1591 ANfewd sniuagol oneipend papuaix3 uy uaspueld » prfweq 6-€0-SY SOIdg

BRICS

Basic Research in Computer Science

An Extended Quadratic
Frobenius Primality Test with
Average and Worst Case Error Estimates

lvan B. Damgard
Gudmund Skovbjerg Frandsen

BRICS Report Series RS-03-9
ISSN 0909-0878 February 2003

Copyright (© 2003, Ivan B. Damgrd & Gudmund Skovbjerg
Frandsen.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work

is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS

Department of Computer Science
University of Aarhus

Ny Munkegade, building 540
DK-8000 Aarhus C

Denmark

Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLSs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/03/9/

An Extended Quadratic Frobenius
Primality Test with Average and Worst
Case Error Estimates *

Ivan Bjerre Damgard Gudmund Skovbjerg Frandsen

BRICS'
Department of Computer Science
University of Aarhus
Ny Munkegade
DK-8000 Aarhus C, Denmark

{ivan,gudmund}@brics.dk

February, 2003

Abstract

We present an Extended Quadratic Frobenius Primality Test
(EQFT), which is related to the Miller-Rabin test and the Quadra-
tic Frobenius test (QFT) by Grantham. EQFT takes time about
equivalent to 2 Miller-Rabin tests, but has much smaller error
probability, namely 256/331776 for ¢ iterations of the test in the
worst case. EQFT extends QFT by verifying additional algebraic
properties related to the existence of elements of order dividing
24. We also give bounds on the average-case behaviour of the test:
consider the algorithm that repeatedly chooses random odd & bit
numbers, subjects them to ¢ iterations of our test and outputs the
first one found that passes all tests. We obtain numeric upper

*Partially supported by the IST Programme of the EU under contract number
IST-1999-14186 (ALCOM-FT).
TBasic Research in Computer Science,
Centre of the Danish National Research Foundation.

bounds for the error probability of this algorithm as well as a
general closed expression bounding the error. For instance, it is
at most 27143 for k = 500,t = 2. Compared to earlier similar
results for the Miller-Rabin test, the results indicates that our
test in the average case has the effect of 9 Miller-Rabin tests,
while only taking time equivalent to about 2 such tests. We also
give bounds for the error in case a prime is sought by incremental
search from a random starting point.

1 Introduction

Efficient methods for primality testing are important, in theory as well
as in practice. Although tests that always return correct results do exist,
tests that accept composite numbers with bounded probability continue
to be much more efficient. This paper presents and analyses one such test.
Primality tests are used, for instance, in public-key cryptography, where
efficient methods for generating large, random primes are indispensable
tools. Here, it is important to know how the test behaves in the average
case. But there are also scenarios (e.g., in connection with Diffie-Hellman
key exchange) where one needs to test if a number n is prime and where n
may have been chosen by an adversary. Here the worst case performance
of the test is important.

Virtually all known probabilistic tests are built on the same basic
principle: from the input number n, one defines an Abelian group and
then tests if the group structure we expect to see if n is prime, is actually
present. The well-known Miller-Rabin test uses the group Z in exactly
this way. A natural alternative is to try a quadratic extension of Z,,, that
is, we look at the ring Z,[x]/(f(z)) where f(z) is a degree 2 polynomial
chosen such that it is guaranteed to be irreducible if n is prime. In that
case the ring is isomorphic to the finite field with n? elements, GF(n?).
This approach was used successfully by Grantham [7], who proposed the
Quadratic Frobenius Test (QFT), and showed that it accepts a compos-
ite with probability at most 1/7710, i.e. a better bound than may be
achieved using 6 independent Miller-Rabin tests, while asymptotically
taking time approximately equivalent to only 3 such tests. Miiller pro-
poses a different approach based on computation of square roots, the
MQFT [8] which takes the same time as QFT and has error probability
essentially! 1/131040. Just as for the Miller-Rabin test, however, it seems

!The test and analysis results are a bit different, depending on whether the input

that most composites would be accepted with probability much smaller
than the worst-case numbers. A precise result quantifying this intuition
would allow us to give better results on the average case behaviour of the
test, i.e., when it is used to test numbers chosen at random, say, from
some interval. Such an analysis has been done by Damgard, Landrock
and Pomerance for the Miller-Rabin test, but no corresponding result for
QFT or MQFT is known.

In this paper, we propose a new test that can be seen as an extension
of QFT. We call this the Extended Quadratic Frobenius test (EQFT).
EQFT comes in two variants, EQFTac which works well in an average
case analysis and EQFTwc, which is better for applications where the
worst case behavior is important.

For the average case analysis: consider an algorithm that repeatedly
chooses random odd k-bit numbers, subject each number to t iterations
of EQFTac, and outputs the first number found that passes all ¢ tests.
Under the ERH, each iteration takes expected time equivalent to about 2
Miller-Rabin tests, or 2/3 of the time for QFT/MQFT (the ERH is only
used to bound the run time and does not affect the error probability).
Let gi, be the probability that a composite is output. We derive numeric
upper bounds for g, e.g., we show gzp02 < 27, and also show a general
upper bound, namely for 2 <t < k—1, gy, is O(k¥/22tDt=1/24=V2lk)
with an easily computable big-O constant, where o, = log, 24—2/t. Com-
parison to the similar analysis by Damgard, Landrock and Pomerance for
the MR test indicates that for ¢ > 2, our test in the average case roughly
speaking has the effect of 9 Miller-Rabin tests, while only taking time
equivalent to 2 such tests. We also analyze the error probability when a
random k-bit prime is instead generated using incremental search from
a random starting point, still using (up to) t iterations of our test to
distinguish primes from composites.

Concerning worst case analysis, we show that ¢ iterations of EQFTwc
err with probability at most 256/331776" except for an explicit finite set
of numbers?. The same worst case error probability can be shown for
EQFTac, but this variant is up to 4 times slower on worst case inputs
than in the average case, namely on numbers n where very large powers
of 2 and 3 divide n? — 1. For EQFTwec, on the other hand, ¢ iterations
take time equivalent to about 2¢+2 MR tests on all inputs (still assuming
ERH). For comparison with EQFT/MQFT, assume that we are willing

is 3 or 1 modulo 4, see [8] for details

2namely if n has no prime factors less than 118, or if n > 242

to spend the same fixed amount of time testing an input number. Then
EQFTwce gives asymptotically a better bound on the error probability:
using time approximately corresponding to 6¢ Miller-Rabin test, we get
error probability 1/7710% ~ 1/19.8% using QFT, 1/131040% ~ 1/50.8%
using MQFT, and 256/331776% ! =~ 1/576% using EQFTwe.

2 The Intuition behind EQFT

2.1 A simple initial idea

Given the number n to be tested, we start by constructing a quadratic
extension Z,[X|/(f(X)), which is kept fixed during the entire test (across
all iterations). We let H be the multiplicative group in this extension
ring. If n is prime, the quadratic extension is a field, and so H is cyclic
of order n? — 1. We may of course assume that n is not divisible by 2
or 3, which implies that n? — 1 is always divisible by 24. Let Hyy be the
subgroup of elements of order dividing 24. If H is cyclic, then clearly
| Ho4| = 24. On the other hand, if n is not prime, H is the direct product
of a number of subgroups, one for each distinct prime factor in n, and
we may have Hyy >> 24.

Now, suppose we are already given an element r € H of order 24.
Then a very simple approach to a primality test could be the following:
Choose a random element z in H, and verify that 2" = Z, where Z refers
to the standard conjugate (explained later). This implies 21 =1 for
any invertible z and so is similar to the classical Fermat test. It is,
however, in general a much stronger test than just checking the order
of z. Then, from z construct an element 2’ chosen from H,, with some
“suitable” distribution. For this intuitive explanation, just think of 2’ as
being uniform in Hsy. Now check that 2/ €< r >, i.e. is a power of r.
This must be the case if n is prime, but may fail if n is composite. This
is similar to the part of the MR test that checks for existence of elements
of order 2 different from -1.

To estimate the error probability, let w be the number of distinct
prime factors in n. Since H is the direct product of w subgroups, Hyy is
typically of order 24*. It may be smaller, but then the Fermat-like part
of the test is stronger than otherwise, so we only consider the maximal
case in this section. As one might then expect, it can be shown that the
error probability of the test is at most 24/24“ times the probability that
2" =z . The factor 24'=* corresponds to the factor of 2!=* one obtains

for the MR test.

2.2 Some problems and two ways to solve them

In the above, it is not clear how to construct an element of order 24 (if it
exists at all), and we have not specified how to construct 2’ from z. We
present two different approaches to these problems.

2.2.1 EQFTwc

In this approach, we run a start-up procedure that may discover that n
is composite. But if not, it constructs an element of order 24 and also
guarantees that H contains w distinct subgroups, each of order divisible
by 2437, where 2%, 3% are the maximal 2- and 3-powers dividing n? — 1.
This procedure runs in expected time O(1) Miller-Rabin tests. Details
on the idea behind it are given in Section 5. Having run the start-up
procedure, we construct 2’ as 2’ = 2(n*=1/24 " Note that without the
condition on the subgroups of H, we could have z/ = 1 always which
would clearly be bad. Each z can be tested in time approximately 2 MR
tests, for any n. This leads to the test we call EQFTwe (since it works
well in a worst case analysis).

2.2.2 EQFTac

The other approach avoids spending time on the start-up. This comes
at the cost that the test becomes slower on n’s where u, v are very large.
But this only affects a small fraction of the potential inputs and is not im-
portant when testing randomly chosen n, since then the expected values
of u, v are constant.

The basic idea is the following: we start choosing random z’s immedi-
ately, and instead of trying to produce an element in Hoy from z, we look
separately for an element of order dividing 3 and one of order dividing
8. For order 3, we compute 2(*=1)/3" and repeatedly cube this value at
most v times. This is guaranteed to produce an element of order 3, if
3 divides the order of z, and we do not need to assume that 3" divides
the order of any cyclic component. If we already know an element &3 of
order 3, we can check that the new element we produce is in the group
generated by &3, and if not, n is composite. Of course, we do not know
an element of order 3 from the start, but note that the computations we
do on each z may produce such an element. So if we do several iterations

of the test, as soon as an iteration produces an element of order 3, this
can be used as &3 by subsequent iterations. A similar idea can be applied
to elements of order 8.

This leads to a test of strength comparable to EQFTwec, except for
one problem: the iterations we do before finding elements of the right
order may have larger error probability than the others. This can be
compensated for by a number of further tricks: first, rather than choosing
z uniformly, we require that N(z) has Jacobi symbol 1, where N() is a
fixed homomorphism from H to Z; defined below. This means we can
expect z to have order a factor 2 smaller than otherwise®, and this turns
out to improve the error probability of the Fermat-like part of the test
by a factor of 2'7%. Moreover, some partial testing of the elements we
produce is always possible: for instance, we know n is composite if we
see an element of order 2 different from -1. These tricks imply that the
test, up to a small constant factor on the error probability, is as good as
if we had known &3, &, from the start. This version of the test is called
EQFTac (since it works well in an average case analysis). We show that
it satisfies the same upper bound on the error probability as we have for
EQFTwec.

2.3 Comparison to other tests

We give some comments on the similarities and difference between EQFT
and Grantham’s QFT. In QFT the quadratic extension, that is, the poly-
nomial f(x), is randomly chosen, whereas the element corresponding to
our z is chosen deterministically, given f(z). This seems to simplify the
error analysis for EQFT. Other than that, the Fermat part of QFT is
transplanted almost directly to EQFT. For the test for roots of 1, QFT
does something directly corresponding to the square root of 1 test from
Miller-Rabin, but does nothing relating to elements of higher order. In
fact, our idea of testing membership in a fixed subgroup cannot be di-
rectly applied to QFT because f(x) changes between iterations. As for
the running time, since our error analysis works for any (i.e. a worst case)
quadratic extension, we can pick one that has a particularly fast imple-
mentation of arithmetic, and this is the basis for the earlier mentioned
difference in running time between EQFT and QFT.

A final comment relates to the comparison in running times be-

3This also means that we should look for an element &4 of order 4 (and not 8) in
the part of the test that produces elements of order a 2-power

tween Miller-Rabin, Grantham’s and our test. Using the standard way
to state running times in the literature, the Miller-Rabin, resp. Gran-
tham’s, resp. our test run in time logn + o(logn) resp. 3logn + o(logn)
resp. 2logn + o(logn)) multiplications in Z,. However, taking a closer
look, we find that the running time of Miller-Rabin is actually logn
squarings +o(logn) multiplications in Z,, while the 3logn (2logn) mul-
tiplications mentioned for the other tests are a mix of squarings and
multiplications. So for an accurate comparison we should compare the
times for modular multiplications and squarings. In turns out that on a
standard, say, 32 bit architecture, a modular multiplication takes time
about 1.25 times that of a modular squaring if the numbers involved are
very large. However, if we use the fastest known modular multiplica-
tion method (which is Montgomery’s in this case, where n stays constant
over many multiplications), the factor is smaller for numbers in the range
of practical interest. Concrete measurements using highly optimized C
code shows that it is between 1 and 1.08 for numbers of length 500-1000
bits. This is due to the fact that optimizing squarings by avoiding com-
putation of some partial products requires additional bookkeeping that
eats up the savings unless the numbers contain more than 40-50 words.
Finally, when using dedicated hardware the factor is exactly 1 in most
cases. So we conclude that the comparisons we stated are quite accurate
also for practical purposes.

