s1afaju| uidlsuasig Jo Bury ay) ul Aysonpisay dI1gnD pue pab :uaspueld % prdweq 8-£0-SYH SOIYd

BRICS

Basic Research in Computer Science

Efficient Algorithms for gcd and
Cubic Residuosity in the Ring of
Eisenstein Integers

lvan B. Damgard
Gudmund Skovbjerg Frandsen

BRICS Report Series RS-03-8
ISSN 0909-0878 February 2003

Copyright (© 2003, Ivan B. Damgrd & Gudmund Skovbjerg
Frandsen.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work

is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS

Department of Computer Science
University of Aarhus

Ny Munkegade, building 540
DK-8000 Aarhus C

Denmark

Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLSs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/03/8/

Efficient algorithms for ged and cubic
residuosity in the ring of Eisenstein integers *

Ivan Bjerre Damgard Gudmund Skovbjerg Frandsen

BRICS'
Department of Computer Science

University of Aarhus
Ny Munkegade
DK-8000 Aarhus C, Denmark

{ivan,gudmund}@brics.dk

February, 2003

Abstract

We present simple and efficient algorithms for computing ged
and cubic residuosity in the ring of Eisenstein integers, Z[(], i.e.
the integers extended with (, a complex primitive third root of
unity. The algorithms are similar and may be seen as generali-
sations of the binary integer gcd and derived Jacobi symbol al-
gorithms. Our algorithms take time O(n?) for n bit input. This
is an improvement from the known results based on the Euclid-
ian algorithm, and taking time O(n - M (n)), where M (n) denotes
the complexity of multiplying n bit integers. The new algorithms
have applications in practical primality tests and the implemen-
tation of cryptographic protocols. The technique underlying our
algorithms can be used to obtain equally fast algorithms for ged
and quartic residuosity in the ring of Gaussian integers, Z[i].

*Partially supported by the IST Programme of the EU under contract number
IST-1999-14186 (ALCOM-FT).
TBasic Research in Computer Science,
Centre of the Danish National Research Foundation.

1 Introduction

The Eisenstein integers, Z[¢] = {a+bC | a,b € Z}, is the ring of integers
extended with a complex primitive third root of unity, i.e. (is root
of 2 + x + 1. Since the ring Z[(] is a unique factorisation domain,
a greatest common divisor (ged) of two numbers is welldefined (up to
multiplication by a unit). The ged of two numbers may be found using
the classic Euclidian algorithm, since Z[(] is an Euclidian domain, i.e.
there is a norm N(-) : Z[¢]\ {0} — N such that for a,b € Z[(]\ {0} there
is q,r € Z[(] such that a = ¢b+ r with r = 0 or N(r) < N(b).

When a ged algorithm is directly based on the Euclidian property, it
requires a subroutine for division with remainder. For integers there is a
very efficient alternative in the form of the binary ged, that only requires
addition/subtraction and division by two [10]. A corresponding Jacobi
symbol algorithm has been analysed as well [9].

It turns out that there is a natural generalisations of these binary
algorithms over the integers to algorithms over the Eisenstein integers
for computing the gcd and the cubic residuosity symbol. The role of 2 is
taken by the number 1 — ¢, which is a prime of norm 3 in Z[(].

We present and analyse these new algorithms. It turns out that they
both have bit complexity O(n?), which is an improvement over the so
far best known algorithms by Scheidler and Williams [7], Williams [11],
Williams and Holte [12]. Their algorithms have complexity O(nM (n)),
where M (n) is complexity of integer multiplication.

1.1 Related work

Scheidler and Williams algorithms may be seen as generalisations of the
classic Fuclidian ged and Jacobi algorithms rather than the binary al-
gorithms. However, in the case of integer gecd and Jacobi symbol al-
gorithms, both the Euclidian based and the binary versions have the
same asymptotic complexity O(n?) (in their simple versions - there is an
asymptotically faster version [8, 1]). This raises the question of why the
Scheidler-Williams generalisation does not seem to achieve the complex-
ity O(n?) as well.

For the classic Euclidian algorithm to be fast two observations about
the division step (find remainder r from dividing a with b) are essential.

