J01d pale|ay pue uoirew.oju| aaibipad Jo Aoualsisuod Bupoayd Jo Aixajdwod sy [e 19 0199y /T-£0-SH SOlYg

BRICS

Basic Research in Computer Science

The Complexity of Checking Consistency of
Pedigree Information and Related Problems

Luca Aceto

Jens Alsted Hansen
Anna Ing6lfsdottir
Jacob Johnsen
John Knudsen

BRICS Report Series RS-03-17
ISSN 0909-0878 March 2003

Copyright (© 2003, Luca Aceto & Jens Alsted Hansen & Anna
Ing6lfsdottir & Jacob Johnsen & John Knudsen.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work

is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS

Department of Computer Science
University of Aarhus

Ny Munkegade, building 540
DK-8000 Aarhus C

Denmark

Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLSs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/03/17/

The Complexity of Checking Consistency of Pedigree
Information and Related Problems

Luca Acetd, Jens A. Hansén Anna Ingdlfsdattir! 2,
Jacob Johnsénand John Knudsén

1 BRICS (BasicResearch irComputerScience), Centre of the Danish National Research
Foundation, Department of Computer Science, Aalborg University, Fr. Bajersvej 7E, 9220
Aalborg @, Denmarkluca@cs.auc.dk, alsted@cs.auc.dk,
annai@cs.auc.dk, johnsen@cs.auc.dk, johnk@cs.auc.dk
2 deCODE Genetics, Sturlugata 8, 101 ReyKalceland,annai@decode.is

Abstract. Consistency checking is a fundamental computational problem in ge-
netics. Given a pedigree and information on the genotypes (of some) of the indi-
viduals in it, the aim of consistency checking is to determine whether these data
are consistent with the classic Mendelian laws of inheritance. This problem arose
originally from the geneticists’ need to filter their input data from erroneous in-
formation, and is well motivated from both a biological and a sociological view-
point. This paper shows that consistency checking is NP-complete, even with
focus on a single gene and in the presence of three alleles. Several other results
on the computational complexity of problems from genetics that are related to
consistency checking are also offered. In particular, it is shown that checking the
consistency of pedigrees over two alleles, and of pedigrees without loops, can be
done in polynomial time.

AMS SuBJECTCLASSIFICATION (1991): 68Q25, 92D10.

CR SUBJECTCLASSIFICATION (1991): F.2.2, J.3.

KEYWORDS AND PHRASES Consistency checking, pedigrees, genotypes, NP-
completeness, satisfiability, polynomial time complexity, critical genotypes.

1 Introduction

A paradigmatic problem from the field of genetics in which the use of algorithmic tech-
niques is by now widespread, and is embodied in software tools like Allegro [9], Gene-
hunter [16], Merlin [1] and Pedcheck [20], is that of linkage analykiskage analy-

sisis a well established, statistical method used to relate genes in the human genome
to some biological trait that an individual possesses. Example traits that may be in-
vestigated range from simple ones like blood type and eye colour to those that may
predispose an individual for a disease. Genes causing major diseases (e.g., Parkinson’s
disease, obesity and anxiety) have already been discovered using this technique [5].

In order to track the inheritance of genetic traits, geneticists use structures called
pedigrees. Aoedigrealescribes the family relations amongst a collection of individuals,
and usually comes equipped with (possibly partial) information on their genotypes—
i.e., on the pairs of alleles at a locus in their genome. éfeleis one of the possible

forms a gene may have.) Pedigrees are the subject of algorithmic analysis via methods
like linkage analysis.

A computational problem that is closely related to that of linkage analysiers
sistency checkingGiven a pedigree and information on the genotypes (of some) of the
individuals in it, the aim of consistency checking is to determine whether these data are
consistent with the classic Mendelian laws of inheritance (see, e.g., the reference [15]
and Sect. 2). If it turns out that the inheritance of the genotypes in the pedigree is in
conflict with the Mendelian laws of inheritance, then the pedigree and the information
on the genotypes aigconsistentlf no such conflict arises, then the data eomsistent

The problem of consistency checking arose originally from the geneticists’ need
to filter their input data from erroneous information, because inconsistent data are un-
desirable. According to [25, p. 496], it is essential that all Mendelian inconsistencies
be eliminated prior to linkage analysis as “a few inopportunely placed errors, if ig-
nored, can tremendously affect evidence for linkage.” Furthermore, as reported in [20],
in many real-life cases the manual identification of inconsistencies can be very diffi-
cult, time consuming, and sometimes unsuccessful. It would therefore be most helpful
to have automatic tool support for this task.

Another motivation for consistency checking is its applicability in determining fam-
ily relationships. A DNA test is very useful in genealogical investigations, paternity
issues and criminal investigations. For instance, the point of paternity issues has re-
cently been brought up in the Danish press [6], where it is claimed that up to 10% of the
Scandinavian population have wrong paternal information, and that the interest for such
investigations is growing rapidly. This could be accelerated by the growing possibilities
in society for performing DNA tests. According to [10], it is now possible to get a 10
marker fingerprint of a chromosome for approximately 300 euro by utilizing a DNA
sampling kit at your own home. Thus it seems that genealogy studies based on genetic
data have the possibility of becoming widely accessible in the near future. Of course,
these studies must be based on consistent genealogical data to be meaningful.

A more philosophical motivation for consistency checking lies in the possibility
of achieving a deeper understanding of the history of different species. A large scale
effort as the Human Genome Diversity Project (see [12]) has an interest in assuring that
the family relationships amongst the genetic data used for their analysis are correct.
In their case, it is important that the individuals that are picked for DNA sampling are
indeed offspring from the original population of a geographical area. Note that it is
not only with respect to humans that the verification of family relationships is relevant.
For instance, it is important that a horse breeder has the ability to document the family
relationships of his/her horses, and that a botanist is certain of the family relationship
of plants used in an experiment. Basically all living organisms are based on DNA, and
can thus be subjected to consistency checking.

Hence, consistency checking is a well motivated problem from both a biological
and a sociological viewpoint. Another issue is whether it is computationally feasible.
The aim of this paper is to show that consistency checking is NP-comglete if we
focus on genotype information for a single geard thus that the existence of consis-
tency checking algorithms that have polynomial worst case complexity is unlikely—cf.,
e.g., the claim by O’Connell and Weeks that their “new genotype-elimination algorithm

is guaranteed to detect every Mendelian inconsistency efficiently and quickly” [21,
pp. 1739-1740]. To the best of our knowledge, this is a new result in both computer
science and genetics.

After discussing some of the biological background for our work (Sect. 2), we pro-
pose a simple formal model for pedigrees and associated genotype information, argue
that this model is in agreement with the one used in the genetics literature, and use it to
formalize the consistency checking problem with focus on a single gene (Sect. 3). The
consistency checking problem is shown to be NP-complete in Sect. 4, even in the pres-
ence ofthreealleles. Our proof of NP-hardness for this problem is based on a reduction
from 3SAT (a classic NP-complete problem—see, e.g., [23, Propn. 9.2, p. 183]), and
uses pedigrees with loops. As stated in [21, p. 1733], likelihood computations on, and
consistency checking of, pedigrees with loops continue to pose daunting computational
challenges. This is confirmed by the use of looping pedigrees in our NP-completeness
proof, and by the fact that pedigrees without loops can be checked for consistency in
polynomial time (Thm. 2). (Note, however, that the loops that arise in our construc-
tions are of the kind geneticists call “marriage loops” [24], and not loops arising from
inbreeding.) Moreover, since we wish to use our result to infer the hardness of consis-
tency checking in genetically meaningful situations, we offer a discussion of the rea-
sonableness from a genetic viewpoint of our encoding of 3SAT in terms of pedigrees
and genotype information. Sect. 6 presents results on the computational complexity of
three problems from the genetics literature that are closely related to consistency check-
ing. In particular, we show that checking consistency of pedigreestaxealleles is
in P (Thm. 4). On the other hand, checking consistency of phase known genotype in-
formation, and deciding whether a pedigree hasitical genotypes (wittk > 0) are
both NP-complete (Thms. 3 and 5). The final section of the paper (Sect. 7) is devoted
to some concluding remarks.

Related WorkAs previously mentioned, linkage analysis is a statistical method used to
relate genes in the human genome to some biological trait that an individual possesses.
Like this method, other pedigree analysis techniques involve calculations with proba-
bility distributions describing, e.g., the likelihood of gene transmission from one gener-
ation to the next. The study [24] investigates the structural complexity of two problems
whose solution is part and parcel of many statistical pedigree analysis methods, viz. the
calculation of the so-calletharginal probabilityand that of computing the so-called
maximum likelihood The decision problems associated with both of these computa-
tional tasks are shown NP-hardap. cit even for pedigrees without inbreeding loops,

and with focus on a single gene.

There is a close connection between our NP-completeness result for the consistency
checking problem and the NP-hardness results from [24], but neither set of results im-
plies the other. For instance, a pedigree with genotype information is consistent if, and
only if, the maximum likelihood for that pedigree is positive. The consistency checking
problem can therefore be reduced to an instance of the decision version of the maxi-
mum likelihood problem. However, this does not yield our NP-completeness result as a
corollary. Moreover, we focus on consistency checking, an apparently very basic prob-
lem in genetics, with a purely combinatorial flavour, that does not involve any likelihood
computations.