2.4 The ring R(n,c) and EQFTac

Definition 1 Let n be an odd integer and let ¢ be a unit modulo n.
Let R(n,c) denote the ring Z[z]/(n,z* — ¢).

More concretely, an element z € R(n, c¢) can be thought of as a degree
1 polynomial z = ax + b, where a,b € Z,, and arithmetic on polynomials
is modulo 2% — ¢ where coefficients are computed on modulo n.

Let p be an odd prime. If ¢ is not a square modulo p, i.e. (¢/p) =
—1, then the polynomial z* — ¢ is irreducible modulo p and R(p,c) is
isomorphic to GF(p?).

Definition 2 Define the following multiplicative homomorphisms (as-
sume z = ax +b):

R(n,c) — R(n,c), Z=—ax+b (1)
N(-): R(n,c)—Z, N(z)=%-2=0b —ca* (2)

and define the map (-/-):Z x Z — {—1,0,1} to be the Jacobi symbol.

7

The maps ~and N(-) are both multiplicative homomorphisms whether
n is composite or n is a prime. The primality test will be based on some
additional properties that are satisfied when p is a prime and (¢/p) = —1,
in which case R(p,c) ~ GF(p?):

Frobenius property / generalised Fermat property: Conjugation, 2z —
Z, is a field automorphism on GF(p?). In characteristic p, the Frobenius
map that raises to the p’th power is also an automorphism, using this it
follows easily that

z = 2P (3)

Quadratic residue property / generalised Solovay-Strassen property:
The norm, z — N(z), is a surjective multiplicative homomorphism from
GF(p?) to the subfield GF(p). As such the norm maps squares to squares
and non-squares to non-squares, it follows from the definition of the norm
and (3) that

PPN N ()2 = (N(2)/p) (4)

4 th-root-of-1-test / generalised Miller-Rabin property: Since GF(p?)
is a field there are only four possible 4th roots of 1 namely 1, —1 and
&1, —&4, the two roots of the cyclotomic polynomial ®,(z) = 22 + 1.
In particular, this implies for p? — 1 = 2“3Yq where (q,6) = 1 that if
z € GF(p*) \ {0} is a square then

221 =+1, or 223 +&, for some i =0,...,u—3 (5)

3’rd-root-of-1-test: Since GF(p?) is a field there is only three possible
3rd roots of 1 namely 1 and &3, &', the two roots of the cyclotomic
polynomial ®3(x) = z? + x + 1. In particular, this implies for p* — 1 =
243Yq where (q,6) = 1 that if 2 € GF(p*) \ {0} then

2%q

Ui
22 = 1, or ¥ =¢f

' for somei=0,...,v—1 (6)

The actual test will have two parts (see algorithm 1). In the first part,
a specific quadratic extension is chosen, i.e. R(n,c) for an explicit ¢. In
the second part, the above properties of R(n,c) are tested for a random
choice of z. When the EQFTac is run several times on the same n, only
the second part is executed multiple times. The second part receives two
extra inputs, a 3rd and a 4th root of 1. On the first execution of the
second part these are both 1. During later executions of the second part

some nontrivial roots are possibly constructed. If so they are transferred
to all subsequent executions of the second part. Figure 1 illustrates 4
consecutive tests, where a primitive 3rd root, &3, is found immediately
and a primitive 4th root, &4, is found later.

n

EQFT part 1
C
1)
¢ | EQFT part 2 comp.

& 1 pr.pr.

) | _comp. composite

< [EQFT part

&3 &4 pr.pr.

¢ [EQFT part 2]%

&3 &4 pr.pr.

"¢ BQFT part ﬁ%

&3 &4

prob.prime

Figure 1: flowchart for 4 iterations of EQFTac over a single n

Here follows som more detailed comments to algorithm 1:

Line 1 ensures that 24 | n* — 1. In addition, we will use that n has
no small prime factors in the later error analysis.

Line 2 of the algorithm is necessary, since no ¢ with (¢/n) = —1 exists
when n is a perfect square.

Line 3 of the algorithm ensures that R(n,c) ~ GF(n?) when n is a
prime. Lemma 4 defines more precisely what “small” means.

Line 4 makes sure that z is a square, when n is a prime.

Line 5 checks equations (3) and (4), the latter in accordance with the
condition enforced in line 4.

Line 6 checks equation (5) to the extent possible without having
knowledge of &, a primitive 4th root of 1.

Algorithm 1 Extended Quadratic Frobenius Test (EQFTac).

First part (construct quadratic extension):

Require: input is odd number n > 5

Ensure: output is “composite” or ¢ satisfying (¢/n) = —1
1: if n is divisible by a prime less than 13 return “composite”
2: if n is a perfect square return “composite”
3: choose a small ¢ with (¢/n) = —1; return ¢

Second part (make actual test):

Require: input is n, ¢, r3, 4, where n > 5 not divisible by 2 or 3, (¢/n) =

—1,r3 € {1} U{€ € R(n,c) | 3(§) =0} and ry € {1,-1}U{¢ €
R(n,c) | @4(§) = 0}
Let u,v be defined by n? — 1 = 243%q for (¢,6) = 1.

Ensure: output is “composite”, or “probable prime”, s3,s,, where

s3 € {1} U{& € R(n,c) | ®3(§) = 0} and s4 € {1,—-1} U {¢ €
R(n,c) | 4(§) =0}

4: select random z € R(n,c)* with (N(z)/n) =1

10:

if Z# 2" or 2(n*=1/2 £ | return “composite”

if 230 £ 1 and 2230 %4 —1 forall i = 0,...,u—2 return “compos-
ite” ,
if we found ig > 1 with 22°3"% = —1 (there can be at most one such

value) then let Ry(z) = 22° 3%, Else let Ry(z) = 23" (= +1);

if (rq # £1 and Ry(2) € {£1,£r4}) return “composite”

if 22"7 £ 1 and ®3(22"39) #£ 0 for all i = 0,...,v — 1 return
“composite” ,

if we found iy > 0 with ®3(2*"*"%) = 0 (there can be at most one
such value) then let R3(z) = 2237 else let R3(z) = 1;

if (r3 # 1 and R3(2) & {1,75'}) return “composite”

if r3 =1 and R3(z) # 1 then let s3 = R3(z) else let s3 = r3;

if ry = +1 and R4(z) # £1 then let s, = Ry(2) else let sy = ry;
return “probable prime”, s3, s4

10

Line 7f continues the check of equation (5) by using any & given on
the input.

Line 8 checks equation (6) to the extent possible without having
knowledge of &3, a primitive 3rd root of 1.

Line 9f continues the check of equation (6) by using any {3 given on
the input.

2.5 Implementation of the test

High powers of elements in R(n,c) may be computed efficiently when
¢ is (numerically) small. Represent z € R(n,c) in the natural way by
((A.,B,) € Z, X Z,,ie. z=Ax+ B,.

Lemma 3 Let z,w € R(n,c):

1. z - w may be computed from z and w using 3 multiplications and
O(logc) additions in Z,

2. 2% may be computed from z using 2 multiplications and O(logc)
additions in 7.,

Proof. For 1, we use the equations

Ay = myq+my
B.., = (cA,+ B.)(Ay + By) — (emq + my)
with
my = A,B,
my = B.A,

For 2, we need only observe that in the proof of 1, z = w implies that
mip =ms. N

We also need to argue that it is easy to find a small ¢ with (¢/n) = —1.
One may note that if n = 3 mod 4, then ¢ = —1 can always be used, and
if n =5 mod 8, then ¢ = 2 will work. In general, we have the following:

Lemma 4 Letn be an odd composite number that is not a perfect square.
Let w_(x,n) denote the number of primes p < x such that (p/n) = —1,
and, as usual, let w(x) denote the total number of primes p < x. Assum-
ing the Extended Riemann Hypothesis (ERH), there exists a constant C
(independent of n) such that

m_(x,n)

1
(@) > 3 for all z > C(lognloglogn)?

11

Proof. m_(x,n) counts the number of primes outside the group G =
{z € ZF | (x/n) = 1}. When n is not a perfect square, then G has index
2in Z¥, and by [1, th.8.4.6], the ERH implies that

r (zn) = %li(:c) + O(/#(log z + log n)) (1)

similarly, by [1, th.8.3.3], the Riemann Hypothesis implies that

m(x) = li(z) + O(Vxlogz) (8)
where li(z) = [5 dt/Int satisfies that
li(z) = ©(z/logz) 9)

In addition the constants implied by the O(-)-notation are all universal
and therefore one may readily verify that for any € > 0 there is a universal
constant C. such that

1
> 5 € for all z > C,(lognloglogn)?

Theorem 5 Let n be a number that is not divisible by 2 or 3, and let
u >3 and v > 1 be maximal such that n> —1 = 2“3%q. There is an imple-
mentation of algorithm 1 that on input n takes expected time equivalent
to 2logn + O(u+v) + o(logn) multiplications in Z,, when assuming the
FRH.

Remark. We can only prove a bound on the expected time, due to
the random selection of an element z (in line 4) having a property that
is only satisfied by half the elements, and to the selection of a suitable
¢ (line 3), where at least a third of the candidates are usable. Although
there is in principle no bound on the maximal time needed, the variance
around the expectation is small because the probability of failing to find
a useful z and ¢ drops exponentially with the number of attempts. We
emphasize that the ERH is only used to bound the running time (of
line 3) and does not affect the error probability, as is the case with the
original Miller test.

The detailed implementation of algorithm 1 may be optimized in vari-
ous ways. The implementation given in the proof that follows this remark

12

has focused on simplicity more than saving a few multiplications. How-
ever, we are not aware of any implementation that avoids the O(u + v)
term in the complexity analysis.

Proof. We will first argue that only lines 5-9 in the algorithm have
any significance in the complexity analysis.

line 2. By Newton iteration the square root of n may be computed
using O(loglogn) multiplications.

line 3. By lemma 4, we expect to find a c¢ of size O((logn loglogn)?)
such that (¢/n) = —1 after three attempts (or discover that n is compos-
ite).

line 4. z is selected randomly from R(n,c)\ {0}. We expect to find z
with (N(z)/n) =1 after two attempts (or discover that n is composite).

line 5-9. Here we need to explain how it is possible to simultaneously
verify that Z = 2", and do both a 4’th-root-of-1-test and a 3’rd-root-of-
1-test without using too many multiplications. We refer to lemma 3 for
the implementation of arithmetic in R(n, c).

Define s, by n = 2“3"s +r for 0 < r < 2"3". A simple calculation
confirms that

q=mns+rs—+(r*—1)/(2"3"), (10)

where the last fraction is integral. Go through the following computa-
tional steps using the z selected in line 4 of the algorithm:
1. compute z°.

This uses 2logn + o(logn) multiplications in Z,,.

2. compute z".

Starting from step 1 this requires O(v + «) multiplications in Z,.
3. verify 2" =7Z.

4. compute z9.

One may compute z? from step 1 using O(v + u) multiplications in
Z,, when using (10) and the shortcut 2" = 2%, where the short-
cut is implied by step 3 and exponentiation and conjugation being
commuting maps.

v .U 2qu u—2qu
5. compute 239, 223" ;278% 278N

Starting from step 4 this requires O(v + w) multiplications in Z,.

13

6. verify that z%'¢ = 1 or 223" — 1 for some 0 < i < u — 2. If
there is ig > 1 with 22°%3"7 = —1 and if &, is present, verify that
2078 = L,

qug 2u32 2u3v—1
92209 ...z a,

211.
7. compute z* 9, 2 .

Starting from step 4 this requires O(v + «) multiplications in Z,.
8. By step 6 there must be an i (0 < i < v) such that 2*'¢ = 1. Let

io be the smallest such i. If ig > 1 verify that 22u3i°_1‘1_is a root of
2%+ x + 1. If & is present, verify in addition that 2230 "¢ = ¢!

3 An expression bounding the error prob-
ability

The analysis of our primality test falls in two parts. In the first sub-

section, we deduce an expression describing the probability of passing

the basic Frobenius test including the quadratic residuosity test (line 5

of algorithm 1). In the second subsection this analysis is augmented to

encompass the 4’th-root-of-1 and 3’rd-root-of-1 tests (lines 6-9f of algo-
rithm 1).

3.1 The Frobenius test

The analysis of the Frobenius test is based on understanding the structure
of the following groups and thereby constructing expressions for bounding
the absolute and relative sizes of them.

Definition 6 Let n be an odd number, let ¢ be a unit modulo n.

Un,e) € e R, o) | (N()/n) = 1)
def {z€eU(n,c) | Z=2" and L =1/2 1}

For prime power p™ dividing n, let G(n, p™, c¢) denote the set of those z €
R(p™, c¢) for which there exists z € G(n, ¢) satisfying that z = zp mod p™.

