
B
R

IC
S

R
S

-03-4
C

arbone
etal.:

A
F

orm
alM

odelforTrustin
D

ynam
ic

N
etw

orks

BRICS
Basic Research in Computer Science

A Formal Model for
Trust in Dynamic Networks

Marco Carbone
Mogens Nielsen
Vladimiro Sassone

BRICS Report Series RS-03-4

ISSN 0909-0878 January 2003

Copyright c© 2003, Marco Carbone & Mogens Nielsen & Vladimiro
Sassone.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/03/4/

A Formal Model for Trust in Dynamic Networks

Marco Carbone1, Mogens Nielsen1, Vladimiro Sassone2

1 BRICS∗, University of Aarhus 2 COGS, University of Sussex

Abstract. We propose a formal model of trust informed by the Global Comput-
ing scenario and focusing on the aspects of trust formation, evolution, and prop-
agation. The model is based on a novel notion of trust structures which, building
on concepts from trust management and domain theory, feature at the same time
a trust and an information partial order.

Introduction

Global Computing (GC) is an emerging aspect of computer science and technology. A
GC system is composed of entities which are autonomous, decentralised, mobile, dy-
namically configurable, and capable of operating under partial information. Such sys-
tems, as e.g. the Internet, become very complex very easily, and have brought forward
once again the necessity of guaranteeing security properties. Traditional security mech-
anisms, however, have severe limitations in this setting, as they are often either too weak
to safeguard against the actual risks, or so stringent to impose unacceptable burdens
on the effectiveness and flexibility of the infrastructure.Trust management systems,
whereby safety critical decision are made based on trust policies and their deployment
in the presence of partial knowledge, have an important role to play in GC.

This paper focuses on the foundations of formal models for trust in GC-like envi-
ronments, capable of underpinning the use of trust-based security mechanisms as an
alternative to the traditional ones.

Trust is a fundamental concept in human behaviour, and has enabled collaboration
between humans and organisations for millennia. The ultimate aim of our research on
trust-based systems is to transfer such forms of collaboration to modern computing sce-
narios. There will clearly be differences between the informal notion of trust explored
in the social sciences and the kind of formality needed for computing. Mainly, our
models need in the end to be operational, so as to be implementable as part of GC sys-
tems. Equally important is their role in providing a formal understanding of how trust
is formed from complex interactions between individuals, so as to support reasoning
about properties of trust-based systems.

Although our notion of trusted entity intends to cover only computing entities –
even though of variable nature, spanning from soft to hard devices of all sorts – famil-
iarity with trust models from the social sciences is a good starting point for our search

MC and MN supported by ‘SECURE: Secure Environments for Collaboration among Ubiq-
uitous Roaming Entities’, EU FET-GC IST-2001-32486. MC supported by ‘DisCo: Semantic
Foundations of Distributed Computation’, EU IHP ‘Marie Curie’ HPMT-CT-2001-00290. VS
supported by ‘MyThS: Models and Types for Security in Mobile Distributed Systems’, EU
FET-GC IST-2001-32617.∗Basic Research In Computer Science funded by the Danish Na-
tional Research Foundation.

of a foundational, comprehensive formal model of trust. One of our main sources has
been the work by McKnight and Chervany [16], who provide a typology of trust used
to classify existing research on trust in domains like sociology, psychology, manage-
ment, economics, and political sciences. Trust is thereby classified conceptually in six
categories:disposition, when entitya is naturally inclined to trust;situation, whena
trusts a particular scenario;structure, whena trusts impersonally the structureb is part
of; belief, whena believesb is trustworthy;intention, whena is willing to depend on
b; behaviour, whena voluntarily depends onb. Orthogonally, the notion oftrusteeis
classified in categories, the most relevant of which decree thatb is trusted because of its
competence, benevolence, integrity, orpredictability. We believe that a good mathemat-
ical model of computational trust should be capable of expressing all such aspects, as
well as further notions of primary relevance in computing, e.g. that trust information is
time dependent and, in general, varies very rapidly. Also, it should be sufficiently gen-
eral to allow complex structures representing combinations of different types of trust.

We think of the standard deployment of a trust management system as consisting
of a “trust engine” and a “risk engine” coupled together as part of a principal. The
trust engine is responsible for updating trust information based on direct and indirect
observations or evidence, and to provide trust information to the risk engine as input
to its procedures for handling requests. The risk engine will feed back information on
principals’ behaviours as updating input to the trust engine. Abstracting over this point
of view, we single out as central issues for our trust model the aspects of trustforma-
tion, evolution, andpropagation. The latter is particularly important in our intended
application domain, where the set of active principals is so large and open-ended that
centralised trust and ad-hoc methods of propagation of its variations make absolutely no
sense. An important propagation mechanism isdelegation, whereby principals cooper-
ate to implement complex, intertwined “global” trusting schemes. Just to pin down the
idea, bankb may be willing to trust clientc to an overdraft limitx only if bankb′ trusts
it at least up to 2x/3, andc itself does not trustd, a crook known tob. Delegation has
important consequences for trust representation, because it brings forward the idea of
trust policy, i.e. algorithmic rules – such as bankb’s above – to evaluate trust requests.
In principle, trust among principals can be represented straightforwardly, as a function
from pairs of principals to trust levels,

GlobalTrust : Principal −→ Principal −→ TrustDegree

whereGlobalTrust (a) is a function which associates to each principalb the value of
a’s trust inb. Delegation leads to model local policies, sayb’s, as functions

TrustPolicy : GlobalTrust −→ Principal −→ TrustDegree

where the first argument is (a representation of) a universal trust function thatb needs
to knowb′’s level of trust inc and whether or notc trustsd.

The domain ofTrustPolicy makes the core of the issue clear: we are now entan-
gled in a “web of trust,” whereby each local policy makes references to other principals’
local policies. Technically, this means that policies are defined by mutual recursion, and
global trust is the function determined collectively by the web of policies, the function

2

that stitches them all together. This amounts to say thatGlobalTrust is the leastfix-
pointof the universal set of local policies, a fact first noticed in [21] which leads straight
to domain theory[20]. Domains are kinds of partially ordered sets which underpin the
semantic theory of programming languages and have therefore been studied extensively.
Working with domains allows us to use a rich and well-established theory of fixpoints to
develop a theory of security policies, as well as flexible constructions to build structured
trust domains out of basic ones. This is precisely context and the specific contribution
of this paper, which introduces a novel domain-like structure, thetrust structures, to
assign meaning and compute trust functions in a GC scenario. We anticipate that, in
due time, techniques based on such theories will find their way as part of trust engines.

