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Wireless authentication in χ-Spaces

Federico Crazzolara∗ Giuseppe Milicia∗

BRICS, Center of the Danish National Research Foundation
federico@ccrl-nece.de, milicia@brics.dk

Abstract

The χ-Spaces framework [CCM02b] provides a set of tools to support
every step of the security protocol’s life-cycle. The framework includes a
simple, yet powerful programming language which is an implementation
of the Security Protocol Language (SPL) [CW01]. SPL is a formal calcu-
lus designed to model security protocols and prove interesting properties
about them. In this paper we take an authentication protocol suited for
low-power wireless devices and derive a χ-Spaces implementation from
its SPL model. We study the correctness of the resulting implementation
using the underlying SPL semantics of χ-Spaces.

1 Introduction

Security protocols describe a strategy which allows two or more parties to se-
curely exchange information over an untrusted media. Pragmatic experience
leads us to believe that the design and implementation of security protocols is
a challenging task. Indeed the few engineering guidelines available to security
protocol designers offer little, if any, guarantee on the quality of their design
efforts. A painful common denominator of a number of published security
protocols is that they are, later on, found to be flawed in one way or another.
Striking examples of such trend are the well-known Needham-Schröder pro-
tocol [NS78], an attack against which was found almost twenty years after
its publication in [Low96], but also less over-cited experiences such as the Π
protocol of Woo and Lam [WL94]. The list is uncomfortably long [CJ97].

As a reaction to this situation, formal methods have been used, with some
success, to study newly introduced security protocols. However, a different,
and often overlooked, aspect of the field is the danger involved in the step that
brings a correct formal specification of a security protocol to its actual real-life
implementation. A protocol, which can be easily specified in few lines, results
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in thousands of lines of code. Believing that the security properties of the
concise specification will carry forward to its implementation is, more than
anything else, an act of faith. This faith is often misplaced. An embarrassing
example of such situation, is the implementation of the SSL protocol in the
Netscape web browser. The SSL protocol is well-understood and has been
proved correct in several studies. Its implementation in the Netscape browser
was, however, found to be flawed [ACR00].

The χ-Spaces framework (pronounced key spaces), and in particular the
χ-Spaces programming language [CCM02b], is meant to fill the gap between
a formal specification of a security protocol and its implementation. χ-Spaces
provides a concise, yet powerful, scripting language specifically designed for
the development of security protocol. This language is an implementation of
the Security Protocol Language (SPL) [CW01], a calculus for the specification
and analysis of security protocols. The χ-Spaces language and SPL are closely
related, indeed, the SPL semantics and proof techniques are easily adapted to
analyse χ-Spaces programs [CCM02b]. χ-Spaces has been successfully applied
to the study and implementation of real-life protocols [CCM02c, CM02].

χ-Spaces is based on the Java programming language [GJSB00] and as
a consequence enjoys its platform independence. χ-Spaces does not rely on
point-to-point communication, a space, a remotely available storage area, is
used instead. This architecture makes χ-Spaces ideal in a wireless and highly
dynamic settings [CCM02a]. Our current research aims at the deployment
of efficient protocols for low-power wireless devices such as Personal Digital
Assistants (PDAs), mobile phones, etc.

From a practical point of view, χ-Spaces is compatible with the Java 2
micro edition (J2ME) [RTVH01] and PersonalJava frameworks. At present,
the J2ME technology has been accepted by a number of companies and J2ME
aware devices are on the verge of flooding the market. Top-performance PDAs,
such as the Compaq iPAQs, are powerful enough to support the PersonalJava
virtual machine.