14

R(n,c)* ~ R, 0)* x -+ X R(P"™, c)*
|
|
|

|
|
|
G(naplac) X X G(napwac)

@
S

o
2

Figure 2: Subgroup and isomorphism relations

Expressed in terms of these definitions, the EQFTac draws a random
z € U(n,c) and in line 5 of algorithm 1 it checks that z € G(n, ¢), which
should be the case if n is a prime and (¢/n) = —1. Hence, the probability
of not discovering a composite n in line 5 alone is

Gn, <)
(.)] (1

It is fairly clear from the definitions that U(n,c), G(n,c) and G(n,p™, c)
are all groups.

Figure 2 illustrates the subgroup and isomorphism relations that holds
(assuming n = [T, p;"*). We will in turn characterise the structure and

size of R(n,c) and G(n,c).
Lemma 7 Let n be an odd integer and let ¢ be a unit modulo n.
1. if p is a prime and (¢/p) = —1 then
Rip.e) ~ Zp,
and zP = Z for z € R(p, c)
2. if p is a prime and (¢/p) = 1 then
R(p,c)" ~ Zp1 X2y,
P =z and (21, 2) = (29, 21) for z = (21, 2) € R(p, c)
3. af p™ is a prime power divisor of n, then
R(p™,c)" ~ Z

pmfl X me,1 X R(p, C)*

4. If n has prime power factorisation n =[], p;"* then

R(n,c)* = R(pgmac)* XX R(an“,C)*

15

Proof. 1. The condition (¢/p) = —1 implies that 2> — ¢ is irreducible
over Z,, and hence R(p, c) is isomorphic to GF(p?), the finite field with
p? elements. In this field the map z + 2P is a field automorphism (it is
the identity map on the subfield GF(p)). Hence, If z = ax + b then

P =(ax+bP =ar’ +b=ac? V 2z +b=ualc/pr+b=—axr+b=%

2. The condition (¢/p) = 1 implies that ¢ has a square root d € Z,,
ie. 22 —c= (z — d)(z + d). Hence, by Chinese remaindering

R(p,c) = Z[z]/(p, v — d) x Z[z]/(p,z + d) =~ GF(p) x GF(p)

Let (z1,22) € R(p,c). The map z +— 2P is the identity map on GF(p).
Hence, (21,22)P = (21, 25) = (21,22). Let (z1,22) = ax + b. Using that
ar +b= (ad+0b,—ad +b) and —axr+b = (—ad + b, ad +b), we find that
(21, 22) = (22, Zl).

3. Define the sets A = {(1+p)' |i=1,...,p™ '} and B = {(1 +
pr)t|i=1,...,p" '} Tt is easy to verify that AN B = {1}, and each
of A and B are cyclic subgroups of R(n,c)* of order p™~!. Define the
homomorphism h : R(p™, ¢)* — R(p,c)* by h(z) = z mod p. Clearly h is
surjective, and hence R(p,c)* is isomorphic to a subgroup of R(p™,c)*.
It suffices to prove that the kernel of h is A x B. Clearly, Ax B C h™1(1),
and since also |A x B| = p?(™=Y = |h~1(1)], the proof is complete.

4. By Chinese remaindering. ®

Lemma 8 Let n be an odd number, and let ¢ satisfy that (¢/n) = —1.
Then U(n,c) is a subgroup of R(n,c)*, and

1 *
‘U(H,C)‘ > §|R(H,C) |

Proof. The map h : z +— (N(z)/n) is a multiplicative homomorphism
from R(n,c)* to {—1,1}. Hence, U(n,c) = h~'(1) must be a subgroup
of R(n,c)* of index 2 or 1. m

Lemma 9 Let n be an odd number, let ¢ be a unit modulo n.

1. If prime p divides n then G(n,p,c) is a cyclic subgroup of R(p,c)*
of size

~f ged(n/p—1,(p* —1)/2), if(c¢/p) =—1
Gln,p,)l = { acd((n2/p? — 1)/2,p— 1), if (c/p) = 1

16

2. If prime power p™ divides n then G(n,p™,c) ~ G(n,p,c)
3. If n has prime power factorisation n = [[7_, p;"* then

G(n,c) = G(n,p1,¢) X -+ X G(n, Py, ¢).

Proof. For 1, let z € G(n, ¢), and define zy € R(p,c) by z = zo mod p.
Since z € G(n, ¢), we know that z{] = Z5 and z((]n2_1)/2
is divided in cases:

Consider first the case (¢/p) = —1. By lemma 7, zg = 2! implying that
the order of zy divides ged(n — p, (n* —1)/2) = ged(n/p — 1, (p* — 1)/2).
Since the multiplicative subgroup of R(p, ¢) ~ GF(p?) is cyclic, the stated
bound on the size of |G(n,p,c)| follows.

Consider next the case (¢/p) = 1. By lemma 7, zy = z{, i.e. the order
of zy in R(p, ¢) divides ged((n?—1)/2,p—1) = ged((n?/p*> —1)/2,p—1).
Since R(p,c) ~ GF(p) x GF(p), one may represent zy by (wi,ws) €
GF(p)xGF(p), implying that w is in the unique multiplicative subgroup
of GF(p) of order ged((n?/p* —1)/2,p — 1). In addition wy is uniquely
determined by wy, since by lemma 7, (wy, wy) = (wy, wy) = (wy, we)™ =
(wy, wy). Part 1 of the lemma follows.

For 2, it is enough to argue that p does not divide the order of any
element z € G(n,p™,c), since, by lemma 7, G(n,p™, c) is a subgroup
of R(p™,¢)* ~ Zym—1 X Zym—1 X R(p,c)*. By definition, z € G(n,p™,c)
satisfy that 2""~1 = 1, and since p|n it follows that p J n? — 1.

For 3, we use 2. In addition we need to argue that G(n,c) is the
entire Cartesian product and not just a subgroup. Let A ~ G(n,py,c) X

- X G(n,p,,c). It suffices to prove that A C U(n,c). Assume to the
contrary that z € A\ U(n,c), i.e. (N(2)/n) = —1. Since

(N(2)/n) =TI, (N(2)/p;)™, it must be the case that (N(z)/p) = —
for some p|n. Computing modulo p, and using that z = zP, we get
—1 = (N(2)/p) = zP*D@=1/2 in contradiction with 1.

= 1. The argument

Lemma 10 Let n be an odd number with prime power factorisation
n =TI, ", let Q@ = Y2 my, and let ¢ satisfy that (¢/n) = —1. The
probability that n is not found to be composite in line 5 of algorithm 1 is

2(1—m;) (n/pi — 1, (1})/2)
m < 2 HP(sel[(¢/pi), -1

((2/pz' B)/2>pl_1)]
(pi —1)2

17

< 2 [selfefp), PP B D)

< 2179

where, we have adopted the notation sel|+1, Ey, Es] for a conditional ex-
pression with the semantics sel[—1, By, Es] = Ey and sel[l, Ey, Ey] = Es.

Proof. The first upper bound for |G(n, c)|/|U(n, ¢)| follows from com-
bining lemmas 7, 8 and 9. The last two inequalities are trivial simplifi-
cations. W

3.2 4’th-root-of-1 and 3’rd-root-of-1 tests

In this subsection, we estimate the probability that n passes the 4’th-root-
of-1 and 3’rd-root-of-1 tests (lines 6-7f and 8-9f), given that it passes the
Frobenius part of the test (line 5), i.e., given that z € G(n,c). These
probabilities can be bounded assuming that the auxiliary inputs r3, r4 are
“well chosen”. We define below exactly which values of r3,r4 are good.
We let 3(n,c) be the probability that the entire second part of the test
(lines 5-9f) is passed assuming that 73,74 are good. Also, under the same
assumption, we let

Pry(n,c) = Pr(4'th-root-of-1-test passed | z € G(n, ¢))
Prs(n,c) = Pr(3'rd-root-of-1-test passed | z € G(n,c))

Let p1,...,p. be the distinct prime factors in n, and let C}, respectively
D; be the Sylow-2, respectively the Sylow-3 subgroup of G(n, p;, ¢). Then
we have

G(n,c) ~Cy x -+ xCyx Dy x---xD,xH

where |H| is prime to 2,3. Recall that in the test, we write n* — 1 =
q2"3". If z is uniformly chosen in G(n, ¢) and we write elements in G(n, ¢)
according to the above decomposition as 2w + 1-tuples, we have

q3"?

2B = (e, c0 1,0, 11 2 = (1., 1,dy,. .., d,, 1)

where ¢; is uniform in C; and d; is uniform in D;, and so these two group
elements are independently distributed. Since furthermore the result of
the 4'th-root-of-1-test depends only on 2%", 7, and the 3’rd-root-of-1-test
depends only on 292", 5, we have

G(n,c)|

B(n,c) = um(n, ¢)Prs(n,c)

18

We let Ty(n, c) be the set of elements of form (¢y,...,¢,,1,...,1,1) such
that ord(c) = -+ = ord(c,), and T3(n, c) is the set of elements of form
(1,...,1,dy,...,dy,, 1) such that ord(d;,) = - -+ = ord(d,).

r3, 74 are said to be good if r4 € Ty(n, c) and is a non-trivial 4’th root
of 1 (different from +1), and if 73 € T3(n,c) and is a non-trivial 3'rd
root of 1 (different from 1), provided that such non-trivial roots exist in
Ty(n,c), T3(n,c). If not then r3 = ry, = 1 is defined to be good. We now
derive bounds for Pry(n,c), Pr3(n,c) (assuming we are given good values
of r3,74).

Consider first Pry(n,c). The first part of the 4’th-root-of-1-test (line
6) starts from 2% performs some squarings and tests for occurrence of
—1. It is easy to see that this first part is passed if and only if 293" €
Ty(n,c). Let |C;| = 2% and define a,,,, = min{a;| i = 1,...,w}. Note
that a,;, > 1. Of course, the probability that this first part of the
Ath-root-of-1-test is passed is |Ty(n,c)|/22:%. Clearly, if amm = 1,
|Ty(n,c)| = 2.

Now assume that a,,;, > 1 and that z%%° € T} (n,c). We want to count
the number of possible values of 27" € Ty(n, ¢) for which the second part
of the 4’th-root-of-1-test (line 7) is passed, i.e., for which R,(z) is one of
1,—1,74, —74. This happens if 29" is £1 or is mapped to £r, by 0 or
more squarings. Since squaring in the group C7 x --- x C,, is a 2¥ to 1
mapping, and elements in Ty(n, ¢) have maximal order 2% the number
of such elements is 2 4 2+ 29% + 2. 2% 4 ... 4 2. 20@min =2 Tt follows
that if a,,;, > 1, we have

Ty(n,c)| 2+2-20942.20 4 ... 4 2. 20@min=2w

PT TL,C = < 41—w
dlne) = =5 Ta(n,0) =

Summarizing, we have

Lemma 11 If a;;, = 1, we have Pry(n,c) < 1= ;ai If Qi > 1, we
have Pry(n,c) < 4'7%.

We now consider Prs(n,c). The first part of the 3’rd-root-of-1-test
(line 8) starts from 292" performs some cubings and tests for occurrences
of roots in the third cyclotomic polynomial. This first part is passed if
and only if 292" € Ty(n,c). Let |D;| = 3%, and set by, = min{b;| i =
1,---,w}. Note that b, > 0. The probability of passing the first part
is |Ts(n, c)|/32:%. This is 37 2% if by, = 0.

Now assume that b, > 0 and that 292" € Ty(n,c). Similar to what
we did in the 4’th-root-of-1-test, we count the number of possible values

19

for 292" € Ts(n,c), such that Rs(z) is one of 1,73,75". This number is
14230 2.3 ... 4+ 2.30bnin=Dw We therefore have:

’T3(n’ C)’ 1 + 2 . 300.) —'— 2 . 31'w + PP _'_ 2 . S(bmznfl)w

p —
r3(n,c) 2>, b T5(n,0)|

S 31—w

This leads to

Lemma 12 [f b,,;, = 0, we have Prs(n,c) < 3~ 2o:bi, If byin > 0, we
have Prs(n,c) < 3'7%.

Clearly, these estimates for Pry(n, ¢), Prs(n, ¢) combined with the for-
mula above for 3(n, ¢) can be used to obtain general estimates. However,
we need to split the analysis into some cases, since a,,;, = 1 and b,;, = 0
require arguments different from the other cases. As a first step, we have

Lemma 13 If a,;, = 1, we have

|G(n, ¢
———Pry(n,c)
U (n, c)]
< 4-8¢ p2(1 ' sel c/p; - ;
1l R S 1/ I
If byin = 0, we have
|G(n,)|
Prs(n,c)
Un, o)
. m n/pi—1,(p; —1)/6) 6
< 2.6 p2* ™sel[(c/p; (s ;
I P E T
If Gpin = 1 and b,,;, = 0, we have
|G (n,c)
————Pry(n,c)Prs(n,c)
U (n, c)]
m i—1,(p7 —1)/24) 12
< 4.247¢ p2(1 Zselcpl-,(n/p L :
L1 s, SR G =2 S
Proof. For the first claim, we have by Lemma 11 that
|G (n, o) G(n,c)| 4 2(1-my) |G(n, pi, ¢)]
————Pry(n,c) < =4 Vo
G MR o el | G o et

20

Note that by definition of a;, |G(n, p;, c)|/2% is odd. Therefore we have
that if the Jacobi symbol of ¢ modulo p; is —1,

Gpio)| _ (n/pi=1,(p7 =1)/2) _ 1(n/pi =1, (i =1)/8)
2ui

|
R(p;,)| 20 (p? — 1) =8 (B -1)/8

and if the Jacobi symbol of ¢ modulo p; is 1,

G(n,pi o)l _ ((/pf —1)/2,pi — 1)
24| R(ps, c)*] 2%(p; — 1)

This proves the first claim. The other two can be argued in similar ways,
details are left to the reader. ™

1 4

<

This lemma, combined with the conclusions of Lemmas 11, 12 for
Cmin > 1, bpin > 0 immediately implies:

Theorem 14 Let n be an odd composite number with prime power fac-
torisation n = [12_ p;", let Q = > ym;, and let ¢ satisfy that (c/n) =
—1.

