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The metafront System:

Extensible Parsing and Transformation

Claus Brabrand Michael I. Schwartzbach Mads Vanggaard
BRICS, Department of Computer Science

University of Aarhus, Denmark
{brabrand, mis, mvj}@brics.dk

Abstract

We present the metafront tool for specifying flexible, safe, and effi-
cient syntactic transformations between languages defined by context-free
grammars. The transformations are guaranteed to terminate and to map
grammatically legal input to grammatically legal output.

We rely on a novel parser algorithm that is designed to support gradual
extensions of a grammar by allowing productions to remain in a natural
style and by statically reporting ambiguities and errors in terms of indi-
vidual productions as they are being added.

Our tool may be used as a parser generator in which the resulting
parser automatically supports a flexible, safe, and efficient macro proces-
sor, or as an extensible lightweight compiler generator for domain-specific
languages. We show substantial examples of both kinds.

1 Introduction

We present the metafront tool for specifying safe, flexible, efficient, and exten-
sible syntactic transformations between languages defined by context-free gram-
mars. Safety means that metafront statically guarantees that the transforma-
tion of grammatically legal input will always terminate and produce grammat-
ically legal output. Flexibility means that the expressive power is sufficient for
realistic tasks and that both the source and target languages may be extended
with little overhead. Efficiency means that, given a grammar and transforma-
tion, the parsing and transformation is linear in the size of input and generated
output. Extensibility means that post-hoc extensions of the source language are
easily reflected in similar extensions of the transformation.

We have two main usage scenarios in mind for this versatile tool. First,
metafront can be used for lightweight domain-specific compiler prototypes,
e.g. for translating Java programs into HTML documentation in the style of
JavaDoc. Second, if the source language is a small extension of the target
language, then the syntactic transformation is equivalent to a powerful macro
mechanism.
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In all cases, the programmer may greatly benefit from the advantages that
metafront offers. Thus, our tool captures the niche where full-scale compiler
generators are too general and where simpler techniques for syntactic transfor-
mation are not expressive enough or do not offer sufficient safety guarantees.

1.1 Language Design

The metafront tool works with two kinds of files: definitions of languages and
definitions of transformations.

Languages are defined using fairly standard context-free grammars with non-
terminals, terminals, and productions. A simple module system allows lan-
guages to be defined through a DAG of sublanguages that refer to each other.
Classes of terminals are defined by full regular expressions, including intersec-
tion and complement.

A central part of such a tool is of course the parsing algorithm that is em-
ployed. We have been led to develop a novel algorithm, called specificity parsing,
which is a scannerless top-down parser where ambiguities are resolved through
notions of specificity. At any stage, the remainder of the input string is con-
fronted with a set of candidates, which are sentential forms stemming from
different right-hand sides of productions. First each candidate suggests what
the next token should be, and the most specific one wins. The candidates that
can accept this token will then each suggest which action to take, and the most
specific action wins. This action is then performed and those candidates that
agreed on this choice survive to the next challenge round.

This method of parsing is tailored to our intended applications, where lan-
guages are extended by different programmers. This requires that the syntax
is written in a natural style and that errors and ambiguities can be explained
sensibly in terms of the individual productions that are being added. Since we
employ a top-down approach, we of course cannot handle left-recursive nonter-
minals but, apart from this restriction, productions may be written in a quite
intuitive manner. Also, when a new production is added we can statically de-
cide if it may cause ambiguities during subsequent parsing. Furthermore, error
messages are phrased locally in terms of the added production.

Transformations are specified relative to a source and a target language,
which are imported from other files. Each production in the source language is
instrumented with a transformation rule. The parse trees that correspond to the
nonterminals of the right-hand side are inductively subjected to transformations
before the results are inserted into a template that constructs a parse tree of
the target language. Transformation rules may accept parse trees as arguments
and produce parse trees as results. Since users often specify transformations
from an extended language to a core language, each source production has the
identity as its default transformation rule.

There are three important characteristics of our notion of transformations.
First, they are designed to allow only elaborate well-founded induction, so ter-
mination is ensured. Second, we can statically decide if a transformation is
guaranteed to map grammatically legal input to grammatically legal output.
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Third, the rules are expressive enough to allow sophisticated transformations
that rearrange trees in a non-local manner.

The metafront tool accepts as arguments a transformation and a term of
the input language. It will then analyze the source and target grammars and
the transformation rules and provide error diagnostics or construct the corre-
sponding term of the target language.

1.2 Related Work

There are three main bodies of work that we must relate to: parser generators,
macro processors, and compiler generators.

We differ from all other parser generators, such as JavaCC or the Lex/Yacc
family in automatically instrumenting the generated parser with a powerful
syntactic macro processor similar to the one we have earlier hardwired for the
<bigwig> language [3]. Formally, our parsing algorithm is incomparable to both
LL(1) and LR(1) parsers; however, we claim that it has unique benefits as out-
lined above. Traditional parser generators allow productions to be instrumented
with action code, whereas we only allow inductive transformations. This is the
basis for the safety guarantees that we are able to provide. In any case, action
code can be emulated by performing a transformation into e.g. Java code which
must then be executed afterwards (without any guarantees besides syntactic
correctness, of course).

Regarding macro processors, we refer to the comprehensive survey that we
provide in [3]. Our present tool is unique in simultaneously being parameterized
with the grammar of the host language and providing strong safety guarantees.