The design of security protocols for low-power devices introduces a number
of new concerns which we discuss. We then introduce the SSMAKEP (server
side mutual authentication and key exchange protocol) protocol [WC01b],
which we found meeting our criteria. We provide an implementation of the
protocol in χ-Spaces, and study its performances and its security properties
(using the SPL proof methodology). The Appendix discusses an attack sce-
nario on the SSMAKEP protocol, in the presence of a compromised server.
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Space

Figure 1: χ-Spaces Architecture

2 The χ-Spaces framework

The χ-Spaces [CCM02b] framework is tailored to the development of security
protocols. Its programming language is a direct implementation of the SPL
(Security Protocol Language) [CW01], a formal model for the study of secu-
rity protocols. The χ-Spaces framework is implemented in Java [GJSB00]
and as a consequence enjoys the portability typical of Java applications. The
architecture of χ-Spaces rests on the general notion of network middleware or
tuple space which has been first introduced in the mid-1980’s by the project
Linda [Gel85]. In this setting a space should supports three principles: anony-
mous communication, universal addressing and persistence of information.

2.1 Architecture

The χ-Spaces architecture is sketched in Figure 1. Communication between
principals occurs via a space, a remotely available storage area. The ap-
proach of χ-Spaces does not rely on any specific space implementation; any
modern coordination framework can be plugged in by writing an appropri-
ate driver. The standard distribution of χ-Spaces provides a driver for IBM
TSpaces [LCX+01]. Stepping away from point-to-point communication, χ-
Spaces is ideal in a highly dynamic environment, such as, for instance, Jini
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federations [CCM02a, Sun00]. Cryptographic primitives are not embedded ei-
ther and so χ-Spaces can be used with any Java Cryptographic Architecture
(JCA) [Sun] compliant providers. End-users need not to trust any particular
implementation.

A χ-Spaces program can be either interpreted or compiled to Java code,
which can then be refined via inheritance. An useful addition is the possibility
to generate a JAAS [LGK+99] module implementing the protocol. Further
details on the χ-Spaces programming methodology can be found in [CM02]
and [CCM02b].

2.2 Programming language

Security protocols are frequently described as a sequence of message between
distributed principals. A very simple but yet effective example is the ISO
1-Pass Symmetric Key Unilateral Authentication protocol [CJ97]:

A → B : {Na,B}Key(A,B)

In this protocol the initiator A sends a message to the responder B. The
curly brackets indicate encryption – in this example under the symmetric key
shared by A and B. The value Na, the nonce, is meant to be fresh and
unguessable. Its purpose is to ensure that the request of A is recent. For more
sophisticated examples, descriptions of this kind are not enough to describe
all the details of a protocol. A principal for example may decide a course of
execution depending on the information contained in the messages received.

In this section we briefly describe the syntax for χ-Spaces programs – for
more details refer to [CCM02b]. The main instructions are:

• new generates a nonce,

• in takes a message from the space, and

• out sends a message to the space.

A sequence of instructions separated by dots forms a sequential process. A
χ-Spaces program consists of a parallel composition of sequential processes.
There is no assumption on the order of execution of parallel components. The
language supports an operator for unbounded replication as well, the process
term !P executes as an unbound parallel composition of the process P.

The χ-Spaces implementation of the simple protocol above is given in
Figure 2. It illustrates the use of parametric definition of sequential processes
– in the example Init and Resp. The keys used along a sequential process
must be declared in the preamble of its definition. In the example only the
principals "Alice" and "Bob" are involved. In order to extend this protocol to
allow another initiator, say "Eve", is enough to replace the last line in Figure 2
with

4



def
Init(A, B) := {Key(A, B)}

new(Na) .
out {(Na,B)}Key(A, B);

Resp(A, B) := {Key(A, B)}
in [*C Key(A, B) > (X, B)];

end

Init{"Alice"}{"Bob"} | Resp{"Alice"}{"Bob"}

Figure 2: ISO 1-Pass Symmetric Key Unilateral Authentication in χ-Spaces

Init {"Alice","Eve"}{"Bob"}| Resp{"Alice","Eve"}{"Bob"}.