Given good values of the inputs rs,ry, the error probability of a single
iteration of the second part of the EQFTac (algorithm 1) is bounded by

B(n,c) < %Pm(n,c)Pm(n,c)
o T 2(1-my) . (n/pi —1,(p} —1)/24) 12
< 241 izl_llpi Sel[(c/pz)’ (pZQ — 1)/24 ’pi _ 1]
< 24'7¢

The assumption on r3,r4 in the above theorem means that r3 €
T5(n,c), 4 € Ty(n,c), and furthermore that both are non-trivial roots
of 1, if such roots exist in T3(n,c), Ty(n,c). However, when EQFTac is
executed as described earlier, these auxiliary inputs are produced such
that rg is either 1 or is R3(z) for some base z that leads to accept, and
similarly for r4. This does ensure that r3 € T3(n,c),r4 € Ty(n,c), but of
course not that they are non-trivial roots. Fortunately, the probability
that they are non-trivial is sufficiently large that the theorem can still be
used to bound the actual error probability:

Theorem 15 Let n be an odd composite number with w distinct prime
factors.

21

For any t > 1, the error probability B;(n) of t iterations of EQF Tac
(algorithm 1) is bounded by

Gin) < max 47 B(n, o)
(e/n)=—1

Proof. Let (i(n,c) denote the probability that a composite n passes ¢
iterations of the second part of algorithm 1 with r3 =74 = 1 on the first
iteration. Clearly, 3;(n) < max(/m=—1/3(n,c), and it suffices to prove
that £;(n,c) < 4“713(n,)t

Fix any ¢ with (¢/n) = —1. Then the proof splits in cases, according
to the values of a,,in, byin. Assume first that a,,;, > 1, b, > 0. Then
non-trivial 3'rd and 4’th roots exist in T3(n, c), Ty(n, ¢). Let EQFTac’(R)
denote t iterations of EQFTac using random input R (used in choosing
z-values, for instance). Let EQFTac, (R) denote t iterations, where the
algorithm is given two non-trivial roots r3,r4 from an oracle O. By
construction of the algorithm, this means that all iterations will use r3, 74
as auxiliary input. From Theorem 14 it is immediate that EQFTac),(R)
accepts n with probability G(n, ¢)*.

There are 2¢ possible non-trivial values of 3 in T3(n, ¢). For each such
73, using 73 ' as auxiliary input instead leads to the same behavior of the
test, so there are 2“1 essentially different choices of r3. Similar reasoning
shows that there are 2“1 essentially different choices of r,. Hence we can
make in a natural way 4“~! essentially different pairs (rs3,r,), and define
oracles Oy, ..., O-1 where each oracle outputs its own pair of values.

Consider the following experiment: on input n, we run EQFTac’(R)
and also EQFTac/, (R) fori = 1,...,4“"'. The probability that for some
i, EQFTacp, (R) accepts, is at most 4“~!5(n, ¢)’. So it is enough to show
that if EQFTac'(R) accepts, then for some i, EQFTacg, (R) accepts. To
see this, consider some R for which all z-values chosen in EQFTac'(R)
lead to trivial values of auxiliary input, i.e., R3(z) = R4(z) = 1 in all iter-
ations. In this case, if EQFTac'(R) accepts, so does every EQFTaCZi(R)
because no comparisons with the values from the oracle take place. On
the other hand, if R is such that some iterations in EQFTac'(R) pro-
duce non-trivial roots, then the first such values found, say r3, r4, will be
used for comparison in all following iterations. Furthermore, there ex-
ists some i for which O; outputs (r3', £r,), and if EQFTac'(R) accepts,
then EQFTacg, (R) will also accept. A similar argument shows that if a
non-trivial value of only r3 or only 74 is produced, then EQFTaCtOi(R)
will accept for 2¢~! values of i.

This finishes the case amin > 1,bmin > 0. For a,m = 1, b, > 0,

22

observe that there are then no non-trivial 4’th roots of 1 in Ty(n,c). We
can then run the same argument, but this time with 2“~! oracles ranging
over essentially different values of non-trivial 3’rd roots of 1. In this
case, we get that f;(n,c) < 2°713(n, c)!, and the same results follows if
min > 1, bpmin = 0. Finally, for a,, = 1, b = 0, there is nothing to
prove since there are no non-trivial roots, and we have ;(n, ¢) = (n, ¢)".
|

4 Average Case Behaviour

This section analyses what happens when EQF Tac is applied to generate
random probable prime numbers.

4.1 Uniform Choice of Candidates

Let My be the set of odd k-bit integers (2"~! < n < 2F). Consider the
algorithm that repeatedly chooses random numbers in My, until one is
found that passes t iterations of EQFTac, and outputs this number.

The expected time to find a “probable prime” with this method is
at most tT},/px, where T is the expected time for running the test on a
random number from M, and p;, is the probability that a such a number
is prime. Suppose we choose n at random and let n? — 1 = 2“3%q, where
q is prime to 2 and 3. It is easy to see that the expected values of u and
v are constant, and so it follows from Theorem 5 that T} is 2k + o(k)
multiplications modulo a k£ bit number. This gives approximately the
same time needed to generate a probable prime, as if we had used 2t
iterations of the Miller-Rabin test in place of t iterations of EQFTac.
But, as we shall see, the error probability is much smaller than with 2¢
MR tests.

Let g be the probability that the algorithm above outputs a com-
posite number. The rest of this section is aimed at finding estimates for
grt. We recall that the EQFTac algorithm tests if primes less than 13
divide n, so numbers with such small prime factors are always rejected,
this will be useful below.

When running ¢ iterations of our test on input n, it follows from
Theorem 15 and Theorem 14 that the probability (;(n) of accepting n
satisfies

n/p—1,(p*—1)/24) 12

) = 421240 max{((p2 —1)/24 "p— 1}t

23

where p is the largest prime factor in n and €2 is the number of prime
factors in n, counted with multiplicity (and where of course ;(n) = 0 if
n is divisible by primes less than 13). Let oy = log, 24 — 2/t. Using this
and w < (2, we can rewrite the estimate to

Bu(n) < (2709 (L2 LD/ 1,

Define (,(n), for any positive o, by: §,(n) = 0 if n is divisible by a prime
less than 13, and otherwise

ﬁa(n) — 20(170) max{ (n/p -1, (p2 — 1)/24) 12 } (12)

For any ¢t and any composite n, the above estimate of ;(n) shows that t
iterations of EQFTac accept n with probability no larger than (,,(n)".

Now assume we have a (hypothetical) primality test that always ac-
cepts a prime and accepts a composite n with probability 5,(n). Suppose
we used this test in place of EQFTac when generating a probable prime,
and let g,r; be the resulting error probability. It is then clear that
Gkt < GQopkt- SO to estimate g, it is enough to estimate g, 4+ for all
t > 1 and all o with log, 24 — 2 < ¢ < log, 24.

We define C, ,,, to be the class of odd composite integers with 3, (n) >
27", Since B,(n) < 27079 we have for n € C,,, that Q < m/o +1. Let
N(m, k, j) be the set of integers in C,,, N M, with Q = j. Then trivially,

Com N Ml = > |N(m,k,j)| (13)

2<j<m/o+1

The goal in the following will be to estimate |N(m,k, j)| and use the
above to estimate |Cy., N M.

For an n € N(m, k,j) we have n > 2871 and Q = j. This implies for
the largest prime factor p in n that p > 2%=Y/7 and so, for p > 3, we
have 1/(p — 1) < 2=k=1/i . 4/3.

Now, let us assume that m+o+4 < \/4o(k — 1). In general, it holds
for any positive j that \/4o(k — 1) < oj+ (k—1)/7. This, together with
the above estimate on 1/(p — 1), gives us 12/(p — 1) < 27m—(1=),

Now, (12) gives us that any n € N(m, k, j) must satisfy

(n/p—1,(p*—1)/24) 12
(P —-1/24 ‘p-1

max{ } > g mo=i)

24

Inserting the estimate on 12/(p — 1), we get

(n/p—1, (p2 —1)/24) —m—o(1—j
conp T

If we define
(p> —1)/24

(n/p—1,(p* = 1)/24)’

d<p7 n) =

we have d(p,n) < 2m+o(=9),

This means that for any prime p > 2*=1/7 and integer d|(p® — 1)/24
with d < 2m+7(1=9) we can count the number of n € M,, with the property
that p|n, d = d(p,n) and n is composite. This is at most the number of
solutions to the system

p’ -1

24

n = 0mod p, n=pmod . p<n<2¥

By the Chinese remainder theorem, the number of solutions is at most

2k 24d
p(p? —1)
We therefore have
2k 24d
Nk g) < X 5 22
p>2(k=1)/j d<amto(l=5) (24d)|(p%—1) p(p -)

k _ 24d
-7 2 2 (p?—1)

d<2mto(-3) p>2(k=1)/j (24d)|(p2—1) p

Taking only the inner sum in this, and define 7'(24d) to be the number
of solutions = € {1,2,...,24d} to the congruence 2> = 1 mod 24d, we
get

24d 24d

> —
p>20—-1)/i p2=1 mod 24d p
> 24d
T(24d ,
(24d) 2 (24du 4 20-=1)/7)3

u=0
9(k=1)/j

> (u+ ——)7

u=0

p>2(k=1)/7 (24d)|p2—1 p(p2 - 1)

IN IN
®l© wl© owlw©

25

To bound the latter, we use the assumptions d < 2m+71=9) and ¢+ (k —

1)/j > Jao(k —1) > m+ o0 + 4:

k—=1)/j !
2670t ety s 28 2

24d 24 3
For ¢ > 2/3, it holds that 3-0° (u+c) ™ < ¢34 [27 3dx = ¢ 2(1 /c+
1/2) < 2¢™2 Using this, our inner sum above can be estimated as

24d

———— = T(24d) 3° 9~ 2(k—1)/j-2
p>2(k=1)/7 (24d)|p2—1 p(p? —1)

Inserting into the expression for |N(m, k, j)|, we get

IN(m, k,j)| < 2F32272k=D/i=2 N~ 7(24q)
d<2m+0'(1*j)
< 2/€ 32 230’/2+1+3m/2—30’j/2—2(k‘—1)/j

Here, we have used that T'(24d) = 21«24 < 23+logsd < 8,/(. Inserting
the estimate for |N(m, k, j)| in (13), we get:

Theorem 16 Let m, k be positive integers with m+o+4 < \/4do(k — 1).

Then we have

|Cam N Mk‘| S 2k+30’/2+1 32 23m/2 Z 2—30—j/2_2(k;_1)/]‘
2<j<m/o+1

Let us now choose some M with 3 < M < \/4o(k — 1) — o — 4 (this
is possible if £ > 10). Using exactly the same arguments as in Prop. 1
of [5], we get that

< 27Mt|Mk \ CJ,M| + 2%23 27(m71)t|Mk N anm|)
Aokt > m(2k) — m(2k-1)
Prop. 2 of [5] says that 7(2%) — w(2871) > 0.71867 - 28 /k. Let f(k) =

0.71867 - 2% /k. Then inserting the result of the theorem and changing
summation order, we have

f(k)qa,k,t S 27Mt+k72+

Mjo+1 M
ok+30/2+1 32 Z Z 9~ (m—1)t-+3m/2-303j/2-2(k—1)/j

Jj=2 m=o(j—1)

— 2—Mt+k—2+
M/o+1 M
2t+/€+30’/2+1 32 /Z 2—30’j/2—2(k—1)/j Z 2m(3/2—t)
=2 m=a(j-1)

26

(RNE[1] 2] 3] 4]
300 || 42 | 105 | 139 | 165
100 || 49 | 125 | 165 | 195
500 | 57 | 143 | 187 | 221
600 || 64 | 159 | 208 | 245
1000 || 86 | 212 | 276 | 325

Table 1: Lower bounds on — log, g,

Numerical estimates for g;+ < g5, x+ can obtained from this by choosing
an optimal value of M within the range given. Some sample results are
shown in the table 1, which contains — log, of the estimates, so we assert
that, e.g., gs002 < 27

To get an explicit expression, we can use the general inequality that
for t > 2, M om(/2=) < 22(3/2-8) /(1 — 23/27%) . We use this with
x = 0(j—1). Moreover, we want to use the estimate for ¢, we derived
above with M = /80 (k — 1)/t. Up to an additive constant, we can do
this for all 2 < ¢ < k — 1. Inserting this and substituting o; for o, one
easily obtains

Theorem 17 For2 <t <k — 1, we have that

Qe 08 O(k3/22(0t+1)tt71/24*m>

In comparison, results in [5] for the corresponding probability py, for
the Miller-Rabin test say, for instance, that py; is O(K3/22t4=1/24~Vk) for
2 <t <k/9. In our case, oy is at least log, 24 — 2 and approaches log, 24
as t increases. Since 2log, 24 ~ 9.2, this analysis indicates that if several
iteration of EQFTac are performed, then roughly speaking each iteration
has the effect of 9 Miller-Rabin tests, while only taking time equivalent
to about 2 MR tests.