The number of iterations depends on finding a remainder r with
a small norm in each step, preferably only a fraction of the dividend.
Williams [11] obtained N(r) < 2N(b), whereas Scheidler and Williams

showed how to find r satisfying N(r) < $N(b). This was the basis for
their algorithms for ged and cubic residuosity taking time corresponding
to O(log N(ab)) multiplications.

Each step in the Euclidian algorithm seems to require O(1) multi-
plications (divisions). Over the integers, however, the combined com-
plexity of these arithmetic operations over all iterations sum up to only
O(loga)(logb)), due to properties of integer division in the standard bi-
nary radix representation of the integers [1]. If one could have an ana-
logue radix representation of elements in Z[(], a similar result might hold
here. Both Knuth [3] and Penney [6] describe radix representations of
the complex numbers (and hence the Gaussian integers, Z[i]). It seems
their representations could be generalised to Z[(](see also [5]), but Knuth
comments on the arithmetic in his representation that Examples of long
division appear to require a stroke of genius when trial divisors are being
picked. T.e. so far it is not clear how to obtain ged and cubic residuosity
algorithms for Z|[(] that are based on the traditional Euclidian algorithm
and yet obtains a time complexity comparable to our new algorithms.

1.2 Applications

Our algorithms may be used for the efficient computation of cubic resid-
uosity in other rings than Z[¢] when using an appropriate homomor-
phism. As an example, consider the finite field GF(p) for prime p =
1 mod 3. A number z € {1,...,p — 1} is a cubic residue precisely when
2(P=V/3 = 1 mod p, implying that (non)residuosity may be decided by a
(slow) modular exponentiation. However, it is possible to decide cubic
residuosity much faster provided we make some preprocessing depend-
ing only on p. The preprocessing consists in factoring p over Z[(], i.e.
finding a prime 7 € Z[(] such that p = 77. A suitable 7 may be found
as m = ged(p,r — (), where r € Z is constructed as a solution to the
quadratic equation 22 + x + 1 = 0 mod p. Following this preprocessing
cubic residuosity of any z is decided using that z?~1/3 = 1 mod p if and
only if [z/7] = 1, where [-/-] denotes the cubic residuosity symbol.

When the order of the multiplicative group in question is unknown,
modular exponentiation cannot be used, but it may still be possible to
identify some nonresidues by computing residuosity symbols. In particu-
lar, the primality test of Damgard and Frandsen [2] uses our algorithms
for finding cubic nonresidues in a more general ring.

Computation of ged and cubic residuosity is also used for the im-
plementation of cryptosystems by Scheidler and Williams [7], and by

Williams [11].

Our fast algorithms are based on generalising the technique used in
the binary ged algorithm. The same generalisation does in fact also work
for computing ged and quartic residuosity in Z[i], the ring of Gaussian
integers. The last section outlines this approach.

2 Preliminary facts about Z[(]

Z[(] is the ring of integers extended with a primitive third root of unity
¢ (complex root of 22 + 2z +1). We will be using the following definitions
and facts [7].

Define the two conjugate mappings o; : Z[¢] — Z[(] by 04(¢) = ¢* for
i = 1,2. The rational integer N(a) = 0y(a)o2(a) > 0 is called the norm
of @ € Z[¢], and N(a + b() = a® + b* — ab. (Note that oo(-) and N(-)
coincides with complex conjugation and complex norm, respectively).

A unit in Z[(] is an element of norm 1. There are 6 units in Z[(]:
+1, +¢, £¢%. Two elements «, 3 € Z[(] are said to be associates if there
exists a unit € such that a = €f.

A prime 7 in Z[(] is a non unit such that for any «, 5 € Z[(], if 7|af3,
then 7| or 7|f.

1 — ¢ is a prime in Z[¢] and N(1 — {) = 3. A primary number has
the form 1+ 35 for some § € Z[(]. If a € Z[(] is not divisible by 1 — ¢
then « is associated to a primary number. (This definition of primary is
stronger than the usual one, which just requires the form +1 + 33, but
our definition is more convenient in the present context).