In χ-Spaces different threads of execution are spawned for every possible com-
bination of the actual arguments. In the program above the process Init, for
example, is launched twice, one time with parameters "Alice and "Bob" and
the other time with "Eve" and "Bob".

2.3 Messages and patterns

A message in an output can be a single variable, a constant, a tuple of messages
or an encryption. Examples of messages are 5, "Alice", and (x,(2,3,"Bob")).
An encryption consists of a message and a key, e.g. {(1,20)}Pub("Alice").
All variables occurring in a message must be bound, if not the parser issues
an open term error message.

A pattern in an input acts as a binder over the free variables. An input
successfully takes a message from the space if it matches against the pattern.
Simple examples of patterns are 5, x and (x,(x,10)). Non-linear patterns and
nested tuples are permitted, in these cases the pattern matching is performed
left-to-right in a depth-first fashion. A decryption consists of a variable for
the cipher, a key expression and a pattern, for example [*C Priv("Bob") >
(1,w)]. An input with a decryption pattern first reads an arbitrary cipher
from the space, decrypts it by using the key and tries to match the result
against the pattern; if successful, it removes the cipher from the space.

To properly deal with keys χ-Spaces introduces a simple type distinction:
key variables (e.g. $k), basic value variables for constants like nonces or agents
names and general variables (e.g. *C) for any value, inclusive constants, tuples,
keys and ciphers. The pattern matching takes into account these types so for
example $k only matches a key in the space.
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3 Concerns in the design of security protocols for

low-power wireless devices

The design of security protocols for low-power wireless devices, such as mobile
phones, personal digital assistants (PDAs), etc. faces challenges which are not
normally found when tackling more powerful devices.

Performance

An important aspect that protocol developers must keep in mind is perfor-
mance. Although this is always the case, when dealing with small devices
this concern grows significantly in proportions. Currently most devices can-
not meet the performance requirements of public key cryptography, e.g. RSA.
In [DB99] the authors show that signing a message using a 512-bit RSA key
takes more that 7 seconds on a 16 MHz Palm Pilot. The performance issues
become more severe in Java enabled mobile phones. Preliminary benchmarks
we conducted on the Motorola Accompli 009 showed that encryption with a
512-bit RSA key took well over two hours to complete. This is not acceptable.
The end results is that current technology rules out public key cryptography
in the design of security protocols for low-power devices.

Clocks

A number of security protocols rely on the use of time stamps. Time stamps
were introduced by Denning and Sacco [DS81] to avoid replay attacks. As a
well-known example of a security protocol relying on time-stamps consider the
Kerberos v5 authentication protocol [SNS88].

Although time stamps are used in popular security protocols for everyday
tasks, they have been criticised [BM91, Gon92]. In general time stamps require
the clocks of the principals involved in the protocol to be synchronized. Clock
synchronization is a well-known problem of distributed computing [Tel94]. A
number of protocols exist to address this issue. However the most popular of
these protocols pose a security risk in the context of security protocols. Better
protocols do exist [Mil88], however they require an underlying authentication
to be present. It looks like the problem of chicken and egg [BM91].

Clock synchronization is not a severe limitation in a limited and relatively
static environment of a local area network (LAN). Generally, communication
in a LAN environment is reliable. In a wireless environment communication
is much less reliable, this, coupled with the ever-changing network topology,
makes the task of clock synchronization rather troublesome. From a prag-
matic point of view clock synchronization is best to be avoided in a wireless
environment.
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3.1 Choosing an authentication protocol

The previous discussion gives us some discerning criteria when choosing an
authentication protocol suited for low-power wireless devices, mainly:

Efficiency No public-key cryptography should be used on low-power devices.

Clocks No time-stamps should be used to avoid the burden of clock synchro-
nization in a wireless environment.

Scalability The protocol should scale well to an environment with thousands
of principals.

Maintainability The protocol will be deployed on a variety of devices. To
ease the deployment task only standard widely available cryptographic
primitives should be used: encryption, decryption and signing.