As domains are partial orders (actually CPOs) and trust degrees naturally come
equipped with an ordering relation (actually a lattice structure), a possible way forward
is to apply the fixpoint theory toTrustDegree viewed as a domain. This is indeed the
way of [21] and, as we motivate below, it is not a viable route for GC. There are about
a million reasons in a dynamic “web of trust” why a principala trying to delegate to
b aboutc may not get the information it needs:b may be temporarily offline, or in the
process of updating its policy, or experiencing a network delay, or perhaps unwilling to
talk to a. Unfortunately, the fixpoint approach would in such cases evaluate the degree
of trust ofa in c to be the lowest trust level, and this decision would be wrong. It would
yield the wrong semantics. Principala should not distrustc, but accept that it has not
yet had enough information to make a decision aboutc. What is worst with this way of
confusing “trust” with “knowledge,” is that the information fromb could then become
available a few millisecond aftera’s possibly wrong decision.

We counter this problem by maintaining two distinct order structures on trust val-
ues: atrust orderingand aninformation ordering. The former represents the degree of
trustworthiness, with a least element representing, say, absolute distrust, and a greatest
element representing absolute trust; the latter the degree of precision of trust informa-
tion, with a least element representing no knowledge and a greatest element represent-
ing certainty. The domain-theoretic order used to compute the global trust function is
the information order. Its key conceptual contribution is to introduce a notion of “un-
certainty” in the trust value principals obtain by evaluating their policies. Its technical
contribution is to provide for the “semantically right” fixpoint to be computed.

Following this lead, we introduce and study trust structures of the kind(D,�,v),
where the two order relations carry the meaning illustrated above; we then provide
constructions on trust structures – including an “interval” construction which introduce
a natural notion of uncertainty to complete lattices to lift them to trust structures –
and use the results to interpret an toy, yet significant policy language. We believe that
introducing the information ordering alongside the trust ordering is a significant step
towards a model of trust feasible in a GC scenario; it is a major point of departure from
the work of Weeks [21], and the central contribution of this paper.

Plan of the document.In §1 we define our trust model along the lines illustrated above,
whilst §2 focuses on trust structures, providing methods for constructing useful struc-
tures as well as a general method to add uncertainty to the model. In §3 we introduce a
policy language and use our trust structure to give it a denotational semantics.

3

Related Work.Trust is a pervasive notion and, as such, has been studied thoroughly in
a variety of different fields, including social sciences, economics and philosophy. Here
we only survey recent results on trust as a subject in computing. The reader is referred
to [16] for a broader interpretation. A detailed survey can be found in Grandison and
Sloman’s [10].

Most of the existing relevant work concerns system building. In [19], Rivestet al.
describe SDSI, a public key infrastructure featuring a decentralised name space which
allows principals to create their own local names to refer to other principals’ keys and
in general, names. Ellisonet al. [9] proposed a variation of the model which con-
tributes flexible means to specify authorisation policies. The proposals are now merged
in a single approach, dubbed SPKI/SDSI. Other systems of practical relevance include
PGP [24], based on keys signed by trusted certificating authorities; KeyNote [3], which
provides a single, unified language for both local policies and credential containing
predicates to describe the trusted actions granted by (the holders of) specific public
keys; PolicyMaker [2], an early version of KeyNote; and REFEREE [6], which uses a
tri-valued logic which enriches the booleans with a valueunknown . Trust in the frame-
work of mobile agents is discussed e.g. in [22]. Delegation plays a relevant rˆole in trust-
based distributed systems. A classification of delegation schemes is proposed by Ding
et al. [8], where they discuss implementation and analyse appropriate protocols. The
ideas expressed in [8] lie at a different level from ours, as the focus there is exclusively
on access control.

The theoretical work can be broadly divided in two main streams: logics, where the
trust engine is responsible for constructing [5, 4, 12–14] or checking [1] a proof that the
desired request is valid; and computational models [21, 7], like our approach.

Burrows et al. propose the BAN logic [5], a language for expressing properties
of and reasoning about the authentication process between two entities. The language
is founded on cryptographic reasoning with logical operators dealing with notions of
shared keys, public keys, encrypted statements, secrets, nonce freshness and statement
jurisdiction. In [4], Abadiet al. enhance the language by introducing delegation and
groups of principals: each principal can have a particular role in particular actions. The
Authorisation Specification Language (ASL) by Jajodiaet al. [12] separates explicitly
policies and basic mechanisms, so as to allow a more flexible approach to the specifica-
tion and implementation of trust systems. ASL supports under a common architectural
framework both the closed policy model, whereby all allowable accesses must be speci-
fied, and the open policy model, where are the denied accesses which must be explicitly
specified. It also supports role-based access control.

Modal logics have a relevant place in specifying trust models, and have been used to
express possibility, necessity, belief, knowledge, temporal progression, and more. Jones
and Firozabadi [13] address the issue of the reliability of an agent’s transmission using
a modal logic of actions [17] to model agents. Rangan [18] views a distributed system
as a collection of communicating agents in which an agent’s state is the history of its
messages, and formalises the accessibility relation which describes systems’ dynamics.
Rangan’s model builds on simple trust statements used to defined simple properties,
such as transitivity and the Euclidean property, which are then used to specify systems
and analyse them with respect to properties of interest. Recently, Jøsang [14] proposed

4

a logic of uncertain probabilities, a work which is related to our interval construction
and can be recast as an instance of it in our framework. Specifically, Jøsang considers
intervals of belief and disbelief over real numbers between 0 and 1.

Concerning computational models, Weeks [21] provides a model based on fixpoint
computations which is of great relevance to our work. Winsborough and Li [23] study
automated trust negotiation, an approach to regulate the exchange of sensitive creden-
tials in untrusted environments. Clarkeet al. [7] provide an algorithm for “certificate
chain discovery” in SPKI/SDSI whereby principal build coherent chains of certificates
to request and grant trust-based access to resources.

1 A Model for Trust

The introduction has singled out the traits of trust most relevant to our computational
scenario: trust involvesentities, has adegree, is based onobservationsand ultimately
determines theinteractionamong entities. Our model will target these aspects primarily.