If 7 is a prime in Z[(] and 7 is not associated to 1 — ¢ then N(m) =
1(mod 3), and the cubic residue symbol is defined by

la/n] = V™D mod 7.

3 Computing gcd in Z|[(]

It turns out that the wellknown binary integer ged algorithm has a nat-
ural generalisation to a ged algorithm for the Eisenstein integers. The
generalised algorithm is best understood by relating it to the binary al-
gorithm which we start by recalling:

A slightly nonstandard version of the binary ged is the following.
Every integer can be represented as (—1)" - 27 - (4m + 1). Without loss
of generality, we may therefore assume that the numbers in question are

4

of the form (4m+1). One iteration consists in replacing the numerically
larger of the two numbers by their difference. If it is nonzero then the
dividing 2-power (at least 2?) may be removed without changing the
ged. If necessary the resulting odd number is multiplied with —1 to get a
number of the form 4m + 1 and we are ready for the next iteration. It is
fairly obvious that the product of the numeric values of the two numbers
decreases by a factor at least 2 in each step until the ged is found, and
hence the ged of two numbers a, b can be computed in time (log? |ab]).

To make the analogue, we recall that any element of Z[(] that is not
divisible by 1 — (is associated to a (unique) primary number, ie. a
number of the form 1+ 3a. This implies that any element in Z[(] \ {0}
has a (unique) representation on the form (—¢)*- (1 —¢)? - (1+ 3a) where
0<i<6,0<jand o€ Z[(]. In addition, the difference of two primary
numbers is divisible by (1 — ¢)?, since 3 = —¢*(1 — ¢)?. Now a ged algo-
rithm for the Eisenstein integers may be formulated as an analogue to the
binary integer ged algorithm. We may assume without loss of generality
that the two input numbers are primary. Replace the (normwise) larger
of the two numbers with their difference. If it is nonzero, we may divide
out any powers of (1 — () that divide the difference (at least (1 — ¢)?)
and convert the remaining factor to primary form by multiplying with
a unit. We have again two primary numbers and the process may be
continued. In each step we are required to identify the (normwise) larger
of two numbers. Unfortunately it would be too costly to compute the
relevant norm, but it suffices to choose the large number based on an
approximation that we can afford to compute. By a slightly nontriv-
ial argument one may prove that the product of the norms of the two
numbers decreases by a factor at least 2 in each step until the ged is
found, and hence the ged of two numbers «, § can be computed in time
O(l0g? N(a3)).

Algorithm 1 describes the details including a start-up to bring the
two numbers on primary form.

Theorem 1 Algorithm 1 takes time O(log® N(a,3)) to compute the gcd of
a, B, or formulated alternatively, the algorithm has bit complexity O(n?).

Proof. Let us assume that a number aw = a + b(€ Z[(] is represented
by the integer pair (a,b). Observe that since N(a) = a* + b* — ab, we
have that log |a| 4 log|b] < log N(«) < 2(log |a| + log |b]) for a,b # 0, i.e.
the logarithm of the norm is proportional to the number of bits in the
representation of a number.

Algorithm 1 Compute ged in Z[(]
Require: o, € Z[(] \ {0}
Ensure: g = ged(a,)
1: Let primary v, € Z[¢] be defined by a = (=¢)" - (1 — ¢)’* - v and
§=(=0" (1-n o,
g (1 Qi)
Replace a, § with ~, 4.
while o # 3 do
LOOP INVARIANT: «a, § are primary
Let primary v be defined by a — 3 = (=¢)* - (1 = ()7 - v
Replace “approximately” larger of o, 8 with ~.
end while

rg<— g

We may do addition, subtraction on general numbers and multipli-
cation by units in linear time. Since (1 — ¢)~! = (2 + ()/3, division by
(and check for divisibility by) (1 — ¢) may also be done in linear time.

Clearly, the startup part of the algorithm that brings the two numbers
on primary form can be done in time O(log”> N(af)). Hence, we need
only worry about the while loop.