Compiler generators, such as [10, 1, 7, 12], have wider ambitions than our
work, supporting specifications of full-scale compilers including static and dy-
namic semantics. Invariably, this involves Turing-complete computations on
parse trees which of course precludes our level of safety guarantees.

The extensible grammars of [4] share our aims in many ways. The result-
ing tool is a parser generator that allows subsequent extensions of the language
which must then be desugared into the original language. It offers safety guar-
antees similar to ours, but does not handle arbitrary source and target languages
and provides less expressive transformations.

The system that most closely compares to metafront as a compiler genera-
tor is ASF+SDF [12]. It uses a scannerless generalized LR-parser to produce a
forest of parse trees which is continually filtered and transformed with respect
to a set of rewrite rules. The end result is hoped to be a single, normalized parse
tree. By imaginative use of rewriting of syntactic encodings, it is possible to
construct complete compilers including symbol tables, type-checking, and code
generation. It is of course also possible to encode the kinds of transformations
that metafront supports. If S and T are the source and target languages, then
possible encodings are to define the transformations as rewritings on a combined
language such as S∪T or S×T . While ASF+SDF statically guarantees that each
rewrite step will respect the given grammar, there are two kinds of termination
problems. First, the transformation may loop, which cannot be statically deter-
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mined since rewritings are Turing-complete. Second, the transformation may
terminate too soon, leaving unprocessed pieces of the input language. Again, it
is undecidable to determine if this problem may occur.

The two parser algorithms also have different characteristics. Generally,
the ASF+SDF parser generates a forest of parse trees, and it is undecidable if
filtering results in a single tree. It is scannerless by processing each character as
a separate token, which results in some overhead. In comparison, we tokenize
the input string using ordinary DFAs that are selected dynamically based on the
parser context. Finally, the ASF+SDF parser has a running time that depends
on the number of parse trees being produced. Our parser is guaranteed to run
in linear time, but is of course restricted to a certain class of grammars.

In summary, metafront is a domain-specific language focusing on syntac-
tic transformations as a subset of compiler generator applications and offering
advantages in terms of flexibility, safety and efficiency.

2 Parsing

As mentioned in the introduction, we place key emphasis on extensibility: we
want different kinds of users to be able to incrementally add new productions
and even new user-defined terminals and nonterminals.

To achieve this, language designers must read the grammar and find hooks
where new extensions and transformations may be attached. This requires the
grammar to be phrased in a natural style. Additionally, error messages should
only involve the part of the grammar written by the user. These requirements,
however, are not satisfied by other common parsing strategies.

The LR(k) family of bottom-up parsing algorithms is unable to provide
localized error messages. Consider for example the Yacc version of the LALR(1)
grammar for Java, which contains the production:

GuardingStatement : SYNCHRONIZED ’(’ Expression ’)’ Statement;

If we clumsily tried to allow synchronization on multiple objects by adding the
production:

GuardingStatement : SYNCHRONIZED ’(’ Expression Expression ’)’ Statement;

then the Yacc tool reacts by producing 29 shift/reduce and 26 reduce/reduce
errors. None of those errors occur in the parser states corresponding to the
inserted production, but in seemingly arbitrary places involving nonterminals
such as e.g. NotJustName and ShiftExpression. The reason for this avalanche
of non-local errors is that LALR(1) parser errors arise in terms of a table derived
from the grammar, and not in terms of the grammar itself.

It is often also necessary to rewrite a grammar into a less natural style.
This is evident for the LL(k) family of top-down parsing algorithms, where for
example the productions:

Class : "class" Identifier ’{’ ... ’}’

| "class" Identifier "extends" Identifier ’{’ ... ’}’ ;
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must be rewritten into the less intuitive form:

Class : "class" Identifier ExtendsOpt ’{’ ... ’}’ ;

ExtendsOpt : "extends" Identifier

| ;

which is also less susceptible to extension; there is no nonterminal where, for
instance, a concept of anonymous classes with a “class { ... }” syntax may
subsequently be added.

In contrast, Earley’s algorithm [6] and generalized LR(k) parsing [11] allow
any grammar, but sacrifice linear-time processing. Also, they ignore ambiguities
by constructing all parse trees, and choosing the right one at the end requires
non-local reasoning.

Our goal is to obtain an efficient parsing algorithm that allows productions
to be added incrementally and that locally and statically detects and reports
ambiguity errors.

2.1 Specificity Parsing

A specificity grammar is a five-tuple:

G = 〈Σ, T, N, s, π〉
where Σ is a finite set of symbols known as the alphabet; T ⊆ Reg(Σ) is a finite
set of regular languages over Σ known as the set of terminal languages; N is a
finite set of nonterminals; s ∈ N is the start nonterminal; and π : N → P(E∗),
where E = T ∪N , is the production function identifying the grammar rules for
each nonterminal.

This definition resembles the definition of context-free grammars, but with
an explicit notion of lexical structure described separately as the set of terminal
languages, T .

This separation plays a crucial role in specificity parsing that works on two
integrated levels, a lexical and a syntactic, each with its own notion of specificity
for deterministic ambiguity resolution that is independent of definition order.

The terminal languages induce a lexical specificity relation which is used
to deterministically select a terminal language and input tokenization in case
there are multiple choices. Specifically, the lexical specificity relation, vlex ⊆
〈T × Σ∗ × Σ∗〉 × 〈T × Σ∗ × Σ∗〉 (see Appendix C.1), is defined on termi-
nalizations which are triples comprised of terminal languages, concrete input
tokens, and remainder input. The lexical specificity ordering is defined as the
lexicographical composition of longest consumable token and terminal regular
language inclusion. We have hardwired the preference of longer tokens due to
a general consensus in programming languages as evident in scanner generators
such as Lex. For simplicity, terminals are in the following assumed not to in-
clude the empty string, ε; this can be amended with minor modifications to the
algorithm.