Entities will be referred to asprincipals. They form a setP ranged over bya,b,c, . . .
and p. We assume a setT of trust valueswhose elements represent degrees of trust.
These can be simple values, such as{trusted , distrusted }, or also structured values,
e.g. pairs where the first element represents an action, say access a file, and the second
a trust level associated to that action; or perhaps vectors whose elements representing
benevolence in different situations.

As trust varies with experience, a model should be capable of dealing with observa-
tions resulting from the principal’s interaction with the environment. For clarity, let us
isolate the principal’s trust management from the rest of its behaviour, and think of each
principal as having a “module” containing all its trust management operations and data.
Thinking “object-oriented,” we can envision this as an object used by the principal for
processing trust related information. Assuming a set of observationsO relevant to the
concrete scenario of interest, the situation could be depicted as below.

request +3 - updateTrust : O −→ void

- trustValue : P −→ T
+3 t ∈ T

The principal sends the messagetrustValue (p) to ascertain its trust in another princi-
pal p, and the messageupdateTrust (o) to add the observationo to its trust state.

In this paper, we only focus on the trust box and assume, without loss of generality,
that the remaining parts of the principal interact with it using the two methods illustrated
above, or some similarly suitable interface.

Modelling the Trust Box

Principals’ trust in each other can be modelled as a function which associates to each
pair of principals a trust value int ∈ T :

m : P −→ P −→ T

5

Functionmapplied toa and then tob returns the trust valuem(a)(b)∈ T expressinga’s
trust inb. This however does not mean that a single principal’s trust can be modelled as a
function fromP to T , sincea’s trust values may depend on other principals’ values. For
instance,a may wish to enforce that its trust inc is b’s trust inc. Similarly, we may be
willing to receive a message from unknown sources, provided somebody we know trusts
the sender. This mechanism of relying on third-party assessments, calleddelegation, is
fundamental in all scenarios involving cooperation, including computational paradigms
such as Global Computing.

This leads us to a refined view of a principal’s trust as being defined by apolicy.
According to such view, each principal has a local policyπ which contributes by way
of delegation to form the global trustm. A policy expresses how the principal com-
putes trust information given not just his own beliefs, but also other principals’ beliefs.
It follows that a’s policy πa has the type below, whose first argument represents the
knowledge of third principals’ policies thata needs to evaluateπa.

πa : (P −→ P −→ T) −→ (P −→ T)

In this paper we leave unspecified the way a policy is actually defined, as this definitely
depends on the application. We study a relevant example of policy language in §3.

By collecting together the individual policies, we obtain a functionΠ , λp : P .πp

whose type is (isomorphic to)

Π : (P −→ P −→ T) −→ (P −→ P −→ T).

To interpret this collection of mutually recursive local policies as a global trust function
m, we apply some basic domain theory, namely fixpoints and complete partial orders.
We recall below the main notions involved; in general we assume the reader to be ac-
quainted with partial orders (cf. [11] for a thorough introduction). Given a partial order
(T,v), anω-chainc is a monotone function from the set of natural numbersω to T;
that isc = (cn)n∈ω such thatc0 v c1 v c2 v . . .

Definition 1 (CPOs and Continous functions).A partial order(T,v) is a complete
partial order (CPO) if it has a least element⊥ and eachω-chainc in T has a least upper
bound

⊔
c. A function f between CPOs is continuous if for eachω-chainc, it holds that⊔

f (c) = f (
⊔

c).

The importance of CPOs here is that every continuous functionf : (T,v) → (T,v)
on a CPO has a least fixpointfix(f) ∈ T, that is the leastx such thatf (x) = x (cf. [20]).
So, requiringT to be a CPO, which implies thatP → P → T is a CPO too, and taking
Π to be continuous, let us define global trust asm, fix(Π), theleast fixpointof Π.

The question arises however as to what order to take forv. We maintain that it
cannotbe the order which measures the degree of trust. An example is worth many
words. LetT be the CPO{low ≤ medium ≤ high }, and consider a policyπa which
delegates tob the degree of trust to assign toc. In this setup,a will assignlow trust to
c when it is not able to gather information aboutc from b. This however would clearly
be an erroneous conclusion, as the interruption in the flow of information does not bear
any final meaning about trust, its most likely cause being a transient network delay that

6

will soon be resolved. The right conclusion fora to draw is not to distrustc, but to
acknowledge that it does not know (yet) whether or not to trustc. In other words, if we
want to model dynamic networks, we cannot allow confusion between “don’t trust ”
and “I don’t know :” the latter only means lack of evidence for trust or distrust, the
former implies a trust-based, possibly irreversible decision.

Thus, in order to make sense of our framework, we need to introduce a notion of
uncertaintyof trust values. Truthful to the Global Computing scenario, we so account
for the fact that principals may have only a partial knowledge of their surroundings and,
therefore, oftheir owntrust policies. We address this by consideringapproximatetrust
values which embody a level of uncertainty as to which value we are actually presented
with. Specifically, beside the usualtrust value ordering, we equip trust values with a
trust information ordering. While the former measures the degree of trustworthiness,
the latter measures the degree of uncertainty present in our trust information, that is its
information content. We will assume that the setT of (approximations of) trust values
is a CPO with an ordering relationv. Thent v t ′ means thatt ′ “refines”t, by providing
more information thant about what trust value it approximates. With this understanding
the continuity ofΠ is a very intuitive assumption: it asserts that the better determined
the information from the other principals, the better determined is value returned by the
policy. An example will help to fix these ideas.

Example 1.Let us refine the set of trust valuesT seen above by adding some interme-
diate values, viz.T = {⊥,∗, low ,medium,high }, and consider the information ordering
v specified by the following Hasse diagram:

high medium

*

9999999

�������
low

⊥

>>>>>>>

||||||||

This ordering says nothing about comparing degrees of trust. It focuses only on the
quantity of information contained in values. The element∗ represents the uncertainty
as to whetherhigh or medium holds, while⊥ gives no hint at all about the actual
trust value. The limit of a chain reflects the finest information present in it, as a whole.
Suppose we have a set of principalP = {a,b,c} with the following policies:

a b c

a high ⊥ ask b

b ∗ high low

c ask b high high

where each row is a principal’s policy. For instance the third row givesc’s policy: c’s
trust in a is b’s trust in a; c’s trust inb is high . The computation of the least fixpoint
happens by computing successive approximations following the standard theory, as il-
lustrated below. We start from the least possible trust function:

7

a b c

a ⊥ ⊥ ⊥
b ⊥ ⊥ ⊥
c ⊥ ⊥ ⊥

where there is absolute no knowledge and so any trust value could be anything, hence
⊥. Each principal then inspects its own policy, and computes an approximated value
using the other principals’ current approximations of their values.

a b c

a high ⊥ ⊥
b ∗ high low

c ⊥ high high

Observe that herea is still totally undecided as to the trust to assign toc, as it knows
that the value⊥ received fromb is itself uncertain. The successive iteration is however
enough to solve all solvable uncertainties, and reach the global trust function (that is the
last fixpoint) illustrated below.

a b c

a high ⊥ low

b ∗ high low

c ∗ high high

We reiterate that, importantly, the orderingv is not to be identified with the equally
essential ordering “more trust.”

