we construct the tests Vij in a slightly
different manner:

• If, for some a ∈ A, both xj
a I and xj

a6 I belong to Pi, then
take Vij = ∅.

• If for some a ∈ A, xj
a I ∈ Pi, and if for all b ∈ A, xj

b6 I 6∈ Pi,
then take Vij = X×υ(

Qj6 I), where Qj = { a ∈ A : xj
a I ∈ Pi }.

• If, for all a ∈ A, xj
a I 6∈ Pi, and if for some b ∈ A, xj

b6 I ∈ Pi,
then take Vij = X × υ( b IX).

(note that the first and the third case are as in the case of CTr-format).

Note that the definition of a Fl-testing set ensures that the above defini-
tion is complete and unambiguous.

The rest of the argument remains the same as in the case of CTr-format.

8 Conclusions

We have presented an abstract coalgebraic approach to the description
of various operational preorders, via a fibration of test suites. In Theo-
rems 16, 17 and 18 we illustrated this approach on the trace preorder,
the completed trace preorder and the failures preorder. Combined with
bialgebraic methods, this framework allows the derivation of syntactic
subformats of GSOS which guarantee that the aforementioned opera-
tional preorders are precongruences. Theorem 23 is a guideline in the
search for such formats, and Theorems 24, 31 and 34 are applications of
the framework.
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The generality and abstractness of Theorem 23 prompted us to coin the
expression ‘precongruence format for free’. However, it must be stressed
that to derive a syntactic format for a given operational preorder remains
a non-trivial task. Indeed, the proofs of Theorems 24, 31 and 34 are quite
long and technical. The expression ‘for free’ reflects the fact that The-
orem 23 lets us prove precongruence properties without considering the
global behaviour (e.g. traces) of processes. Instead, one considers only
simple tests on processes, corresponding intuitively to single modalities.

Related abstract approaches to operational preorders and equivalences
include those based on modal characterisations [10] and quantales [1].
In the latter framework, no syntactic issues have been addressed. In
the former, some general precongruence formats have been obtained by
attempting to decompose modal formulae according to given operational
rules [7]. This technique bears some resemblance to our approach, and
the precise connections have to be investigated.

There are several possible directions of future work. Firstly, the approach
presented here can be extended to deal with other operational preorders
and equivalences described in literature. Secondly, one can move from
the GSOS format (and its subformats) to the more general (safe) ntree
format [9], which can also be formalised in the bialgebraic framework [30].
Thirdly, the abstract framework of test suites seems to be general enough
to cover other notions of process behaviour (e.g. involving store), or even
other underlying categories (e.g. complete partial orders instead of sets).
It may prove interesting to formalise various operational preorders in
such cases and to find precongruence formats for them.
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