It is also interesting to look at similarities and differences in the proofs of the NP-
completeness result for consistency checking we offer here (see Thm. 1), and of Thms. 5
and 9 in [24]. Both sets of results use reductions from 3SAT. The reductions are, how-
ever, very different, and, at first sight, somewhat at odds with one another. In our proof
of Thm. 1, we focus on a single gene with three alleles. The use of three alleles in this
proof of NP-hardness of the consistency checking problem is most likely necessary be-
cause, as stated in Thm. 4, checking consistency of pedigree¢vavalieles is in P.

The reduction employed in [24] instead uses only two alleles, and the threshold value
on, e.g., the maximum likelihood plays a crucial role in the proofs of the NP-hardness
results offeredbidem Indeed, the pedigrees over two alleles generated by the reduc-
tions employed there amwaysconsistent, as would be detected by the algorithm on
which the proof of our Thm. 4 is based.

In an effort to accelerate likelihood calculations, geneticists have proposed geno-
type elimination algorithms. The aim of these algorithms is to identify, and eliminate,
those genotypes that are not consistent with the observed phenotype information in
the pedigree. The first algorithm for genotype elimination was proposed by Lange and
Goradia in [18], where it was shown that the algorithm is correct for genotype elimina-
tion over non-looping pedigrees, but fails to detect all superfluous genotypes for inbred
pedigrees. An algorithm for genotype elimination that is correct also in the presence of
loops in pedigrees has been offered by O’'Connell and Weeks in [21].

Genotype elimination algorithms may be used to detect Mendelian inconsistencies
and critical genotypes in pedigrees—see, e.g., the proof of Thm. 2, where we make use
of the aforementioned algorithm by Lange and Goradia to argue that pedigrees without
loops can be checked for consistency in polynomial time. This makes them suitable as
pre-processing steps in algorithms that assume that the input genotype data be consis-
tent. An example of such a use of genotype elimination algorithms is presented in [19],
where the authors propose a rule-based, iterative, heuristic algorithnb/able ex-
tension algorithmfor the so-calledViinimum-Recombinant Haplotype Configuration
Problem Although this problem is shown to be NP-harddp. cit, the encouraging
preliminary experimental results given in that reference seem to indicate that the block
extension algorithm performs rather well in practice under the assumption that its in-
put data are consistent. As we show in this paper, however, checking the consistency
of the input data is itself computationally hard. The reference [19] also offers a poly-
nomial time algorithm for haplotype reconstructiafthout recombinatiorthis algo-
rithm assumes input data with no missing genotypes, whose consistency can be checked
in linear time in the number of non-founders of the input pedigree. (See the proof of
Thm. 1.)

Finally, we remark that bioinformatics seems to be a rich mine of NP-completeness
results. In particular, the literature presents several such results in the field of protein
folding—see, e.g., those obtained independently by Berger and Leighton in [2], and
Crescenzet. al in [4]. Both these references show that the protein folding problem in
the two-dimensional hydrophobic-hydrophilic model is NP-complete by reduction from
the Hamiltonian cycle problem, and contain pointers to related studies.

2 Biological Preliminaries

It is well understood that we inherit genetic material from our ancestors. The idea of
inheriting traits was discovered by Gregor Mendel (1865). Arguably, Mendel’s main
contribution to modern genetics was the Mendelian laws of inheritance. Since these
principles guide the development of the formal model presented in Sect. 3, we now
present Mendel's laws, which specify the concept knowrMandelian inheritange
verbatim from [15], and discuss their impact on our work. For further background in-
formation on the concepts from genetics on which our work is based, we refer the reader
to [11, Appendix A].

Unit factors in pairs: Genetic characters are controlled by unit factors that exist in
pairs in individual organisms.

The unit factor, as Mendel describes it, is today known gemre Genes occur in

pairs, a paternal and a maternal allele, which reside on each of the chromosomes
constituting a chromosome pair. This law implies that the genotype of an individual
should always be considered as a pair.

Dominance/Recessivenes$Vhen two unlike unit factors responsible for a single
character are present in a single individual, one unit factor is dominant over the
other, which is said to be recessive.

Dominance and recessiveness refer to phenotype, and are not considered further in
our biological model. We assume that it is always the individual’'s genotype, and
not its phenotype, that is considered known. That s, it is always the specific alleles
we use, and never an abstraction of the trait they code.

Segregation:During the formation of gametes, the paired unit factors separate and
segregate randomly so that each gamete receives one or the other with equal likeli-
hood.

The principle of segregation states that any combination of alleles, which form a
genotype, should be considered equally likely to occur. This means that all possible
combinations of the paternal and maternal alleles are possible.

Independent Assortment:During gamete formation, segregating pairs of unit fac-
tors assort independently of each other.

Independent assortment states that each gene in a chromosome is inherited indepen-
dently of all other genes. Since the rest of this paper focuses on a single locus, this
principle is irrelevant for our developments. It is worth mentioning, however, that,
unlike the previously mentioned principles, independent assortment is no longer
believed to be unconditionally true. In fact, the primary aim of methods like link-
age analysis is to determine whether there femgmentsof the genome that are
inherited in a pattern that is unlikely to occur purely by chance.

The Mendelian laws of inheritance have been chosen by many researchers in com-
putational genetics as the starting point in their investigations (see, e.g., the refer-
ences [8,21,22]). Furthermore, a large number of traits are today known to be caused
by single gene disorders [13].

Pedigreesin order to track the inheritance of genetic traits, geneticists use structures
calledpedigreesln our setting, we shall always assume that a pedigree has some (pos-
sibly incomplete) genotype information associated with it. A pedigree consists of in-
dividuals and their family relations. (See Figlifor an example of a pedigree.) Each
individual has an associated genotype, which we write just below the individual, that
consists of two of the alleles for the gene under consideration. A basic relation amongst
individuals is thenuclear family which consists of two parents and their common off-
spring.

AB Genotype information

D Male individual
Q Female individual

Fig. 1-1: Example of a pedigree.

The genotype of each individual in a pedigree is either known through a genotyping
process, or it is a set of genotypes which can be inferred from the Mendelian laws of
inheritance. As the principle of segregation states, an individual inherits one allele from
each parentGenotype phasefers to the heredity of each allele of the genotype for an
individual, that is, whether a given allele is inherited from the paternal or maternal side.
In general, by observing a chromosome pair, it is not possible to say which compo-
nent is inherited paternally or maternally. We have chosen to treat the genotype of each
individual as phase unknown, irrespective of the knowledge of that of its ancestors, un-
less otherwise stated. When describing genotypes, we only write one of the equivalent
genotypes (e.gAB is equivalent tdBA).

Consistency Checkind\ pedigree with associated genotype informatiosdsisistent
when all observed or inferred genotypes are possible according to the Mendelian laws
of inheritance [22].

There can be several reasons for inconsistencies in a pedigree and its genotype in-
formation. For instance, a family relationship could be misspecified, or there could be
errors in the genotyping process or mutation. Generally it is not possible to determine
the source of error; it is simply established that the given genotype information is incon-
sistent with the pedigree under investigation. By way of example, consider the pedigree
shown in Fig. 2. (In this pedigree, and in what follows, whenever an individual has
no genotype information attached to it, then no genotype information is available for
him/her.) This pedigree is inconsistent in two places. One of the inconsistencies is due
to the fact that it is impossible that individual 5 could have inheritedGtedlele from
either of her parents. To observe the other inconsistency, it is necessary to reason about

more than two generations in the pedigree. The inconsistency appears because individ-
ual 7 cannot have inherited hiz allele from individual 3, because individual 3 inherits
her alleles from parents that do not hav€ allele.

Fig.1-2: Aninconsistent pedigree.

The example we have just presented does not capture the complexities that arise
when dealing with large pedigrees. Each test is simple, but considering that multiple
individuals can have different possible genotypes, and that the possible genotypes of
some individuals must be inferred by analyzing several generations, it should be clear
that it can be a daunting task to analyze pedigrees by hand. As pointed out in Sect. 1,
geneticists maintain that looping pedigrees present some special probldanp iA
a pedigree is a sequence of arcs that starts and ends in the same individual [21]. (See
Def. 2 for a formal definition.) An example of a consistent, looping pedigree is de-
picted in Fig. 3. We invite the reader to find suitable genotypes for the ungenotyped
individuals in it.

3 Formalizing Gene Inheritance and Mendelian Consistency

As already mentioned in Sect. 2, a pedigree is a fundamental structure used in genetics.
In order to reason about pedigrees and the genotype information that they contain, we
need a formal model for them. Several formalizations of the notion of pedigree have
been presented in the literature on computational genetics. (See, e.g., [19,24].) We now
proceed to present the models for pedigrees and their associated genotype information
adopted in this study, and then use these models to formalize the consistency checking
problem.

