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Abstract

We show how to derive a compiler and a virtual machine from a com-
positional interpreter. We first illustrate the derivation with two eval-
uation functions and two normalization functions. We obtain Krivine’s
machine, Felleisen et al.’s CEK machine, and a generalization of these
machines performing strong normalization, which is new. We observe
that several existing compilers and virtual machines—e.g., the Categori-
cal Abstract Machine (CAM), Schmidt’s VEC machine, and Leroy’s Zinc
abstract machine—are already in derived form and we present the corre-
sponding interpreter for the CAM and the VEC machine. We also consider
Hannan and Miller’s CLS machine and Landin’s SECD machine.

We derived Krivine’s machine via a call-by-name CPS transformation
and the CEK machine via a call-by-value CPS transformation. These two
derivations hold both for an evaluation function and for a normalization
function. They provide a non-trivial illustration of Reynolds’s warning
about the evaluation order of a meta-language.
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1 Introduction and related work

What is the difference between, on the one hand, the Categorical Abstract
Machine [11, 14], the VEC machine [50], and the Zinc abstract machine [27,
40], and on the other hand, Krivine’s machine [12, 38], the CEK machine [21,
23], the CLS machine [30], and the SECD machine [39]? Their goal is the
same—implementing an evaluation function—but the former machines have an
instruction set, whereas the latter ones do not; instead, they operate directly
on the source λ-term (and thus are more akin to interpreters than to machines,
even though they take the form of a transition system). For the purpose of our
work, we need to distinguish them. We thus state that the former machines are
virtual machines (in the sense of the Java Virtual Machine [26]) and the latter
ones are abstract machines. The former ones require a compiler, and the latter
ones do not.1

1So in that sense, and despite their names, the Categorical Abstract Machine and the Zinc
abstract machine are virtual machines.
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In a companion article [2], we present a functional correspondence between
evaluators and abstract machines, and we exhibit the evaluators that correspond
to Krivine’s machine, the CEK machine, the CLS machine, and the SECD
machine. The two-way derivation between an evaluator and the correspond-
ing abstract machine consists of (1) closure conversion, (2) transformation into
continuation-passing style, and (3) defunctionalization of continuations. Each
of these steps is traditional but the derivation passes the reality check of relating
pre-existing evaluators and pre-existing abstract machines, relating pre-existing
evaluators and new abstract machines, and relating new evaluators and pre-
existing abstract machines. To the best of our knowledge, passing this check is
new. The derivation is also robust in the sense that variations over an evaluator
are echoed into variations over an abstract machine and vice versa, which is also
new. Our main result is that Krivine’s machine and the CEK machine are two
sides of the same coin in that they correspond to an ordinary evaluator for the
λ-calculus; one uses call by name, and the other call by value. This evaluator
implements a standard semantics in the sense of Milne and Strachey [42, 50].
In contrast, the CLS machine and the SECD machine correspond to evaluators
that implement a stack semantics.

In the present article, we go one step further by factoring an evaluation func-
tion into a compiler and a virtual machine. The results are the virtual-machine
counterparts of Krivine’s abstract machine, the CEK abstract machine, the
CLS abstract machine, and the SECD abstract machine. Our derivation passes
the reality check of relating pre-existing interpreters and pre-existing compil-
ers and virtual machines, relating pre-existing interpreters and new compilers
and virtual machines, and relating new interpreters and pre-existing compilers
and virtual machines. Indeed three of these compilers and virtual machines were
known (Krivine, CLS, and SECD), and one is new (CEK). The derivation is also
robust because it lets us echo variations over an interpreter into variations over
a compiler and virtual machine and vice versa. In addition, it lets us identify
that the Categorical Abstract Machine (CAM), the VEC machine, and the Zinc
abstract machine are already in derived form; we present the interpreters that
correspond to the CAM and the VEC machine. The interpreter corresponding
to the CAM is not subsumed by the descriptions and motivations of the CAM
available in the literature, and therefore it sheds a new denotational light on
the CAM. The interpreter corresponding to the VEC machine is new. In the
companion article, we present the abstract machine corresponding to the CAM
interpreter.

In the present article, we also consider two normalization functions and we
derive the corresponding compilers and virtual machines. These machines are
extensions of Krivine’s virtual machine and of the CEK virtual machine. The
compilers, however, are the same. We interpret this variation as a corollary of
Reynolds’s observation about the evaluation order of meta-languages [49].

Related work: Methods and methodologies for deriving compilers from inter-
preters come in a bewildering variety. Automated methodologies include partial
evaluation [9, 36], and mechanized ones include combinatory abstraction, either
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using a fixed set of combinators, be they categorical ones [46] or actions [44], or
an ad-hoc set of (super)combinators, as in Hughes’s implementation method [35]
and in Wand’s combinator-based compilers [53, 55]. We observe, however, that
interpreters and compilers are still developed independently of each other to-
day, indicating that the methods and methodologies for deriving compilers from
interpreters have not prevailed. We also observe that derivations described in
the literature only address few examples. Arrays of representative examples
somehow are not considered. This is our goal here.

Our methodology for deriving a compiler and a virtual machine from an
interpreter uses off-the-shelf program-transformation tools. We use closure con-
version for expressible and denotable values, we transform the interpreter into
continuation-passing style (CPS), we defunctionalize its continuations, and we
factor it into a compositional compiler and a virtual machine. Defunctionaliza-
tion is due to Reynolds [49], it has been formalized and proved correct [5, 45],
and it enjoys many applications [18]; in particular, closure conversion amounts
to in-place defunctionalization. The CPS transformation has a long history [48];
it comes in many forms and it also has been proved correct [47]. After closure
conversion, CPS transformation, and defunctionalization, we express the evalu-
ator as a composition of combinators and recursive calls to the evaluator. The
compiler is obtained by choosing a term model where the combinators are inter-
preted as their names and composition as sequencing. The virtual machine is
an interpreter for the sequence of combinators. This style of derivation was pio-
neered by Wand [24, 54, 55]. The applications presented in this article, however,
are new.

Prerequisites: We use ML as a meta-language, and we assume a basic fa-
miliarity with Standard ML, including its module language. (Incidentally, most
of our implementations below raise compiler warnings about non-exhaustive
matches. These warnings could be avoided with an option type or with an ex-
plicit exception, at the price of readability.) We also assume a passing acquain-
tance with defunctionalization and the CPS transformation as can be gathered
in Reynolds’s “Definitional Interpreters for Higher-Order Programming Lan-
guages” [49]. It would be helpful to the reader to know at least one of the
machines considered in the rest of this article, e.g., Krivine’s machine or the
CEK machine.

Overview: We first derive compilers and virtual machines from evaluation
functions (Section 2) and from normalization functions (Section 3). We then
turn to interpreters that correspond to existing compilers and virtual machines
(Section 4). We also present compilers and virtual machines that correspond to
existing abstract machines (Section 5).

2 Virtual machines for evaluation functions

We consider evaluation functions that encode the standard call-by-name and
call-by-value semantics of the λ-calculus. In the companion article [2], we show
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that Krivine’s abstract machine corresponds to the evaluation function for call
by name, and that the CEK abstract machine corresponds to the evaluation
function for call by value. Each of them is our starting point below.