Recent research in security protocol design has addressed these issues. Proto-
cols specifically designed for low-power wireless devices have been proposed,
for example, in [WC01a, WC01b, JP01]. The protocol in [JP01] has, however,
been found flawed in [WC01a]. An interesting protocol meeting our criteria
is described in [WC01b]. The same authors propose a more scalable protocol
in [WC01a], this latter, however, does not meet our requirements as it involves
the use of public-key encryption on a low-power device. Furthermore the use
of non-standard cryptographic operations would result in low-level coding and
very little choices for the cryptographic provider.

4 Server specific MAKEP

In this section we describe a protocol for mutual authentication and key ex-
change (MAKEP) presented in [WC01b]. The protocol is called server specific
MAKEP (SSMAKEP). Its distinguished characteristic is that it requires an
asymmetric amount of computational power. More specifically, we distinguish
between a server whose computational power is of workstation level and a
client which is assumed to have a limited amount of computation power, of
the order of a PDA or cellular phone. On the client side the protocol relies
solely on symmetric key cryptography, on the server side the more expensive
public-key cryptography is used instead.

In the following description of the SSMAKEP protocol we use the notation
A → B : M to say that the message M is sent from A to B. Encrypted
messages are denoted by {M}Key(A) and {M}Pub(A), as a special case the
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notation {M}Priv (A) stands for the message M signed by A:

(1) A → Ta : A,S
(2) Ta → A : {A, {Key(A)}Pub(S)}Priv (Ta)

(3) A → S : {Ra}Key(A), {A, {Key(A)}Pub(S)}Priv (Ta)

(4) S → A : {Ra,Rs, S}Key(A)

(5) A → S : {Rs}Key(A)

Initially (Step 1) the client A contacts a trusted authority Ta saying that it
intends to communicate with S. As a response (Step 2), Ta sends to A a
signed certificate which contains A’s long term encryption key, encrypted by
S’s public key. This certificate contains all the information S needs to engage
in the protocol with A. A can then contact S (Step 3) and send the certificate
and a challenge: an encrypted nonce. Being the certificate signed, S can trust
its content and extract the key it needs to communicate with A. S proceeds by
answering A’s challenge with another challenge in the form of the encrypted
nonce Rs. A’s answer to the challenge completes the protocol. In [WC01b] the
authors claim that the SSMAKEP protocol can be proved secure in a security
model similar to the one presented in [BR93].

5 An implementation in χ-Spaces

In this section we show how the SSMAKEP protocol can be implemented in
χ-Spaces.

In a χ-Spaces program we need a process definition for each principal role
in the protocol. Subsequently, actual principals are obtained as instances of
the corresponding roles. The roles for the SSMAKEP protocol can be found in
Figure 3. To get hold of the needed keys the principals will rely on a specified
keystore, if a certain key cannot be found an error will be generated. From
the client point of view, its keystore must contain only its secret key. The
servers must know their own key and the trusted authority public key. The
trusted authority has more responsibilities. Indeed its keystore must contain
the long-term key of every client and the public keys of all the servers. It is
fundamental that only trusted servers make it this far. Let RS be the set
of trusted servers. Conceivably the trusted authority will do the necessary
checks to ascertain the identity of every server before including it in RS. If
a corrupted server is in RS, the protocol is subject to a man-in-the-middle
attack (see Appendix A).