Example 2 (Collecting Observations).In order to exemplify the idea of a trust structure
with two distinct orders, assume that each observation can be classified either to be
positiveor negative. Then letT be the set of pairs{(p,n)|p,n ∈ ω + {∞}, p ≤ n}
where p stands for the number of positive experience andn for the total number of
experiences. A suitable information ordering here would be

(p1,n1) v (p2,n2) iff n1 ≤ n2,

with (0,0) being the least element. This formalises the idea that the more experience
we make, the more knowledge we have. That is, trust information becomes more and
more precise with interactions. On the other hand, it is intuitively clear that negative
experiences cannot lead to higher trust. Therefore, a suitable trust ordering could be

(p1,n1) � (p2,n2) iff p1 ≤ p2.

2 Trust Structures

Having pointed out the need for order structures equipped at the same time with an
information and a trust ordering, in this section we focus on the triples(T ,�,v), which
we calltrust structures, and study their basic properties. The notion of complete lattice,
recalled below, will play a relevant role.

8

Definition 2 (Complete lattice).A partial order(D,≤) is a complete latticeif every
X ⊆ D has a least upper bound (lub) and, as a consequence, a greatest lower bound
(glb). We use∨ and∧ to denote, respectively, lubs and glbs in lattices.

When defining a trust management system, it is natural to start off with a setD
of trust values, or degrees. On top of that, we are likely to need ways to compare and
combine elements ofD so as to form, say, a degree which comprehends a given set of
trust values, or represents the trust level common to several principals. This amounts
to start with a complete lattice(D,≤), where those combinators can be considered as
taking lub’s or glb’s of sets of values. But, as illustrated above, this is not yet enough for
understanding a trust framework as we need to account for uncertainty. To this purpose
we define an operatorI to extend a lattice(D,≤) to a trust structure(T ,�,v). The set
T consists of the set of intervals overD which, besides containing a precise image of
D – viz. the singletons – represent naturally the notion of approximation, or uncertainty
about elements ofD.

Interval Construction

We define now the ordering� which has been already considered in [15].

Definition 3. Given a complete lattice(D,≤) and nonempty subsetsX,Y ⊆ D we say
thatX �Y if and only if

∧X ≤ ∧Y and ∨X ≤ ∨Y

Clearly,� is not a partial order on the subsets ofD, as the antisymmetry law fails.
We get a partial order by considering as usual the equivalence classes of∼ = �∩�. It
turns out that the intervals overD are a set of representatives of such classes.

Definition 4. For (D,≤) a complete lattice,I(D) = {[d0,d1] | d0,d1 ∈ D, d0 ≤ d1},
where[d0,d1] = {d |d0 ≤ d ≤ d1} is the interval ofD determined byd0 andd1.

Proposition 1. Let X= [d0,d1] be an interval in D. Then,∧X is d0 and∨X is d1.

As a consequence of the proposition above we have thatX ∼ [∧X,∨X], for all X ⊆
D. Furthermore,[d0,d1] ∼ [d′

0,d
′
1] implies thatd0 = d′

0 andd1 = d′
1.

The following lemma characterises� in terms of≤.

Lemma 1. For [d0,d1] and[d′
0,d

′
1] intervals of D, we have[d0,d1]� [d′

0,d
′
1] if and only

if d0 ≤ d′
0 and d1 ≤ d′

1.

We can now show that the lattice structure on(D,≤) is lifted to a lattice structure
(I(D),�) on intervals.

Theorem 1. (I(D),�) is a complete lattice.

9

Proof. Let S be a subset ofI(D). We prove that its least upper bound exists. Observe
that this is enough to conclude, as

∧
X is equal to

∨{y|y� x for all x ∈ X }. Let S be
{[di

0,d
i
1]| i ∈ J} for some setJ. We claim that

∨
S= [∨di

0,∨di
1].

As di
0 and di

1 are elements of a complete lattice∨di
0 and ∨di

1 exist. Moreover

for each j we havedj
0 ≤ dj

1 ≤ ∨di
1, so∨di

0 ≤ ∨di
1 which implies[∨di

0,∨di
1] ∈ I(D).

Also, [∨di
0,∨di

1] is an upper bound as for eachj we have[dj
0,d

j
1] � [∨di

0,∨di
1]. Finally,

[∨di
0,∨di

1] is the least upper bound: if for eachj we have that[dj
0,d

j
1] � [d0,d1] then

[∨di
0,∨di

1] � [d0,d1]. This holds sincedj
0 ≤ d0 anddj

1 ≤ d1 which means that∨di
0 ≤ d0

and∨di
1 ≤ d1. �

We define an ordering on intervals which reflects their information contents so to
complete the lattice structure with a CPO to base fixpoint computations on. The task is
quite easy: as the interval[d0,d1] expresses a value betweend0 andd1, the narrower the
interval, the fewer the possible values. This leads directly to the following definition.

Definition 5. For (D,≤) a complete lattice andX,Y ∈ I(D), defineX vY if Y ⊆ X.

Analogously to�, we can characterisev in terms of≤. The proof follows a similar
patter and is therefore omitted.

Lemma 2. For [d0,d1] and[d′
0,d

′
1] intervals of D, we have that[d0,d1] v [d′

0,d
′
1] if and

only if d0 ≤ d′
0 and d′1 ≤ d1.

Finally, as for the previous ordering, we have the following result.

Theorem 2. (I(D),v) is a CPO.