Note that [5] contains sharper numeric estimates for the MR test than
what the above type of analysis implies, and also more work has been
done in this direction after [5], for instance [4]. However, such methods
for better estimates on the MR test could also be applied to our test so
that the relative strengths of the tests is likely to remain the same.

27

4.2 Incremental Search

The algorithm we have just analysed is in fact seldom used in practice.
Most real implementations will not want to choose candidates for primes
uniformly at random. Instead one will choose a random starting point
ng in My and then test ng,ng + 2,n9 + 4, ... for primality until one
is found that passes t iterations of the test. Many variations on this
theme are possible, such as other step sizes, various types of sieving, but
the basic principle remains the same. The reason for applying such an
algorithm is that test division by small primes can be implemented much
more efficiently because one can exploit the fact that different candidates
are related (see for instance [3]). On the other hand, the analysis we
did above depends on the assumption that candidates are independent.
In [2], a way to get around this problem for the Miller-Rabin test was
suggested. We apply an extension of that technique here.

We will analyse the following example algorithm which depends on
parameters t and s:

1. Choose ng uniformly in My, set n = ng, and execute the following
loop until it stops:

(a) Run up to t iterations of EQFTac on n, if n passes all itera-
tions, output n and exit loop.

(b) Otherwise, set n =n+ 2. If n > ny + 2s, exit loop, else go to
step 1la.

2. If the loop in the previous step produced a number n, output n and
stop. Otherwise, go to step 1.

So this algorithm tries incremental search from a random starting point
until s candidates have been examined. If no probable prime was found,
it tries again with a new starting point.

To estimate the expected running time of this method, let Tj(ng, s)
be the maximal running time of EQFTac on any of the inputs ng, ng +
2,...,n9+ 2(s —1). We shall see below that under the prime r-tuple
conjecture, if we choose s to be §(k), then the expected number of starting
points we need to try is constant, in fact very close to 1 for the value
we recommend below, namely s = 101n(2¥). For such a choice of s, the
expected run time is at most O(stE[Tg(no, s)]), where E|-| refers to the
expectation over the choice of ng, and in practice an upper bound is
stE[Ty(no, s)] if we choose s = 10 In(2%).

28

To estimate E[Ty(no, s)], we need to look at a random set of numbers
no, o + 2,...,n0 + 2(s — 1) and estimate the maximal powers of 2 and
3 that divide n? — 1 where n is any of the numbers in our set. For any
2-power 2 where u > 2, it holds that 2%|n?* —1 = (n+1)(n—1) only if n
is 1 or —1 modulo 2*7!. So this always happens for some n in the set if
241 < 25 (since then the values n+1,n—1 cover all even residues modulo
2¢=1) whereas for larger values the probability drops exponentially with
u. It follows that the expected value for the maximal u such that 2"
divides one of our numbers n? — 1, is O(log s). A similar argument holds
for 3-powers. We conclude from this and Theorem 5 that E[T}(no,s)] is
O(k) multiplications, and so the expected time to find a probable prime
by the above algorithm is at most O(tk?) multiplications modulo k bit
numbers, if s is #(k). As mentioned, practice shows that for s = 101n 2,
we need almost all the time only one value of ng, and so st(2k + o(k))
multiplications is an upper bound. Of course, this refers to the run time
when only the EQFTac is used. In practice, one would use test division
and other tricks to eliminate some of the non primes faster than EQFTac
can do it. This may reduce the run time significantly. Any such method
can be used without affecting the error estimates, as long as no primes
are rejected.

Let gx.s be the probability that one execution of the loop (steps
la-1b) outputs a composite number. To do this, we consider again the
hypothetical test from the previous subsection, that accepts composites
with probability (,(n), and analyse what happens if we use this test in
place of EQFTac in the algorithm. We let ¢, 1+ be the probability that
one execution of the loop outputs a composite in this case. Then, in the
same way as before, it follows that g ;s < Go, k.t.s-

Recall that we defined C,,, to be the set of odd composites with
Br(n) > 27™. From this, we define: Dyps = {n € M| [n.n +
2s[NCym # 0}, for m > 3. Of course Dyoxs = 0 by the worst-case
error bound.

Since a number in C, ,, can be in at most s different intervals of form
[n..n + 2s[, we clearly have

Lemma 18 Dg,m_l,k75 C Da,m,k,s and |Da,m,k,s| <s- |Mk N Cg,m|

The idea with defining the sets D, ,,, 1 s is that if we are lucky enough to
choose a starting point ng for the inner loop which is notin D, ,, 1 s, then
we know that all composites we will test before the loop exits will pass
with probability at most 27™. This translates into a bound on g, 4+ s as
follows:

29

Lemma 19 Let s = c-In(2%) for some constant c. Then for any M > 3,
we have

M
Cym N M
Qokts < 0.5(ck)? Z W

m=3

o—tm=1) 4 (7ck2~tM

Proof. Let E be the event that we output a composite, and identify
Dy i,s with the event that the starting point ng is in Dy, 1 . Then we
have

Qo .k t,s
M

= Z P(E N (Da,m,k,s \ Da,mfl,k,s)) + P(E N _‘DJ,M,k,s)

m=3
M
S Z P(Da,m,k,s)P(EKDa,m,k,s \ Da,m—l,k,s)) + P(E N _'DJ,M,k;,s)

m=3

Consider the case where some fixed ng € Dy, ks Was chosen as starting
point. Then no candidate n we test will be in M NC, ,,, and so will pass
all tests with probability at most 27™. The probability of outputting
a composite in such a case is clearly maximal when all numbers in the
interval we consider are composite. In this case, we accept one of the
candidates with probability at most s -2~ . From this and Lemma 18,
we get

Com N M|

" s < 2 | 2 t(mfl) A 27tM
Arkites = ng 12 e
Coon N M
< 0.5(ck)? Z | A [Coan O Ml ttm)) 7epg-onr
m=3 k

From this lemma and Theorem 16, we can directly get numeric estimates
of quts < o, ks for any value of s, by choosing an optimal value of M.

To analyse the overall error probability of the algorithm, observe that
the inner loop always terminates when the starting point is a prime. This
happens with probability (7(2%) — w(2871))/|M| > 2.8/k, by the esti-
mates we gave earlier. Moreover, the error probability of our algorithm
cannot be worse than that of a procedure that runs the inner loop up
to k% times and outputs a composite if all executions of the loop output
“fail”. Clearly, the error probability of this modified algorithm is at most

Qk,t,s = quk,t,s + (1 - 28/k)k27

30

(ENE] 1] 2] 3] 4]
300 | 18 | 74] 107] 133
100 || 26 | 93 | 132 | 162
500 | 34 | 109 | 153 | 186
600 || 40 | 125 | 174 | 210
1000 || 62 | 176 | 239 | 288

Table 2: Estimates of the overall error probability with incremental
search, lower bounds on —log, Qs using s = ¢ - In(2¥) and ¢ = 10.

and so we have an estimate of the overall error, for any value of s.
What remains is to consider the choice of s. Based on Hardy and
Littlewoods prime r-tuple conjecture, it is shown in [2] that when s =
c - In(2%), the probability of failure is less than 2exp(—2c) for all large
enough £ (and is in fact essentially exp(—2c)). Overwhelming heuristic
evidence shows that this is an accurate estimate for realistic values of &k .
So for instance, for ¢ = 10, we fail with probability about 2728, or once in
256 million times. In other words, with such a choice of ¢, the algorithm
will almost always terminate after one execution of the inner loop, so this
gives us all the efficiency advantages of the incremental search method.
Table 2 shows sample numerical results of the analysis, with ¢ = 10.

5 Worst case analysis

We present in this section the version of our test (EQFTwc) that has
the best performance for worst case n in that there is an upper bound of
2logn+o(logn) on the expected number of multiplications in Z,, needed
for making the test on a worst case n. In addition there is an expected
start up cost of < 2logn + o(logn) multiplications in Z, for the first
iteration of the test. The error probability is bounded by 4«~124t(1=)
i.e. the same as for EQFTac.

The classic Fermat test is known to have a very bad worst case perfor-
mance because of the existence of Carmichael numbers. Such numbers
have at least 2 = 3 factors. Combined with the Miller-Rabin error
bound, 2'7, this gives the well known worst case error bound 272.

“even though this was shown in [2] in connection with the MR test, the result

applies to any algorithm of the form we consider here, as long as the test used always
accepts a prime number

31

‘ time in MR-units ‘ large ¢

MR 4t
Grantham [7] 19.877
Mller [8] 508
EQFTwc (= 576)7"

Table 3: Worst case error bounds per time spent on the test (disregarding
start-up cost)

For the Frobenius test, one can define a concept of generalised Carmi-
chael numbers, i.e. numbers n for which 2" = Z for all z € R(n,c)* for
some ¢ with (¢/n) = —1. It appears unkown whether any such numbers
exist, but Grantham [7] essentially proved that only numbers with at
least €2 = 5 factors can be bad for the Frobenius test. In this section we
give a different and slightly stronger formulation of this result, implying
that ¢ iterations of the EQFTwc has a worst case error bound of 41244 =
256/331776", except for an explicit finite set of small numbers.

For comparison of our test with the earlier tests of Grantham, Miiller
and Miller-Rabin, assume that we are willing to spend the same fixed
amount of time testing an input number. Table 3 shows that our test
(EQFTwc) gives asymptotically a better bound on the error probability:
using time approximately corresponding to ¢ Miller-Rabin test, we get
a bound of 1/7710%3 ~ 1/19.8" using Granthams test and a bound of
~ 24~%/2 = 1 /576" using our test and disregarding start-up cost.

5.1 The idea behind EQFTwc

To explain our EQFTwc it will be helpful to first make a version of the
usual Miller-Rabin algorithm following the same principles. Let us call
the resulting algorithm MR’. The first iteration of MR’ will be special,
but subsequent iterations will be very simple: select a random z € Z
and verify that 2(*~1/2 = +1. For this test to have a low error probability
it is vital that all Sylow-2 subgroups of z € Z; have order > 2% where
2" is the maximal power of 2 dividing n — 1. This will be ensured by
the first iteration that selects a random z € Z; subject to the restriction
(z/n) = —1 and then verifies that z"~1/2 = —1. Each iteration of the
MR’ test (including the first) has error probability < 2!,

Similarly, we make EQFTwc with a special first iteration that allows
very simple subsequent iterations each of which consists in taking a ran-

32

dom z € R(n,c) and checking whether z = 2" and 2" ~V/24 ¢ {yi, | i =
0,...,23 }, where roy € R(n,c) is a primitive 24th root of 1 that is
constructed in the first iteration. The first iteration must in addition
ensure that all Sylow-2 subgroups and Sylow-3 subgroups (exist and)
are sufficiently large to ensure a low error probability in all iterations.
This is done by selecting a random z € R(n,c)* that looks like both a
nonsquare and a noncube, computing roy = 2" ~9/24 and checking that
2(n*=1)/2 — _1 and that 2" ~1/3 = £ where r is a primitive 3rd root
of 1.

How does one find the necessary element that looks like a nonsquare
and a noncube? Computation of the Jacobi symbol will let us recognize
1/2 of all elements as nonsquares. One might expect that computation
of the corresponding cubic residuosity symbol will let us recognize 2/3 of
all elements as noncubes. Unfortunately, this technique for recognizing
noncubes seems to fail for some composite n, though it does work, when
n is a prime.

To handle this problem, we take a pragmatic solution: Run a Miller-
Rabin test and a search for noncubes in parallel. If n is prime then the
search for a noncube will succeed, and if n is composite then the MR-test
(or the noncube search) will succeed.

Before presenting the details of the algorithms, we give the necessary
preliminaries.