A successful run of the SSMAKEP protocol will be shaped as in Figure 4.
This event diagram was generated using χ-Sim, a security protocol simulator
which is part of the χ-Spaces framework.
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def
Client(A, B):= {Key(A)}

out ("S", A, B).
in ((A, *C1), *C2).
new (Ra).
out (B, (A, *C1, *C2), {Ra}Key(A)).
in (A, [*C3 Key(A) > (Ra, Rb, B)]).
out (B, {Rb}Key(A));

end

def
Server(B) := {Pub(B), Priv(B), Pub("Ta")}

! in (B, (A, [*C1 Priv(B) > $k], [*C2 Pub("Ta") > (A,*C1)]),
[*C3 $k > Ra]).

new (Rb).
out (A, {(Ra, Rb, B)}$k).
in (B, [*C4 $k > Rb]);

end

def
Ta() := {Key(A), Pub(B), Pub("Ta"), Priv("Ta")}

! in ("Ta", A, B).
out ((A, {Key(A)}Pub(B)),

{(A, {Key(A)}Pub(B))}Priv("Ta"));
end

Figure 3: SSMAKEP roles in χ-Spaces

5.1 Performance evaluation

We provide some benchmarks for the χ-Spaces implementation of the SS-
MAKEP protocol. In this work we focus one of the top-performers in the
PDA scene: the Compaq iPAQ.

The Compaq iPAQ supports the PersonalJava virtual machine. The cur-
rent PersonalJava JVM (1.1.8) is a limited version of the standard 1.1 JVM.
To put our data into perspective we used a low-end PC as reference. The
machines used for our tests had the following configuration:
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Out 2.15

In 2.703

Server

InitiatorTrusted Authority

Out 4.45

In 4.16

Out 2.796

In 4.890

In 3.671

Out 3.703

In 2.78

Out 2.625

["Ta ", "Alice", "Bob"]

["Alice", ["Alice", EncryptedData ]]

["Bob", ["Alice", EncryptedData ], EncryptedData ]

 ["Alice", EncryptedData ]

 ["Bob", EncryptedData ]

Figure 4: A successful MAKEP run

Model Processor Memory Network OS VM

Compaq
iPAQ
H3660

206MHz
Intel Stron-
gARM

64MB
RAM

11mbps
IEEE
802.11b
Wireless
LAN

Familiar
GNU/Linux

Sun Per-
sonalJava
1.1.8

Low-end
PC

Intel
Celeron
300MHz

128MB
RAM

10mbps
Ethernet

Windows
2000

JVM 1.4

In Figure 5 we can see the performances of the protocol on the test ma-
chines. The cryptographic provider used was BouncyCastle 1.151, a popular
open-source choice. The protocol was run using a 256bits TwoFish Cipher.
Although the time spent doing cryptography is kept to unnoticeable levels,
the protocol is still slow compared to a low-end PC, this is due to the slower
processor and memory of the PDA. Indeed, marshaling and unmarshaling of
the transmitted data account for most of the computation time. In Figure 6
we show the performances of the cryptographic part of the protocol for various
ciphers, among which four of the five AES finalists2. Note that in this imple-

1Freely available from www.bouncycastle.org
2The low performances of Rijndael are due to an unoptimized implementation, the next

release of the BouncyCastle provider will fix this.
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mentation the symmetric key belonging to the client was stored on the PDA
with no protection. Traditionally password based encryption (PBE) is used
to implement a secure keystore. χ-Spaces, via the chosen JCE provider, fully
supports keystores. However, even weak PBE is quite costly on a low-power
device. The default Java keystore format (JKS), is secure against tampering
(but not inspection). It relies on PBE based on SHA digests and TripleDES.
In Figure 7 we show a detailed account of the performances of the SSMAKEP
protocol on the Compaq iPAQ when the client’s key is stored in a JKS key-
store. At the moment secure keystores are way too costly at the PDA level.
We believe that the security of the key stored in the PDA should be tackled
at a different level, possibly securing the PDA itself.

It is possible to argue that Java is too slow to program cryptographic
protocols on low-power devices. Indeed a C implementation of the same pro-
tocol would be significantly faster. However, in a real-life scenario, a service
provider which needs to implement an authentication protocol, must support
a variety of devices. Most likely, it must support any device. Java becomes
soon an interesting option due to its portability which surpasses the down side
of its performances.