Definition 1 (Pedigree).A pedigreeconsists of a 4-tupl® = (V, F, p, m) where:

— Vis afinite, non-empty set aiemberf the pedigree (ranged over hywv),
— F C Vs the set ofounders

Fig.1-3: A consistent looping pedigree. The dotted line also represents a
parents-child relationship.

— pm:V\ F — V are thepaternabndmaternal functiongespectively, where
p(V\F)nm(V\F) =0

(that is, nobody can be both a mother and a father), and
— the transitive closure of the binary relation obtained as the union of the graphs of
p andm is irreflexive (that is, a member of the pedigree is never its own ancestor).

The setV = V' \ F is usually referred to as the set nbn-foundersf the pedigree.
Remark 1.Note that the set of founders in a pedigree is always non-empty.

Note that, since the model specifies the sex of an individual only implicitly via the
paternal and maternal functions, the sex of a “leaf” in a pedigree (i.e., of an individ-
ual without offspring) is not specified. In our examples and constructions, the sex of
individuals in a pedigree without offspring will be chosen arbitrarily, as it is immate-
rial in consistency checking. Our pictorial representation of pedigrees (with associated
genotype information) is borrowed from the genetics literature, and has already been
introduced in Fig. 41. That figure represents a pedigree, consisting of a single nuclear
family, whose founders are individuals 1 and 2, who are respectively the father and the
mother of individual 3.

For the sake of precision, we now offer a formal definition of loop in a pedigree.
The following definition is based on that in [21].

Definition 2 (Looping Pedigree).Let P = (V, F, p,m) be a pedigree. Two distinct
members, andv of the pedigree are said toateif they have an offspring in common—
that is, if there is a non-founder of P such that{p(v'), m(v")} = {u,v}. Such a’

is achild of w andwv.

Themating graplassociated withP is the undirected grapty p whose set of nodes
includesV’, and containsnating node$\/,, ,, for every pair(u, v) of members oP that
mate. The edges in such a graph are those that connect memlaerd v that mate
to the mating nodé/,, ,, and those that connect such a mating node to the common
children ofu andwv.

Aloopin Gp is a non-empty path consisting distinctedges that starts and ends
in the same node.

Finally, we say that a pedigreB is looping(or has a loopif its associated mating
graphGp contains a loop.

Fig. 1-4: Apedigree illustrated as done throughout this paper, and its associated
mating graph as defined in Def. 2. The black dots are the mating nodes
and the grey dots are “person nodes”.

An example of a looping pedigree is given in Fig4ltogether with its associated
mating graph. One of the loops in that pedigree is due to inbreeding, and arises because
individuals4 and5 mate, and have a common ancestor. Another is a so-called marriage
loop, and stems from the matings between individuahd the two brothers and?.
Consistency checking of a pedigree is based on its associated genotype information;
intuitively, the pedigree defines the structure of the family relationships that are being
modelled, and the genotype information is the data which must be consistent with the
structure. We now present a formal genotype model. In what follows, it is always as-
sumed that instances of this genotype model are in the context of a specific gene and
pedigree. We also assume a fixed, finite and non-empty eétallelesranged over by
A, B, etc.
In what follows,Two(.A) denotes the family of non-empty subsetsdothat contain
no more than two alleles. As described below, an elemefitwaf(.4) will be used to
represent a genotype over the set of alledes

Definition 3 (Genotype Information). Let P = (V, F, p, m) be a pedigree. Ayeno-
type informatiorfor P is a partial functiong : V — Two(.A) that associates a geno-
type to (some of) the members of the pedigree. The domainG), of the function is
referred to as theset of genotyped memben$the pedigree. The genotype information
G is completdf dom(G) = V.

LetG andG’ be two genotype information. We say tidatextendss if dom(G) is
included indom(G’), andG andg’ coincide oveklom(G).

Remark 2.In the above definition, a genotype information may be seen as assigning
an unorderegbair of alleles to members of the pedigree. This indicates that the phase
of the alleles is unknown. If a pedigree membeh@nozygoust a given locus in its
genome, i.e., the two alleles at that locus coincide, the fun¢liogturns a singleton
set.

In the literature on genetics, and in our pictorial representation of pedigrees, the
genotype{ A,B} is given as the strind B (or BA). In particular, the genotypgA } is
given asA A. In the remainder of this paper, we shall use these notations interchange-
ably without further explanations.

Considering consistency for a specific gene amounts to checking whether the pedigree
and the genotype information are consistent according to the Mendelian law of segre-
gation (see page 5). The law of segregation implicitly defines the following constraint
on consistent genotype assignments:

Each individual must inherit precisely one allele from each of its parents

Our order of business will now be to formalize this constraint, and what it means that a
genotype information is consistent with respect to a pedigree.

Definition 4 (Consistent Genotype Information).Let P = (V, F, p, m) be a pedi-
gree.

1. A complete genotype informatigrfor P is consistentvith P if, whenevew € N:
(@) ifG(v) = {A,B}, then eithetA€ G(p(v)) andBe G(m(v)), or Be G(p(v))
andAe G(m(v));
(b) if G(v) = {A}, thenA is contained in botlg/(p(v)) andG(m(v)).
2. A genotype information faP is consistenwith P if it can be extended to a com-
plete, consistent genotype information fér

A genotypej (v) for a non-founderin a pedigree that satisfies the conditions of Def. 4(1)
is often referred to as possible zygotéor the genotype paifG(p(v)),G(m(v))}—
see, e.g., [18, p. 252].

4 Consistency Checking is NP-complete

In what follows, CONS will denote the consistency checking problem for genes with an
arbitrary number of alleles. We shall us€ONS to refer to the consistency checking
problem for a gene with possible alleles, for some positive integerOur aim in the
remainder of this section will be to show the following result:

10

Theorem 1. The problems:CONS { > 3) and CONS are NP-complete.

Remark 3.The proviso in the statement of the above theorem that the number of alleles
n be larger than, or equal to, three is most likely necessary. In fact, in the presence of a
single allele, there is only one complete genotype information, viz. that which assigns
the only allele to each member of the pedigree, and that is consistent. Hence, in that
case, each genotype information is consistent with respect to every pedigree. Moreover,
as will be shown in Thm. 4, the probled€ONS is decidable in polynomial time.

To prove Thm. 1, we shall first show that CONS, and th@ONS for everyn, is in
NP. We then show that 3CONS, and therefore CONS#&DA@NS for everyn > 3, is
NP-hard.

It is not too hard to see that CONS is in NP. To this end, given any pedigree
with genotype informatior, it is sufficient to exhibit a certificate that is verifiable in
polynomial time. The certificate for an instance of problem CONS is a complete and
consistent genotype informatig@if that extends; in the sense of Def. 3. To check
the consistency ofi¢ we only have to make sure that the conditions in Def. 4(1) are
satisfied for each non-founder of the pedigree. This only takes constant time for each
non-founder, and thus the whole consistency check takes linear time in the number of
non-founders of the pedigree. Note that the complexity of this consistency check is
independent of the number of possible alleles, which showsB&INS is in NP for
everyn.

Our order of business will now be to show that 3CONS, and thus CONS, is NP-
hard. Note that this is a strong indication that the structural complexity of consistency
checking doesiotdepend on the number of alleles for a gene, if that number is at least
three. We shall stress the importance of this constant number of alleles from a genetic
viewpoint later in this section. Our NP-hardness proof for 3CONS is by reduction from
3SAT. The central idea of the proof is to build a pedigree with associated genotype
information from a 3SAT instance in such a way that the structure of the pedigree to-
gether with the genotype information mimic the variables and clauses of the input 3SAT
instance as closely as possible. The constructed pedigree with genotype information is
consistent if, and only if, the 3SAT instance it models is satisfiable.

We recall, for the sake of clarity, that 3SAT is the special case of the satisfiability
problem for boolean formulae in which the input formulae arednjunctive normal
form, and all of their clauses (i.e., disjunctions of literals) have exactly three literals—
where a literal is either a variable or a negated variable. Our aim, in the remainder of this
section, is to offer a polynomial time reduction from 3SAT to 3CONS. In fact, it is not
too hard to see that, without loss of generality, we can restrict ourselves to considering
boolean formulae in conjunctive normal form whose clauses have theform z Vv 7,
xVyVz orzVyVz, for some distinct variables, y, z. Indeed, any 3SAT instance
can be brought into that form in the following four steps:

1. Remove all clauses containing complementary literals (as they evaluate to true). If
all clauses are removed in this step, then the original formula is satisfiable.

2. Replace multiple occurrences of the same literal within a single clause with a single
occurrence of the same literal (&g [= [, for every literall).

3. If a clause consists of a single literal, then

11

(a) remove all clauses that contain this literal (as it must be assigned the value true)
and

(b) remove all occurrences of its negation in other clauses (as they have to be
assigned the value false).

If all clauses are removed in step 3a above, then the original formula is satisfiable.

If some clause reduces to the empty clause in step 3b, then we know that there is

no assignment that can satisfy the clause, and the formula is not satisfiable.

4. Finally, we put every clause in the formula into one of the formsy, 7V 7,
xVyVz orzVyVz, for some distinct variables, y, z. This can be done by
introducing dummy variables. For instance, a clause of the formv z is replaced
with (ZVp) A (y V z V p), for some fresh variablg. (We use a different variabje
for each clause.) The complete set of reduction rules used in this step may be found
in Table +1.