Given a lexical layer, the rest of the parser handles syntactic aspects using a
notion of head-sets (see Appendix B.2) which resemble first-sets, but are sets of
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Algorithm 1 The specificity parsing algorithm:

parse (A, ω) : P(E∗) × Σ∗ → Σ∗

1. H =
⋃ {head-set(α) | α ∈ A} find head-sets: H ⊆ E ∪ {�};

2. X = {〈x, ω1, ω2〉 | x∈H, ω = ω1ω2, ω1∈x} find possible terminalizations;
3. if X = ∅ then if no terminalizations:
3a. if ε ∈ A then return ω return, if an option;
3b. if � /∈ H then error(H) issue error message;
3c. else 〈x, ω1, ω2〉 = 〈�, ε, ω〉 select sent. form end, �;
4. else 〈x, ω1, ω2〉 = most-specific-terminal(X) select best terminalization;

5. Y = {α ∈ A | x ∈ head-set(α)} find applicable sent. forms;
6. e = most-specific-entity(Y ) select best head entity: e ∈ E;
7. case e of parse winner entity, e:
7a. t ∈ T : ω′ = ω2 consume input token, ω1;
7b. n ∈ N : ω′ = parse(π(n), ω) parse n recursively;

8. A′ =
⋃ {advance(α, e) | α ∈ A} tails of those with head e;

9. return parse(A′, ω′) parse next challenge round.

terminal languages and nonterminals; in contrast, a first-set is a subset of Σ∗.
A special terminal, �, represents the end of a sentential form and is included in
a head-set if there is a token-less path to it.

Head-sets induce a syntactic specificity relation on sentential forms which is
used to deterministically pick a production among multiple choices. Specifically,
two syntactic specificity relations, vE ⊆ E × E and vsyn ⊆ E∗ × E∗ (see
Appendix C.2), are defined in terms of head-set inclusion. The nonterminals
are present in the head-sets in order to define this relation and are used later
to guide parsing towards nonterminal gaps (introduced in Section 3). As a
consequence, two nonterminals are only ordered if they are related by a token-
less path from one to the other (i.e. not if they happen to have related head
terminals).

2.1.1 The Specificity Parsing Algorithm

We now present our Specificity Parsing algorithm and evaluate it in Section 2.2.
Algorithm 1 depicts the nine steps of a so-called specificity parsing challenge
round in which a set of sentential forms, A, is confronted with an input string,
ω. The algorithm parses as much input as possible and returns the remainder
input.

Steps 1-4 work on a lexical level in defining a context-sensitive scanner that
determines the terminalization which is comprised of the terminal language, x,
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the actual input token, ω1, and the remainder input, ω2, when this token is
consumed:

1. We calculate the union of the head-sets of the sentential forms (as defined
in Appendix B.2). This set, H , corresponds to looking for terminals in all
directions from the current parsing context. This is context-sensitive in that
only terminals “visible” from the current parsing context are considered.

2. Based on the set of visible terminals, H , we now determine the set, X ,
of terminals applicable to the current input string (along with what they are
capable of consuming and what input remains).

3. In case there were no applicable terminals (X = ∅) there are three cases:
3a. if the empty sentential form is an option (ε ∈ A), we stop parsing and

return to the previous challenge round parse;
3b. otherwise, if we cannot get to the end of a sentential form, �, the

parser is stuck and we generate an error message containing precisely the set of
terminals, H , expected at the current position in the parser.

3c. otherwise we select 〈�, ε, ω〉 as the terminalization, so that we are guided
towards the end of a sentential form, �.

4. If the set of possible terminalizations, X , is non-empty, we select the
most specific terminalization according to lexical specificity (see Appendix C.1);
uniqueness of a most specific choice is statically ensured in Section 2.2.2.

Steps 5-7 work on a syntactic level and are responsible for parsing this chal-
lenge round by determining the entity to parse in this round and by reacting
appropriately to it. The rest of input to parse is left in ω′.

5. We determine the non-empty set, Y , of sentential forms capable of con-
suming the winner terminal, x.

6. From the set of applicable sentential forms, Y , we select the most specific
ones according to syntactic specificity (see Appendix C.2) which is defined in
terms of inclusion of sentential form head-sets. There may be many different
sentential forms with the same head-set, but their head element is unique and
is extracted into e; uniqueness is statically ensured in Section 2.2.2.

7. We are now ready to parse the winner head entity which is either a
terminal or a nonterminal:

7a. if the winner entity is a terminal, we consume the input token by
assigning the remainder input to the rest of input to parse, ω′. Since x ∈
head-set(tβ) (cf. step 5), we know that x = t.

7b. if the winner entity is a nonterminal, n, we recursively parse its produc-
tion “right-hand sides”, π(n).

Steps 8-9 prepare for and parse the next challenge round:
8. We advance the parser (see Appendix B.3) by extracting the tails of all

sentential forms that have the winner entity as head; the resulting set, A′, may
have one or more elements.

9. We recursively parse the next challenge round with the surviving set of
sentential form tails.
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2.2 Evaluation

We now evaluate the specificity parsing algorithm with respect to flexibility,
safety, and efficiency.