5.2 Quadratic and cubic (non)residuosity in R(n.c)

Let us first deal with quadratic nonresiduosity since that is very simple.
All we need to know is included in the following lemma:

Lemma 20 Let n,c satisfy (¢/n) = —1.
{z € R(n,)" | (N(2)/n) = =1 }| = %\R(n, c)’|

Proof. Since the map z +— (N(z)/n) is a multiplicative group homo-
morphism R(n,c)* — {—1,1} it suffices to argue that there is at least
one z € R(n,c)* such that (N(z)/n) = —1. Let n = [, p/™, ie.
(N(z)/n) = TI2(N(2)/p;)™. Since (¢/n) = —1, there must be some i
for which (¢/p;) = —1 and m; is odd. Modulo p;, N(z) maps GF(p?) onto
GF(pi), and therefore there is z with (N(z)/p;) = —1, and by the Chinese
remainder theorem it is possible to get (N(2)/n) = [12,(N(z)/p;)™ =
—1 for some z. ®

33

To speak about and compute cubic residuosity it is necessary to in-
troduce Z[(], the ring of integers extended with a primitive third root of
unity ¢ (complex root of 2% + z + 1).

The following definitions and facts may be found in a paper by Schei-
dler and Williams [9)].

Define the two conjugate mappings o; : Z[¢] — Z[(] by 0;(¢) = ¢* for
i = 1,2. The rational integer N(a) = o1(a)oa(e) is called the norm of
a € Z[(].

A unit in Z[(] is an element of norm 1. There are 6 units in Z[(]:
+1, +¢, £¢%. Two elements «, 3 € Z[(] are said to be associates if there
exists a unit € such that a = €.

A prime 7 in Z[(] is a non unit such that for any «, 5 € Z[(], if 7|af3,
then 7| or 7|f.

1 —(is a prime in Z[¢] and N(1 — () =3. If 7 # 1 — (is a prime in
Z[C], then N(m) = p* where p is a prime in Z and k € 1,2 is the order of
p modulo 3, hence N(7) = 1(mod 3).

If n = 1(mod 3) is a prime in Z and r € Z satisfies that 72 +r +1 =
0 mod n, then ged(n,r —) is a prime 7 € Z[(] of norm n.

The cubic residuosity symbol

[/ Z[¢) % (Z[¢] = (1 = Q)Z[¢]) = {0,1,¢. ¢}

is a multiplicative homomorphism in both arguments. For prime 7 € Z[(]
where m # 1 — (and a € Z[(]:

We are now ready to make the connection between R(n,c) and Z[(].

Definition 21 For arbitrary n > 5 with (n,6) = 1, for arbitrary ¢ with
(¢/n) = —1, assume there exists anr = gr+h € R(n,c) withr*+r+1 =
0, and if n =1 mod 3 assume in addition that r € Z,, 1.e. g = 0.

Define ress : R(n,¢)" — {1,,¢*} C Z[C] by

(V> —ca® | ged(n,r —¢)], ifn=1mod 3

resg(ax 4+ b) = { [(b+a(C—h)/g) / nl, if n =2 mod 3

The function ress is a nice multiplicative homomorphism but for same
composite numbers (f.x. n = 537, ¢ = =3 and r = —x/2 — 1/2) it is
trivial. Fortunately, we only need it to be nontrivial for prime n. In
addition, we can speed up some later computations, when we know that
it is also nontrivial for composite n = 1 mod 3:

34

Lemma 22 For arbitrary n > 5 with (n,6) = 1, for arbitrary c¢ with
(¢/n) = =1, for arbitrary r € R(n,c) with r*> +r+ 1 = 0, we have ress
is a multiplicative homomorphism ress : R(n, c)* — {1,¢, ¢} C Z[¢].

If n is a prime, or if n = 1 mod 3 and n is not a perfect cube then
ress is surjective, i.e. |res;'(1)] = |R(n,c)*|/3.

Proof. For proof of the homomorphism property, observe that the
second argument of the cubic residuosity symbol is either n or a divisor
of n, and in any case is constant and independent of ax + b. Hence, it
suffices to prove that the mapping of ax + b to the first argument of the
cubic residuosity symbol is a multiplicative homomorphism when taken
modulo n.

For the case of n = 1 mod 3, it suffices to note that > — ca® is
the norm of axz + b in R(n,c), and taking the norm is a multiplicative
homomorphism.

Next consider the case of n = 2 mod 3. Note that ax +b = b +
a(r —h)/g. In addition, for A, B € Z the mapping of Ar + B to A+ B
is a multiplicative homomorphism modulo n, since r and (are roots of
2?2 + 2z + 1 in the rings R(n,c) and Z[(], respectively.

For proof of surjectivity, it suffices to find an element that is not
mapped into 1.

Consider first the case of n = 1 mod 3 and n is not a perfect cube.
Assume that n = [[£,pi"". Since > +r + 1 = 0 mod n it must be
the case that r? + 7, +1 = 0mod p; for r; = r mod p;, ie. r; is a
primitive third root of 1 in Z,,. This is only possible if p; = 1 mod 3 for
all i. Let m; = ged(pi, i —). Then m; is a prime of norm p; in Z[(],
and n = [, (mm;)™. Let v = ged(n,r — (). Since n | N(r — () and
pi /A (r— () it follows that v =[], 7" and N(v) = n. Since n is a
not a perfect cube there is m; with 3 /m;, and we may assume 3 fm;
without loss of generality. Finally, we are ready to present an element
that is not mapped into 1 by ress. Let z=0-x + b € R(n,c) be chosen
such that b = 1 mod p; for all © > 2 and b = k mod p;, where £ is a
generator of the multiplicative group Z; . In particular, this implies that
k=073 — F modulo p; (and therefore also modulo 7). Note also
that 1 = ¢ modulo 7. Using that the cubic residuosity symbol is a
multiplicative homomorphism, one gets:

w

ress(z) = [b*) v] = [[0* / m]™ = [k* / m]™ = [k* / m]*

i=1

35

Using the definition of the cubic residuosity symbol, we continue the
computation modulo 7:

[k,Q / 7T1] _ k2(N(7q)—1)/3 _ k,2(p1—1)/3 _ Ti':l _ C:Fl 7,£ 1

Consider next the case of n prime and n = 2 mod 3. In that case
n is a prime in Z[(] of norm n? Let k = ax + b be a generator of the
multiplicative group R(n,c)* = GF(n?)*. In particular, this implies that
k=073 — p£1 modulo n in R(n,c¢), or phrased differently, (b4 a(r —
h)/g)™®*=1D/3 = p£1 - As noted under the proof of the homomorphism
property, such an equality is valid modulo n in Z[¢] when substituting ¢
for 7, i.e. (b+a(C—h)/g)"™ ~D/3 = ¢*'. Using the definition of the cubic
residuosity symbol, one gets the following computation modulo n:

ress(k) = [b+a(C = h)/g / n]
= (b+a(C =)/ NI = (b+a(C =)o)V = ¢ £

5.3 EQFTwc: The algorithm

An abstract version of our revised test is presented as algorithm 2.

5.4 EQFTwc: implementation details

We need a primitive third root of unity in R(n,c), since it is used for
computing the cubic residuosity in line 5 (and for convenience, explicitly
in line 4)

Lemma 23 For arbitrary n > 5 with (n,6) = 1, for arbitrary c¢ with
(¢/n) = —1, we may either

e find somer € R(n,c) withr*+r+1=0 (and ifn =1 mod 3 then
reZ), or

e discover that n is composite,

using an expected time equivalent to O(logn) multiplications in Z,.

Ifn =1 mod 3, we need only use expected time equivalent to 21logn+
o(logn) multiplications in Z,.

Ifn =2 mod 3 and ¢ = —3 we need only use time equivalent to O(1)
multiplications in Z,,.

36

Algorithm 2 Extended Quadratic Frobenius Test (EQFTwc).

First iteration:

Require: input is an odd number n > 5
Ensure: output is “composite”, or “probable prime”, ¢ € Z,, roy €

6:
7
8:

R(n,c)*, where (¢/n) = —1 and Pgy(rey) = 0.
if n is divisible by 2 or 3 return “composite”
if n is a perfect square or a perfect cube return “composite”

choose a small ¢ with (¢/n) = —1
compute r € R(n, c) satisfying r>+r+1 = 0 (may return “compos-
ite”)

a: if n = 1 mod 3 then select a random z € R(n, ¢)* with (N(z)/n) =
—1 and ress(z) # 1.
b: if n = 2 mod 3 then repeat
Make a Miller-Rabin primality test on n (may return “com-
posite”)
select a random z € R(n,c)* with (N(z)/n) = —1 and compute
ress(z)
until either the Miller-Rabin test returns composite or the selected
z satisfies that ress(z) # 1
if Z # 2" return “composite”.
Let roq = 2("*=D/24 If 8, o r*1 or 112 £ —1 return “composite”.
return “probable prime”, ¢, ro4

Subsequent iterations:

Require: input is n, ¢, 14, where n > 5 is not divisible by 2 or 3, (¢/n) =

—1, and (1)24(7’24) =0

Ensure: output is “composite” or “probable prime”

9:
10:
11:
12:

select random z € R(n, c)*

if Z # 2" return “composite”

if 27D/ g Ll 1 =0,...,23} return “composite”
return “probable prime”

37

Proof. When n is a prime, —3, —3/c are squares modulo n for n =
1,2 mod 3 respectively, and one may verify by a simple computation
modulo (n,z? — ¢) that

. —3+1v/-3, ifn=1mod3
n —%:I:%\/_Tg:p, if n =2 mod 3

If n is composite the above square roots modulo n may fail to exist.
We want to compute the square roots using an algorithm that is expected
to terminate fast and either declares n composite or returns the wanted
square root (in which case n may still be composite).

Cipolla’s algorithm (see [1, ch.7]) for computing square roots in a
finite field will work when n is prime. When n is composite it may
still work, but if it does not, it will be clear that the compositeness
is the cause. Cipolla’s algorithm takes time corresponding to O(logn)
multiplications over Z,,.

To obtain the claimed better bound for n = 2 mod 3 and ¢ = —3, it
suffices to note that the root extraction /—3/c becomes trivial. For n =
1 mod 3 it would be too slow to use Cipolla’s algorithm for computing
v/=3. In stead we use a variant of the Cantor-Zassenhaus polynomial
factorization algorithm to factor (¥ +3) into (x —/=3)(z++/—3). The
details are given in Algorithm 3.

Algorithm 3 Compute squareroot of d modulo n
Require: 0 < d <n and (d/n) =1
Ensure: s?> = d mod n if n is prime
1: Select arbitrary ¢ with (¢* —d/n) = —1.
2: f « (2 +t)™ Y2 mod (22 — d) mod n.
3: Let s be defined by f = s~'z. (if f is not a monomial of degree 1
then n is composite)

For proving the correctness of this algorithm, we may assume that n
is a prime. Observe that by Chinese remaindering, Z[z]/(n,z* — d) ~
Z[z]/(n,x — Vd) x Z]z]/(n,x + Vd) ~ Z, x Z,. The corresponding
representation of z+t € Z[x]/(n, 2> — d) by Chinese remaindering is (¢ +
Vd,t—+/d), and the representation of (z+1)" /2 is ((t4+/d)*~D/2 (t—
Vd)=D2) = ((t4++/d/n), (t—+/d/n). Since t is selected with (t2—d/n) =
—1, we know that (t +v/d/n) = —(t —v/d/n) = £1. But (1,—1) and
(—1,1) represents (+v/d) 'z.

38

For proving the time bound, we observe that ¢ can be selected fast
since at least 1/3 of all 0 < ¢ < n will have (t*—d/n) # 1. The remaining
bottleneck is the exponentiation for computing f. But if d is small then
arithmetic modulo 22 —d may be implemented analogously to our efficient
implementation of arithmetic in R(n, ¢), resulting in the exponentiation
taking time corresponding to 2logn + o(logn) multiplications in Z,. In
particular, d = —3 is small in this sense. ™

Lemma 24 For arbitrary n > 5 with (n,6) = 1, for arbitrary c with
(¢/n) = —1, assume we are given anr = gr+h € R(n,c) withr*4+r+1 =
0, and if n =1 mod 3 assume in addition that r € Z,, i.e. g = 0.

For arbitrary z € R(n, c) we may compute ress(z) in time O(log®n).

Proof. By the definition of ress, we only need efficient algorithms for
computing gcd and cubic residuosity over Z[(]. Such algorithms are
described and analysed in [6]. ™

Theorem 25 There is an implementation of algorithm 2 that on input n
takes expected time equivalent to at most 2logn+ o(logn) multiplications
wn 2Ly, per iteration, when assuming the ERH.

The first iteration has an additional expected start up cost equivalent
to at most 2logn + o(logn) multiplications in Z,.

Remark. Compared to Theorem 5 the O(u+v) term has disappeared
from the runtime bound, but a start-up cost of 2logn has entered.

Proof. The special start up cost has different causes dependent upon
whether n = 1 or 2 mod 3. In the first case line 4 with construction of
r is costly and in the second case line 5b running an MR test takes extra
time.

The implementation of lines 1 and 2 are trivial.

For line 3, we select ¢ = —3, when n = 2 mod 3, in order to benefit
from lemma 23. For n = 1 mod 3, the implementation described in the
proof of theorem 5 is used. It is expected to take o(log n) multiplications
in 7,

For line 4, we use lemma 23. Hence line 4 is trivial when n = 2 mod 3,
but contributes an extra expected start up time corresponding to 2 log n+
o(log n) multiplications in Z,, when n = 1 mod 3.