2 literals 3 literals
0 negationge V y (no reduction) x V y V z (no reduction)
1negationzVy — (ZVP)A(yVp)|TVyVz— (TVDP) A(yVzVp)
2 negationst V g (no reduction) ITVY Vz—(TVYVD) A(zVp)
3 negations T V 7y V Zz (no reduction)

Table 1-1: The rules for step 4 in the transformation of 3SAT instances.
We pick a fresh variable p for each clause to be reduced.

It is clear that any instance of 3SAT can be rewritten to the form described above in
polynomial time, and that the resulting formula is satisfiable if, and only if, so was the
original one.

We are now ready to present our reduction from 3SAT to 3CONS.gLleé an
instance of 3SAT. In light of the above discussion, we may assumefisah conjunc-
tive normal form, and that its clauses have one of the farmsy, TV 7y, x Vy V 2,
orz VgV z, for some distinct variables, y, z. Furthermore, we assume a fixed total
ordering on the variables, and that the variables always appear in clauses in an order
that is compatible with it. The construction of a pedigféewith associated genotype
informationGy4 from a formulap proceeds in the following three steps:

1. Make variable gadgets for each of the variables.in

2. Make clause gadgets for each of the clauses in

3. Combine the variable gadgets with the clause gadgets, and output the resulting
pedigree.

In the construction outlined below, the genotype informatigrwill be explicitly de-
scribed in stepwise fashion as we show hByis built.

We start by describing the construction of the variable gadgets. In our construction,
we shall make use of three alleles, denoteddhyF andT. The allelesT andF are
intended to play the role of “true” (denoted) and “false” (denoted by in the

12

3SAT problem. The third allelé\ is an auxiliary dummy allele used for controlling
possible inheritance patterns.
For each variable that occurs inp we construct the pedigrde, thus:

P.’E = <VL7F.E7p.E)m.E> bl
where

Ve = {fwvm;cavmsx}
F, = {fxvmzasx}
pz(vz) = fx and

m(v,) = my .

The genotype informatio6i, assigns genotypA A to bothm, (the motherof v,) and
s, (thespousefv,), and genotypd'F to f, (thefatherof v,). The genotyped pedigree
P, is depicted in Fig. 45.

The pedigred’, consists of three genotyped members, and one ungenotyped indi-
vidual v,.. The genotype of,, can, however, be partly inferred by the Mendelian laws,
and has the formt A, where the “allelic variablet takes either the valuk or T. This
is indicated byz A on the figure. Moreover, the allele associated with the individ-
ual v, is the only possible origin of & or F' allele that can be inherited further from
the inheritance point oP,. We shall refer to individuad,, in Fig. 1-5, as thevariable
individual for z. The illustration on the left of?, in Fig. 1-5 shows how the variable
gadgets are depicted in larger pedigrees.

TF AA

o
& AA TA
Inheritance

Point

Fig. 1-5: The variable gadge®, that is used in the proof showing that 3CONS
is NP-complete.

The next step in the reduction is to construct a clause gadgdor each clause
in the formula¢. As we have already pointed out, there are only four different types
of clauses we need to consider, and each leads to a different type of clause gadget.
The clause gadgets for clause®sf the formz v y andz Vv i (respectivelyz v y Vv z
andz v 7 V z) have the same pedigree structutg but the genotype informatiog

13

assigns a different genotype to the one individuaPjrwithout offspring. In each pedi-
gree P,, we shall use:, to denote this single “leaf”, angd, andm., to stand for its
father and mother, respectively. If the clauseontains three literals, the pedigr&e
also contains individualgf , andgm.,, who are, respectively, the maternal grandfather
and grandmother of,. The paternal and maternal functiops andm., encode the
family structure that we have just described—that is:

P, (1) = {f” fu=c

gf, if u=m, andy contains three literals

m., (u) my ifu=c,
u) =
K gm., if u = m, andy contains three literals.

In what follows, we shall writd’, for the set of individuals of the pedigres.

The only new genotyped individual iR, is its leafc.,. The genotyp&,(cy) is TA
if v contains only positive literals, arfdA otherwise.

The four different types of clause gadgets are depicted in Fig.\there we also
show how the clause gadgets will be linked to the variable gadgets in the construction of
the pedigred’;. The genotype information associated with the leaves of these pedigrees
is used to code constraints on the values of the variables in a satisfying assignment for
the original clauses. For instance, the leaves of the pedigrees associated with the clauses
containing only positive literals have genotyfi®&\ to represent the fact that one of
the variables in that clause must be assigned the truth value true in every satisfying
assignment.

Having constructed a variable gadget for each variable and a clause gadget for each
clause occurring i, we combine these gadgets, and output the resulting pedigree
The pedigred?;, = (Vy, Fy, Py, my) is built thus:

— the setVy of members off is the union of thé/,’s (with = a variable occurring
in ¢) and of theV/,’s (with v a clause of);

— the setF, of founders ofP; is the union of the,’s (with x a variable occurring in
9);

— the functionpy, : Vu\ Fy — Vi andmy, : V,\ Fy, — V, are obtained by extending
the paternal and maternal functions for the pedigréeand P, thus:

s; if u= f,, and the first variable of is «
(u) sy If uw=m,, andy = x V y for some variable:
u) = . .
P¢ sy ifu=gf, andy=xzVyV zforsome variables,
s, ifu=gm,, andy =z VyV zfor some variables, y
v, if u = f,, and the first variable of is =
() vy if u =m,, andy = z Vv y for some variable
mey(u) = N .
¢ vy ifu=gf ,andy=2zVyV zforsome variables,
v, ifu=gm,, andy=xVyV zfor some variables, y.

The pedigred’y is depicted in Fig. 47.

14

Pzr\/y :

TA
Pryy.
in, in,
FA
Rrv yVz :
oo 1, n.
TA
Prygyz:

H
3

FA

15

Fig. 1-6: The pedigrees constructed for the four basic clause types along with
their connections with the appropriate variable gadgets. Notice the
symmetry betwee®,, and Pz, and Py v - and Pzyvyvz, respec-
tively.

Variable gadget for Variable gadget for
the first variable in the last variable in
the formula the formula

Variable] e
level Vel Va2 Vi3 2 Van

4\ Parents-child

\ relationship
Clause " 72 coe . Ym
level

Clause gadget for Clause gadget for
the first clause in the last clause in
the formula the formula

Fig. 1-7: The general form of the pedigree constructed in the reduction from
3SAT. Notice that there exists a one to one correspondence between
the number of variables and clausespirand the number of variable
gadgets and clause gadgets, respectively, in the constructed pedigree.

Example 1.Let ¢ be the formula
@Vu)AGVT)A(xVY) AN@TVY) . (1-1)

The pedigree produced from this formula by the construction described above is de-
picted in Fig. 8.

The following result states the correctness of our constructid®,dfom a 3SAT for-
mulag.

Proposition 1. A 3SAT formula is satisfiable if, and only if, the genotype information
G, is consistent withPy.

Proof. Throughout the proof, for a boolean formubaand an assignment of truth
values to its variables, we ugg¢) to stand for the allele corresponding to the truth

valuep(¢)—that is,
_ T ifp(¢) =T
p(¢)_{F if p(6) = F.

We are now ready to prove the two implications separately.

— ‘ONLY IF’ MPLICATION. Let p be an assignment of truth values to the variables
occurring ing. We define the canonical extensi@gj associated with of the geno-

16

TA FA TA FA

(zVvu) yva) (xVy) @vy)

Fig. 1-8: The pedigree for the formula{1). Note that formula (41) is satisfi-
able, and that the above pedigree is consistent.

type informationGy thus:

Go(u) if u e dom(Gy)

p(x)A if u = v,, for some variable:

p(x)A if u= f, for some clause whose first literal isc or T

p(y)A if w=m,, wherey =z Vvyory=7V7yforsomez

gg(u): p(y)A ifu:gfv,Wf.lere’y:x\/y\/zorvzf\/ﬂ\/E

for some variables, z

p(z)A if u=gm., wherey =xVyVzory=TVyVvz
for some variables, y

p(yV z)A if u=m,wherey=2zVyVzforsome variable

p(y A z)A if u=m,wherey =7 V7V Zforsome variable.

Note that the genotype information defined above is complete for the pedigree

and extendg;.