We want to prove that the norm of the numbers decrease for each
iteration. The challenge is to see that forming the number a — 3 does
not increase the norm too much. In fact N(a—f) < 4-max{N(«), N(5)}.
This follows trivially from the equation N(a+3)+N(a—f) = 2(N(a)+
N(f)) that may be proven by an elementary computation when using
that the norm is nonnegative. Hence, for the v computed in the loop of
the algorithm, we get N(7) = 37 N(a — 3) < 3724 - max{N(a), N(5)}.
In each iteration, 7 ideally replaces the one of o and § with the larger
norm. However, we can not afford to actually compute the norms to find
out which one is the larger. Fortunately, by Lemma 2, it is possible in
linear time to compute an approximate norm that may be slightly smaller
than the exact norm, namely up to a factor 9/8. When ~ replaces the
one of « and [with the larger approximate norm, we know that N(a/(3)
decreases by a factor at least 9/4-8/9 = 2 in each iteration, i.e. the total
number of iterations is O(log N(a/f)).

Each loop iteration takes time O(log N(«f3)) except possibly for find-
ing the exponent of (1—¢) that divides a— 3. Assume that (1—¢)"% is the
maximal power of (1—() that divides a— 3 in the ith iteration. Then the
combined time complexity of all loop iterations is O((3;t;) log N(af3)).

We also know that N(af) > [I;(3"/4). Since we already know that
there is only O(log N(/3)) iterations it follows that [[;4 = N(a3)°M
and hence >;t; = O(log N(af3)). =

Lemma 2 Given o = a+ b € Z[(] it is possible to compute an approz-

imate norm N(a) such that
S N(a) < N(a) < N(a)

in linear time, i.e. in time O(log N(«))
Proof. Note that

(a —b)* + a* + b?
5 :

N(a+bC) =

Given € > 0, we let d denote some approximation to integer d satisfying
that (1 —€)|d| < d < |d|. Note that

(a —b)% + a* + b?
2

Since we may compute a — b in linear time it suffices to compute -
approximations and square them in linear time for some ¢ < 1/18. Given
d in the usual binary representation, we take d to be |d| with all but the
6 most significant bits replaced with zeroes, in which case

(

(1—€)2N(a+b) <

< N(a+bC)

1 .
1—Z)ld <d<|d|
32

and we can compute d? from d in linear time. ™

4 Computing cubic residuosity in Z|(]

Just as the usual integer ged algorithms may be used for constructing
algorithms for the Jacobi symbol, so can our earlier strategy for comput-
ing the ged in Z[¢] be used as the basis for an algorithm for computing
the cubic residuosity symbol.

We start by recalling the definition of the cubic residuosity symbol.

[/ 2 x (Z[¢] = (1 = Q)Z[¢]) = {0,1,¢, ¢}

is defined as follows:

e For prime 7 € Z[(] where 7 is not associated to 1 — (:

/7] = (@~ 3) mod 7

e For number 3 = [[_; 7" € Z[(] where 3 is not divisible by 1 — (:
t
oo/ 8] = [lov/mi]™

i=1

Note that these rules imply [a/€] = 1 for a unit € and [a/F] = 0 when
ged(a, B) # 1. In addition, we will need the following laws satisfied by
the cubic residuosity symbol (recall that [is primary when it has the
form 0 =1+ 3y for v € Z[(]) [4]:

e Modularity:
la/B] = [&'/F], when o = &/(mod 3).

e Multiplicity:
e’/ 3] = [o/ B] - [/ B].

e The cubic reciprocity law:

/5] = [B/a], when « and 3 are both primary.

e The complementary laws (for primary § = 1 + 3(m + n(), where

m,n € Z)
1-¢/8 = ¢™,
¢/ = ¢,
18] = 1

The cubic residuosity algorithm will follow the ged algorithm closely.
In each iteration we will assume the two numbers a, 3 to be primary
with N(a) > N(B). We write their difference on the form a — § =
(=) (1 — ¢)’, for primary v = 1+ 3(m + n(). By the above laws,
[a/3] = ¢™I—mmily /6] If N(a) < N(3), we use the reciprocity law
to swap v and (8 before being ready to a new iteration. The algorithm
stops, when the two primary numbers are identical. If the identical value
(the ged) is not 1 then the residuosity symbol evaluates to 0.