2.1 Source terms

Krivine’s abstract machine operates on de Bruijn-encoded λ-terms. For sim-
plicity, we label each λ-abstraction with a unique integer, and we make the
machine yield a result pairing a label and the environment. This way, both
abstract and virtual machines return the same result. (Otherwise, the abstract
machine would yield a result pairing a source λ-abstraction and an environment,
and the virtual machine would yield a result pairing a compiled λ-abstraction
and an environment.)

type label = int

datatype term = IND of int (* de Bruijn index *)

| ABS of label * term

| APP of term * term

Programs are closed terms.
The CEK machine operates on λ-terms with names.

2.2 Call by name

Krivine’s abstract machine reads as follows:

structure Eval_Krivine_standard

= struct

datatype thunk = THUNK of term * thunk list

(* eval : term * thunk list * thunk list -> label * thunk list *)

fun eval (IND n, e, s)

= let val (THUNK (t, e’)) = List.nth (e, n)

in eval (t, e’, s)

end

| eval (ABS (l, t), e, nil)

= (l, e)

| eval (ABS (l, t), e, (THUNK (t’, e’)) :: s)

= eval (t, (THUNK (t’, e’)) :: e, s)

| eval (APP (t0, t1), e, s)

= eval (t0, e, (THUNK (t1, e)) :: s)

(* main : term -> label * thunk list *)

fun main t

= eval (t, nil, nil)

end
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This specification is not compositional because it does not solely define the
meaning of each term as a composition of the meaning of its parts [50, 51, 56].
Indeed not all calls to eval, on the right-hand side, are over proper sub-parts of
the terms in the left-hand side.

Let us make eval compositional and curry it. We make it compositional
using a recursive data type recur. We curry it to exemplify its denotational
nature of mapping a source term into a (functional) meaning.

structure Eval_Krivine_compositional_and_curried

= struct

datatype thunk = THUNK of recur * thunk list

and recur = RECUR of thunk list * thunk list -> label * thunk list

(* eval : term -> thunk list * thunk list -> label * thunk list *)

fun eval (IND n)

= (fn (e, s) => let val (THUNK (RECUR c, e’)) = List.nth (e, n)

in c (e’, s)

end)

| eval (ABS (l, t))

= (fn (e, nil)

=> (l, e)

| (e, (THUNK (c, e’)) :: s)

=> eval t ((THUNK (c, e’)) :: e, s))

| eval (APP (t0, t1))

= (fn (e, s) => eval t0 (e, (THUNK (RECUR (eval t1), e)) :: s))

(* main : term -> label * thunk list *)

fun main t

= eval t (nil, nil)

end

We now factor eval into a composition of combinators and recursive calls.
The clause for applications, for example, is factored as

| eval (APP (t0, t1))

= (eval t0) o (push (eval t1))

where push c denotes

(fn (e, s) => (e, (THUNK (RECUR c, e)) :: s))

The clause for abstractions, however, forces us to introduce a data type of
intermediate results (see I eval below).

The factored version can be expressed as a functor parameterized with an
interpretation:

signature INTERPRETATION

= sig

type computation

type result
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val access : int -> computation

val grab : label -> computation

val push : computation -> computation

val combine : computation * computation -> computation

val compute : computation -> result

end

In the following functor, oo is an infix operator:

functor mkProcessor (structure I : INTERPRETATION)

= struct

val (op oo) = I.combine

fun eval (IND n)

= I.access n

| eval (ABS (l, t))

= (I.grab l) oo (eval t)

| eval (APP (t0, t1))

= (I.push (eval t1)) oo (eval t0)

fun main t

= I.compute (eval t)

end

The following structure implements a standard interpretation (oo is defined
as reversed function composition). Instantiating mkProcessor with this interpre-
tation yields the evaluator above (modulo the intermediate data type).

structure I_eval

= struct

datatype thunk = THUNK of recur * thunk list

and recur = RECUR of intermediate -> intermediate

and intermediate = GOING of thunk list * thunk list

| DONE of label * thunk list

type computation = intermediate -> intermediate

type result = label * thunk list

fun lift f

= (fn (GOING v)

=> f v

| d

=> d)

fun grab l

= lift (fn (e, nil)

=> DONE (l, e)

| (e, THUNK (c, e’) :: s)

=> GOING ((THUNK (c, e’)) :: e, s))
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fun push c

= lift (fn (e, s) => GOING (e, (THUNK (RECUR c, e)) :: s))

fun access n

= lift (fn (e, s) => let val (THUNK (RECUR c, e’))

= List.nth (e, n)

in c (GOING (e’, s))

end)

fun combine (f, g)

= g o f

fun compute c

= let val (DONE l) = c (GOING (nil, nil))

in l

end

end

structure Eval_Krivine = mkProcessor (structure I = I_eval)

Conversely, we can consider a term model where each of access, close, and
push is a virtual-machine instruction, combine is a sequencing operation, and
the types computation and result are lists of instructions. The corresponding
structure I compile implements a non-standard interpretation. Instantiating
mkProcessor with it yields a compiler. It is then a simple exercise to define the
virtual machine as interpreting a list of instructions according to the definition
of access, close, and push in the standard interpretation so that the following
diagram commutes:

mkProcessor
I compile //

I eval

&&NNNNNNNNNNNNNNNNNNNNNNN

virtual
machine

��

The resulting compiler and virtual machine read as follows, where t denotes
terms, ` denotes labels, i denotes instructions, c denotes lists of instructions,
and e denotes environments:

• Source and target syntax:

t ::= n | λ`t | t0 t1
i ::= accessn | grab ` | push c

• Compiler:
[[n]] = accessn

[[λ`t]] = grab `; [[t]]
[[t0 t1]] = push [[t1]]; [[t0]]
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• Expressible values (closures) and results:

v ::= [c, e]
r ::= [`, e]

• Initial transition, transition rules, and final transition:

c ⇒ 〈c, nil , nil〉
〈access n; c, e, s〉 ⇒ 〈c′, e′, s〉 where [c′, e′] = e(n)

〈grab `; c, e, [c′, e′] :: s〉 ⇒ 〈c, [c′, e′] :: e, s〉
〈push c′; c, e, s〉 ⇒ 〈c, e, [c′, e] :: s〉
〈grab `; c, e, nil〉 ⇒ [`, e]

Variables are represented by their de Bruijn index, and the virtual machine
operates on triples consisting of an instruction list, an environment, and a stack
of expressible values.

Except for the labels, this version of Krivine’s machine coincides with the
definition of Krivine’s machine in Leroy’s economical implementation of ML [40].
(The names access, grab, and push originate in this presentation.)

2.3 Call by value

Starting from the CEK abstract machine, the same sequence of steps as in
Section 2.2 leads us to the following compiler and virtual machine, where t
denotes terms, i denotes instructions, c denotes lists of instructions, e denotes
environments, v denotes expressible values, and k denotes evaluation contexts:

• Source and target syntax:

t ::= x | λx.t | t0 t1
i ::= access x | close(x, c) | push c

• Compiler:
[[x]] = access x

[[λx.t]] = close(x, [[t]])
[[t0 t1]] = push [[t1]]; [[t0]]

• Expressible values (closures) and evaluation contexts:

v ::= [x, c, e]
k ::= ECONT0 | ECONT1(c, e, k) | ECONT2(v, k)

• Initial transition, transition rules (two kinds), and final transition:

c ⇒ 〈c, mt , ECONT0〉
〈access x; c, e, k〉 ⇒ 〈k, e(x)〉

〈close(x, c′); c, e, k〉 ⇒ 〈k, [x, c′, e]〉
〈push c′; c, e, k〉 ⇒ 〈c, e, ECONT1(c′, e, k)〉

〈ECONT1(c, e, k), v〉 ⇒ 〈c, e, ECONT2(v, k)〉
〈ECONT2([x, c, e], k), v〉 ⇒ 〈c, e[x 7→ v], k〉

〈ECONT0, v〉 ⇒ v
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Variables x are represented by their name, and the virtual machine consists
of two mutually recursive transition functions. The first transition function
operates on triples consisting of a list of instructions, an environment, and an
evaluation context. The second operates on pairs consisting of an evaluation
context and a value.