We now proceed to prove thatif¢) = 7', theng}, is consistent withP,. Assume,

to this end, thap(¢) = T. Thenp(vy) = T for each clause of ¢. In particular, for

each clause ap containing only positive (respectively, negative) literals there is a
variable that occurs in it that is set o (respectivelyF) by p. To show tha’(j(’; is
consistent withP, we consider each non-foundein Py, and argue tha (u) is

a possible zygote of the genotypes assigned to its parenﬁg.tﬁelow, we only
present the details for three selected cases. The remaining ones are similar, and we
leave the details to the reader.

e CASEw = v,, FOR SOME VARIABLEx OCCURRING IN¢. Inthis cas@i(u) =
p(x)A is one of the possible zygotes T and A A, that are the genotypes
of u's parents, no matter whatx) is.

e CASE u = m.,, FOR SOME CLAUSE~y OF ¢ THAT CONTAINS THREE LIT-
ERALS. Assume that the variablgsand >z occur in the second and the third

17

literal in , respectively. By the definition a/, the parents ofi have geno-
typep(y)A andp(z)A. Itis a simple matter to see that bgify v z) A and
p(y N z) A are possible zygotes @i(y) A andp(z)A.

e CASE u = ¢, FOR SOME CLAUSE?Y OF ¢ CONTAINING THREE POSITIVE
LITERALS. Since~y contains only positive literals, say = = V y V z, then
G4(cy) = TA. As p(v) = T, we have that eithes(z) = T orp(y vV z) = T.
By the definition oG}, it follows that eitheiG/ (f,) = TA or G/ (m-) = TA.
Since the individuat, can inherit theA allele from either of its parents, we
infer thatg? (c,) is a possible zygote @ (f,) andg/(m.,), which was to be
shown.

— ‘I P IMPLICATION. Assume that the genotype informatigp is consistent with
Py. This means that there is a complete, consistent genotype inforngtion
that extendg/,,. We shall show how to construct from it a satisfying assignment
for ¢.

Note, first of all, that, because of the wgy is defined over variable gadge&q;
must assign eithéFA or FA to each variable individual,. Hence the genotype in-
formationg¢ determines an assignmentf truth values to the variables occurring
in ¢ as follows:

T ifG5(v.) =TA
@=\F i g5 (v,) = FA.

We now argue that thig is indeed a satisfying assignment farTo this end, it is
sufficient to show thap satisfies each of the clauses¢ofThis we now proceed to
prove by considering each of the possible forms a clausiey may take.

e CASEy = z V y. Sincegg is consistent with?;, we have thagg(fv) is
contained in{p(z)A, AA}, and thagyg (m.,) is contained i p(y)A, AA}.
Moreover, agjg(c,) is TA, eitherGg(f.) or G¢(m,) must be equal ta’A.
Because of the wa,, is built, this can only happen if eith%(uw) = TA or
gg(vy) = TA. This yields thap(x V y) = T, which was to be shown.

e CASEy =T V7V Zz. Sincegy is consistent with?;, we have that:

1. G¢(f,) is contained ifp(z)A, AA},

2. G5(af) is_ contair_med ir_}[p(y)A, AA}Y,
Gg(gm.) is contained ifp(2) A, AA},
Gg(m.) is contained i p(y) A, p(2) A, p(y)p(z), AA}, and
eitherGg(f,) = FA or G¢(m,) is contained if FA,FF,FT}.
If G¢(fy) = FA holds, then, by item 1 above and the wBy was built, it
follows thatGj (v,) = FA. Hence, by the definition gf, we have thap(z) =
F. We may therefore conclude thatatisfiesy.
If G5(m,) is contained in{FA,FF,FT}, then eitherG$(qf,) or G5(gm.,)
equalsFA. Again, we have that eith¢f; (v,) = FA or Gg(v.) = FA. Hence,
by the definition ofp, it follows that eitherp(y) or p(z) equalsF. We may
therefore conclude thatsatisfiesy.

The proofs for the other two cases follow similar lines, and are therefore omitted.

3.
4.
5.

This completes the proof of the proposition. O

18

Since the pedigre®, can be constructed in polynomial time from the forma)ahe
proposition above allows us to conclude that 3CONS is NP-hard, and the proof of
Thm. 1 is now complete.

4.1 Discussion

The reference [11] offers, amongst other things, an alternative reduction from 3SAT to
CONS that uses a number of alleles that is linear in the number of variables in the input
3SAT instance. This reduction, albeit possibly conceptually simpler than the one pre-
sented here, is not reasonable from a genetic standpoint because the maximum number
of alleles that can be expected for a gene is roughly 100 [14]. Furthermore, although
inbreeding does occur often in the animal kingdom, it would still be critical from a
genetic perspective if our modelling of 3SAT using pedigrees were based on severe in-
breeding, and we have striven to avoid this problem in our constructions. (The loops
that arise in the pedigrees resulting from our reductions are calktiage loopsn

the pedigree literature—see, e.g., [24]—, and are natural in real life pedigrees.) The
question is whether our other modelling assumptions are fair in light of the biological
knowledge on consistency checking, e.g., the amount and form of genotype information
in the real world. We now discuss these aspects by analyzing the pedigree structure and
the genotyped individuals produced by the reduction outlined above.

Number of OffspringThe points were a large number of children from a single cou-
ple can occur in our construction are the inheritance points of the variable individuals.
Every occurrence of the same variable implies that a child is constructed from the inher-
itance point. Theoretically, the reduction requires an arbitrary number of children from
a single couple. Although it can be argued from a complexity theoretic perspective that
it is equally complex to check for the satisfiability of formulae in conjunctive normal
form where at most three occurrences of a single variable are allowed (see, e.g., [23,
Propn. 9.3]), and thus that three children per couple are enough to reduce 3SAT to
3CONS, itis also possible to argue strongly on the subject from a biological viewpoint.
Two arguments can be brought forth, the first regarding an expansion of the structure,
and the second regarding the gender of the variable individuals. First, we have argued
in [11] that it is possible to model a variable gadget in such a way that no more than
fifteen children are needed in the reduction. Second, it is theoretically possible for male
individuals to have a large number of children, but with different women (the women
still have an upper bound on the number of offspring). This naturally requires that the
variable individuals be males.

Genotype HistoryThe aforementioned reduction from 3SAT to 3CONS requires geno-
type information five generations back. In the case of species with a lifespan of up to
five years this seems a reasonable assumption. But for humans and animals with a long
lifespan, it is doubtful whether such data exist. Although it can be argued that it is just
a matter of time before such genotype history does exist for humans, we have shown
in [11] that it is possible to perform a reduction where there is only genotype informa-
tion for the individuals in the youngest generation of a pedigree, at the price of using a
larger number of dummy alleles.

19

5 The Complexity of Consistency Checking Non-looping Pedigrees

As already remarked in Sect. 1, our reduction from 3SAT to 3CONS employs looping
pedigrees. The following result, which seems to be folklore in the literature on compu-
tational genetics, offers strong evidence that this is most likely necessary.

Theorem 2. Checking the consistency of non-looping pedigrees can be performed in
polynomial time.

Our order of business will now be to prove the above theorem. In our proof, we shall
make use of the algorithm for genotype elimination proposed by Lange and Goradia
in [18]. Since we shall present a complexity analysis of that algorithm in what follows,
we offer a slight adaptation of the algorithm frasp. cit in Table 2. (The only dif-
ference between the version of the algorithm presented in Tabjadd that from [18,

pp. 251-252] is that, in step A, for each pedigree member we list all of the genotypes
compatible with the genotype assignmegntather than those compatible with his/her

phenotype.)

INPUT: A pedigreeP = (V, F, p, m) with a genotype informatiog for it.
OUTPUT: A mappingG’ : V — 27%°(A) sych that:
e G'(v) is either empty or equalgi(v)}, for everyv € dom(G), and
e for everyv € V, it holds thaty € G’(v) if, and only if, G¢(v) = g for some complete
and consistent genotype informatigfi that extends;.
LANGE-GORADIA ALGORITHM: On input P with associated genotype informatignpro-
ceed as follows:
A. For each pedigree membersetG’ (v) to {G(v)}, if v € dom(G), and toTwo(.A),
otherwise.
B. For each nuclear family:
1. Consider each mother-father genotype pair.

(a) Determine which zygote genotypes can result (according to the rules in
Def. 4(1)).

(b) If each child in the nuclear family has one or more of these zygote genotypes
among his current list of genotypes, then save the parental genotypes. Also
save any child genotype matching one of the created zygote genotypes.

(c) If any child has none of these zygote genotypes among his current list of
genotypes—i.e., is incompatible with the current parental pair of genotypes—
take no action to save any genotypes.

2. For each person in the nuclear family, exclude frorg’(v) any genotypes not
saved during step 1 above.
C. Repeat step B until no more genotypes can be excluded.

Table 1-2: The Lange-Goradia Genotype Elimination Algorithm.

The correctness of the algorithm for non-looping pedigrees has been shown in [18,
pp. 254-255]. The proof relies upon the observation that two nuclear families in a non-
looping pedigree that share some individual hexactlyone member in common.

20

In light of the following result, the Lange-Goradia algorithm for genotype elimina-
tion can be used to decide the consistency of a non-looping pedigree with associated
genotype information.

Lemma 1. Assume thaP is a non-looping pedigree with associated genotype infor-
mationG. Theng is consistent folP if, and only if, the se¢’ (v) returned by the Lange-
Goradia algorithm on input P, G) is non-empty for every membenpf P.

Proof. Suppose tha§ is consistent forP. This means that there is a complete, con-
sistent genotype informatio@¢ for P that extendsj. By the post-condition of the
Lange-Goradia algorithm, the genoty@é(v) is contained irg’(v) for every member

v of P. It follows thatG’(v) is non-empty for every memberof P, which was to be
shown.