2.2.1 Flexibility

The most important advantage of specificity parsing is extensibility. Both lexi-
cal and syntactic specificity are deterministic disambiguation mechanisms that
provide local conflict resolution; extensions have local effect and any errors are
guaranteed to involve only locally the extended parts of the grammar. Also, the
specificity selection is independent of definition-order so that language compo-
sition is symmetric and language modules may be loaded in any order. These
properties permit incremental and modular grammar design with grammar-level
parsing, reasoning, and disambiguation.

Since the specificity parser operates relative to a set of sentential forms,
syntax can be conveniently overloaded by the addition of syntactic variants (as
with the anonymous classes in Section 2).

Specificity parsing is scannerless in that the scanner is implicitly synthesized
from the grammar. This alleviates many tedious and error-prone tasks of man-
ually keeping a state correspondence between the scanner and parser; in Lex,
this correspondence is often emulated via a notion of start-conditions. Having a
truly context-sensitive scanner avoids keywordification meaning that keywords
are not necessarily global; different parts of a program may have different key-
words. This is good for languages with many different constituent DSLs, such
as <bigwig> [2]. As previously mentioned, our scanner may be extended to cope
with terminals containing the empty string.

2.2.2 Safety

We perform three static analyses on grammars: WNLR, intercepts left-recursion;
WDER, checks that all nonterminals have (finite) derivations; and WUSW, en-
sures that lexical and syntactic specificity always have unique final winners.
These three specificity grammar wellformedness safety checks are formalized in
Appendix D.

The no-left-recursion wellformedness check, WNLR, ensures termination of
the parsing strategy by essentially making sure that the parser is unable to
oscillate between nonterminals without consuming input. Termination is then
obtained from the fact that the grammar and input is finite. The derivability
check, WDER, has no implications on safety; it is just included as a convenient
sanity check. The unique-specificity-winner check, WUSW, guarantees that the
parser is deterministic in its choice of terminals and productions.

2.2.3 Efficiency

Given a grammar, the algorithm as presented above parses the input in linear
time without any backtracking. In Section 2.4, we show how to add controlled
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backtracking without compromising this time bound. Also, since every challenge
round has a unique winner (in step 6) the parser commits to one entity without
any state explosion.

All head-set unions (in step 1) can be statically precomputed for all the
finitely many challenge round parser positions. This information can then be
used to statically factor out all dynamic syntactic specificity checks by topolog-
ically sorting all productions according to this partial ordering. At parse-time,
the algorithm may then test them in this sequence and dispatch on the first
applicable entity.

Although scannerless, the parser retains all efficiency benefits of a scanner-
full approach in employing minimized deterministic finite automata, DFAs, for
deciding regular language membership. In fact, all the regular expressions may
be compiled into one big DFA whose accepting states are annotated with a set
of applicable terminal languages. Given a head-set of terminals visible from the
current parser context, the scanner may run the big automaton on the input and
determine whether current states are accepting as the intersection of the two
terminal sets. These terminal sets may be represented as bit-vectors topologi-
cally ordered according to precomputed regular expression language inclusion.
Intersection is then bitwise disjunction; DFA acceptance, numeric non-zero; and
most-specific terminal, the position of the first 1 in the bit-vector.

Also, since recursive parser calls in step 7b do not consume input nor increase
head-sets, the terminalization steps 1-4 may be cached as the same terminal wins
again.

Finally, global analysis of the grammar may lead to further optimization like
inlining of nonterminals.

2.3 Comments and Whitespace

Comments and whitespace are handled through a special terminal, omit , that
may be assigned a regular expression of tokens to omit. Since different parts of
a program may have different omit structure, omits do not have global effect,
but are instead bound to all subsequently defined nonterminals and implicitly
added between all entities in their sentential forms.

terminal {

WhiteSpace = { [ \t\n\r]+ }

MultiLineComment = { "/*" .. "*/" }

EndOfLineComment = { "//" .. \n }

omit = { ( <WhiteSpace> | <MultiLineComment> | <EndOfLineComment> )+ }

}

This fragment defines a Java-like omit structure, discarding standard white-
space, multi-line comments, and end-of-line comments. The binary infix regular
expression operator “R..S” is a convenient from-to construction, defined as
R(Σ∗SΣ∗)cS; it can be added to metafront through self-application. The omit
construction defaults to the regular expression WhiteSpace defined above.
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2.3.1 Example: The Lambda Calculus

We first use simple extensions of the untyped lambda-calculus to show the com-
plete contents of metafront files. The basic syntax is defined as:

language Lambda {

terminal Id = { [a-z]+ }

nonterminal Exp;

Exp[id] --> <Id> ;

[lambda] --> \\ <Id> . <Exp> ;

[apply] --> ( <Exp> <Exp> ) ;

}

Next we extend this base language with numerals by simply adding the required
productions:

language LambdaNum extends Lambda {

Exp[zero] --> 0 ;

[succ] --> succ <Exp> ;

[pred] --> pred <Exp> ;

}

The extend operator is similar to the ones proposed in [8, 13].