For line 5a, we note that 1/3 of all z € R(n,c¢)* are usable by lem-
mas 20 and 22, and we therefore expect to find one in 3 attempts, which
takes time corresponding to o(logn) multiplications in Z, by lemma 24.

39

For line 5b, we note that if n is composite we expect to use at most
4/3 iterations of Miller-Rabin to discover this, and if n is prime we ex-
pect to use at most 3/2 attempts to find a z with ress(z) # 1 (by
lemma 22). The bottleneck is running the Miller-Rabin algorithm, which
takes time equivalent to logn multiplications in Z,, per run. In total, line
5b contributes an extra expected start up time corresponding to at most
3/2logn + o(log n) multiplications in Z,, when n = 2 mod 3.

In lines 6 and 7 we must

1. verify 2" =Z,

2. compute z("Ll)/M,
We will argue that this takes 2logn + o(log n) multiplications in Z,.
We may assume that n =244+ B for 0 < B < 24

e compute z* (This uses the allowed 2logn+ o(log n) multiplications
in Z,)

e compute 2" = z#4*8 (using O(1) multiplications) and verify 2" =
Z.

o compute z("'~D/21 = A ABHBI-D/21 - This takes only O(1) mul-
tiplications and the used identity follows from zi = 2™ (that is
implied by 2" = %). Note that (B* — 1)/24 is integral.

The only remaining nontrivial lines 10 and 11 are similar to lines 6
and 7. =

5.5 EQFTwc: error analysis

The error analysis of section 3 must be reformulated.

We have earlier characterised the structure of R(n,c). We need a
characterisation of H(n,c) ={ z € R(n,c)* | 2" =% }. For prime power
p™ dividing n, let H(n,p™,c) denote the set of those zy € R(p™,c) for
which there exists z € H(n, ¢) satisfying that z = zy mod p™.

The proof of the following lemma is quite similar to the proof of
lemma 9, but for completeness we include the details.

Lemma 26 Let n be an odd number, let ¢ be a unit modulo n.

40

1. If prime p divides n then H(n,p,c) is a cyclic subgroup of R(p,c)*
of size

_ Joged(n/p—1,p* = 1), if(c¢/p)=—1
|H(n,p,c)| = { ged(n2/p? — 1,p—1), if (¢/p) =1

2. If prime power p™ divides n then H(n,p™,c) ~ H(n,p,c)
3. If n has prime power factorisation n =[], p;"* then

H(n,c) = H(n,pi,c) X -+ x H(n,py,c).

Proof. For 1, let z € H(n,c), and define zy € R(p,c)* by z =

2o mod p. Since z € H(n,c), we know that z{ = Z; implying that
n2—1
2o~ = 1. The argument is divided in cases:

Consider first the case (¢/p) = —1. By lemma 7, Z5 = 2§ implying
that the order of z, divides ged(n — p,n* — 1) = ged(n/p — 1,p* — 1).
Since the multiplicative subgroup of R(p, ¢) ~ GF(p?) is cyclic, the stated
bound on the size of |H(n, p, ¢)| follows.

Consider next the case (¢/p) = 1. By lemma 7, zp = 2{}, i.e. the
order of 2y in R(p,c) divides ged(n? —1,p — 1) = ged(n?/p* — 1,p — 1).
Since R(p,c) ~ GF(p) x GF(p), one may represent zy by (wy,ws) €
GF(p)xGF(p), implying that w is in the unique multiplicative subgroup
of GF(p) of order ged(n?/p* — 1,p — 1). In addition w, is uniquely
determined by wy, since by lemma 7, (wy, wy) = (wy, wy) = (wy, we)" =
(wy, wy). Part 1 of the lemma follows.

For 2, it is enough to argue that p does not divide the order of any
element z € H(n,p™, c), since, by lemma 7, H(n,p™, c) is a subgroup
of R(p™,c)* ~ Zym-1 X Zym—1 X R(p,c)*. By definition, z € H(n,p™, c)
satisfy that 2""~1 = 1, and since p|n it follows that p J n? — 1.

For 3, we use 2 and Chinese Remaindering. ™

We may precisely state the probability of passing the conjugation
tests of both the first and subsequent iterations (lines 6 and 10).

Define
Pristn,c) = Pr(2" =%z | z € R(n,¢)*, (N(2)/n) = —1, ress(z) # 1)

conj

PT’SUbS(TL,C) _ PT’(=7 | S R(TL, C)*)

conj

41

Lemma 27 Let n be an odd number with prime power factorisation
n =TI, pi", let Q@ = >¢ m;, and let ¢ satisfy that (c¢/n) = —1. The
probability that n is not found to be composite in line 6 (respectively line
10) of algorithm 2 is

f“"St subs |H(7’L, C>|
2(1-m;) (n/pi —1,p; —1) (n?/p; —1,p; — 1)
< P; sel[(c/ps), :]
H pi—1 (pi — 1)2
2(1—m;) (n/p; —1,p7 — 1) 1
< Hp sell(c/pi), . ’pi—l]

where, we have adopted the notation sel|+1, Ey, Es] for a conditional ex-
pression with the semantics sel[—1, By, Es] = Ey and sel[l, By, E5]| = Es.

Proof. In a subsequent iteration, z is chosen randomly from R(n, c)*,
and it suffices to combine lemmas 7 and 26. For the first iteration, we
need to argue that z being chosen with the restrictions (N(z)/n) = —1
and resz(z) # 1 does not adversely effect the probability. Note that
the maps (N(-)/n) and ress(-) are group homomorphisms from R(n, ¢)*
to {—1,1} and {¢,(7% 1} respectively. Therefore [(N(-)/n)~1(—=1) N

es3 (CEY| = |R(n,c)*|/3 (when it is nonempty). But since H(n,c)
is a subgroup of R(n,c)* it follows that |H(n,c) N (N(-)/n)"'(=1) N
ress ((F1)| < [H(n,)|/3. =

Next we estimate the probability of passing the 24’th-root-of-1-tests
in lines 7 and 11 under the assumption that the conjugation test is passed
(lines 6 and 10). The 24’th-root-of-1-test is equivalent to an 8'th-root-of-
1-test combined with a 3’rd-root-of-1-test. Note that with an argument
similar to the one used when analysing the EQFTac, the contributions of
the 8’th-root-of-1-test and the 3’rd-root-of-1-tests are independent. For
the analysis, we treat each separately, starting with the 8th-root-of-1-
test.

Define

first
Pri"(n,c)
= Pr(z"V2=_1|z€H(n,c), (N)/n)=—-1, ress(z) #1)

and

Priv*(n,c) = Pr(A0/ ¢ {ron 3050 - 34} | 2 € H(n,0))

42

Lemma 28 Let n be an odd number with prime power factorisation n =
[T2, pi", let ¢ satisfy that (¢c/n) = —1.

Prist(n, ¢) < 217
Priv®(n,c) < 8
Proof. let C; be the Sylow-2 subgroup of H(n,p;,c). Then we have
H(n,c) ~Cy x -+ x C, x Hy

where |H,| is prime to 2. Let 2" be the maximal power of 2 dividing

n? — 1. If z is uniformly chosen in H(n,c) and we write elements in

H(n, c) according to the above decomposition as w + 1-tuples, we have
AN — (e e, 1)

where ¢; is uniform in C;. Let |C;| = 2% and define a,,;,, = min{a;| i =

L...w}h

We may assume that a,,;, > u. If that was not the case, then n will
definitely not pass the 8'th-root-of-1-test in the first iteration. To see
this, consider the base z selected in the first iteration and suppose that
z passes the tests in line 6,7. Let 2("*~1/2" = (21, ..., 24, 1) in the above
decomposition, and observe that since 2*=1/2 — _ 1 each z; must have
order 2%, i.e. a; > u for all i and @, > u.

We may regard any subsequent 8’th-root-of-1-test (line 11) as starting
from 2"’ ~1/2" performing ©— 3 squarings and testing for the occurrence
of one out of 8 permitted values. Since raising to the power 2! in the group
Cy x - x C,is a2¥ to 1 mapping (for i <), it follows that

2w(u—3) 81 owu
S — S —w
i1 |Gl

subs o X 1—w
Pri**(n,c) =8 o gm =
=1

A very similar argument applies to the first iteration. We make u — 1
squarings from 2(*=1/2" and tests whether the result is —1. In addition,
2z is not chosen randomly from H (n, ¢) but with a restriction correspond-
ing to (¢q, ..., ¢,) being chosen from outside a subgroup of index 2 in the

Sylow-2 subgroup. That can at most worsen the probability by a factor

2: (1)
2 2 < ol=w 2

- L2 <« 9lew
Gl im12% T

Pri{"™"(n,c) <1

43

The probability of passing the 3’rd-root-of-1-test may be bounded
with an analogous argument.
Define

PTfWSt(n, C)
Pr(2"

2

VB — | 2 € H(n,c), (N(2)/n) = —1, ress(z) #1)
and
Pri*(n,c) = Pr(z (n*=1)/3 ¢ {0, 3,5}y | z € H(n,c))

Lemma 29 Let n be an odd number with prime power factorisation n =
[T, pi", let ¢ satisfy that (¢c/n) = —1.

Prit(n, ¢) < 317
Privs(n, ¢) < 31
Proof. let D; be the Sylow-3 subgroup of H(n, p;,¢). Then we have
H(n,c)~ Dy x---x D, x Hs

where |Hj| is prime to 3. Let 3" be the maximal power of 3 dividing
n? — 1. If z is uniformly chosen in H(n,c) and we write elements in
H(n, c) according to the above decomposition as w + 1-tuples, we have

AP NB = (dy L dy, 1)

where d; is uniform in D;. Let |D;| = 3% and define b,,;,, = min{b;| i =
L,...w}

We may assume that b,,;, > v. If that was not the case, then n will
definitely not pass the 3'rd-root-of-1-test in the first iteration. To see
this, consider the base z selected in the first iteration and suppose that
= passes the tests in line 6,7. Let 2" ~1/3" = (2, ..., z,,1) in the above
decomposition, and observe that since Z*=1)/3 — r3!, each z must have
order 3", i.e. b; > v for all 7 and b,,,;,, > v.

We may regard any subsequent 3’rd-root-of-1-test (line 11) as starting
from z("*~1/3" raising to the power 3"~ and testing for the occurrence
of one out of 3 permitted values. Since raising to the power 3' in the
group Dy X -+ x D, is a 3*" to 1 mapping (for i < by), it follows that

3w(v71) - Jwv - Slfw

Pr;ubs(n’c)zg.mgg .W_
i=1 7 =1

44

A very similar argument applies to the first iteration. We raise z("*~1/3"
to the power 3*~! and tests whether the result is 73, In addition, z is
not chosen randomly from H(n,c) but with a restriction corresponding
to (dy,...,d,) being chosen from outside a subgroup of index 3 in the

Sylow-3 subgroup. That can at most worsen the probability by a factor
3/2:

3w(u—1) wv

Pri"(n,c) <2 - ————.3/2 <3 . < 3t
’ i1 |Gl iy 3b

Theorem 30 Let n be an odd composite number with prime power fac-
torisation n = [12_, pi™*, let Q = >2 m,.

Let v4(n) denote the probability that n passes t iterations of EQF Twc
(algorithm 2). ~v,(n) satisfies the following inequalities:

|H (n, c)|

p(n) < 4Tl (A
[R(n, c)*|
< . —1,p? — 1)
< max 4“7'(24' 20=mi el [(e/p; ’(n/pz L ,
S Jmax 477 gp [(c/pi) P

e

S 4w7124t(1fﬂ)
Proof. The theorem follows from lemmas 27, 28 and 29 combined

with trivial inequalities.
|

Theorem 31 Let n be an odd composite number. The probability that t
iterations of the test of algorithm 2 result in the output “probable prime”
when put n is bounded by

fyt(n> S 4424747& ~ 28718.361‘/

if either n has no prime factor < 118 or n > 242,

45

Proof. By theorem 30, v,(n) < (4 -247)©@=Y_ Hence, we need only
consider numbers with at most 4 prime factors. By theorem 30, it suffices

to prove that
| H (n, c)]

| R(n, c)*|

for such numbers, which is implied by

4w7124t(17w)()t S 4424747&

|H(n7 C)| S 24(.0*5
| R(n, c)*|

To prove this inequality, we will use that |H (n, c)|/|R(n,c)*| is bounded
in lemmas 35 and 36 for numbers with few prime factors.

For numbers with no small prime divisors, we consider the table of
lemma 35. By solving an inequality for each entry in the table, we can find
a bound on the smallest prime factor p, that makes all entries < 24“75.
It turns out that the bottleneck is the case 2 = w = 2, requiring p > 118.

For large n, we analogously consider the table of lemma 36. Here the
bottleneck is the case Q = w = 4, requiring n > 2*2. =

5.6 Error probability without the 24’th-root-of-1-
test

For composite numbers with at most 4 prime factors, it is possible to
get good bounds on the error probability |H (n, ¢)|/|R(n, ¢)*| of the basic
Frobenius test (line 6 or line 10 of algorithm 2) alone, i.e. omitting the
24’th-root-of-1-test.