Conversely, assume that the $gtv) returned by the Lange-Goradia algorithm
on input (P, G) is non-empty for every member of P. Lange and Goradia show
in [18, pp. 254—-255] how to build a complete, consistent genotype inform@tisach
that G¢(v) is contained inG’(v) for every membew of P. By the post-condition of
the Lange-Goradia algorithng}’ (v) is either empty or equal§G(v)}, for everyv €
dom(G). By our assumption, we have th@ft(v) equals{G(v)}, for everyv € dom(G).

It follows that the constructed genotype informatigh extendsg, completing the
proof. O

To finish the proof of Thm. 2, it is therefore sufficient to argue that the Lange-Goradia
algorithm has polynomial worst-case complexity. (Apparently, no such complexity anal-
ysis is available in the genetics literature [17].) To this end, let us assume that the input
pedigree consists af members, and that of them are founders. We shall prove that

the worst-case time complexity of the Lange-Goradia algorithm is polynomiahind

m. (In fact, the algorithm is also polynomial in the cardinality of the allelic alphabet

but the precise upper bound depends on the data structures used to implement the list
of sets of genotypes associated with the pedigree.)

To this end, in light of step B of the algorithm, we begin by providing an upper
bound on the number of nuclear families that may exist in a pedigreenwitembers
andm founders. Such an upper bound on the number of nuclear families i. This
follows because every non-founder in the pedigree can appear as a ahyddtly one
nuclear family.

Remark 4.Then — m upper bound on the number of nuclear families can actually be
achieved, as witnessed by the pedigree

P,={1,....2m -1}, {I,m+1,...,2m —1},p,m) , (1-2)
wherem > 0, andp(i) =i — 1 andm(i) = m +i — 1, foreveryi € {2,...,m}.

This pedigree, that is depicted in Fig:91 hasm male members (one of whom is a
founder),;m —1 female members (all of whom are founders) amd 1 nuclear families.

We are now in a position to offer an upper bound on the worst-case complexity of
the Lange-Goradia algorithm. Step A in the algorithm can be performed inGimé.

21

1 m+1

2 m+2

m—1 2m —1

m

Fig.1-9: The pedigreeP, .

Step B involves a loop that goes through all of the nuclear families in the pedigree. We
saw above that there are at mast m nuclear families to consider. For each nuclear
family, step la takes constant time, whereas steps 1b and 1c can be performed in linear
time in the number of children in the nuclear family under consideration. Since every
non-founder of the pedigree appears as child in exactly one nuclear family, it follows
that step B can be performed in timfi§n — m). Since step B can be performed at most
@ - n times, wheré is the size of the allelic alphabet, we can therefore conclude
that the Lange-Goradia algorithm runs in ti®@én(n — m)). This completes the proof

of Thm. 2.

6 Further Results

In this section we discuss briefly three new problems related to CONS motivated by the
underlying biology, and study their computational complexity.

6.1 Tolerance to Critical Genotypes

A critical genotypds genotype information on an individual that, if removed, would
make an inconsistent pedigree with genotype information consistent. Assume that it is
revealed that some application of pedigrees with genotype information is tolerant to a
specific number, sa¥, of critical genotypes in the genotype information. We denote
the problem of deciding whether there drecritical genotypes in a CONS instance

as kCRIT. For example, the inconsistent pedigree depicted in FHg.id in 1CRIT
because removal of genotype information from individual 1 or 2 results in a consistently
genotyped pedigree. Note tH&ERIT is just the CONS problem. We shall now show
that:

Theorem 3. In the presence of at least three allelé€RIT is NP-complete for every
k> 0.

Proof. Observe, first of all, thatCRIT is in NP for everyk > 0. This follows because
one can construct a nondeterministic Turing machine that, given a pediggesotype

22

informationg for P, and a non-negative integkyfirst guesses genotype assignments
to be removed frong/, then guesses a complete extensjowf the resulting genotype
information, and finally proceeds to check, in time that is linear in the number of non-
founders inP, if G’ is consistent foP.

To complete the proof, it therefore suffices only to show that 3CONS can be reduced
to kCRIT in polynomial time, for every: > 0. This is immediate ik = 0 because, as
remarked earlieQCRIT is just the CONS problem.

1 2k+1
AA

2 2k+2

2k — 1 4k -1

Fig. 1-10: The pedigreeP,.

Assume now that is positive, and thalA and B are distinct alleles. Consider a
pedigreeP with associated genotype informatigh Build an instance okCRIT by
taking the disjoint union of the pedigre®sand P, (see, equation-2 in Remark 4 for
the definition of 2;,), and extending the genotype informatigrio P, by assigning
genotypeA A to all of the male individualsin Py, with ¢ odd, and genotypBB to all
of the male individualg in P, with ¢ even. (For the sake of clarity, Fig-110 depicts
the resulting pedigree with genotype information. Note that this genotype assignment
for Py, is inconsistent.)

We claim that genotype informatiahis consistent forP if, and only if, the pedi-
gree and associated genotype information resulting from the above constructign have
critical genotypes.

Indeed, ifG is consistent for?, then the genotype information obtained by remov-
ing the genotypeA A from & members ofPy, is consistent for the disjoint union of
the pedigreed® and P,;. Conversely, assume that the pedigree and associated geno-
type information resulting from the above construction haeeitical genotypes. Since
the genotype information faP,; can only be made consistent by removing at léast
genotypes, we may therefore conclude iat consistent for°. O

Remark 5.The polynomial time reduction from 3CONS tCRIT (¢ > 0) used in

the above proof produces a “disconnected” pedigree. It is, however, not too too hard to
modify it so that it yields a “connected” pedigree. To this end, consider a pedigiree
with associated genotype informatignAssume, without loss of generality, thathas

a female membex without offspring. We build a pedigrel®’ and associated genotype
informationg’ as done in the above proof, but we add a new male founder, dalled

23

whose genotype iBB. Individual0 is the father inP’ of individual 1 in P, andu is
his mother.

Claim. G is consistent withP if, and only if, (G’, P’) is contained inkCRIT.

To see that the above claim holds, assume, first of all, ¢hst consistent withP.
This means that there is a consistent, complete exterggiaf G over P. Consider
the genotype informatiog” obtained fromG’ by removing the genotypA A from
k members ofP,;. This genotype information is consistent fBf. In fact, assuming
thatG¢(u) = CD, say, the complete extension @f that agrees witlg° over P, and
assigns genoty@B to all of the members af;;, apart froml that has genotypBC,
is easily checked to be consistent with

Conversely, assume th@’, P’) is contained inkCRIT. As in the proof of Thm. 3,
since the genotype information fdf,;, can only be made consistent by removing at
leastk genotypes, we may readily conclude thas consistent forP.

6.2 Consistency Checking with Two Alleles

According to [26, p. 274]single nucleotide polymorphisrase utilized markers where

two alleles exist. Consistency checking of such data amounts to the problem 2CONS.
A relevant question is whether 2CONS is also NP-complete or whether it is polyno-
mial time decidable. Three is often a “magic number”, when it comes to the structural
complexity of a computational problem. For instance, SCOLORING and 3SAT are NP-
complete, while 2COLORING and 2SAT are polynomial time decidable (see, e.qg., [23,
pp. 185 and 198]). The same holds for consistency checking of pedigrees in light of the
following result:

Theorem 4. The problem 2CONS is decidable in polynomial time.

Proof. Let G be a genotype information for a pedigr&eover an allelic alphabetl
of cardinality two, say4d = {A,B}. Assume, for use in our complexity analysis, that
P hasn members andn founders. We present a polynomial time algorithm to check
whetherg is consistent forP.

The algorithm consists of the following three steps:

1. Compute the set of members Bfthat must be assigned genotyAe\ or BB in
each complete, consistent extensiorgofReport the inconsistency ¢f if some
of these members is wrongly genotyped ¢yOtherwise, assign the appropriate
genotype to all of the members in these sets.

2. Check whethelP with the resulting genotype information contains a child with
genotypeA A that has a parent with genoty@B, or a child with genotyp&8B
that has a parent with genotypeA. If such a child is found, then report the incon-
sistency ofG.

3. Check the consistency of each sub-pedigree consisting of a child and its two par-
ents all of whose members are fully genotyped in the extensighpbduced by
step 1 of the algorithm. If any of these sub-pedigrees has inconsistent genotype in-
formation, then report the inconsistencythfOtherwise report that is consistent
for P.

24

We now argue that the above algorithm decides 2CONS, and has polynomial time
worst-case complexity.

Thefirst step in the algorithm amounts to computing the sets Mysind Musi g,
which are the least sets satisfying the following conditions:

— If vis a member of? andG(v) = CC, whereC € {A, B}, thenv € Mustcc;
and

— If v is a member ofP, andp(v), m(v) are contained in Mugic, whereC <
{A,B}, thenv € Musicc.

These sets can be computed in tidg@:?). Moreover, a simple induction on the defini-
tion of the sets Mug o and Musigpg shows that:

Claim. If v is contained in Mugtc, whereC € {A, B}, then each consistent geno-
type information that extends must assign genotyp@C to v.

Thus the algorithm reports genotype inconsistencies correctly in his first step.