116ms  0%

7400ms  30%

16895ms  70%

Cryptography

Keystore

Rest of the
Computation

Figure 7: iPAQ Performance Details

6 Security properties

In this section we investigate some interesting security properties of the χ-
Spaces implementation of the SSMAKEP protocol. We stress that the follow-
ing discussion does not concern the specification of the protocol but its actual
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implementation. We are formal and precise in our study and make use of the
net-semantics of SPL (see [CW01]) which can be adapted to χ-Spaces to state
and prove security properties – a χ-Spaces program is easily translated into a
corresponding SPL process (see [CCM02b]). The proofs of the properties we
claim to hold for the χ-Spaces implementation of the SSMAKEP protocol fol-
low from the dependencies among the various events that occur in a protocol
run.

A run of the protocol is described by a sequence of configurations and
events. Configurations 〈pi, si, ti〉 are triples consisting of a process term pi

which denotes the point of control reached by the protocol and determines
the possible events that can occur from that point, a set si containing all
the “new” (random) values that appeared so far in the run, and a set of
messages describing the contents of the tuple space. When an event occurs a
configuration evolves into another one. Events carry actions such as act(e) =
i : outnew n M , the action of an output event e, where i is an index denoting
the parallel component the event belongs to, n is a freshly created value, and
M a message sent onto the tuple space. The action act(e) = i : in M instead is
that of an input event. Write M v M ′ when the message M is subterm of the
message M ′ and if t is a set of messages write M v t if there is a message M ′ ∈ t
such that M v M ′. Let SSMAKEP be the SPL term for the SSMAKEP
protocol system where C the set of names of agents that can be clients in the
protocol. Let RC be the clients and RS the servers that are registered with
the trusted authority and let S be the servers with which clients might want
to communicate. We do not study the system in isolation but together with
a spy which is a parallel component of SSMAKEP . The spy can eavesdrop
on all the communication that passes through the space, encrypt and decrypt
messages with the keys it gets hold of, and compose and decompose structured
messages (see [CCM02b] for the χ-Spaces code of a possible spy). Let the SPL-
process terms Client(A,B), Server(B), Ta(A,B) and Spy correspond to the
respective χ-Spaces terms (this is done in a straightforward way as shown in
[CCM02b]) and consider the following system:

Pcl = ‖(A,B)∈C×S Client(A,B)
Psv = ‖B∈RC Server(B)
Pta = ‖A∈RC ‖B∈RS Ta(A,B)

Pspy = Spy

SSMAKEP = ‖i∈{cl,sv,ta,spy}Pi

The security theorems in this section hold for every run of the SSMAKEP
system:

〈SSMAKEP , s0, t0〉 e1−→ . . .
er−→ 〈pr, sr, tr〉 er+1−−−→ . . .

13



A central property of the protocol is the secrecy of a client’s long term key.
We show that the long term key of a client never appears in clear and by itself
on the network, provided it is not leaked from the start and provided that all
private keys of the registered servers are not corrupted.

Theorem 6.1 (Secrecy of client’s long term key). Let A ∈ C be a client
such that Key(A) 6v t0. If for all registered servers rS ∈ RS the private key
Priv(rS) 6v t0 then at every stage j of an SSMAKEP run Key(A) 6∈ tj .

In other words, under the conditions of the previous theorem, only registered
servers get to know long term keys of registered clients. For example sup-
pose that Eve 6∈ RS is not a registered server. Since Eve is not registered
its private key could be corrupted and Priv(Eve) ∈ t0. If Eve gets to know
Key(A) by receiving the message {Key(A)}Pub(Eve) then this can be eaves-
dropped by a spy. The spy can use the leaked private key of Eve to decrypt
and publish Key(A) on the network. This scenario is not admitted by the
previous theorem. This concept can be made more precise using the notion
of “surroundings” (see [CCM02b]). Then one can show that Key(A) always
appears in a message (is in the “surrounding” of) encrypted with the public
key of a registered server.