2.4 Attractors

Consider the following subset of the Java grammar:

language JavaSubset {

Statement[decl] --> <Declaration> ;

[exp] --> <Expression> ";" ;

Declaration[var] --> <Identifier> <Identifier> ";" ;

Expression[id] --> <Identifier> ;

}

This language is statically intercepted by WUSW (see Appendix D.3) which
produces the following error:

*** specificity clash: Statement[decl vs. exp] round #1 on <Identifier>

The reason is that we cannot discern Statement[decl] from Statement[exp]
by looking at the terminal <Identifier> only. To solve this without rearranging
the grammar and introducing phony nonterminals, we introduce a limited form
of lookahead through a concept of attractors. Their syntax is either <?t?> where
t is a terminal language or <?n:k?> where n is a nonterminal and k is an integer
constant. Attractors are placed on the right-hand sides of productions, as in
the example:

Statement[decl] --> <?Declaration:2?> <Declaration> ;
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which solves our problem. If the parser can successfully consume the specified
prefix of the input string, in this case the two first tokens of a Declaration, then
it backtracks and continues with the rest of this sentential form, disregarding all
other candidates. If the attractor fails, then the candidate is removed. We stat-
ically check that all attractors correspond to disjoint prefixes, so no ambiguity
can be introduced (see Appendix E).

The notation <?Declaration:2?> is preferable to the more explicit alterna-
tive <? <Identifier> <Identifier> ?> because updates of the grammar are
automatically reflected. Attractors can be evaluated efficiently by running the
ordinary parsing algorithm while maintaining a counter of tokens consumed.
Note that the complete parsing algorithm remains constant-time, since the
lookahead is bounded by the constant k.

2.4.1 Traps

When computing head-sets of sentential forms including attractors, we use the
rule that head-set(<?n:k?>β) = head-setE(n). This allows us to use attractors
as traps. To illustrate this, consider the standard Java grammar which causes
a problem for our parsing algorithm. The operator & is a prefix of the operator
&& but has a higher precedence. This means that an expression such as x && y
will never be parsed correctly, since exp[and] will “steal” one ampersand and
we will get a parse error. The solution is to add a conjunction attractor:

terminal AndAndTrap = { && }

AndExpressionRest[andandtrap] --> <?AndAndTrap?> ;

which forces AndExpressionRest to consume only the empty string. A different
situation arises with switch statements, where the parsing of a branch should
terminate at the following case construct:

Statement[switch] --> switch ( <Expression> ) { <SwitchBody> } ;

Statements[none] --> ;

[more] --> <Statement> <Statements> ;

SwitchBody[one] --> <Case> ;

[more] --> <Case> <SwitchBody> ;

Case[case] --> case <Expression> : <Statements> ;

This will not happen, however, since case is recognized as an identifier which
belongs to the head-set of statements. The solution is to apply another trap:

terminal CaseTrap = { case }

Statements[casetrap] --> <?CaseTrap?> ;

This mechanism can also be used to exclude keywords from identifiers in specific
parts of the grammar.
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Example 3.1 A Transformation, LambdaNum2Lambda

transformation LambdaNum2Lambda: LambdaNum ==> Lambda {

transform Xexp: Exp ==> Exp;

Xexp[id] (I) ==> << <I> >>

[lambda] (I,E) E.Xexp()=>X ==> << \ <I> . <X> >>

[apply] (E,F) E.Xexp()=>X, F.Xexp()=>Y ==> << ( <X> <Y> ) >>

[zero] () ==> << \z.z >>

[succ] (E) E.Xexp()=>X ==> << \ n . <X> >>

[pred] (E) E.Xexp()=>X ==> << ( <X> \z.z ) >>︸ ︷︷ ︸
productions

︸ ︷︷ ︸
bindings

︸ ︷︷ ︸
inductive transformers

︸ ︷︷ ︸
result construction

}

3 Transformation

Transformations are typed with input and output languages and transform syn-
tactically legal input terms to syntactically legal output terms. For each input
term, three steps are performed: first, it is parsed to produce a syntax tree of
the input language; secondly, this input tree is subjected to a syntax tree trans-
former, producing a syntax tree of the output language; and finally, this output
tree is unparsed (see Section 3.4) according to the output syntax to produce the
output term.

The actual transformer is thus run on parse-trees of the input language; each
production kind dispatches a corresponding rule of the syntax tree transformer
which names immediate constituent parse-trees, inductively applies transform-
ers on them, and reassembles the transformed results into a resulting output
syntax tree.

In order to specify result syntax trees as output terms augmented with place-
holder gaps for inductively transformed terms, we extend Algorithm 1 to parse
relative to a gap environment (as formalized in Appendix F). A gap environ-
ment, τ : G → E, maps a finite set of gap names, G, to gap types which are
either terminals or nonterminals.

Example 3 illustrates the basic concepts of a transformation; it desugars
the numeral extensions of the calculus, LambdaNum, by transforming it into
the basic lambda calculus, Lambda. The first line names the transformation
LambdaNum2Lambda and specifies its type by designating the source and target
languages; this instructs metafront to load these two language definitions. The
second line declares a transformer action, Xexp, and specifies its source and
target nonterminals, respectively belonging to the source and target languages;
both called Exp in the example.

Hereafter comes the actual rules for how to transform a LambdaNum.Exp
syntax tree into one from Lambda.Exp; there must be a rule for each production
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of the source nonterminal. Each individual rule has four parts; a production
name, a binding part naming all constituent terminal and nonterminal variables,
a number of inductive transformer applications, and a result construction part.

Consider the second last Xexp rule, [succ]. The rule name, succ, refers to
the production with the same name in the source nonterminal, LambdaNum.Exp.
Since this production has one terminal-or-nonterminal variable, namely the non-
terminal <Exp>, it must be bound in the binder part; this rule names it E. The
inductive transformer part, E.Xexp()=>X, means that the syntax tree contained
in E is inductively subjected the transformer, Xexp, to produce an output syntax
tree which is named, X. Finally, the result of this transformer rule is obtained
by inserting the syntax tree held in X, into the result construction for the place-
holder gap, <X>.