To the best of our knowledge, this version of the CEK machine is new.

2.4 Call by need

Implementing the thunks of Section 2.2 as memo-thunks, i.e., as functions with a
local state to memoize their result, yields a call-by-need version of the evaluation
function. To make it purely functional, one can thread a state of updateable
thunks in eval. CPS transformation and defunctionalization then yield a call-
by-need version of Krivine’s machine, and factorization yields a compiler and a
virtual machine with a state component. We do not go further into detail.

2.5 Summary, related work, and conclusions

We have derived a compiler and a virtual machine from Krivine’s abstract ma-
chine and from the CEK abstract machine, each of which corresponds to an
evaluation function for the λ-calculus. Krivine’s compiler and virtual machine
were known, and they have been used in Hardin, Maranget, and Pagano’s study
of functional runtime systems within the λσ-calculus [31]. To the bext of our
knowledge, the CEK compiler and virtual machine are new. We have also out-
lined how to construct a compiler and virtual machine for call-by-need.

In the companion article, we point out that variants of the CEK machines
can easily be constructed by considering variants of the original evaluator (e.g.,
in state-passing style or again in monadic style together with any monad). The
corresponding compilers and virtual machines are equally simple to construct.
In fact, we believe that they provide a more fitting model than the correspond-
ing abstract machines for characterizing the essence of compiling with continu-
ations [23]—a future work.

A similar kind of factorization of an evaluator into a core semantics and inter-
pretations can be found in Jones and Nielson’s handbook chapter on abstract
interpretation [37]. By that book, other interpretations could yield program
analyses.

All in all, we have presented two virtual machines performing evaluation.
The starting evaluation function itself, however, does not change—what changes
is the evaluation order of its meta-language, as captured in the CPS transforma-
tion [32]. In that, we capitalize on the interplay between defining language and
defined language identified by Reynolds thirty years ago in his seminal article
about definitional interpreters [49]. We come back to this point in Section 6.

Our closest related work is Streicher and Reus’s derivation of abstract ma-
chines from two continuation semantics [52]. Indeed they derive Krivine’s ma-
chine from a call-by-name semantics and the CEK machine from a call-by-value
semantics.
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3 Virtual machines for normalization functions

Normalization by evaluation is a reduction-free approach to normalization. Rather
than normalizing a term based on reduction rules, one defines a normalization
function that maps a term into its normal form. The idea is due to Martin
Löf, who suggested intuitionistic type theory as a good meta-language for ex-
pressing normalization functions [41], and it has been formally investigated by
Altenkirch, Coquand, Dybjer, Scott, Streicher, and others [3, 4, 10, 13]. In the
early 1990’s [8], Berger and Schwichtenberg have struck upon a type-directed
specification of normalization functions for the simply typed λ-calculus that
corresponds to a normalization proof due to Tait [6]. This type-directed specifi-
cation naturally arises in offline partial evaluation for functional languages with
sums and computational effects [15, 17, 20, 22]. Other normalization functions
have also been developed [1, 25, 43].

We observe that normalization functions lend themselves to constructing
compilers and virtual machines in the same way as evaluation functions do.
The rest of this section illustrates this construction, first with call by name,
then with call by value, and finally with call by need.

3.1 Source and residual terms

We first specify source λ-terms with de Bruijn indices and then target terms in
β-normal form with names.

structure Source

= struct

datatype term = IND of int

| ABS of term

| APP of term * term

end

structure Residual

= struct

datatype nf = LAM of string * nf

| VAL of at

and at = APP of at * nf

| VAR of string

end

These two specifications enable us to reflect in the type of the normalization
function that it maps a source term to a residual term in normal form [19].

As is often done in practice [1, 6, 12, 22, 27], we could have specified resid-
ual terms with de Bruijn levels. Doing so would only complicate the normal-
ization functions below. Therefore, for simplicity, we consider residual terms
with names and as a result the normalization functions use a generator of fresh
names Gensym.new. We could also use monads to the same effect [22].
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3.2 Call by name

The following ML structure implements a call-by-name version of an untyped
normalization function. This version uses thunks to implement call by name [33],
as can be seen in the definition of expressible values. This untyped normalization
function can be found, for example, in Aehlig and Joachimski’s recent work [1],
where it is formalized and programmed in Haskell. We program it in ML instead;
in addition, we use the specialized data type of λ-terms in normal form rather
than a general data type of λ-terms for residual terms.

structure NbE_cbn

= struct

datatype expval = FUN of (unit -> expval) -> expval

| RES of Residual.at

(* reify : expval -> Residual.nf *)

fun reify (FUN f)

= let val x = Gensym.new "x"

in Residual.LAM (x, reify (f (fn () => RES (Residual.VAR x))))

end

| reify (RES r)

= Residual.VAL r

(* eval : Source.term * (unit -> expval) list -> expval *)

fun eval (Source.IND n, vs)

= List.nth (vs, n) ()

| eval (Source.ABS t, vs)

= FUN (fn v => eval (t, v :: vs))

| eval (Source.APP (t0, t1), vs)

= (case eval (t0, vs)

of (FUN f)

=> f (fn () => eval (t1, vs))

| (RES r)

=> RES (Residual.APP (r, reify (eval (t1, vs)))))

(* normalize : Source.term -> Residual.nf *)

fun normalize t

= reify (eval (t, nil))

end

We subject this normalization function to the following sequence of steps: (1)
closure conversion of the two function spaces of expval; (2) CPS transformation
of eval and reify; (3) defunctionalization of the continuations, inlining the
apply function of the continuation of eval, and (4) factorization of eval into a
composition of functions and of recursive calls to eval. The resulting compiler
and virtual machine read as follow, where t denotes terms, i denotes instructions,
c denotes lists of instructions, and e denotes environments:

12



• Source and target syntax:

t ::= n | λt | t0 t1
i ::= access n | grab | push c

• Compiler:
[[n]] = accessn

[[λt]] = grab; [[t]]
[[t0 t1]] = push [[t1]]; [[t0]]

• Expressible values, residual terms (using infix @ to denote application),
evaluation contexts, and reification contexts:

v ::= FUN[c, e] | RES[r]
r ::= x | λx.r | r0 @ r1

ke ::= ECONT0 | ECONT1(x, kr ) | ECONT2(r, ke) | ECONT3(c, e, ke)
kr ::= RCONT0 | RCONT1(x, kr ) | RCONT2(r, ke)

• Initial transition, transition rules (three kinds), and final transition:

c ⇒ 〈c, nil , ECONT0〉
〈accessn; c, e, ke〉 ⇒eval 〈c′, e ′, ke〉, if FUN[c′, e ′] = e(n)
〈accessn; c, e, ke〉 ⇒eval 〈ke, r〉, if RES[r ] = e(n)
〈push c′; c, e, ke〉 ⇒eval 〈c, e, ECONT3(c′, e, ke)〉