Steps 2 and 3 of the algorithm can be carried out in th{{e — m), and clearly
also report genotype inconsistencies correctly. The overall worst-case running time of
the algorithm is thu®)(n?). Its correctness follows from the following:

Claim. Assume that the algorithm presented above reportsihsitconsistent forP.

Let G’ be the extension of that is generated by step 1 of the algorithm. Then the
complete genotype informatiaif¢ that extends;’ by assigning genotypAB to each
member ofP that is not contained in the domain@fis consistent for”.

This claim can be shown by analyzing all the possible forms the genotype information
G’ may take on a sub-pedigree Bfconsisting of a child and its two parents—where,

in light of step 3 of the algorithm, we need only consider the case in which at most two
individuals in the sub-pedigree under consideration are in the domaih of

— If none of the individuals under consideration is genotyped/hythen assigning
genotypeAB to all of them is consistent, and we are done.
— If only one of the individuals under consideration is genotypedjbythen two
cases can arise:
e exactly one of the parents is genotyped, or
o the child is genotyped.
If the child is genotyped, then its genotype is a possible zygatel®find A B, that
are the genotypes assigned to its parent§’bylndeed, every member Gfwo(.A)
is a possible zygote AB and A B.
If one of the parents is genotyped, then observe A8t the genotype assigned to
the child byG’«, is a possible zygote AB and each member ¢fAA,BB,AB}.
— If exactly two of the individuals under consideration are genotyped’bthen, by
symmetry, we can limit ourselves to considering the following two sub-cases:
o the two parents are genotyped @y or
¢ one of the parents and the child are genotype@hy

25

If the two parents are genotyped 6}, then we can assume that they are not
homozygous—i.e., that it is not the case that they both have gendtyoeor
genotypeBB—, or else their child would have been genotyped at step 1 of the
algorithm. It is now tedious, but not hard, to check tAdB, the genotype assigned

to the child byG’¢, is a possible zygote of each pair of non-homozygous genotypes
over allelesA andB.

If one of the parents and the child are genotypedhythen we can assume that it

is not the case that one of them has genot¥pe and the other has genotyBB,

or else the genotyped pedigree would have been deemed to be inconsistent at step
2 of the algorithm. A tedious, but not hard, case analysis now suffices to check that
the genotype assigned to the child &Yis a possible zygote oA B, the genotype
assigned to the ungenotyped parentlfy and that of the parent genotyped®@y

This completes the proof of the claim, and that of the theorem. O

Remark 6.The pedigree depicted in Fig-24, modified so that individual 5 has geno-
type A A, shows that the algorithm used in the above proof is incorrect in the presence
of more than two alleles. That genotyped pedigree would pass steps 1-3 in the algo-
rithm, but is inconsistent.

In light of Thms. 2 and 4, one can argue that 3CONS is indeed the simplest consistency
checking problem that is still intractable. In fact, restricting our attention to genes over
two alleles or to pedigrees without loops yields algorithmic problems that can be solved
in polynomial time.

6.3 Phase Known Consistency Checking

In this paper, we have considered consistency checking in a phase unknown setting—
that is, when it is not possible, by observing a chromosome pair, to say which compo-
nent is inherited paternally or maternally. We now briefly turn our focus to the task of
consistency checking where the phase of the genotype information is known. The mo-
tivation for this type of investigation is that it is sometimes possible to infer the identity
of the parent from whom some allele originated (and thereby also the origin of the other
allele).

Definition 5. A phase known genotype informatidor a pedigreeP = (V, F, p, m)
is a partial functiong? : V — A x A. The genotype informatiofi” is completeif
dom(GP) = V.

A complete, phase known genotype informatiérfor a pedigreeP is consistent
with P if whenever € N andGP(v) = (A, B), thenA is one of the components of
GP(p(v)), andB is one of the components@f (m(v)).

A phase known genotype informatiorc@nsistentith P if it can be extended to a
complete and consistent phase known genotype informatiaf.for

As it is common in the genetics literature, in what follows we shall wAt@ for the
ordered paifA, B).

Let PCONS be the problem of checking the consistency of a pedigree with phase
known genotype information.

26

Theorem 5. In the presence of at least four alleles, PCONS is NP-complete.

Proof. Since PCONS is easily seen to be in NP, we need only show that this problem
is NP-hard. To this end, in light of Thm. 1, it is sufficient to argue that every 3CONS
instance can be reduced in polynomial time to a PCONS instance over four alleles that
is consistent if, and only if, so was the original 3CONS instance.

Recall that a CONS instance consists of a pedigtee (V, F, p, m) and a geno-
type informationg for it. We assume, without loss of generality, thatis a totally
ordered set of three alleles that does not contain the allelnd write the members of
sets inTwo(.A) in an order that is consistent with the total order. We assume, further-
more, that all “leaves” inP are male individuals. Fron? andG, we build a PCONS
instance consisting of a pedigré® = (V' F’, p’,m’) and a phase known genotype
informationg? : V' — (AU {A}) x (AU {A}) thus:

1. The sel’’ of members of”’ includesV. Moreover, it contains individuals; (with
i€{1,2,3,4}) for everyu € dom(G);

2. F’, the set of founders o', is equal toF' U {uy, us | u € dom(G)};

3. the functiong’ andm’ are given by:

plv) fveV\F

p'(v)=1u if v is a male individual, and € {us, u4}
u;—2 If uwis afemaleindividual, and € {us,u4}
m(v) foeV\F

m'(v) =< u if u is a female individual, and € {u3,us} -
u;—2 if wis amale individual, and € {us, us}

4. The phase known genotype informatigh: V' — (AU {A}) x (AU{A})is
defined as follows:

AlA if v € {uy,us} for someu € dom(G)

B|A if v = ug for someu € dom(G), andG(u) = {B,C}
GP(v) =< C|A if v = uy for someu € dom(G), andg(u) = {B,C}

B|B if v € {us,uq} for someu € dom(G), andG(u) = {B}

undefined otherwise

The idea underlying the construction presented above is depicted inHify. There
we present the pedigreee transformation applied to a genotyped male individal in
Note that, in the PCONS instand¥, all of the individuals inV" are ungenotyped.
On the other hand, as exemplified in Figl1, all of the dummy individuals; (i €
{1,...,4}) associated with @ € dom(G) are genotyped in such a way that the only
consistent phase known genotypes that may be assigneéhtd’ are ordered pairs
whose components are the allelegif).

We shall now prove thaj is consistent fo® if, and only if, G? is consistent foP’
in a phase known setting.

27

Phase unknown Phase known

Fig.1-11: The scheme for reducing a pedigree with genotype information in
a phase unknown setting to a phase known setting. This illustrates
the reduction for a single male individual. The arrow denotes the
reduction, and the dashed lines indicate potential other family rela-
tionships.

Assume, first of all, tha§ is consistent foi?. Then there is a consistent, complete
genotype informatiog ¢ that extendsj. Our order of business is to construct a consis-
tent, complete extensiai¥-¢ of GP from G¢. This we do by defining?<(u) for each
u € V as follows:

— if G¢(u) = {B}, then we seg?”“(u) = B|B;

—if G°(u) = {B,C} andu € V \ F, then, sincej® is consistent, we have that,
say,B andC are contained ig°(p(u)) andG°(m(u)), respectively. In that case,
we setG?“(u) = B|C. To resolve any ambiguity, we use, if necessary, the total
order onA to pick the smallest allele as the paternally inherited on€4i(u).

For instance, ifG¢ assigns genotypéB,C} to « and both of its parents, arid
is smaller thanC with respect to the total order on the allelic alphabet, then we
stipulate that;?¢(u) = B|C;

— if G°(u) = {B,C} andu € F, then we arbitrarily sef?“(u) = B|C.

Note that the genotype assignmejitc setsG?“(u) to eitherB|C or C|B for the
individualu in the phase known pedigree in Fig11.

We now argue thag?>¢ is consistent. To this end, it is sufficient to check the con-
sistency conditions given in Def. 5 for eache V' \ F. (Note that, for each suchy it
holds thatp’(u) = p(u) andm’(u) = m(u).) We distinguish two cases, depending on
the formg?-<(u) takes.

— Caste GP°(u) = B|B. By the definition ofG?°, we have thag°(u) = {B}.
Sinceg¢ is consistent for the pedigre®, allele B is contained in botl$7¢(p(u))
andG¢(m(w)). By the definition ofG#-<, it follows thatB is a component of both
GP-¢(p’(u)) andG?“(m’(u)), which was to be shown.

— CASE GP¢(u) = B|C. By the definition ofG”:¢, we have that/‘(v) = {B,C},
B € G°(p(u)) andC € G°(m(u)). By the definition ofG?:¢, it follows thatB is

28

a component of?¢(p’(u)), andC is a component of?¢(m’(u)), which was to
be shown.