Algorithm 2 describes the entire procedure including a start-up to
ensure that the numbers are primary.

8

Algorithm 2 Compute cubic residuosity in Z[(]
Require: o, 3 € Z[(] \ {0}, and [is not divisible by (1 — ()
Ensure: ¢ = [a/[]
1: Let primary v, € Z[¢] be defined by a = (=¢)" - (1 — ¢)’* - v and
B=(=Q)="¢

2: Let m,n € Z be defined by 6 =1+ 3m + 3n(.

3: t < myj; — (m+n)i; mod 3

4: Replace a, 8 by 7, 9.

5: If N(a) < N(f) then interchange o, 3.

6: while o # (3 do

7. LOOP INVARIANT: a, 3 are primary and N(a) > N(3)
8: Let primary «y be defined by a — 3 = (=¢)*- (1 — ()7 - v
9: Let m,n € Z be defined by =1+ 3m + 3n(.

10 t«—t+mj— (m+n)i mod3

11: Replace o with ~.

12: If N(a) < N(3) then interchange a, §3.

13: end while

—_
Ny

: If @ # 1 then ¢ « 0 else ¢ « (!

Theorem 3 Algorithm 2 takes time O(log> N(a3)) to compute [o/f],
or formulated alternatively, the algorithm has bit complezity (n?).

Proof. The complexity analysis from the gcd algorithm carries over
without essential changes. ®

5 Computing gcd and quartic residuosity
in the ring of Gaussian integers

We may construct fast algorithms for ged and quartic residuosity in the
ring of Gaussian integers, Z[i] = {a + bi | a,b € Z}, in a completely
analogous way to the algorithms over the Eisenstein integers.

Here is a sketch of the necessary facts (see [4]). There are 4 units in
Z[i]: £1,+i. 144 is a prime in Z[i] and N(1+414) = 2. A primary number
has the form 1+ (2 + 24)3 for some 5 € Z[i]. If a € Z]i] is not divisible
by 1+ ¢ then « is associated to a primary number.

In particular, any element in Z[:] \ {0} has a (unique) representation
on the form /- (144)*- (14 (2+42i)a) where 0 < j < 4,0 < k and « € Z[i].
In addition, the difference of two primary numbers is divisible by (1+7)3,

9

since (2 + 2i) = —i(1 + ¢)3. This is the basis for obtaining an algorithm
for computing ged over the Gaussian integers analogous to Algorithm
1. This new algorithm has also bit complexity O(n?) as one may prove
when using that N((1+4)®) =8 and N(a — 3) <4 -max{N(a), N(5)}.

For computing quartic residuosity, we need more facts [4]. If 7 is a
prime in Z[i] and 7 is not associated to 1+ then N(7) = 1(mod 4),
and the quartic residue symbol [-/-] : Z[i] x (Z[i]] — (1 +)Z[i]) —
{0,1,—1,4, —i} is defined as follows:

e For prime 7 € Z[i] where 7 is not associated to 1 + i:

/7] = (ozN(?_l) mod 7

e For number 8 =[]\, 7}’ € Z[i] where 3 is not divisible by 1 + i:
t
/] = H [ov/ "™

The quartic residuosity symbol satisfies in addition
e Modularity:
la/B) = [a'/F], when o = &/(mod 3).
e Multiplicity:
[/8] = [/] - [/ B].

e The quartic reciprocity law:

N(a)-1 N(8)—1

a/B] = [B/a]-(—=1)" 4 2, when a and [are both primary.

e The complementary laws (for primary 8 = 1+ (2 4 2¢)(m + ni),
where m,n € Z)

[1 + Z/ﬁ] — i—n—(n—f—m)z’

[i/p6] = "™
This is the basis for obtaining an algorithm for computing quartic resid-
uosity analogous to Algorithm 2. This new algorithm has also bit com-

plexity O(n?).

10

References

1]

[10]

[11]

[12]

Eric Bach and Jeffrey Shallit. Algorithmic number theory. Vol. 1. Foun-
dations of Computing Series. MIT Press, Cambridge, MA, 1996. Efficient
algorithms.