〈grab; c, e, ECONT0〉 ⇒eval 〈c, RES[x] :: e, ECONT1(x, RCONT0)〉,
where x is fresh

〈grab; c, e, ECONT1(x, kr )〉 ⇒eval 〈c, RES[x′] :: e, ECONT1(x′, RCONT1(x′, kr))〉,
where x′ is fresh

〈grab; c, e, ECONT2(r, ke)〉 ⇒eval 〈c, RES[x] :: e, ECONT1(x, RCONT2(r, ke))〉,
where x is fresh

〈grab; c, e, ECONT3(c′, e ′, ke)〉 ⇒eval 〈c, FUN[c′, e ′] :: e, ke〉
〈ECONT0, r〉 ⇒apply ke 〈RCONT0, r〉

〈ECONT1(x, kr ), r〉 ⇒apply ke 〈RCONT1(x, kr ), r〉
〈ECONT2(r′, ke), r〉 ⇒apply ke 〈RCONT2(r′, ke), r〉

〈ECONT3(c′, e ′, ke), r〉 ⇒apply ke 〈c′, e ′, ECONT2(r, ke)〉
〈RCONT1(x, kr ), r〉 ⇒apply kr 〈kr , λx.r〉
〈RCONT2(r′, ke), r〉 ⇒apply kr 〈ke, r′ @ r〉

〈RCONT0, r〉 ⇒apply kr r

Variables in a source term are represented by their de Bruijn index. Variables
in a residual term are represented by their name. The virtual machine consists
of three mutually recursive transition functions. The first transition function
operates on triples consisting of a list of instructions, an environment, and an
evaluation context. The second operates on pairs consisting of an evaluation
context and a residual term. The third operates on pairs consisting of a reifica-
tion context and a residual term.
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The instruction set in the target language and the compiler is the same as
in Krivine’s virtual machine, in Section 2.2, modulo the labels. We conclude
that this new virtual machine is a strong-normalization counterpart of Krivine’s
virtual machine (which performs weak normalization).

3.3 Call by value

The following ML structure implements the call-by-value counterpart of the nor-
malization function of Section 3.2. As can be seen in the definition of expressible
values, it does not use thunks.

structure NbE_cbv

= struct

datatype expval = FUN of expval -> expval

| RES of Residual.at

(* reify : expval -> Residual.nf *)

fun reify (FUN f)

= let val x = Gensym.new "x"

in Residual.LAM (x, reify (f (RES (Residual.VAR x))))

end

| reify (RES r)

= Residual.VAL r

(* eval : Source.term * expval list -> expval *)

fun eval (Source.IND n, vs)

= List.nth (vs, n)

| eval (Source.ABS t, vs)

= FUN (fn v => eval (t, v :: vs))

| eval (Source.APP (t0, t1), vs)

= (case eval (t0, vs)

of (FUN f)

=> f (eval (t1, vs))

| (RES r)

=> RES (Residual.APP (r, reify (eval (t1, vs)))))

(* normalize : Source.term -> Residual.nf *)

fun normalize t

= reify (eval (t, nil))

end

We subject this normalization function to the same sequence of steps as in
Section 3.2: (1) closure conversion of the function space of expval; (2) CPS
transformation of eval and reify; (3) defunctionalization of the continuations,
inlining the apply function of the continuation of eval, and (4) factorization of
eval into a composition of functions and of recursive calls to eval. The resulting
compiler and virtual machine read as follow, where t denotes terms, i denotes
instructions, c denotes lists of instructions, and e denotes environments:
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• Source and target syntax:

t ::= n | λt | t0 t1
i ::= accessn | close c | push c

• Compiler:
[[n]] = accessn

[[λt]] = close [[t]]
[[t0 t1]] = push [[t1]]; [[t0]]

• Expressible values, residual terms (using infix @ to denote application),
evaluation contexts, and reification contexts:

v ::= FUN[c, e] | RES[r]
r ::= x | λx.r | r0 @ r1

ke ::= ECONT0 | ECONT1(x, kr ) | ECONT2(r, ke) |
ECONT3(c, e, ke) | ECONT4(c, e, ke)

kr ::= RCONT0 | RCONT1(x, kr ) | RCONT2(r, ke)

• Initial transition, transition rules (four kinds), and final transition:

c ⇒ 〈c, nil , ECONT0〉
〈access n; c, e, ke〉 ⇒eval 〈ke, e(n)〉
〈push c′; c, e, ke〉 ⇒eval 〈c, e, ECONT4(c′, e, ke)〉
〈close c′; c, e, ke〉 ⇒eval 〈ke, FUN[c′, e]〉

〈ECONT0, v〉 ⇒apply ke 〈v, RCONT0〉
〈ECONT1(x, kr ), v〉 ⇒apply ke 〈v, RCONT1(x, kr )〉
〈ECONT2(r, ke), v〉 ⇒apply ke 〈v, RCONT2(r, ke)〉

〈ECONT3(c, e, ke), v〉 ⇒apply ke 〈c, v :: e, ke〉
〈ECONT4(c, e, ke), FUN[c′, e ′]〉 ⇒apply ke 〈c, e, ECONT3(c′, e ′, ke)〉

〈ECONT4(c, e, ke), RES[r]〉 ⇒apply ke 〈c, e, ECONT2(r, ke)〉
〈FUN[c, e], kr〉 ⇒apply kr 〈c, RES[x] :: e, ECONT1(x, kr )〉

where x is fresh
〈RES[r], kr〉 ⇒apply kr 〈kr , r〉

〈RCONT1(x, kr ), r〉 ⇒reify 〈kr , λx.r〉
〈RCONT2(r′, ke), r〉 ⇒reify 〈ke, RES[r′ @ r]〉

〈RCONT0, r〉 ⇒reify r

Variables in a source term are represented by their de Bruijn index. Variables
in a residual term are represented by their name. The virtual machine consists
of four mutually recursive transition functions. The first transition function
operates on triples consisting of a list of instructions, an environment, and an
evaluation context. The second operates on pairs consisting of an evaluation
context and a value. The third operates on pairs consisting of a value and
a reification context. The fourth operates on pairs consisting of a reification
context and a residual term.
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The instruction set in the target language and the compiler in the same as
in the CEK virtual machine, in Section 2.3. We conclude that this new vir-
tual machine is a strong-normalization counterpart of the CEK virtual machine
(which performs weak normalization).

3.4 Call by need

As in Section 2.4, implementing the thunks of Section 3.2 as memo-thunks yields
a call-by-need version of the normalization function. It is then a simple exercise
to derive the corresponding abstract machine, compiler, and virtual machine.

3.5 Summary, related work, and conclusions

In Section 2, we have shown how to derive a compiler and a virtual machine from
an evaluation function. In this section, we have shown that a similar derivation
can be carried out for a normalization function. The result was then a compiler
and a virtual machine for weak normalization; it is now a compiler and a virtual
machine for strong normalization.

Evaluation functions and normalization functions depend on the evaluation
order of their meta-language. In Sections 2.2 and 2.3, we have capitalized on
this dependence by deriving two distinct virtual machines—Krivine’s virtual
machine and the CEK virtual machine—from a call-by-name evaluation func-
tion and from a call-by-value evaluation function implementing the standard
semantics of the λ-calculus. In this section, we have capitalized again on this
dependence by deriving two virtual machines—a generalization of Krivine’s vir-
tual machine and a generalization of the CEK virtual machine—from a call-by-
name normalization function and from a call-by-value normalization function
corresponding to the standard semantics of the λ-calculus.