The protocol aims at setting up a session key between registered clients
and servers. The session key is built out of two parts, a server part and a
client part. The next theorem shows when the protocol keeps the two parts of
the session keys secret.

Theorem 6.2 (Secrecy of session key). Let A ∈ C be a client such that
Key(A) 6v t0. Suppose that for all registered servers rS ∈ RS the private key
Priv(rS) 6v t0.

Server part of session key If the run contains a server event b2 with action

act(b2) = sv : B : r : out new rb A, {ra, rb,B}k

then at every stage j of an SSMAKEP run rb 6∈ tj.

Client part of session key If the run contains a client event a3 with action

act(a3) = cl : A,B : l : out new ra B,A,M,M ′, {ra}Key(A)

then at every stage j of an SSMAKEP run ra 6∈ tj.

A property that is certainly desired for the SSMAKEP protocol is au-
thentication on the server side. The server wants to be sure that it is indeed
setting up a session key with the client and not with some malicious party
that masquerades as the client, perhaps replaying an old message. Under the
assumption that no registered server has a corrupted key one can ensure the
following agreement property which is a strong form of authentication.
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Theorem 6.3 (Server authenticates client). Suppose that Priv(rS) 6v t0
for all rS ∈ RS and that Priv(Ta) 6v t0. If a run of SSMAKEP contains
server events b2, b3 of a registered server B ∈ RS with actions

act(b2) = sv : B : r : out new rb A, {ra, rb,B}k

act(b3) = sv : B : r : in B, {rb}k

where A ∈ C such that Key(A) 6v t0 then A ∈ RC and k = Key(A) and the
run contains client events a3, a4, a5 with actions

act(a3) = cl : A,B : l : out new ra B,A,M,M ′, {ra}Key(A)

act(a4) = cl : A,B : l :∈ A, {ra, rb,B}Key(A)

act(a5) = cl : A,B : l : out B, {rb}Key(A)

for some messages M,M ′.

If registered servers behave according to their code and do not have cor-
rupted private keys, then a strong from of authentication also holds for the
client with respect to the server.

Theorem 6.4 (Client authenticates server). Suppose that Priv(rS) 6v t0
for all rS ∈ RS. If a run of SSMAKEP contains client event a4 with action

act(a4) = cl : A,B : l : in A, {ra, rb,B}Key(A)

where A ∈ C such that Key(A) 6v t0 then A ∈ RC and B ∈ RS and the run
contains a server event b2 with action

act(b2) = sv : B : r : out new rb A, {ra, rb,B}Key(A)

One of the weak points of the SSMAKEP protocol is that all registered
servers need to be uncorrupted so that their private key is not leaked to a
malicious agent. It is enough that only one server gets corrupted to make all
the above security properties fall. In particular if one server leaks the key to a
spy, then the spy can get hold of the long term key of any registered client an
therefore can get hold of the session keys and act as a registered user instead
of anyone else.

7 SSMAKEP protocol use case & deployment

A company T is advertising the services of a number of registered providers
RS. To clients that register with T access to the services of providers in RS is
granted under particularly convenient conditions. For example, T is a travel
agency promoting a number of hotels. The clients that register with T (e.g.
paying a one time membership fee) will be able to browse, with their last
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generation mobile phones, a list of available hotels and reserve a room at a
special rate. Both clients and hotels can decide to join and leave T . The travel
agency T will register new hotels following a certain policy and, for example,
guarantee a certain quality of services within RS. We seek an authentication
protocol that can cope with this dynamic environment and ensures that:

1. Unregistered clients won’t obtain the special discount when trying to
reserve a room from a hotel in RS.

2. Clients that book a room from a hotel that appears in RS want to be
sure the hotel is indeed registered with T to avoid unpleasant surprises
on their final bill.