3.1 Lexical Transformation

The terminals of the source and target languages need not be related in any way.
Thus, a syntactic transformation must also perform lexical transformations. An
example of such a specification is:

transform Esc: String ==> PCDATA;

transform Escape: StringContents ==> PCDATA;

Esc --> \" <Escape E> \" ==> << <E> >>

Escape --> "&" <Escape E> ==> << &amp; <E> >>

--> ">" <Escape E> ==> << &gt; <E> >>

--> "<" <Escape E> ==> << &lt; <E> >>

--> <StringContent S> <Escape E> ==> << <S> <E> >>

Here, transformers are typed with terminal languages. In case of ambiguties
during the processing of a token, the most specific input terminal is chosen.

Some structural restrictions apply to the transformation rules. The input
productions are required to constitute a regular grammar and the output pro-
ductions to constitute a regular or left-linear grammar. This ensures that we
can compute regular languages describing both the possible input and output
strings. To provide the desired static safety guarantee we check that these lan-
guages are in the appropriate contravariant relationship with the declared source
and target terminal languages.

3.2 Evaluation

Again, we have divided our evaluation into flexibility, safety, and efficiency.

3.2.1 Flexibility

Our transformations are sufficiently expressive to handle many useful cases.
They will of course always be limited compared to Turing-complete alterna-
tives. Note though that we can perform more than linear transformations, since
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the output term may be exponentially larger than the input term. The lib-
eral grammar structure that our parsing algorithm allows is essential to specify
transformations. If we were forced to write:

ClassDeclaration[both] --> class <Identifier> <ExtendsOpt> <ClassBody> ;

ExtendsOpt[extends] --> extends <Identifier> ;

[simple] --> ;

instead of the more straightforward:

ClassDeclaration

[simple] --> class <Identifier> <ClassBody> ;

[extends] --> class <Identifier> extends <Identifier> <ClassBody> ;

then we could not specify independent transformations for the two kinds of
classes. Finally, the inherent extensibility of metafront helps in structuring
transformations.

3.2.2 Safety

Transformations are statically checked to be type-safe with respect to the input
and output languages. This is done by parsing the right-hand sides of transfor-
mations relative to an environment mapping place-holder gaps into terminals
and nonterminals. Termination is also guaranteed, since inductive transforma-
tions can only be invoked on subtrees.

3.2.3 Efficiency

Given a transformation, x, and input ω, the transformation runs in optimal
time O(|ω| + |x(ω)|). The current implementation is a prototype, but as for
parsing there are ample opportunities for optimizations.

3.3 Default Transformations

When using metafront as a macro mechanism where the source is an extension
of the target language, we want to write only transformations for the extended
syntax. To this end we take two measures. First, the tool defines identity trans-
formers with the same name as the nonterminals on all overlapping productions.
Second, we provide E()=>X as short-hand notation for E.N()=>X, where N is the
name of the nonterminal type of E (naming a transformer which is possibly
generated by default). The lambda calculus transformation above can now be
written as:

transform LambdaNum2Lambda: LambdaNum ==> Lambda {

Exp[zero]() ==> << \z.z >>

[succ](E) E()=>X ==> << \n.<X> >>

[pred](E) E()=>X ==> << ( <X> \z.z ) >>

}

Both measures can also be achieved with self-application of the metafront tool.
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3.4 Unparsing

To control unparsing, we have augmented production right-hand sides with four
pretty print directives that are ignored by the parser: <+>, for increasing in-
dentation after newlines; <->, for decreasing indentation after newlines; </>,
for inserting newlines followed by indentation whitespaces; and <>, to supress
whitespace printing between sentential form entities which is default. For con-
venience, these directives may be grouped sequentially, e.g. as <+/>.

4 Examples

We illustrate the use of metafront by sketching a number of small and larger
examples. The full details of all examples are available from our project Web
site at http://www.brics.dk/metafront/.

4.1 More Lambda Extensions

Continuing with the lambda calculus we add syntax for booleans:

language LambdaBool extends LambdaNum {

Exp[true] --> true ;

[false] --> false ;

[if] --> ( if <Exp> <Exp> <Exp> ) ;

}

and extend the desugaring accordingly:

transformation LambdaBool2LambdaNum: LambdaBool ==> LambdaNum {

Exp

[true] () ==> << \x.\y.x >>

[false]() ==> << \x.\y.y >>

[if](E1,E2,E3) E1()=>X1, E2()=>X2, E3()=>X3 ==> << ( ( <X1> <X2> ) <X3> ) >>

}

This example could of course be extended to a full language with operators and
functions.