We are aware of two other machines for strong normalization: one is due
to Crégut and is an abstract machine that generalizes Krivine’s abstract ma-
chine [12] and the other is due to Laulhere, Grégoire, and Leroy and is a virtual
machine that generalizes Leroy’s Zinc virtual machine [27]:

• Crégut’s is an abstract machine in the sense that it operates directly over
the source term; however, we observe that some of its transition steps
are not elementary (for example, one step performs a non-atomic opera-
tion over all the elements of a stack), which makes it closer to being an
algorithm than an abstract machine.

• Laulhere, Grégoire, and Leroy’s is a virtual machine in the sense that it
first compiles the source term into a series of elementary instructions.

Both machines were invented and each needed to be proven correct. In contrast,
we started from a proved normalization function and we derived a machine using
meaning-preserving transformations. In an independent work, we have also con-
structed an abstract machine that generalizes Krivine’s abstract machine (and
whose transition steps all are elementary). We believe that we can construct a
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normalization function out of Grégoire and Leroy’s virtual machine. Assuming
that it exists, this normalization function would correspond to a stack seman-
tics of the λ-calculus. We would then be in position to construct normalization
functions and abstract machines for other stack semantics of the λ-calculus, e.g.,
the CAM, the VEC machine, the CLS machine, and the SECD machine.

We have presented two virtual machines performing normalization. The
starting normalization function itself, however, does not change—what changes
is the evaluation order of its meta-language, as captured in the CPS transfor-
mation. In that, and as in Section 2, we capitalize on the interplay between
defining language and defined language identified by Reynolds. That normal-
ization functions are sensitive to the evaluation order of the meta-language is
now folklore in the normalization-by-evaluation community [7]. That they can
give rise to compilers and virtual machines, however, is new.

4 Virtual machines and compilers from inter-

preters

We observe that existing compilers and virtual machines are presented in the
literature as if they were in derived form, i.e., as a compositional compiling
function into byte-code instructions and as a transition system over a sequence
of byte-code instructions. We consider three such examples: the Categorical
Abstract Machine (Section 4.1), the VEC machine (Section 4.2), and the Zinc
abstract machine (Section 4.3).

4.1 The Categorical Abstract Machine

Our starting point is the CAM and its compiler, restricted to the λ-calculus
with pairs and one distinguished literal, nil [11, 14]. The compiler is defined
compositionally, and the CAM is defined as a transition system operating on
triples consisting of an instruction list, an environment, and a stack of express-
ible values. The environment is represented as a list, encoded with pairs. In
the following, t denotes terms, i denotes instructions, c denotes lists of instruc-
tions, v denotes expressible values, and s denotes stacks of expressible values.
Variables n are represented by their de Bruijn index.

• Source and target syntax:

t ::= n | λt | t0 t1 | nil | mkpair(t1, t2) | car t | cdr t
i ::= fst | snd | push | swap | cons | call | cur c | quote v
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• Compiler:

[[0]] = snd

[[n]] = fst; [[n − 1]]
[[λt]] = cur [[t]]

[[t0 t1]] = push; [[t0]]; swap; [[t1]]; cons; call
[[nil]] = quote null

[[mkpair(t1, t2)]] = push; [[t1]]; swap; [[t2]]; cons
[[car t]] = [[t]]; fst
[[cdr t]] = [[t]]; snd

• Expressible values (unit value, pairs, and closures):

v ::= null | (v1, v2) | [v, c]

• Initial transition, transition rules, and final transition:

c ⇒ 〈c, null , nil〉
〈fst; c, (v1, v2), s〉 ⇒ 〈c, v1, s〉
〈snd; c, (v1, v2), s〉 ⇒ 〈c, v2, s〉
〈quote v′; c, v, s〉 ⇒ 〈c, v′, s〉

〈cur c′; c, v, s〉 ⇒ 〈c, [v, c′], s〉
〈push; c, v, s〉 ⇒ 〈c, v, v :: s〉

〈swap; c, v, v′ :: s〉 ⇒ 〈c, v′, v :: s〉
〈cons; c, v, v′ :: s〉 ⇒ 〈c, (v′, v), s〉

〈call; c, ([v, c′], v′), s〉 ⇒ 〈c′; c, (v, v′), s〉
〈nil , v, nil〉 ⇒ v

This specification lends itself to the following factorization, where oo is an
infix operator. We successively define the syntax of source terms, the signature
of an interpretation, and a generic functor over source terms.

structure Source

= struct

datatype term = IND of int

| ABS of term

| APP of term * term

| NIL

| MKPAIR of term * term

| CAR of term

| CDR of term

end

Programs are closed terms.
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signature INTERPRETATION

= sig

type computation

type result

val fst : computation

val snd : computation

val push : computation

val swap : computation

val cons : computation

val call : computation

val cur : computation -> computation

val quote_null : computation

val combine : computation * computation -> computation

val compute : computation -> result

end

functor mkProcessor (structure I : INTERPRETATION)

: sig val main : Source.program -> I.result end

= struct

val (op oo) = I.combine

(* access : int -> computation *)

fun access 0 = I.snd

| access n = I.fst oo (access (n - 1))

(* walk : Source.term -> computation *)

fun walk (Source.IND n)

= access n

| walk (Source.ABS t)

= I.cur (walk t)

| walk (Source.APP (t0, t1))

= I.push oo (walk t0) oo I.swap oo (walk t1) oo I.cons oo I.call

| walk (Source.NIL)

= I.quote_null

| walk (Source.MKPAIR (t1, t2))

= I.push oo (walk t1) oo I.swap oo (walk t2) oo I.cons

| walk (Source.CAR t)

= (walk t) oo I.fst

| walk (Source.CDR t)

= (walk t) oo I.snd

(* main : term -> result *)

fun main t

= I.compute (walk t)

end

It is straightforward to specify a compiling interpretation such that instanti-
ating the functor with this interpretation yields the CAM compiler. In this
interpretation, the type result is defined as a list of target instructions. If the
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type computation is also defined as a list of target instructions, then combine is
defined as list concatenation; if it is defined with an accumulator, then combine

is defined as function composition.
We can also specify an evaluating interpretation by threading a register, a

stack, and a continuation and by cut-and-pasting the actions of the CAM on
the stack for each of the target instructions. In this interpretation, combine is
defined as reverse function composition in CPS:2

structure I_eval_CAM : INTERPRETATION

= struct

datatype expval = NULL

| PAIR of expval * expval

| CLOSURE of expval * (expval * expval list *

(expval * expval list -> expval) -> expval)

type computation = expval * expval list *

(expval * expval list -> expval) -> expval

type result = expval

val fst = (fn (PAIR (v1, v2), s, k) => k (v1, s))

val snd = (fn (PAIR (v1, v2), s, k) => k (v2, s))

val quote_null = (fn (v, s, k) => k (NULL, s))

fun cur f = (fn (v, s, k) => k (CLOSURE (v, f), s))

val call = (fn (PAIR (CLOSURE (v, f), v’), s, k)

=> f (PAIR (v, v’), s, k))

val push = (fn (v, s, k) => k (v, v :: s))

val swap = (fn (v, v’ :: s, k) => k (v’, v :: s))

val cons = (fn (v, v’ :: s, k) => k (PAIR (v’, v), s))

fun combine (f, g)