Proof. The least element of(I(D),v) is D = [∧D,∨D]. Let [dn
0,dn

1]n be anω-chain in
(I(D),v). Then we claim that

⊔
[dn

0,dn
1]n = [∨dn

0,∧dn
1]. We need to prove that this is

well-defined and that it is the least upper bound.
As in the proof of Theorem 1,∨di

0 and∧di
1 exist. Moreover, if for alli and j it holds

thatdi
0 ≤ dj

1, then for all j we have that∨di
0 ≤ dj

1, hence∨di
0 ≤∧di

1, which implies that
[∨dn

0,∧dn
1] is well defined. Interval[∨dn

0,∧dn
1] is an upper bound as for allj it holds that

[dj
0,d

j
1] v [∨di

0,∧di
1]. In fact for all j we havedj

0 ≤ ∨di
0 and∧di

1 ≤ dj
1, which means

[∨di
0,∧di

1] v [dj
0,d

j
1]. Finally, [∨dn

0,∧dn
1] is the least upper bound as for any interval

[d0,d1] if [dj
0,d

j
1] v [d0,d1] for all j then[∨di

0,∧di
1] v [d0,d1]. In factdj

0 ≤ d0 andd1 ≤
dj

1. By definition of lub and glb we have that∨di
0 ≤ d0 andd1 ≤ ∧di

1. �
The trust structures above give a constructive method to model trust based systems.

We remark that intervals are a natural way to express partial information: trust in a
principal is[d0,d1] when it could be any value in betweend0 andd1.

Example 3 (Intervals in [0,1]).Let R stand for the set of reals between 0 and 1, which
is a complete lattice with the usual ordering≤. We can now consider the setI(R) of
intervals inR. From the previous results it follows that(I(R),�) is a complete lattice
and (I(R),v) is a complete partial order. Hence, if we start with a domain of trust
values which are elements inR we can apply our model to the new domains. This kind
of construction on reals is related to the uncertainty logic [14] where an interval[d0,d1]

10

in I(R) is seen as a pair of numbers whered0 is called belief and 1−d1 disbelief. This
new trust domain is particularly interesting since it allows to express complex policies.
We shall see a few examples later on.

Lifting Operators

The continuity of the functionΠ is an important requirement. This property depends
on the operators used with the policies. In the sequel we give a useful result, wrt our
interval construction, which allows to lift continuous operators in the original lattice
(D,≤) to continuous operators in(I(D),v) and(I(D),�).

Definition 6. For (D,≤) and(D′,≤′) complete lattices andf : D −→ D′ a continuous
function, letI(f) : I(D) −→ I(D′) be thepointwise liftingof f defined as

I(f)([d0,d1]) = [f (d0), f (d1)].

In the definition above, note that the continuity off ensures thatI(f) is well defined.
An ω-cochain in a complete lattice(D,≤), is an antitone functionc : ω → T, that

is a function such thati ≤ j implies cj ≤ ci . A function f : (D,≤) −→ (D′,≤′) is
co-continuous iff for eachω-cochainc in D, it holds that

∧
f (c) = f (

∧
c); f is bi-

continuous if it is continuous and co-continuous.
The following proposition states thatω-cochains in(I(D),v) have glbs.

Proposition 2. Let [dn
0,dn

1] be anω-cochain in(I(D),v). Then [dn
0,dn

1] = [∧dn
0,∨dn

1].

Proof. The proof proceeds symmetric to that of Theorem 2. �
We can now give the following result about lifted functions in trust structures.

Theorem 3. For (D,≤) and(D′,≤′) complete lattices and f: D−→D′ a bi-continuous
function, the pointwise lifting I(f) is bi-continuous with respect both the information
and the trust orderings.

Proof. We show thatI(f) is bi-continuous with respect to the information ordering.
First we prove thatI(f) is continuous, i.e.

⊔
I(f)([dn

0,dn
1]) = I(f)(

⊔
[dn

0,dn
1]) for [dn

0,dn
1]

anω-chain. By definition ofI(f) we have that
⊔

I(f)([dn
0,dn

1]) =
⊔

[f (dn
0), f (dn

1)] and
from the proof of Theorem 2 and bi-continuity off it follows that

⊔
[f (dn

0), f (dn
1)] = [∨ f (dn

0),∧ f (dn
1)] = [f (∨dn

0), f (∧dn
1)] = I(f)(

⊔
[dn

0,dn
1]).

The proof thatI(f) is co-continuous follows the same patterns. Let[dn
0,d

n
1] be anω-

cochain. Then, I(f)([dn
0,dn

1]) = [f (dn
0), f (dn

1)] and from the proposition above and
by the bi-continuity off it follows that

[f (dn
0), f (dn

1)] = [∧ f (dn
0),∨ f (dn

1)] = [f (∧dn
0), f (∨dn

1)] = I(f)([dn
0,dn

1]).

The proof for the trust orderings proceeds similarly. �
In the following examples we show how to apply the previous theorem to some

interesting operators.

11

Example 4 (Lub and glb operators).The most natural operators, regarding lattices, are
lub and glb. It is easy to see that they are bi-continuous in(D,≤) complete lattice.
Exploiting Theorem 3 we can now state that lub and glb wrt� are bi-continuous over
(I(D),v).

Example 5 (Multiplication and Sum).When considering the interval construction over
R, as in Example 3, we can lift the operators of sum (weighed) and multiplication over
the intervals. In fact, given two intervals[d0,d1] and[d′

0,d
′
1], the product is defined as

[d0,d1] · [d′
0,d

′
1] = [d0 ·d′

0,d1 ·d′
1].

which is exactly the lifting of multiplication over reals. Similarly we can define sum as

[d0,d1]+ [d′
0,d

′
1] = [d0 +d′

0−d0 ·d′
0,d1 +d′

1−d1 ·d′
1]

These operations appears in [14] under the names of conjunction and disjunction.

Example 6 (A non-lifted operator: Discounting).Discounting, as defined in [14], is an
operator which weighs the trust value received from a delegation according to the trust
in the delegated principal.

[d0,d1]B [d′
0,d

′
1] = [d0 ·d′

0,1−d0 · (1−d′
1)]

Notice that this operator is not commutative.

2.1 Product and Function Constructors

Our model should satisfy “context dependent” trust. By this we mean that trusting a
principala to obtain information about restaurants does not mean that we trusta about,
say, sailing. We can accommodate this kind of situations using a simple property of
lattices and CPO’s. Namely, we can form products of trust structures where each com-
ponent accounts for a particular context. For instance, using a domain of the form
Restaurants×Sailing will allow us to distinguish abouta’s dependability on the two
issues of our example. The next theorem shows that extending the orders pointwise to
products and function spaces gives the result we need.