4.2 Java Extensions

Some more substantial examples involve the full Java syntax. We use the gram-
mar copied directly from the language definition [9], with all EBNF construc-
tions desugared away. The full grammar contains 144 nonterminals and 335
productions. Our specificity parser reported specificity clashes in six places
where we have added attractors and traps to disambiguate the grammar. Our
first extension is to add a C# foreach construction:

language ForEach extends Java {

Statement[foreach] -->

foreach ( <Type> <Identifier> in <Expression> ) <Statement> ;

}

15



which is desugared by a corresponding small transformation:

transformation ForEach2Java: ForEach ==> Java {

Statement[foreach](T,I,E,S) T()=>xT, E()=>xE, S()=>xS ==> << {

Iterator iterator = (<xE>).iterator();

while (iterator.hasNext()) {

<xT> <I> = (<xT>) iterator.next();

<xS>

}

} >>

}

A larger Java extension originates from the JWIG project [5], which uses domain-
specific syntax to manipulate XML fragments in Web services. The extension
involves numerous modifications at various levels of the Java grammar. A small
part introduces a new operator, “x<[g=y]”, for plugging together XML frag-
ment values:

language JWIG extends Java {

nonterminal Plugs;

PostfixExpression[plug] --> <PrimaryExpression> <Plugs> ;

Plugs[one] --> "<[" <Identifier> = <Expression> "]" ;

[more] --> "<[" <Identifier> = <Expression> "]" <Plugs> ;

}

which uses the following transformation to produce nested invocations of a plug
method:

transformation JWIG2Java: JWIG ==> Java {

transform Plugs: Plugs ==> PrimaryExpressionRest;

PostfixExpression[plug](E,P) E()=>xE, P()=>xP ==> << ( ( <xE> ) <xP> ) >>

Plugs[one] (I,E) E()=>xE ==> << .plug( <I> , <xE> ) >>

[more](I,E,P) E()=>xE, P()=>xP ==> << .plug( <I> , <xE> ) <xP> >>

}

Another example shows the need for multiple transformations. We extend Java
with a hypothetical mechanism for reserving named resources. To avoid dead-
lock, a sequence of ressources must be released in the opposite order in which
they were acquired. The Java extension looks a follows:

language Reserve extends Java {

nonterminal Identifiers;

Statement[reserve] --> reserve ( <Identifiers> ) <Statement> ;

Identifiers[one] --> <Identifier> ;

[more] --> <Identifier> , <Identifiers> ;

}

and the transformation is defined as follows:
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transformation Reserve2Java: Reserve ==> Java {

transform Acqs: Identifiers ==> Statement;

transform Rels: Identifiers ==> Statement;

Statement[reserve](Is,S) Is.Acqs()=>xA, S()=>xS, Is.Rels()=>xR

==> << { <xA> <xS> <xR> } >>

Acqs[one] (I) ==> << acquire( <I> ); >>

[more](I,Is) Is.Acqs()=>xA ==> << { acquire( <I> ); <xA> } >>

Rels[one] (I) ==> << release( <I> ); >>

[more](I,Is) Is.Rels()=>xR ==> << { <xR> release( <I> ); } >>

}

4.3 Java Enumerations

An example involving arguments to transformers is the definition of enumeration
types in Java:

language Enum extends Java

Declaration[enum] --> enum <Identifiers> ";" ;

The transformation uses an argument K to build an appropriate enumeration
constant expressed as simple sums:

transformation Enum2Java: Enum ==> Java {

transform Enums(Expression K): Identifiers ==> Declarations;

Declaration[enum] (E) E.Enums( << 1 >> )=>X ==> <<

static final int <I> = 0;

<X>

>>

Enums[empty] () ==> << >>

[more] () E.Enums( << <K> + 1 >> )=>X ==> <<

static final int <I> = <K>;

<X>

>>

}

4.4 Questionnaires

A complete example of a domain-specific language involves online question-
naires. We have defined a syntax for asking a series of questions, each with
a fixed number of options as possible answers. A dependency relation ensures
that each question may only be asked when other questions have been given
certain answers.

We have then defined a transformation into the above mentioned JWIG ex-
tension of Java, which in turn generates a customized interactive Web service
that permits users to answer questionnaires and administrators to view statis-
tics.
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4.5 Self-Applications

We have observed many occasions for applying metafront to itself. We have
defined a transformation to HTML syntax, which provides online documentation
of metafront files in the style of JavaDoc.

Transformations from metafront to itself are also interesting. For the com-
mon cases of language extensions being desugared, our tool provides useful
default transformations for all productions. As mentioned in Section 3.2, those
can be defined through an explicit preprocessing defined as a metafront trans-
formation. Similarly, we can extend the syntax for grammars to include EBNF
right-hand sides.

The most ambitious self-application introduces explicit directives for prece-
dence and associativity of operators. This can be given a semantics through a
transformation into the basic metafront language.

5 Future Work

We plan to implement all optimizations mentioned in Section 2.2.3 and instead
of interpretation, generate code for a parser that uses tables and control-flow
embedded DFAs. The resulting parser should obtain performance comparable
to that of Lex/Yacc combinations.

We want to create a typed algebra of languages and transformations, allowing
operators like products and compositions. The extends mechanism will induce
a subtype relation.

It is possible to allow transformations to use symbol tables and derived def-
use links, while still retaining the safety guarantees. This would extend the
expressive power considerably and enable transformations to read and write
typed trees across those links.

Finally, we would like to provide alternative characterizations of the class of
languages that specificity parsing can recognize.

6 Conclusion

The metafront tool provides a flexible, safe, and efficient means for parsing
and performing syntactic transformations. Parsing is conducted by a novel
parser algorithm, known as specificity parsing, which is designed to support
gradual extension of a grammar by statically reporting ambiguities and errors
in terms of individual productions as they are being added. Transformations are
guaranteed to terminate and to map grammatically legal input to grammatically
legal output.