= (fn (v, s, k) => f (v, s, fn (v’, s’) => g (v’, s’, k)))

fun compute c

= c (NULL, nil, fn (v, nil) => v)

end

structure Eval_CAM = mkProcessor (structure I = I_eval_CAM)

Inlining the functor instantiation, simplifying, uncurrying access and walk, and
renaming walk into eval yield a compositional evaluator in CPS. Its direct-style
counterpart reads as follows:

structure Eval_CAM

= struct

datatype expval = NULL

| PAIR of expval * expval

| CLOSURE of expval * (expval * expval list ->

expval * expval list)

2Type-wise, it would actually be more true to CPS to define expval as a polymorphic data
type parameterized with the type of answers.
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(* access : int * expval * ’a -> expval * ’a *)

fun access (0, PAIR (v1, v2), s) = (v2, s)

| access (n, PAIR (v1, v2), s) = access (n - 1, v1, s)

(* eval : term * expval * expval list -> expval * expval list *)

fun eval (IND n, v, s)

= access (n, v, s)

| eval (ABS t, v, s)

= (CLOSURE (v, fn (v, s) => eval (t, v, s)), s)

| eval (APP (t0, t1), v, s)

= let val (v, v’ :: s) = eval (t0, v, v :: s)

val (v’, CLOSURE (v, f) :: s) = eval (t1, v’, v :: s)

in f (PAIR (v, v’), s)

end

| eval (NIL, v, s)

= (NULL, s)

| eval (MKPAIR (t1, t2), v, s)

= let val (v, v’ :: s) = eval (t1, v, v :: s)

val (v, v’ :: s) = eval (t2, v’, v :: s)

in (PAIR (v’, v), s)

end

| eval (CAR t, v, s)

= let val (PAIR (v1, v2), s) = eval (t, v, s)

in (v1, s)

end

| eval (CDR t, v, s)

= let val (PAIR (v1, v2), s) = eval (t, v, s)

in (v2, s)

end

(* main : term -> expval *)

fun main t

= let val (v, nil) = eval (t, NULL, nil)

in v

end

end

This compositional evaluator crystallizes the denotational content of the
CAM as a stack semantics in the sense of Milne and Strachey [42, 50]. In
particular, the meaning of a term is a partial endofunction over a stack of
expressible values with the top element of the stack cached in a register. To the
best of our knowledge, this denotational characterization of the CAM is new. It
falls out of the scope of this article to cast this evaluator in category-theoretic
terms, but we do wish to stress the two following points:

1. it is very simple to adapt the evaluator to an alternative language (e.g.,
with call-by-name); and

2. it is also simple to extend the evaluator to handle a richer source language.
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In both cases, the factorization provides precise guidelines to extend the CAM,
based on the adapted or extended evaluator. This parallel development of the
evaluator and of the CAM contrasts with the original development of the CAM,
where source language extensions are handled by CAM extensions with no ref-
erence to the original categorical semantics [11].

4.2 The VEC machine

In Chapter 10 of his book on denotational semantics [50], Schmidt presents the
VEC machine and its compiler. The compiler is compositional and the virtual
machine is a transition system operating on triples consisting of a stack of values,
a stack of environments, and a list of instructions. The compiler accepts both
call-by-name (λnx.t) and call-by-value (λvx.t) parameter passing, as in Algol.

In the following we illustrate primitive operations in the VEC machine with
one source predefined function, succ , and the corresponding target instruction,
incr. We let t denote terms, l denote literals, b denote boolean literals, n denote
numerals, V denote a stack of values, e denote environments, E denote a stack
of environments, i denote target instructions, C denote a list of instructions,
and m denote integer values. Variables x are represented by their name.

• Source and target syntax:

t ::= t0 t1 | λnx.t | λvx.t | x | l | succ t | if t0 then t1 else t2
l ::= b | n
b ::= true | false

i ::= pushclosure (C) | pushconst l | call | return | pushx |
bindx | incr | test (C1, C2)

• Compiler:

[[t0 t1]] = pushclosure ([[t1]]; return); [[t0]]; call
[[λnx.t]] = pushclosure (bind x; [[t]]; return)
[[λvx.t]] = pushclosure (call; bindx; [[t]]; return)

[[x]] = push x
[[l]] = pushconst l

[[succ t]] = [[t]]; incr
[[if t0 then t1 else t2]] = [[t0]]; test ([[t1]], [[t2]])

• Expressible values (closures and primitive values):

v ::= [C, e] | pv
pv ::= m | true | false

22



• Initial transition, transition rules, and final transition:

C ⇒ 〈nil , mt :: nil , C〉
〈V, e :: E, pushclosureC′; C〉 ⇒ 〈[C′, e] :: V , e :: E, C〉

〈V, E, pushconst l; C〉 ⇒ 〈l :: V , E, C〉
〈[C′, e] :: V , E, call; C〉 ⇒ 〈V, e :: E, C′; C〉

〈V, e :: E, return; C〉 ⇒ 〈V, E, C〉
〈V, e :: E, push x; C〉 ⇒ 〈pv :: V , e :: E, C〉, if pv = e(x)
〈V, e :: E, push x; C〉 ⇒ 〈V, e′ :: e :: E, C′; C〉, if [C′, e′] = e(x)

〈v :: V , e :: E, bind x; C〉 ⇒ 〈V, e[x 7→ v] :: E, C〉
〈m :: V , E, incr; C〉 ⇒ 〈m + 1 :: V , E, C〉

〈true :: V , E, test (C1, C2); C〉 ⇒ 〈V, E, C1; C〉
〈false :: V , E, test (C1, C2); C〉 ⇒ 〈V, E, C2; C〉

〈v :: V , E, nil〉 ⇒ v

This machine lends itself to a factorization similar to that of Section 4.1.
Again, by inlining the functor instantiation, simplifying, and uncurrying, we
obtain the following evaluator.

structure Eval_VEC

= struct

datatype primval = NAT of int

| BOOL of bool

datatype expval

= PRIMVAL of primval

| CLOSURE of (expval list * expval Env.env list ->

expval list * expval Env.env list) * expval Env.env

(* eval : term * expval list * expval env list *)

(* -> expval list * expval env list *)

fun eval (APP (t0, t1), V, e :: E)

= let val ((CLOSURE (c’, e’)) :: V’, E’)

= eval (t0,

(CLOSURE (fn (V’, E’)

=> let val (V, e :: E) = eval (t1, V’, E’)

in (V, E)

end, e)) :: V,

e :: E)

in c’ (V’, e’ :: E’)

end

| eval (LAM_N (x, t), V, e :: E) (* call by name *)

= ((CLOSURE

(fn (r :: V, e :: E)

=> let val (V, e :: E)

= eval (t, V, (Env.extend (x, r, e)) :: E)

in (V, E)

end,

e)) :: V, e :: E)
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| eval (LAM_V (x, t), V, e :: E) (* call by value *)

= ((CLOSURE

(fn ((CLOSURE (c’, e)) :: V, E)

=> let val (r :: V’, e’ :: E’) = c’ (V, e :: E)

val (V’’, e’’ :: E’’)

= eval (t, V’, (Env.extend (x, r, e’)) :: E’)

in (V’’, E’’)

end,

e)) :: V, e :: E)

| eval (VAR x, V, E)

= (case Env.lookup (x, hd E)

of (PRIMVAL g)

=> ((PRIMVAL g) :: V, E)

| (CLOSURE (c’, e))