The SSMAKEP protocol, as we saw, has the necessary authentication
guarantees and its client side is light enough to sit on a mobile phone. The
danger of a corrupted hotel manager that impersonates a client to get a dis-
count for his own holiday is acceptable if, for example, T promises to take
actions against a discovered misbehaving hotel (in addition, client member-
ship keys could expire after some time and reissued whenever a corruption is
detected). SSMAKEP provides clients with a check-in token Rs that can be
used at check-in time to prove that an advanced booking took place.

Deployment of a χ-Spaces SSMAKEP implementation

The client. Alice wants to become a member of T and goes to T ’s office to
purchase the membership. The travel agency registers Alice in RC. Alice gets
from T the χ-Spaces SSMAKEP client software which she can easily install on
her Java-enabled mobile phone. She will also get a membership key (Key(A))
to be stored on her phone. Alice is now a registered member of T and her
phone enabled for making convenient reservations with the hotels advertised
by T .

The server. Hotel B wants to be promoted by T and asks for registration.
If T accepts, it includes B in RS and provides B with the χ-Spaces SSMAKEP
server software, which includes a tuple space. This software is Java based and
can easily be installed on B’s system. Moreover T and B exchange public keys.
The hotel wants to place the SSMAKEP server on a machine which is protected
by a firewall. To enhance security the space could be run outside the firewall
– the server software needs only one fixed IP address to communicate with
the space, however, clients can conveniently connect from various, possibly
dynamic, IP addresses to the space.
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8 Conclusions

Starting with the goal of deploying security protocols for low-power wireless
devices we moved on to find an authentication protocol suitable for this envi-
ronment. Preliminary considerations led us to some discerning criteria in our
search, chiefly we wished to avoid public-key cryptography and time-stamps.
A suitable candidate for our purposes is the SSMAKEP protocol. We provided
an implementation in χ-Spaces and analysed its performances on the popular
Compaq iPAQ PDA. Our tests showed performances which, relatively speak-
ing, could be acceptable. We noted, however, that the traditional keystore
implementations are, at the moment, too expensive to be used.

Using the underlying SPL model of χ-Spaces we studied the correctness
of our SSMAKEP implementation. At the moment we are busy collecting
benchmarks for other low-power devices, such as the Palm m500, the Sony
Clie and the Sony-Ericsson P800. We are also studying the performance gap
between native code and Java. An interesting area we are exploring is the
use of Jini to discover the space to be used as communication medium. The
recently available PersonalJava 1.2 platform provides all the necessary features
to interface with Jini, this comes, however, at the price of higher memory
requirements.
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A Compromised Server Scenario

As briefly mentioned in Section 5 and Section 6, if a server in RS is com-
promised the SSMAKEP protocol is not secure anymore. In Figure 8 we can
see a trace of the resulting attack. An attacker (Mallorie) which knows the
private key of a compromised server is able to spoof the secret key of any client
attempting to authenticate with the server. Subsequently Mallorie is able to
impersonate the client.

A different issue is that servers have always the possibility of impersonating
the clients they serve. This is normally not an issue, however, in certain
situations it might be problematic, e.g. the clients need to fully trust the
servers with their identities.

Out 2.15

In 2.703

Corrupted Server

Client (Alice)

Out 4.45

In 4.16

Out 2.796

In 4.890

In 3.671

Out 3.703

["Bob", ["Alice", EncryptedData ], EncryptedData ]

 ["Alice", EncryptedData ]

 ["Bob", EncryptedData ]

Spy ( Mallorie )

In 4.890

In 3.371

Out 3.703

Impersonating Alice

["Ta ", "Alice", "Bob"]

["Alice", ["Alice", EncryptedData ]]

Trusted Authority

In 2.78

Out 2.625

["Ta ", "Alice", "Bob"]

["Alice", ["Alice", EncryptedData ]]

Trusted Authority

In 2.78

Out 2.625

Figure 8: Compromised Server Attack
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