The metafront tool may be used as a parser generator in which the resulting
parser automatically supports a powerful syntactic macro mechanism, or as an
extensible lightweight compiler generator for domain-specific languages. The
implementation is available in 6300 lines of Java code under an open-source
license.
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A Specificity Grammar

G = 〈Σ, T, N, s, π〉

• Σ finite set of characters (alphabet);

• T ∈ P(Reg(Σ)) finite set of regular languages over Σ;

• N finite set of nonterminals;

• s ∈ N start nonterminal; and

• π : N → P(E∗) production function, where E = T ∪ N

B Head-sets

B.1 Epsilon

The definitions epsilonE and epsilon determine whether or not an entity or a
sentential form can derive the empty string, ε; epsilonE : E → B and epsilon :
E∗ → B are the leastfalse<true functions satisfying:

epsilonE(e) ≡



false if e = t∨
α∈π(n)

epsilon(α) if e = n

epsilon(α) ≡
{

true if α = ε

epsilonE(e) ∧ epsilon(β) if α = eβ

B.2 Head-Sets

head-setE : E → P(E ∪ {�}), head-set : E∗ → P(E ∪ {�}), and Head-set :
P(E∗) → P(E ∪ {�}) are the least⊆ functions satisfying:

head-setE(e) =

{
{t} if e = t

{n} ∪Head-set(π(n)) if e = n

head-set(α) =



{�} if α = ε

head-setE(e) if α = eβ , ¬epsilonE(e)
(head-setE(e)\{�}) ∪ head-set(β) if α = eβ , epsilonE(e)

Head-set(A) =
⋃

α∈A

head-set(α)
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B.3 Advance

advance : E∗ × E → P(E∗) and Advance : P(E∗) × E → P(E∗)

advance(α, e) =



∅ if α = ε

∅ if α = e′β , e′ 6= e

{β} if α = e′β , e′ = e

Advance(A, e) =
⋃

α∈A

advance(α, e)

C Specificity Relations

C.1 Lexical Specificity

The relation, vlex ⊆ 〈T × Σ∗ × Σ∗〉 × 〈T × Σ∗ × Σ∗〉, is defined as:

〈t, ω1, ω2〉 vlex 〈t′, ω′
1, ω

′
2〉 iff (|ω′

1| <N |ω1|) ∨ (|ω′
1| =N |ω1| ⇒ t ⊆ t′)

C.2 Syntactic Specificity

The relations, vE ⊆ E × E and vsyn ⊆ E∗ × E∗, are defined as:

e vE e′ iff head-setE(e) ⊆ head-setE(e′)
α vsyn α′ iff head-set(α) ⊆ head-set(α′)

D Specificity Grammar Wellformedness

|= G iff ∀n ∈ N : WNLR(n) ∧ WDER(n) ∧ WUSW(n)

D.1 No Left-Recursion

This requirement ensures termination of the parser. WNLR : N → B and W ∗
NLR :

E∗ → B are the leastfalse<true functions satisfying:

WNLR(n) ≡
∧

α∈π(n)

W ∗
NLR(α)

W ∗
NLR(α) ≡




true if α = ε

true if α = tβ

WNLR(n) if α = nβ , ¬epsilonE(n)
WNLR(n) ∧ W ∗

NLR(β) if α = nβ , epsilonE(n)
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D.2 Derivability

This is just a sanity check to ensure that nonterminals can derive something.
WDER : N → B and W ∗

DER : E∗ → B are the leastfalse<true functions satisfying:

WDER(n) ≡
∨

α∈π(n)

W ∗
DER(α)

W ∗
DER(α) ≡




true if α = ε

W ∗
DER(β) if α = tβ

WDER(n) ∧ W ∗
DER(β) if α = nβ

D.3 Unique Specificity Winner

This ensures that each challenge round has a unique final entity winner. WUSW :
N → B and W ∗

USW : (E∗ × E∗) → B are defined as:

WUSW(n) ≡
∧

α,α′∈π(n),α6=α′
W ∗

USW(α, α′)

W ∗
USW(α, α′) ≡




false if α = ε , α′ = ε

true if α = ε , α′ 6= ε

true if α 6= ε , α′ = ε

spec(head-set(α), head-set(α′)) if α = eβ , α′ = e′β′ , e 6= e′

W ∗
USW(β, β′) if α = eβ , α′ = e′β′ , e = e′

Where spec : (P(E ∪ {�}) × P(E ∪ {�})) → B is defined as:

spec(F, F ′) iff (F ∩ F ′ = ∅ ∨ F ⊂ F ′ ∨ F ′ ⊂ F ) ∧
(∀t, t′ ∈ F ∪ F ′ : t 6= t′ ⇒ t ∩ t′ = ∅ ∨ t ⊂ t′ ∨ t′ ⊂ t)

E Attractor Disjunction

∀k : <?n:k?> 6∼ <?m:k?> iff prefixk(n) ⊆ m ∧ n ⊆ prefixk(m)

F Specificity Parsing Gaps

Let G be a set of gap names, where ∀g ∈ G, t ∈ T, ω ∈ Σ∗ : g ω /∈ t. We then
extend the algorithm to parse relative to a gap environment, τ : G → E:
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3 1
2 .if ω = g ω2 ∧ τ(g) ∈ H then if input is expected gap:

〈x, ω1, ω2〉 = 〈τ(g), g, ω2〉 select gap terminalization;
3*.else ...steps 3a-3c (as before)... not gap or unexpected gap;
6 1

2 .if ω1 = g ∧ e = x then w′ = ω2 skip past this gap, g;
7*.else ...steps 7-7b (as before)... not gap or wrong gap type;
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