=> c’ (V, e :: E))

| eval (CONST (Source.BOOL b), V, E)

= ((PRIMVAL (BOOL b)) :: V, E)

| eval (CONST (Source.INT n), V, E)

= ((PRIMVAL (NAT n)) :: V, E)

| eval (SUCC t, V’, E’)

= let val ((PRIMVAL (NAT m)) :: V, E) = eval (t, V’, E’)

in ((PRIMVAL (NAT (m + 1))) :: V, E)

end

| eval (IF (t0, t1, t2), V’, E’)

= (case eval (t0, V’, E’)

of ((PRIMVAL (BOOL true)) :: V, E)

=> eval (t1, V, E)

| ((PRIMVAL (BOOL false)) :: V, E)

=> eval (t2, V, E))

(* main : term -> expval *)

fun main t

= let val (v :: V, E) = eval (t, nil, [Env.mt])

in v

end

end

This interpreter reveals that the underlying denotational model of the VEC
machine is a stack semantics. The meaning of a term is a partial endofunction
over a stack of intermediate values and a stack of environments. All parameters
are passed as thunks. The interpreter and the virtual machine are not properly
tail-recursive.

4.3 The Zinc abstract machine

Like the CAM and the VEC machine, the Zinc abstract machine is also in
derived form, i.e., it is described in the form of a compositional compiler and a
virtual machine [27, 40]. We have just constructed the corresponding interpreter
as this technical report is going to press.
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4.4 Summary, related work, and conclusions

We have illustrated three instances of existing compilers and virtual machines
that are already in derived form, and we have shown how to construct the
corresponding interpreter. We have constructed the interpreters corresponding
to the CAM, the VEC machine, and the Zinc abstract machine. To the best of
our knowledge, the three interpreters are new.

5 Virtual machines that correspond to abstract

machines

In the companion article [2], we exhibit the evaluators that correspond to the
CLS abstract machine and the SECD abstract machine. In this section, we
factor each of these evaluators into a compiler and a virtual machine. The
results are the virtual-machine counterparts of the CLS abstract machine, and
the SECD abstract machine.

5.1 The CLS machine

Our starting point is the evaluator corresponding to the CLS abstract ma-
chine [2, 30]. This evaluator encodes a stack semantics of the λ-calculus. It
operates on triples consisting of a term, a stack of environments, and a stack
of expressible values. When evaluating an application, the CLS machine dupli-
cates the top element of the environment stack before evaluating the operator
and the operand.

structure Eval_CLS

= struct

datatype env = ENV of expval list

and expval = CLOSURE of env * term

(* run_t : term * env list * expval list *)

(* -> env list * expval list *)

fun run_t (IND 0, (ENV (v :: e)) :: l, s)

= (l, v :: s)

| run_t (IND n, (ENV (v :: e)) :: l, s)

= run_t (IND (n - 1), (ENV e) :: l, s)

| run_t (ABS t, e :: l, s)

= (l, (CLOSURE (e, t)) :: s)

| run_t (APP (t0, t1), e :: l, s)

= let val (l, s) = run_t (t0, e :: e :: l, s)

val (l, s) = run_t (t1, l, s)

in run_a (l, s)

end

and run_a (l, v :: (CLOSURE (ENV e, t)) :: s)

= run_t (t, (ENV (v :: e)) :: l, s)
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(* main : term -> expval *)

fun main t

= let val (nil, v :: s) = run_t (t, (ENV nil) :: nil, nil)

in v

end

end

The usual sequence of steps—closure conversion, CPS transformation, and
defunctionalization—would take us from this evaluator to the transition function
of the CLS machine (i.e., to the CLS abstract machine). Instead, we curry this
evaluator, make it compositional, and factor it into a sequence of combinators.
The result is the following compiler and virtual machine, where t denotes terms,
i denotes instructions, c denotes lists of instructions, e denotes environments,
l denotes stacks of environments, v denotes expressible values, and s denotes
stacks of expressible values:

• Source and target syntax:

t ::= n | λt | t0 t1
i ::= accessn | lam c | ap | push

• Compiler:
[[n]] = accessn

[[λt]] = lam [[t]]
[[t0 t1]] = push; [[t0]]; [[t1]]; ap

• Expressible values (closures):

v ::= [c, e]

• Initial transition, transition rules, and final transition:

c ⇒ 〈c, nil :: nil , nil〉
〈access 0; c, (v :: e) :: l, s〉 ⇒ 〈c, l, v :: s〉

〈access (n + 1); c, (v :: e) :: l, s〉 ⇒ 〈accessn; c, e :: l, s〉
〈lam c; c′, e :: l, s〉 ⇒ 〈c′, l, [c, e] :: s〉

〈ap; c, l, v :: [c′, e] :: s〉 ⇒ 〈c′; c, (v :: e) :: l, s〉
〈push; c, e :: l, s〉 ⇒ 〈c, e :: e :: l, s〉

〈nil , l, v :: s〉 ⇒ v

Variables n are represented by their de Bruijn index, and the virtual machine
operates on triples consisting of a list of instructions, a stack of environments,
and a stack of expressible values.

This version of the CLS machine coincides with the stratified CLS machine
in Hannan’s article at PEPM’91 [28, Figure 2]. (The names lam, ap, and push

originate in this presentation.)
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5.2 The SECD machine

Our starting point is the following evaluator corresponding to the SECD ab-
stract machine [39]. This evaluator encodes a stack semantics of the λ-calculus.
Compared to what we have presented elsewhere [2, 16], we have simplified away
a control delimiter, which is an unnecessary artefact of the encoding.

structure Eval_SECD

= struct

datatype value = INT of int

| CLOSURE of value list * value Env.env ->

value list * value Env.env

(* eval : value list * value Env.env * term -> *)

(* value list * value Env.env *)

fun eval (s, e, LIT n)

= ((INT n) :: s, e)

| eval (s, e, VAR x)

= ((Env.lookup (e, x)) :: s, e)

| eval (s, e, LAM (x, t))

= ((CLOSURE (fn (v :: s’, e’)

=> eval (nil, Env.extend (x, v, e), t))) :: s, e)

| eval (s, e, APP (t0, t1))

= let val (s’, e’) = eval (s, e, t1)

val ((CLOSURE f) :: v :: s, e) = eval (s’, e’, t0)

val (v :: nil, _) = f (v :: nil, e)

in

(v :: s, e)

end

| eval (s, e, SUCC t)

= let val ((INT n) :: s, e) = eval (s, e, t)

in ((INT (n+1)) :: s, e)

end

(* main : term -> value *)

fun main t

= let val (v :: nil, _) = eval (nil, nil, t)

in v

end

end

A derivation similar to that of Section 5.1 leads one to the same compiler
as in Henderson’s textbook [34, Chapter 6] and the following virtual machine,
where t denotes terms, i denotes instructions, c denotes lists of instructions,
e denotes environments, v denotes expressible values, and s denotes stacks of
expressible values. (The names access, close, and call are due to Henderson.)