Conversely, assume th@? is consistent forP’. Then there is a consistent, complete
extensionG?-¢ of G over P’. Because of the way’ andG? were built, the restriction
of the genotype assignmeg@it-© to V' agrees withG overdom(G), when order in the
genotype assignments is ignored. It is moreover consistentvitha phase unknown
setting. O

7 Concluding Remarks

The results in this paper show that certain basic combinatorial problems in pedigree
analysis, viz. consistency checking and determining whether a genotyped pedigree has
some number of critical genotypes, are NP-complete, even if we focus on a single gene
with a fixed, small number of alleles. It follows that these problems are most likely
computationally intractable. It would be most interesting, however, to develop heuristic
algorithms for these problems, and evaluate their efficiency on real-life and/or randomly
generated data. In particular, we plan to develop and evaluate algorithms for consistency
checking based upaBinary Decision Diagramg3] and various available SAT-solvers

and tautology checkers—see, e.g., the reference [7] for a survey. We believe that the
experimental evaluation of these algorithms would be of value, because consistency
checking routines, like genotype elimination ones, may be used as pre-processing steps
in algorithms for, e.g., linkage analysis and haplotype reconstruction [19].

From a theoretical viewpoint, we conjecture that the problem of computing the num-
ber of complete consistent extensions of a genotype information for a pedigtde-is
complete [27]—i.e., it is as hard as counting the number of satisfying assignments of a
boolean formula. It would also be interesting to study the complexity of approximation
algorithms for computing the number of critical genotypes in a pedigree. We leave an
in-depth study of these problems as future work.

AcknowledgmentdVe thank Mogens Nielsen for the initial inspiration on a possible
reduction showing that consistency checking is NP-complete, and Emmanuel Fleury
for fruitful discussions on the topic of this paper, and comments on its draft versions.
We are most grateful to Dan Gusfield for his comments on the connections between our
respective contributions, and for bringing the reference [19] to our attention. Kenneth
Lange offered prompt and informative replies to our enquiries related to extant com-
plexity analyses for the Lange-Goradia algorithm from [18]. We are indebted to Tao
Jiang for making his paper [19] available to us. Any remaining infelicities are solely
our responsibility.

The work reported in this paper was partly carried out while Luca Aceto was an
invited professor at Reykjak'University, and Anna Inglfsdottir was at Iceland Ge-
nomics Corporation. Both authors thank these institutions for their hospitality and the
excellent working conditions.

29

References

1.

o

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

23.

G. R. ABECASIS, S. S. (HERNY, W. O. COOKSON, AND L. R. CARDON, Merlin: Rapid
analysis of dense genetic maps using sparse gene flow Nadgre Genetics, 30 (2002),
pp. 97-101.

. B. BERGER ANDT. LEIGHTON, Protein folding in the hydrophobic-hydrophilid) model

is NP-completeJournal of Computational Biology, 5 (1998), pp. 27—40.

. R. BRYANT, Graph-based algorithms for boolean function manipulati®EE Trans. Com-

put., C-35 (1986), pp. 677—-691.

. P. QREscENz| D. GOLDMAN, C. PAPADIMITRIOU, A. PICCOLBONI, AND M. YAN-

NAKAKIS, On the complexity of protein folding (extended abstraict)Proceedings of the
thirtieth annual ACM Symposium on Theory of Computing, ACM Press, 1998, pp. 597—
603.

. DECoDE NEWwsS CENTER, November 2001. http://www.decode.com/news/

releases/

. J. DOHRMANN, Meaend vil vide, hvem de er far tiNordjyske, (2002). In Danish.
. J. @, P. W. RURDOM, J. FRANCO, AND B. W. WAH, Algorithms for the satisfiability

(SAT) problem: a surveyn Satisfiability problem: theory and applications (Piscataway, NJ,
1996), vol. 35 of DIMACS Ser. Discrete Math. Theoret. Comput. Sci., Amer. Math. Soc.,
Providence, RI, 1997, pp. 19-151.

. D. F. QupBJARTSSON Multipoint Linkage Analysis Based on Allele Sharing ModBlsD

thesis, Institute of Statistics and Decision Sciences, Duke University, 2000.

. D. F. QDBJARTSSON K. JONASSON AND C. A. KONG, Fast multipoint linkage calcula-

tion with Allegrg Nature Genetics, 20 (2000), pp. 12-13.

M. HAMER, Back to your rootsNew Scientist, 2334 (2002), pp. 33—36.

J. A. HANSEN, J. DHNSEN, AND J. KNUDSEN, Computational complexity of consistency
checking Master’s thesis, Department of Computer Science, Aalborg University, June 2002.
Available athttp://www.cs.auc.dk/ luca/PAPERS/hjk02.ps.gz

HuMAN GENOME DIVERSITY PROJECT, March 2002 http://www.stanford. edu/
group/morrinst/hgdp.html

L. B. ORDE, J. C. GREY, M. J. BAMSHAD, AND R. L. WHITE, Medical Genetics
Mosby, 1999.

C. B. BRGENSEN Tuesday, 9 April 2002. Personal communication.

W. S. KLuG AND M. R. CUMMINGS, Concepts of GeneticBrentice Hall, 5th ed., 1997.

L. KRUGLYAK, M. J. DALY, M. P. REEVE-DALY, AND E. S. LANDER, Parametric and
nonparametric linkage analysis: A unified multipoint approagmerican Journal of Human
Genetics, 58 (1996), pp. 1347-1363.

K. LANGE, Monday, 28 October 2002. Personal communication.

K. LANGE AND T. M. GORADIA, An algorithm for automatic genotype eliminatiohmer-

ican Journal of Human Genetics, 40 (1987), pp. 250-256.

J. L AND T. JANG, Efficient rule-based haplotyping algorithms for pedigree data [extended
abstract] in Proceedings of RECOMB’03, April 10-13, 2003, Berlin, Germany. To appeatr.
J. R. O’@NNELL AND D. E. WEEKS, Pedcheck: A program for identification of geno-
type incompatibilities in linkage analysi@merican Journal of Human Genetics, 63 (1998),
pp. 259-266.

, An optimal algorithm for automatic genotype eliminati@gimerican Journal of Hu-
man Genetics, 65 (1999), pp. 1733-1740.

J. T, Analysis of Human Genetic Linkag€he Johns Hopkins University Press, 3rd ed.,
1999.

C. H. RPADIMITRIOU, Computational ComplexifyAddison Wesley, 1995.

30

24.

25.

26.
27.

A. PccoLBONIAND D. GUSFIELD, On the complexity of fundamental computational prob-
lems in pedigree analysiech. Rep. CSE-99-8, Computer Science Department, University
of California, Davis, September 1999. Revised version to appear idoimmal of Compu-
tational Biology

E. BEL, J. C. RPP, AND K. LANGE, Detection and integration of genotyping errors in
statistical geneticsAmerican Journal of Human Genetics, 70 (2002), pp. 496-508.

T. STRACHAN AND A. P. READ, Human Molecular Genetics, 2Viley-Liss, 1999.

L. G. VALIANT, The complexity of computing the permanehbeoret. Comput. Sci., 8
(1979), pp. 189-201.

31

Recent BRICS Report Series Publications

RS-03-17 Luca Aceto, Jens Alsted Hansen, Anna liddfsdottir, Jacob
Johnsen, and John KnudsenThe Complexity of Checking Con-
sistency of Pedigree Information and Related Problentdarch
2003. 31 pp. This paper supersedes BRICS Report RS-02-42.

RS-03-16 Ilvan B. Dam@rd and Mads J. Jurik. A Length-Flexible
Threshold Cryptosystem with Applicationslarch 2003. 19 pp.

RS-03-15 Anna Inglfsdottir. A Semantic Theory for Value—Passing Pro-
cesses Based on the Late Approad¥iarch 2003. 49 pp.

RS-03-14 Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan
Midtgaard. From Interpreter to Compiler and Virtual Machine:
A Functional Derivation. March 2003. 36 pp.

RS-03-13 Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan
Midtgaard. A Functional Correspondence between Evaluators
and Abstract MachinesMarch 2003. 28 pp.

RS-03-12 Mircea-Dan Hernest and Ulrich Kohlenbach. A Complexity
Analysis of Functional Interpretations February 2003. 70 pp.

RS-03-11 Mads Sig Ager, Olivier Danvy, and Henning Korsholm Rohde.
Fast Partial Evaluation of Pattern Matching in Strings Febru-
ary 2003. 14 pp. To appear in Leuschel, editoACM SIGPLAN
Workshop on Partial Evaluation and Semantics-Based Program
Manipulation, PEPM '03 Proceedings, 2003.

RS-03-10 Federico Crazzolara and Giuseppe MiliciaWireless Authenti-
cation in x-Spaces February 2003. 20 pp.

RS-03-9 Ivan B. Damgrd and Gudmund Skovbjerg Frandsen. An
Extended Quadratic Frobenius Primality Test with Average and
Worst Case Error EstimatesFebruary 2003. 53 pp.

RS-03-8 Ivan B. Damg@rd and Gudmund Skovbjerg Frandsen. Effi-
cient Algorithms for gcd and Cubic Residuosity in the Ring of
Eisenstein IntegersFebruary 2003. 11 pp.

RS-03-7 Claus Brabrand, Michael I. Schwartzbach, and Mads Vang-
gaard. The METAFRONT System: Extensible Parsing and
Transformation February 2003. 24 pp.