The bound can be parametrised either by the smallest prime factor
or by the size of n. This result is a simple consequence of the analysis of
section 5.5 except in the case of n having an odd number of all distinct
prime factors. For 3 distinct prime factors, the proof hinges on a technical
result by Grantham [7]. We give a different proof and a slightly sharper
result in lemma 33. We haven’t found a way to parametrise the error
bound for numbers with 5 distinct prime factors, but a result in that
direction would allow an improvement of the absolute worst case bound
stated in theorem 31.

46

5.6.1 Technical lemmas

Lemma 32 Letn be an odd number with prime power factorisation n =
[T, pi", let Q=322 m;, and let ¢ satisfy that (¢/n) = —1.

[H(n,c)|
| R(n, C)*\
d(n/pi —1,p7 —1) ged(n®/p} — 1, p; — 1)
< 2(1 mz) 1 gc Y 1 7 Y
= Hp sel((c/pi), p?— 1 J (p;i — 1)]
m, n/pz - 1 n?/pi—1
< p2(1 ’ sel ¢/pi), min{1 min :
H [(¢/ps), min{1, = } { o =172 1]

Proof. This follows from lemma 27. =

Lemma 33 Let n be an odd composite number that is the product of 3
distinct primesn = [[;_, p;. Assume that p; < py < ps, then the following
inequality holds

i= 1(pz 1) p% —1
and , ,
d(n/p; — 1,p% — 1 1

Proof. We start by proving (14). Define

(p1p2 — 1)(p1ps — 1) (paps — 1)
(pi = D3 =3 —1)

When differentiating f with respect to ps, one easily finds that under the
assumption 1 < p; < py < p3 then

f(p17p27p3)

. (Plpz - 1)291292
< 1 =
f(p1.p2,p3) i f(pr, pa, ps) - DR —1)

and

f(pi,p2,p3) > f(p1,p2,p2) = (p%(p_lpf)(;%l)_ 0

47

When differentiating the simplified expressions with respect to ps one
finds that (assuming 1 < p; < po)

. (p1p2 — 1)p1p2
f(p17p27p3) < lim
p2—oo (pf — 1)(p3 — 1)

and
f(p1,p2,03) > flp,p,p1) = 1

Finally, we consider the last inequality. Since

i (n/pi—1) TI,(n/pi— 1)/ ged(n/pi — 1,p7 — 1)
(- 1) i1 (pf — 1)/ ged(n/p; — 1,p} — 1)

it follows that

1<

1 3 . — 1 1
1+ - < Z—l(n/p) <1_'_ -~
pi—1

P —1)/ged(n/p; — 1,p? —1) = TI,(p? — 1)

which proves the lemma. ™

Lemma 34 Let n be an odd composite number that is the product of /
distinct primes n = [[}_, p;. Assume that 1 < p; < py < p3 < p4, then
the following inequality holds

1 ;— 1 3
< Bl =) ity =2 (16)

=2\t

and
ﬁ ged(n/pi —1,pf —1) _ 3p}
=2 pzz —1 p% —1

Proof. We start by proving the upper bound of (16).

H?:z(n/pi —1) < H?:z n/p;
?:2(1722 —1) ?:2(27@2 —1)
P
;‘1:2(2%2 - 1)/p}

34 1
= py | [(1+
1Z~:HQ p;—1

3
3
< pi(1+)
B pi-

)

48

The lower bound is implied by (14):

4 4
iza(n/pi — 1) 3L ((n/p1)/pi — 1) 5
new-1u " nLe-n M

Finally, we consider the last inequality. Since

[Lo(n/pi —1) ILio(n/pi —1)/ged(n/p; —1,p7 = 1)

3
P <

(PP —1) Iy — 1)/ ged(n/p; — 1,p7 — 1)
it follows that
1 [T o(n/pi — 1 3p}
P+ =1 - < f(/2 ><p?+ s
i—o(p7 — 1)/ ged(n/pi — 1,p7 — 1) i—o(pi — 1) pi—1

which proves the lemma. ™

5.6.2 Worst case bound parametrised by smallest prime factor

Lemma 35 Let n be an odd composite number having complete prime
factorisation n = T2, pi, let Q@ = 3% m; < 4, and let ¢ satisfy that
(¢/n) = —1.

If p is the smallest prime factor of n, then |H(n,c)|/|R(n,c)*| is
bounded by the entries of the following table

| | Q=2 | =3 | Q=4 |

w=1 p4

w=2]@’ - p* p!
w=3 -1 p”
w=4 -1

Proof. All the entries with 2 > w are consequences of lemma 32. For
the entry with = w = 4, we argue that since (¢/n) = —1 and 4 is an
even number, we must have (¢/p;) = 1 for some prime factor p; of n.
Hence, the bound 272(p; — 1)~! is also implied by lemma 32. For the
entry with 2 = w = 2, we have n = p;ps, and without loss of generality,
we may assume that (¢/p;) = —(¢/p2) = —1. By lemma 32, we have

|R(n,c)*| — pi—1 (pa — 1)? - opi-1

Finally, consider the case of 2 = w = 3, i.e. n = p;paps. The assumption
(¢/n) = —1 implies that (¢/p;) = —1 either for all i or for precisely one

49

i. Consider first the latter case, and assume (¢/p;) = —1 and (¢/p2) =
(¢/ps) = 1. By lemma 32,

|H(n,c)| 1 1 1
Hin o)l - ~ <
| R(n, c)*| pp—1 ps—1 = p?—1
In the former case, (¢/p;) = —1 for all 7, and by the inequality of

lemma 33, we have
|B(n,c)] = p*—1

5.6.3 Worst case bound on the form n~®"

Lemma 36 Let n be an odd composite number having complete prime
factorisation n = [12 pi, let Q = Y2 m; < 4, and let ¢ satisfy that
(¢/n) = —1. |H(n,c)|/|R(n,c)*| is bounded by the entries of the following
table

[[o=2[0=3]0=1]

w=1 n—4/3

w=2|2n"2%3 | n=23 | 2n10/9
w=3 2n =25 | 2n 23
w=4 2n 215

Proof. The entries for w = 1 are a consequence of lemma 32, and each
of the remaining entries of the table is proved by separate case analysis in
the following. For all the cases, we will use the inequalities of lemma 32,
and for n = p1paops and n = pypapsps, we need additional technical results
(lemma 33 and lemma 34).

Case n = p1papsps:

The assumption (¢/n) = —1 implies that (¢/p;) = —1 either for
precisely three ¢ or for precisely one 7, and in the latter case we may
assume that (¢/p;) = —1 without loss of generality,

H

| (n7c)*| < mln{ p2p3p4 } H < 27}72/3

| B(n, c)*] i Di —
In the former case, where (c/ pl-) = —1 for precisely three i, we assume
that (¢/p1) =1,

H 1 —1 —1

|H (n,)] < -min{1, p1p§p4) Plpgp:s }

|R(n, c)*] p1—1 p3—1 pi—1

We need the assumption p; > ps to make the above estimate. This is
always possible after permutation of indices except when p; is the smallest
prime factor. In that case, we may assume that p; < ps < p3 < p4, and
by Lemma 34 and the part of the previous argument that holds also when
p1 < po, we find

|H(n,c)| < 1 n{1, PP2PL = 1 pipops — 1 3p})
|B(n,c)| = p1—1 p3—1 pi—1 "pi—1
< 2n72/15

Case n = p1paps:

The assumption (¢/n) = —1 implies that (¢/p;) = —1 either for all
or for precisely one 7, and in the latter case, we may assume without loss
of generality that (¢/p;) = —1:

H -1 1 1
1H(n,)| < min{1, p2§3) . < o723
|R(n, c)*| pi—1 p2—1 p3—1
In the former case, (¢/p;) = —1 for all i. Without loss of generality, we

may assume that p; < py < ps, and by lemma 33,

3 2
|H(n,c)| < 11 gcd(n/m2 Lp; —1)
|R(n, c)*| Paley p;i—1
1 p1p3—1_p1p2—1}
pi—1 ps—1 p3—1
2n—2/5

IN

min{—

IN

Case n = pipops:
Without loss of generality, (¢/p2) =1 and (¢/p3) = —1,

|R(n, c)*| P -1
Case n = p1po:

Since (¢/n) = —1, it must be the case that (¢/p1) = —(¢/p2) = —1
(if necessary permute p; and ps).

|H (n, c)|

| R(n, ¢)*]

p—l

min{1,

Case n = pips:

ol

It must be the case that (¢/ps) = —1 and therefore

|H(TL, C)| -2 : p? —1 —2/3
——1 2 < p;7-min{l, b < nY
| R(n, c)*| ' p3—1
Case n = pips:
There are two possibilities, either (¢/p;) = —(¢/p2) = —1 or (¢/p1) =
—(¢/p2) = 1. Consider the latter possibility first,

Hidl _ 1 o -

1
- —— -min{1, < 2p7 10/
Blmo] = P o1 minlbgh <

We need also consider the situation when (¢/p;) = —(¢/p2) = —1,

H 6_1 1
|H(n,c)| < pf4 min{ D1 2’ } < 9y, ~10/9
|R(n, c)*| (P2 =12 pp—1
[|
References

[1] Eric Bach and Jeffrey Shallit. Algorithmic number theory. Vol. 1. Foun-
dations of Computing Series. MIT Press, Cambridge, MA, 1996. Efficient
algorithms.

[2] Jgrgen Brandt and Ivan Damgard. On generation of probable primes by
incremental search. In Advances in cryptology—CRYPTO ’92 (Santa Bar-
bara, CA, 1992), Vol. 740 of Lecture Notes in Comput. Sci., pp. 358-370.
Springer, Berlin, 1993.

[3] Jorgen Brandt, Ivan Damgard, and Peter Landrock. Speeding up prime
number generation. In Advances in cryptology—ASIACRYPT 91 (Fu-
jJiyoshida, 1991), Vol. 739 of Lecture Notes in Comput. Sci., pp. 440-449.
Springer, Berlin, 1993.

[4] Ronald Joseph Burthe, Jr. Further investigations with the strong probable
prime test. Math. Comp. 65(213) (1996), 373-381.

[5] Ivan Damgard, Peter Landrock, and Carl Pomerance. Average case error
estimates for the strong probable prime test. Math. Comp. 61(203) (1993),
177-194.

o2

[6]

Ivan B. Damgard and Gudmund Skovbjerg Frandsen. Efficient algorithms
for ged and cubic residuosity in the ring of Eisenstein integers. Research
Series RS-03-8, BRICS, Department of Computer Science, University of
Aarhus, February 2003.

Jon Grantham. A probable prime test with high confidence. J. Number
Theory 72(1) (1998), 32-47.

Siguna Miiller. A probable prime test with very high confidence for n =
1 mod 4. In Advances in cryptology—ASIACRYPT 2001 (Gold Coast),
Vol. 2248 of Lecture Notes in Comput. Sci., pp. 87-106. Springer, Berlin,
2001.

Renate Scheidler and Hugh C. Williams. A public-key cryptosystem uti-
lizing cyclotomic fields. Des. Codes Cryptogr. 6(2) (1995), 117-131.

23

Recent BRICS Report Series Publications

RS-03-9

RS-03-8

RS-03-7

RS-03-6

RS-03-5

RS-03-4

RS-03-3

RS-03-2

RS-03-1

lvan B. Damgrd and Gudmund Skovbjerg Frandsen. An
Extended Quadratic Frobenius Primality Test with Average and
Worst Case Error EstimatesFebruary 2003. 53 pp.

Ivan B. Damgrd and Gudmund Skovbjerg Frandsen. Effi-
cient Algorithms for gcd and Cubic Residuosity in the Ring of
Eisenstein IntegersFebruary 2003. 11 pp.

Claus Brabrand, Michael I. Schwartzbach, and Mads Vang-
gaard. The METAFRONT System: Extensible Parsing and
Transformation February 2003. 24 pp.

Giuseppe Milicia and Vladimiro Sassoneleeg: Temporal Con-
straints for the Synchronization of Concurrent Objectd-ebru-
ary 2003. 41 pp. Short version appears in Fox and Getov, edi-
tors, Joint ACM-ISCOPE Conference on Java GranddGl '02
Proceedings, 2002, pages 212-221.

Aske Simon Christensen, Anders Mgller, and Michael I.
Schwartzbach. Precise Analysis of String Expressionsg-ebru-
ary 2003. 15 pp.

Marco Carbone and Mogens Nielserifowards a Formal Model
for Trust. January 2003.

Claude Cepeau, Paul Dumais, Dominic Mayers, and Louis
Salvail. On the Computational Collapse of Quantum Informa-
tion. January 2003. 31 pp.

Olivier Danvy and Pablo E. Marfinez Lépez. Tagging, En-
coding, and Jones Optimality January 2003. To appear in
Degano, editor,Programming Languages and Systems: Twelfth
European Symposium on ProgramminggSOP '03 Proceed-
ings, LNCS, 2003.

Vladimiro Sassone and Pawel SobocinskiDeriving Bisimu-
lation Congruences: 2-Categories vs. Precategorie3anuary
2003. To appear in Gordon, editor,Foundations of Software
Science and Computation Structured=0SSaCS '03 Proceed-
ings, LNCS, 2003.