Theorem 4. Given two complete lattices(D,≤), (D′,≤′) and a generic set X then

1. I(D×D′) is isomorphic to I(D)× I(D′);
2. X−→ I(D) is isomorphic to I(X −→ D).

Proof. In both cases we have to show that there exists a bijective correspondenceH
which preserves the orderings. We use as usual(d,d) to denote pairs andλx.t(x) to
express the function which takes a valued and returnst(d).

1. Let[(d0,d′
0),(d1,d′

1)] and[(d2,d′
2),(d3,d′

3)] be inI(D×D′). We define the function
H : I(D×D′) −→ I(D)× I(D′) by

H([(d0,d
′
0),(d1,d

′
1)]) = ([d0,d1], [d′

0,d
′
1])

12

which is easily seen to be bijective. We first show thatH is well defined, i.e. that
d0 ≤ d1 andd′

0 ≤′ d′
1. This follows at once, since(d0,d′

0) ≤D×D′ (d1,d′
1) where

≤D×D′ is the pointwise extension of≤ and≤′. Next we prove thatH preserves and
reflects�. This amounts to prove that

[(d0,d
′
0),(d1,d

′
1)] �I(D×D′) [(d2,d

′
2),(d3,d

′
3)] (1)

if and only if

([d0,d1], [d′
0,d

′
1]) �I(D)×I(D′) ([d2,d3], [d′

2,d
′
3]) (2)

By Lemma 1, relation (1) above holds if and only if

(d0,d
′
0) ≤D×D′ (d2,d

′
2) and (d1,d

′
1) ≤D×D′ (d3,d

′
3). (3)

Then, by the same Lemma 1, property (3) holds if and only if

[d0,d1] �I(D) [d2,d3] and [d′
0,d

′
1] �I(D′) [d′

2,d
′
3],

which is the same as saying that (2) holds.
The proof is similar for the information ordering.

2. Let [f0, f1] and[f ′0, f ′1] be in I(X −→ D) andg in X −→ I(D). We define the bijec-
tion H : I(X −→ D) ∼= (X −→ I(D)) by H([f0, f1]) = λx.[f0(x), f1(x)]. It is easy to
see thatH([f0, f1]) is well defined. The functionH−1(g) = [λx.∧g(x),λx.∨g(x)]
is the inverse ofH. In fact,H−1(H([f0, f1])) = H−1(λx.[f0(x), f1(x)]) and by defi-
nition of H−1 we have that the latter coincides with

[λy.∧ (λx.[f0(x), f1(x)])(y),λy.∨ (λx.[f0(x), f1(x)])(y)],

which is [λx.∧ [f0(x), f1(x)],λx.∨ [f0(x), f1(x)]], i.e. [f0, f1]. Conversely, we have
H(H−1(g)) = H([λx.∧g(x),λx.∨g(x)]) and, by definition ofH, this is the same as

λy.[(λx.∧g(x))(y),(λx.∨g(x))(y)] = λx.[∧g(x),∨g(x)] = g.

We now need to show thatH andH−1 preservev. RegardingH we have to prove

[f0, f1] vI(X−→D) [f ′0, f ′1] (4)

implies

λx.[f0(x), f1(x)] vX−→I(D) λx.[f ′0(x), f ′1(x)] (5)

From Lemma 2 and (4) it follows thatf0 vX−→D f ′0 and f ′1 vX−→D f1 and, as the
ordering is pointwise, we have that for allx, f0(x)≤ f ′0(x) and f ′1(x)≤ f1(x). Again
by Lemma 2, we obtain[f0(x), f1(x)]v [f ′0(x), f ′1(x)] which, by pointwise ordering,
implies (5).
RegardingH−1, we show that

gvX−→I(D) g′ (6)

implies

[λx.∧g(x),λx.∨g(x)]vI(X−→D) [λx.∧g′(x),λx.∨g′(x)] (7)

13

From (6) we have that, for anyx, [∧g(x),∨g(x)] v [∧g′(x),∨g′(x)]. It then follows
that∧g(x)≤∧g′(x) and∨g′(x)≤∨g(x) which impliesλx.∧g(x)≤ λx.∧g′(x) and
λx.∨g′(x) ≤ λx.∨g(x). Finally, again by Lemma 2, we have that (7) holds.
The proof for the trust ordering is similar and, thus, omitted. �

Remark 1.Theorem 3 holds for any bi-continuous functionf : D0 × . . .×Dn −→ D.
The pointwise lifting of f gives I(f) : I(D0 × . . .×Dn) −→ I(D) and from the result
above we have thatI(f) is (isomorphic to) a functionF : I(D0)× . . .× I(Dn)−→ I(D).

3 A Policy Language

Following our discussion we propose to operate with a language for trust policies ca-
pable of expressing intervals, delegation, and a set of function constructions. We exem-
plify the approach by studying the simple policy language below

Syntax

The language consists of the following syntactic categories, parametric over a fixed trust
lattice(D,≤).

π ::= ppq (delegation) p ::= a∈ P (principal)

| λx : P . τ (abstraction) | x : P (vars)

τ ::= [d,d] ∈ I(D) (value/var) e ::= ι eq ι ι ∈ {τ, p} (equality)

| π(p) (policy value) | τ cmp τ (comparison)

| e 7→ τ;τ (choice) | e bop e (boolean op)

| op(τ1 . . .τn) (lattice op)

Hereop is a continuous function over(I(D),v); operatoreq is equality inτ∪ p, cmp is
one ofv and�, andbop is a standard boolean operator. The elements of the category
p are either principals or variables.

The main syntactic category isπ: it can be either delegation to another principal
or a λ-abstraction. An element ofτ can be an interval, the application of a policy, a
conditional or the application of a continuous operatorop. The elements ofeare boolean
functions applied to elements ofP , D andI(D).

Semantics

We provide a formal semantics for the language described above. As pointed out before,
π is a policy. Hence the semantic domain, as described in §1, will be the codomain of
the function

[[π]]σ : (P −→ P −→ T) −→ (P −→ T),

14

whereσ is an assignment of values inP to variables. The semantic function[[·]]σ is
defined by structural induction on the syntax ofπ as follows.

[[ppq]]σm = m([p])σm;

[[λx : P. τ]]σm = λp : P .([τ])σ{p/x}m.

Here([·])σm is a(n overloaded) function which given an assignmentσ and a global trust
functionm : P −→ P −→ T maps elements ofp, τ, ande respectively to the semantic
domainsP , I(D), andBool as follows.