• Source and target syntax:

t ::= x | λx. t | t0 t1
i ::= access x | close(x, c) | call

27



• Compiler:
[[x]] = access x

[[λx. t]] = close(x, [[t]])
[[t0 t1]] = [[t1]]; [[t0]]; call

• Expressible values (closures):

v ::= [x, c, e]

• Initial transition, transition rules, and final transition:

c ⇒ 〈nil , mt , c〉
〈s, e, access x; c〉 ⇒ 〈e(x) :: s, e, c〉

〈s, e, close(x, c′); c〉 ⇒ 〈[x, c′, e] :: s, e, c〉
〈[x, c′, e′] :: v :: s, e, call; c〉 ⇒ 〈s, e′[x 7→ v], c′; c〉

〈v :: s, e, nil〉 ⇒ v

Variables x are represented by their name, and the virtual machine operates on
triples consisting of a stack of expressible values, an environment, and a list of
instructions. This machine is an SEC machine since, due to the fact that we
simplified away the control delimiter, there is no dump [2, 16].

5.3 Summary, related work, and conclusions

We have presented the virtual-machine counterparts of the CLS and SECD
abstract machines, starting from the evaluator corresponding to these abstract
machines.

The SECD virtual machine is a dump-free version of the one presented in
Henderson’s book [34, Chapter 6]. The SECD compiler is the same. Both
are unmotivated in Henderson’s book and we are not aware of any subsequent
derivation of them except for the present one.

The CLS compiler and virtual machine were constructed by a stratifica-
tion (pass separation) algorithm over a representation of the CLS abstract ma-
chine [28, 29]. We do not know whether Hannan’s pass separation has been
applied to Krivine’s machine, the CEK machine, and the SECD machine, and
whether it has been identified that the CAM, the VEC machine, and the Zinc
abstract machine can be seen as the result of pass separation.

28



6 Conclusion and issues

Over thirty years ago, in his seminal article about definitional interpreters [49],
Reynolds warned the world that direct-style interpreters depend on the evalu-
ation order of their meta-language. Indeed, if the defining language of a def-
initional meta-circular interpreter follows call by value, the defined language
follows call by value; and if it follows call by name, the defined language follows
call by name. Continuation-passing style, however, provides evaluation-order
independence.

As a constructive echo of Reynolds’s warning, we have shown that starting
from an evaluation function for the λ-calculus, if one (a) closure-converts it,
i.e., defunctionalizes it in place, (b) CPS-transforms it, (c) defunctionalizes the
continuations (a transformation which is also due to Reynolds [49]), and (d)
factorizes it into a compiler and a virtual machine (as has been largely studied
in the literature [50], most significantly by Wand [54]), one obtains:

• Krivine’s machine if the CPS transformation is call by name, and

• the CEK machine if the CPS transformation is call by value.

Furthermore, we have shown that starting from a normalization function for the
λ-calculus, the same steps lead one to:

• a generalization of Krivine’s machine performing strong normalization if
the CPS transformation is call by name, and

• a generalization of the CEK machine performing strong normalization if
the CPS transformation is call by value.

Krivine’s machine was discovered [38] and the CEK machine was invented [21].
Both have been studied (not always independently) and each has been amply
documented in the literature. Neither has been related to the standard seman-
tics of the λ-calculus in the sense of Milne and Strachey. Now that we see that
they can be derived from the same evaluation function, we realize that they
provide a new illustration of Reynolds’s warning about meta-languages.

Besides echoing Reynolds’s warning in a constructive fashion, we have pointed
at the difference between virtual machines (which have an instruction set) and
abstract machines (which operate directly on source terms), and we have shown
how to derive a compiler and a virtual machine from an evaluation function, i.e.,
an interpreter. We have illustrated this derivation with a number of examples,
reconstructing known evaluators, compilers, and virtual machines, and obtain-
ing new ones. We have also shown that the evaluation functions underlying
Krivine’s machine and the CEK machine correspond to a standard semantics of
the λ-calculus, and that the evaluation functions underlying the CAM, the VEC
machine, the CLS machine and the SECD machine are partial endofunctions
corresponding to a stack semantics. Finally, we have derived virtual machines
performing strong normalization by starting from a normalization function.
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We conclude on three more points:

1. The compositional nature of the compilers makes it simple to construct
byte-code verifiers and to prove their soundness and completeness. Let us
take a simple example.

Definition 1 (Verifier) Given the inference rules

m `at c

m `nf c

m + 1 `nf c

m `nf
grab; c

n < m

m `at
accessn; nil

m `nf c m `at c′

m `at
push c; c′

we say that a program c compiled for Krivine’s virtual machine is verified
whenever the judgment 0 `nf c is derivable.

We want to apply this verifier to any list of instructions for Krivine’s
virtual machine to directly determine whether it denotes the compiled
counterpart of a closed term in normal form (instead of, e.g., decompiling
it first into a λ-term and verifying that this λ-term is in normal form).

Lemma 1 For any integer m and for any list of instructions c




m `nf c is derivable ⇒ ∀k>m k `nf c

m `at c is derivable ⇒ ∀k>m k `at c.

Proof: By simultaneous structural induction over derivation trees. �

Theorem 1 (Soundness and completeness) A list of instructions c
denotes the compiled counterpart of a closed term in normal form if and
only if c is verified in the sense of Definition 1.

Proof: Let NF denote the set of terms in normal form, AT denote the
set of atomic terms in normal form. For a term t , let P (t) denote the set of
paths from the root of the term to each occurrence of a variable in t . For
such a path p, let v(p) denote the variable (represented by its de Bruijn
index) ending the path and nλ(p) denote the number of λ-abstractions on
the path.

• If 0 `nf c is derivable then there exists a closed term t in normal
form such that [[t ]] = c.
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By simultaneous structural induction over derivation trees, we prove
that for any integer m and for any list of instructions c




m `nf c is derivable ⇒ ∃t∈NF [[t ]] = c and
∀p∈P (t) v(p) − nλ(p) < m

m `at c is derivable ⇒ ∃t∈AT [[t ]] = c and
∀p∈P (t) v(p) − nλ(p) < m.

Therefore, if 0 `nf c then ∃t∈NF [[t ]] = c and ∀p∈P (t) v(p) < nλ(p),
which means that t is a closed term.

• If t is a closed term in normal form then 0 `nf [[t ]] is derivable.
By simultaneous structural induction on source terms, we prove that
for any term t




t ∈ NF ⇒ max
p∈P (t)

(v(p) − nλ(p) + 1) `nf [[t ]]

t ∈ AT ⇒ max
p∈P (t)

(v(p) − nλ(p) + 1) `at [[t ]].

Therefore, if t is in normal form then max
p∈P (t)

(v(p)−nλ(p)+1) `nf [[t ]],

and if t is closed then ∀p∈P (t) (v(p)−nλ(p)+1) ≤ 0. Hence, 0 `nf c
by Lemma 1. �

2. We observe that the derivation lends itself to a systematic factorization of
typed source interpreters into type-preserving compilers and typed virtual
machines with a typed instruction set.

3. The derivation is not restricted to functional programming languages. For
example, we have factored interpreters for imperative languages and de-
rived the corresponding compilers and virtual machines. We are currently
studying interpreters for object-oriented languages and for logic program-
ming languages.

Acknowledgments: We are grateful to Ma lgorzata Biernacka and Henning
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[38] Jean-Louis Krivine. Un interprète du λ-calcul. Brouillon. Available online
at http://www.logique.jussieu.fr/~krivine, 1985.

[39] Peter J. Landin. The mechanical evaluation of expressions. The Computer
Journal, 6(4):308–320, 1964.

[40] Xavier Leroy. The Zinc experiment: an economical implementation of the
ML language. Rapport Technique 117, INRIA Rocquencourt, Le Chesnay,
France, February 1990.
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