Ivan B. Damgard and Gudmund Skovbjerg Frandsen. An extended
quadratic Frobenius primality test with average and worst case error
estimates. Research Series RS-03-9, BRICS, Department of Computer
Science, University of Aarhus, February 2003.

Donald E. Knuth. An imaginary number system. Comm. ACM 3 (1960),
245-247.

Franz Lemmermeyer. Reciprocity laws. Springer Monographs in Mathe-
matics. Springer-Verlag, Berlin, 2000. From Euler to Eisenstein.

Asger Munk Nielsen and Peter Kornerup. Redundant radix representa-
tions of rings. IEEE Trans. Comput. 48(11) (1999), 1153-1165.

Walter Penney. A “binary” system for complex numbers. J. Assoc. Com-
put. Mach. 12 (1965), 247-248.

Renate Scheidler and Hugh C. Williams. A public-key cryptosystem uti-
lizing cyclotomic fields. Des. Codes Cryptogr. 6(2) (1995), 117-131.

A. Schonhage. Schnelle Berechnung von Kettenbruchentwicklungen. Acta
Informat. 1 (1971), 139-144.

Jeffrey Shallit and Jonathan Sorenson. A binary algorithm for the jacobi
symbol. ACM SIGSAM Bull. 27(1) (1993), 4-11.

J. Stein. Computationals problems associated with Racah algebra. J.
Comput. Phys. 1 (1967), 397-405.

H. C. Williams. An M? public-key encryption scheme. In Advances
in cryptology—CRYPTO ’85 (Santa Barbara, Calif., 1985), Vol. 218 of
Lecture Notes in Comput. Sci., pp. 358-368. Springer, Berlin, 1986.

H. C. Williams and R. Holte. Computation of the solution of 23+Dy? = 1.
Math. Comp. 31(139) (1977), 778-785.

11

Recent BRICS Report Series Publications

RS-03-8

RS-03-7

RS-03-6

RS-03-5

RS-03-4

RS-03-3

RS-03-2

RS-03-1

Ilvan B. Damgrd and Gudmund Skovbjerg Frandsen. Effi-
cient Algorithms for gcd and Cubic Residuosity in the Ring of
Eisenstein IntegersFebruary 2003. 11 pp.

Claus Brabrand, Michael I. Schwartzbach, and Mads Vang-
gaard. The METAFRONT System: Extensible Parsing and
Transformation February 2003. 24 pp.

Giuseppe Milicia and Vladimiro Sassoneleeg: Temporal Con-
straints for the Synchronization of Concurrent Objectg-ebru-
ary 2003. 41 pp. Short version appears in Fox and Getov, edi-
tors, Joint ACM-ISCOPE Conference on Java GranddGl '02
Proceedings, 2002, pages 212-221.

Aske Simon Christensen, Anders Mgller, and Michael I.
Schwartzbach. Precise Analysis of String Expressionsg-ebru-
ary 2003. 15 pp.

Marco Carbone and Mogens Nielserilowards a Formal Model
for Trust. January 2003.

Claude Cepeau, Paul Dumais, Dominic Mayers, and Louis
Salvail. On the Computational Collapse of Quantum Informa-
tion. January 2003. 31 pp.

Olivier Danvy and Pablo E. Marfinez Loépez. Tagging, En-
coding, and Jones Optimality January 2003. To appear in
Degano, editor,Programming Languages and Systems: Twelfth
European Symposium on ProgramminggSOP '03 Proceed-
ings, LNCS, 2003.

Vladimiro Sassone and Pawel SobocinskiDeriving Bisimu-
lation Congruences: 2-Categories vs. Precategorie¥anuary
2003. To appear in Gordon, editor,Foundations of Software
Science and Computation Structured=0SSaCS '03 Proceed-
ings, LNCS, 2003.

RS-02-52 Olivier Danvy. A New One-Pass Transformation into Monadic

Normal Form. December 2002. 16 pp. To appear in Hedin,
editor, Compiler Construction, 12th International Conferenge
CC '03 Proceedings, LNCS, 2003.