([[d0,d1]])σm = [([d0])σm,([d1])σm]

([π(p)])σm = [[π]]σm([[p]]σm)

([e 7→ τ1;τ2])σm = if ([e])σm then ([τ1])σm else ([τ2])σm

([op(τ1 . . .τn)])σm = op(([τ1])σm, . . . ,([τn])σm)

([a])σm = a

([x])σm = σ(x)

We omit the rules for the syntactic categorye, as they are obvious.
Let {πp}p∈P be a an arbitrary collection of all policies, whereπp = λx : P .⊥ for all

but a finite number of principals. The fixpoint semantics of{πp}p∈P is the global trust
function determined by the collection of individual policies, and it is readily expressed
in terms of[[·]]σ:

{[{πp}p∈P]}σ = fix(λm.λp.[[πp]]σm)

We believe that this policy language is sufficiently expressive for most applica-
tion scenarios in global computing, as illustrated by our examples which follows. Note
however that our approach easily generalises to any choice of underlying trust structure
(T ,�,v). The only requirement is that the operators used in the policy language are
continuous with respect to the information ordering

Example 7 (Read and Write access).Let D = {N,W,R,RW} represent the access rights to
principal’s CVs. The setD is ordered by the relation≤

∀d ∈ D.N≤ d and ∀d ∈ D.d ≤ RW

We now show how to express some simple of policies in our language. For instance the
following policy says thatLIZ ’s trust in BOB is at least[W,RW] and depends on what
she thinks ofCARL. Instead,LIZ ’s trust inCARLwill depend on her trust inBOB: if it is
above[W,W] then[R,RW] otherwise[N,RW] .

πLIZ = λx : P . x = BOB7→ [W,RW] ∨pLIZ q(CARL);
x = CARL 7→ ([W,W] � pLIZ q(BOB) 7→ [R,RW] ; [N,RW]);
[N,RW]

15

We could also extend the previous policy making it dependent on someone else’s
belief. For instance, in the following policy, the previous judgement wrtBOBhas been
merged withPAUL’s belief (weighed by discounting).

πLIZ = λx : P . x = BOB7→ [N,W] ∨pLIZ q(CARL)∨pLIZ q(PAUL)BpPAULq(x);
x = CARL 7→ ([W,W] � pLIZ q(BOB) 7→ [R,RW] ; [N,RW]);
[N,RW]

In this caseLIZ ’s trust inPAUL is the bottom value[N,RW] which is going to be the left
argument of the discounting operatorB.

Example 8 (Spam Filter).Let Rbe the subset of real numbers between 0 and 1 ordered
by the usual≤, as in Example 3. We can now show some policies modelling spam
filters for blocking certain emails considered spam. The set of principalsP is the set
of internet domains from which we could receive emails, e.g.daimi.au.dk . A starting
policy, where we suppose that our serverspam.filter.edu knows no one, could be
the following

π1 = λx : P . x = spam.filter.edu 7→ [1,1]; [0,1],

meaning that only internal emails are trusted. It could happen thatspam.filter.edu
starts interacting with other principals. A likely event is that it receives a list of other
university internet domains, and decides to almost fully trust them and actually use their
beliefs. Then we would have

π2 = λx : P . x∈ UniList 7→ [.75,1];
∨

y∈Unilist

pyq(x) ∨ π1(x),

where we suppose that “∈” stands for a chain of nested conditionals for all the elements
of UniList. Let us suppose now that the filter receives emails, judged bad from a certain
number of addresses, and would like to be aware of it in order to take further decisions.
Then the policy would be updated to the following

π3 = λx : P . x∈ BadList7→ [0, .5]; π2(x).

At a certain stage the spam-filter could decide to add a new level of badness and create
the new listVeryBadList. But at the same time it would like to change the policy with
respect toBadListputting certain restrictions on the intervals which take care of other
universities’ opinions.

π4 = λx : P . x∈ VeryBadList7→ [0, .2]; x∈ BadList7→ π2(x)∧op [0, .5];π2(x).

As illustrated in theSpam Filterexample, we see trust evolution as being modelled
by suitable updates of policies, as response to e.g. observations of principal behaviour.
However, it is not clear exactly what update primitives are required in practice. We are
currently working on developing a calculus of principal behaviour, with features for
trust policy updates, i.e. instantiating the function update introduced in §1.

16

Conclusion

We presented a novel model for trust in distributed dynamic networks, such as those
considered in Global Computing. The model builds on basic ideas from trust manage-
ment systems and relies on domain theory to provide a semantic model for the inter-
pretation of trust policies in trust-based security systems. Our technical contribution is
based bi-ordered structures(T ,�,v), where the information orderingv measures the
information contents of data, and is needed to compute the fixpoint of mutually recur-
sive policies, while the trust ordering� measures trust degrees and is used to make
trust-informed decisions. Following this lead, we presented an interval construction as
a canonical way to add uncertainty to trust lattices, and used the theory to guide the de-
sign and underpin the semantics of a simple, yet realistic policy language. We believe
that the model can be used to explain existing trust-based systems, as well as help the
design of new ones.

Of course, we are still at the first steps of development, and we still need to as-
sess the generality of our approach is by verifying further examples. One of the main
challenges ahead is to complement the denotational model presented here with an op-
erational model where, for instance, we will need to address the question of computing
trust information efficiently over the global network. Due to the great variability and
absence of central control of the kind of network we are interested in, this poses serious
challenges. For instance, in many applications it will not be feasible or necessary at all
to compute exact values. We are therefore aiming at an operational model which can
compute sufficient approximations to trust values. One issue is the update of computed
trust elements; it would be interesting to investigate dynamic algorithms to update the
least fixpoint. Another important issue is trust negotiation, where requester and granter
engage in complex protocols aimed to convince each other of their reciprocal trustwor-
thiness, without disclosing more evidence than necessary. Similar ideas appear in the
literature as “proof carrying authentication” [1] and “automated trust negotiation” [23].

From the denotational point of view, we would like to develop a theory to account
for the dynamic modification of the “web of trust.” The simplest instance of this is
when a principal decides to modify its trust policy. This introduces an element of non-
monotonicity that we plan to investigate using an extension of our model based on a
“possible world” semantics, where updating a policy signifies the transition to a “new
world” and triggers a (partial) re-computation of the global trust function.

Acknowledgements.We would like to thank Karl Krukow and the Secure project consortium
and in particular the Aarhus group and the Cambridge Opera group for the development of the
research. Many thanks go to Maria Vigliotti who contributed to early developments.

References

1. Andrew W. Appel and Edward W. Felten. Proof-carrying authentication. InProc. 6th ACM
Conference on Computer and Communications Security, 1999.

2. Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decentralized trust management. In
Proc. IEEE Conference on Security and Privacy, Oakland, 1996.

17

3. Matt Blaze, Joan Feigenbaum, and Jack Lacy. KeyNote: Trust management for public-key
infrastructure.LNCS, 1550:59–63, 1999.

4. Michael Burrows, Mart´ın Abadi, Butler W. Lampson, and Gordon Plotkin. A calculus for
access control in distributed systems.LNCS, 576:1–23, 1991.

5. Michael Burrows, Mart´ın Abadi, and Roger Needham. A logic of authentication.In Pro-
ceedings of the Royal Society, Series A, 426:18–36, 1991.

6. Yang-Hua Chu, Joan Feigenbaum, Brian LaMacchia, Paul Resnick, and Martin Strauss.
REFEREE: Trust management for web applications.Computer Networks and ISDN Sys-
tems, 29(8-13):953–964, 1997.

7. Dwaine Clarke, Jean-Emile Elien, Carl Ellison, Matt Fredette, Alexander Morcos, and
Ronald L. Rivest. Certificate chain discovery in SPKI/SDSI.http://theory.lcs.
mit.edu/˜rivest , 1999.

8. Yun Ding, Patrick Horster, and Holger Petersen. A new approach for delegation using hi-
erarchical delegation tokens. InCommunications and Multimedia Security, pages 128–143,
1996.

9. Carl M. Ellison, Bill Frantz, Butler Lampson, Ron Rivest, Brian M. Thomas, and Tat Ylonen.
SPKI certificate theory.Internet RFC 2693, 1999.

10. Tyrone Grandison and Morris Sloman. A survey of trust in internet application.IEEE
Communications Surveys, Fourth Quarter, 2000.

11. George Gr¨azer. Lattice Theory: First Concepts and Distributive Lattices. Freeman and
Company, 1971.

12. Sushil Jajodia, Pierangela Samarati, and V. S. Subrahmanian. A logical language for express-
ing authorizations. InProc. of the 1997 IEEE Symposium on Security and Privacy, Oakland,
CA, 1997.

13. Andrew J. I. Jones and Babak S. Firozabadi. On the characterisation of a trusting agent. In
Workshop on Deception, Trust and Fraud in Agent Societies, 2000.

14. Adun Jøsang. A logic for uncertain probabilities.Fuzziness and Knowledge-Based Systems,
9(3), 2001.

15. Ulrich W. Kulish and Willard L. Miranker.Computer Arithmetic in Theory and Practice.
Academic Press, 1981.

16. D. Harrison McKnight and Norman L. Chervany. The meanings of trust.Trust in Cyber-
Societies - LNAI, 2246:27–54, 2001.

17. Ingmar P¨orn. Some basic concepts of action. InS. Stenlund (ed.), Logical Theory and
Semantic Analysis. Reidel, Dordrecht, 1974.

18. P. Venkat Rangan. An axiomatic basis of trust in distributed systems. InSymposium on
Security and Privacy, 1998.

19. Ronald L. Rivest and Butler Lampson. SDSI – A simple distributed security infrastructure.
Presented at CRYPTO’96 Rumpsession, 1996.

20. Dana S. Scott. Domains for denotational semantics.ICALP ’82 - LNCS, 140, 1982.
21. Stephen Weeks. Understanding trust management systems. InProc. IEEE Symposium on

Security and Privacy, Oakland, 2001.
22. Uwe G. Wilhelm, Levente Butty`an, and Sebastian Staamann. On the problem of trust in

mobile agent systems. InSymposium on Network and Distributed System Security. Internet
Society, 1998.

23. William H. Winsborough and Ninghui Li. Towards practical automated trust negotiation. In
IEEE 3rd Intl. Workshop on Policies for Distributed Systems and Networks, 2002.

24. Philip Zimmermann.PGP Source Code and Internals. The MIT Press, 1995.

18

Recent BRICS Report Series Publications

RS-03-4 Marco Carbone, Mogens Nielsen, and Vladimiro Sassone.A
Formal Model for Trust in Dynamic Networks. January 2003.
18 pp.

RS-03-3 Claude Cŕepeau, Paul Dumais, Dominic Mayers, and Louis
Salvail. On the Computational Collapse of Quantum Informa-
tion. January 2003. 31 pp.

RS-03-2 Olivier Danvy and Pablo E. Mart́ınez López. Tagging, En-
coding, and Jones Optimality. January 2003. Appears in
Degano, editor,Programming Languages and Systems: Twelfth
European Symposium on Programming, ESOP ’03 Proceed-
ings, LNCS 2618, 2003, pages 335–347.

RS-03-1 Vladimiro Sassone and Paweł Sobocinski.Deriving Bisimu-
lation Congruences: 2-Categories vs. Precategories. January
2003. 28 pp. Appears in Gordon, editor,Foundations of Soft-
ware Science and Computation Structures, FoSSaCS ’03 Pro-
ceedings, LNCS 2620, 2003, pages 409–424.

RS-02-53 Olivier Danvy. A Lambda-Revelation of the SECD Machine.
December 2003.

RS-02-52 Olivier Danvy. A New One-Pass Transformation into Monadic
Normal Form. December 2002. 16 pp. Appears in Hedin, editor,
Compiler Construction, 12th International Conference, CC ’03
Proceedings, LNCS 2622, 2003, pages 77–89.

RS-02-51 Gerth Stølting Brodal, Rolf Fagerberg, AnnaÖstlin, Christian
N. S. Pedersen, and S. Srinivasa Rao.Computing Refined Bune-
man Trees in Cubic Time. December 2002. 14 pp.

RS-02-49 Mikkel Nygaard and Glynn Winskel. HOPLA—A Higher-
Order Process Language. December 2002. 18 pp. Appears
in Brim, Jan čar, Křetı́nský and Antonı́n, editors, Concurrency
Theory: 13th International Conference, CONCUR ’02 Proceed-
ings, LNCS 2421, 2002, pages 434–448.

RS-02-48 Mikkel Nygaard and Glynn Winskel.Linearity in Process Lan-
guages. December 2002. 27 pp. Appears in Plotkin, editor,
Seventeenth Annual IEEE Symposium on Logic in Computer
Science, Lics ’02 Proceedings, 2002, pages 433–446.

